XDL605B75D82-Q [TOREX]

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter;
XDL605B75D82-Q
型号: XDL605B75D82-Q
厂家: Torex Semiconductor    Torex Semiconductor
描述:

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter

文件: 总29页 (文件大小:1384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XDL605/XDL606Series  
ETR44002-001  
36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter  
AEC-Q100 Grade2  
GENERAL DESCRIPTION  
The XDL605/XDL606 series is an ultra compact step-down DC / DC converter that integrates a coil and a control IC in one tiny  
package. By adding a ceramic capacitor for input / output and a resistor for output voltage setting to external parts, a power  
supply circuit of up to 600mA can be created. An internal coil simplifies the circuit and enables minimization of noise and other  
operational trouble due to the circuit wiring.  
XDL605/XDL606 series has operating voltage range of 3.0V~36.0V and it can support 600mA as an output current with high-  
efficiency. They use synchronous rectification at an operating frequency of 2.2MHz. The output voltage can be set to a value  
from 1.8V to 5.0V using external resistors.  
They have a fixed internal soft start time which is 2.0ms(TYP.), additionally the time can be extended by using an external  
resistor and capacitor.The output state can be monitored using the power good function.  
Over current protection, short-circuit protection and thermal shutdown are embedded and they secure a safety operation.  
The XDL605/XD606 series employ the wettable flank plated packaging. This provides a visual indicator of solderability and  
lowers the inspection time.  
FEATURES  
Input Voltage Range  
Output Voltage Range  
FB Voltage  
APPLICATIONS  
Automotive Body Control  
Automotive Infortainment  
Automotive accessories  
Drive recorder  
Car-mounted camera  
ETC  
Industrial Equipment  
:
3.0V ~ 36.0V (Absolute Max 40V)  
1.8V ~ 5.0V  
:
:
:
0.75V ± 1.5%  
Oscillation Frequency  
Output Current  
2.2MHz  
600mA  
Quiescent Current  
Control Methods  
13.5μA (XDL606)  
:
PWM control (XDL605)  
PWM/PFM Auto (XDL606)  
Efficiency 81%@12V5V, 300mA  
Soft-start External settings  
Function  
:
:
Power good  
Over Current Protection  
(Automatic recovery)  
Thermal Shutdown  
Protection Circuits  
UVLO  
Output Capacitor  
:
:
:
:
Ceramic Capacitor  
-40~ +105℃  
Operating Ambient Temperature  
Packages  
DFN3625-11B (Wettable Flank)  
EU RoHS Compliant, Pb Free  
Environmentally Friendly  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION  
CHARACTERISTICS  
XDL605B75D82/XD606B75D82  
(VIN=12V, VOUT=5V)  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XDL605B75D82  
XDL606B75D82  
0.1  
1
10  
100  
Output Current :IOUT[mA]  
1/29  
XDL605/XDL606 Series  
BLOCK DIAGRAM  
L1  
L2  
L
VIN  
Current  
SENSE  
LocalReg  
each  
circuit  
Chip  
Enable  
EN/SS  
Current  
feed  
back  
Current  
Limit  
PFM  
Current  
Limit  
High  
Side  
Buffer  
Gate  
CLAMP  
Under  
Voltage  
Lock Out  
Lx  
Low  
Side  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
-
PWM/PFM  
ControlLOGIC  
FB  
PWM  
Comparator  
PG  
+
-
Ramp  
Wave  
OSC  
GND  
Power-Good  
Comparator  
* Diodes inside the circuit are an ESD protection diodes and a parasitic diodes.  
2/29  
XDL605/XDL606  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
(*1)  
XDL605①②③④⑤⑥-⑦  
XDL606①②③④⑤⑥-⑦  
PWM control  
(*1)  
PWM/PFM Automatic Switching Control  
DESIGNATOR  
ITEM  
Type  
SYMBOL  
DESCRIPTION  
Refer to Selection Guide  
B
75  
②③  
Adjustable Output Voltage  
Oscillation Frequency  
Packages (Order Unit)  
Output voltage can be adjusted in 1.8V to 5.0V  
2.2MHz  
D
(*1)  
⑤⑥-⑦  
82-Q  
DFN3625-11B (2,000pcs/Reel) (*2)  
(*1) The “-Q” suffix denotes “AEC-Q100” and “Halogen and Antimony free” as well as being fully EU RoHS compliant.  
(*2) The XDL605/XDL606 reels are shipped in a moisture-proof packing.  
Selection Guide  
FUNCTION  
Chip Enable  
UVLO  
B TYPE  
Yes  
Yes  
Thermal Shutdown  
Soft Start  
Yes  
Yes  
Power-Good  
Yes  
Current Limiter  
Yes  
(Automatic Recovery)  
3/29  
XDL605/XDL606 Series  
PIN CONFIGURATION  
8
7
6
5
1
2
3
4
9
10  
11  
11  
DFN3625-11B  
(BOTTOM VIEW)  
10  
* The dissipation pad(No.9) pin for the DFN3625-11B package should be solder-plated in recommended mount pattern and metal  
masking so as to enhance mounting strength and heat release.  
If the pad needs to be connected to other pins, it should be connected to the GND (No.4,5,7) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
Power-good Output  
Enable Soft-start  
Power Input  
1
2
PG  
EN/SS  
VIN  
3
4
GND  
GND  
LX  
Ground  
5
Ground  
6
Switching Output  
Ground  
7
GND  
FB  
8
Output Voltage Sense  
Ground  
9
GND  
L1  
10  
11  
Inductor Electrodes  
Inductor Electrodes  
L2  
4/29  
XDL605/XDL606  
Series  
FUNCTION CHART  
PIN NAME  
SIGNAL  
STATUS  
Stand-by  
L
H
EN/SS  
Active  
OPEN  
Undefined State(*1)  
(*1)  
Please do not leave the EN/SS pin open. Each should have a certain voltage.  
PIN NAME CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
PG  
UVLO  
Undefined State  
(VIN < VUVLOD  
)
Stand-by  
L (Low impedance)  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
EN/SS Pin Voltage  
FB Pin Voltage  
PG Pin Voltage  
PG Pin Current  
Lx Pin Voltage  
SYMBOL  
VIN  
RATINGS  
-0.3 ~ 40  
-0.3 ~ 40  
-0.3 ~ 6.2  
-0.3 ~ 6.2  
8
UNITS  
V
V
VEN/SS  
VFB  
V
VPG  
V
IPG  
mA  
V
VLx  
-0.3 ~ VIN + 0.3 or 40 (*1)  
Power Dissipation  
Pd  
2100 (JESD51-7 board) (*2)  
mW  
(Ta=25)  
Surge Voltage  
VSURGE  
Topr  
46 (*3)  
V
Operating Ambient Temperature  
Storage Temperature  
-40 ~ 105  
-55 ~ 125  
Tstg  
All voltages are described based on the GND pin.  
(*1) The maximum value should be either VIN+0.3V or 40V in the lowest.  
(*2) The power dissipation figure shown is PCB mounted and is for reference only.  
The mounting condition is please refer to PACKAGING INFORMATION  
(*3) Applied Time400ms  
5/29  
XDL605/XDL606 Series  
ELECTRICAL CHARACTERISTICS  
XDL605/XDL606 Series  
Ta=25℃  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
VFB=0.731V0.769V  
MIN. TYP. MAX. UNIT CIRCUIT  
0.739 0.750 0.761  
VFB Voltage when Lx pin voltage  
changes from "H" level to "L" level  
V
-40℃≦Ta  
-40℃≦Ta  
105  
0.731  
1.8  
-
-
0.769  
5.0  
Output Voltage  
Setting Range(*1)  
Operating Input  
Voltage Range  
VOUTSET  
VIN  
-
-
105  
105  
V
V
-
-
-40℃≦Ta  
3.0  
-
2.70  
-
36.0  
2.80  
2.87  
2.90  
2.97  
VEN/SS=12V, VIN:2.87V2.53V  
2.60  
2.53  
2.70  
2.63  
UVLO Detect  
Voltage  
VUVLOD VFB=0V, VIN Voltage which Lx pin  
voltage holding "H" level  
V
V
-40℃≦Ta  
-40℃≦Ta  
105  
105  
VEN/SS=12V, VIN:2.63V2.97V  
VUVLOR VFB=0V, VIN Voltage which Lx pin  
voltage holding "L" level  
2.80  
-
UVLO Release  
Voltage  
-
-
-
-
-
-
13.5  
22.0  
30  
Quiescent Current  
(XDL606)  
Iq  
VFB=0.825V  
μA  
μA  
μA  
-40℃≦Ta  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
105  
-
290  
-
500  
550  
2.5  
Quiescent Current  
(XDL605)  
Iq  
VFB=0.825V  
1.65  
-
Stand-by Current  
ISTB  
VIN=12V, VEN/SS=VFB=0V  
3.9  
Connected to  
2.013 2.200 2.387  
Oscillation Frequency  
fOSC  
external components,  
IOUT=200mA  
MHz  
-40℃≦Ta  
105  
1.936  
-
2.464  
Minimum On Time  
Minimum Duty Cycle  
Maximum Duty Cycle  
tONMIN  
DMIN  
Connected to external components  
VFB=0.825V  
-
-
85 (*1)  
-
0
-
ns  
%
%
-40℃≦Ta  
-40℃≦Ta  
105  
105  
-
-
DMAX  
VFB=0.675V  
100  
Lx SW "H"  
On Resistance  
Lx SW "L"  
RLxH  
RLxL  
VFB=0.675V, ILX=200mA  
VFB=0.825V, ILX=200mA  
-
-
1.20  
1.38  
-
Ω
Ω
0.60  
(*1)  
On Resistance  
Connected to  
PFM Switch Current  
(XDL606 only)  
IPFM  
external components,  
VIN=VEN/SS=12V, IOUT=1mA  
-
400  
1.3  
-
-
mA  
A
High side  
Current Limit (*2)  
ILIMH  
VFB=VFBE×0.98  
1.0  
L
Test Freq.=1MHz  
μH  
Inductance  
-
-
2.2  
1.6  
-
-
-
-
IDC  
ΔT=+40deg  
Inductor Rated Current  
A
Test Condition: Unless otherwise stated: VIN=12V, VEN/SS=12V, PG=OPEN  
Peripheral parts connection conditionsRFB1=680kΩ,RFB2=120kΩ,CFB=47pF,CL=10μF×2parallel, CIN=4.7μF  
(*1) Design reference value. This parameter is provided only for reference.  
(*2) Current limit denotes the level of detection at peak of coil current.  
6/29  
XDL605/XDL606  
Series  
ELECTRICAL CHARACTERISTICS  
XDL605/XDL606 Series  
Ta=25℃  
PARAMETER  
SYMBOL  
tSS1  
CONDITIONS  
MIN. TYP. MAX. UNIT CIRCUIT  
Internal  
Soft-Start Time  
External  
VFB=0.675V  
VFB=0.675V  
1.0  
21  
2.0  
26  
4.0  
33  
ms  
ms  
tSS2  
Soft-Start Time  
RSS=430KΩ, CSS=0.47μF  
VFB=0.72V0.63V  
0.638 0.675 0.712  
RPG:100kΩ pull-up to 5V,  
PG Detect Voltage  
VPGDET  
V
V
FB Voltage when PG pin voltage  
-40℃≦Ta  
-40℃≦Ta  
105  
105  
0.630  
-
-
0.720  
0.3  
-
changes from "H" level to "L" level  
PG Output Voltage  
Efficiency  
VPG  
VFB=0.6V, IPG=1mA  
-
-
V
Connected to external components,  
EFFI  
81  
%
VIN=12V, VOUT=5V, IOUT=300mA  
FB “‘H” Current  
FB “L” Current  
IFBH  
IFBL  
VIN=VEN/SS=36V, VFB=3.0V  
VIN=VEN/SS=36V, VFB=0V  
-40℃≦Ta  
105  
105  
-0.1  
-0.1  
0.0  
0.0  
0.1  
0.1  
μA  
μA  
-40℃≦Ta  
VEN/SS=0.3V2.5V  
VFB=0.71V, VEN/SS Voltage when  
Lx pin voltage changes  
from "L" level to "H"  
EN/SS "H" Voltage  
EN/SS "L" Voltage  
VEN/SSH  
-40℃≦Ta  
105  
105  
2.5  
-
-
36.0  
0.3  
V
V
VEN/SS=2.5V→0.3V  
VFB=0.71V, VEN/SS Voltage when  
Lx pin voltage changes  
from "H" level to "L"  
VEN/SSL  
-40℃≦Ta  
-40℃≦Ta  
GND  
EN/SS ‘H’ Current  
EN/SS ‘L’ Current  
IEN/SSH  
IEN/SSL  
VIN=VEN/SS=36V, VFB=0.825V  
105  
105  
-
0.1  
0.0  
0.3  
0.1  
μA  
μA  
VIN=36V, VEN/SS=0V, VFB=0.825V -40℃≦Ta  
Junction Temperature  
-0.1  
Thermal Shutdown  
Temperature  
TTSD  
THYS  
-
-
150  
25  
-
-
-
-
Hysteresis Width  
Junction Temperature  
Test Condition: Unless otherwise stated: VIN=12VVEN/SS=12VPG=OPEN  
Peripheral parts connection conditions:  
Peripheral parts connection conditionsRFB1=680kΩ,RFB2=120kΩ,CFB=47pF,CL=10μF×2parallel, CIN=4.7μF  
7/29  
XDL605/XDL606 Series  
TEST CIRCUITS  
CIRCUIT①  
Probe  
LX  
L1  
CL :10μF×2pcs  
VOUT  
VIN  
L2  
FB  
PG  
CFB:47pF  
CIN : 4.7μF  
A
A
RFB1:680kΩ  
IOUT  
EN/SS  
V
V
RFB2:120kΩ  
V
GND  
CIRCUIT②  
Probe  
LX  
L1  
VIN  
L2  
FB  
PG  
V
A
CIN : 4.7μF  
EN/SS  
V
Probe  
V
100kΩ  
RPG:100kΩ  
V
GND  
A
V
Probe  
CIRCUIT③  
Probe  
LX  
L1  
CIN : 4.7μF  
VIN  
L2  
FB  
PG  
V
Probe  
R
SS:430kΩ  
EN/SS  
GND  
V
C
SS:0.47μF  
V
100kΩ  
V
8/29  
XDL605/XDL606  
Series  
TEST CIRCUITS (Continued)  
CIRCUIT  
L
X
L1  
V
IN  
L2  
FB  
PG  
A
V
EN/SS  
GND  
A
V
V
A
CIRCUIT⑤  
L
X
L1  
V
IN  
L2  
A
V
EN/SS  
GND  
FB  
PG  
V
9/29  
XDL605/XDL606 Series  
TYPICAL APPLICATION CIRCUIT / Parts Selection Method  
* The inductor is dedicated to this product. Please do not use it for purposes other than this product.  
Typical Examples】  
conditions MANUFACTURER  
PRODUCT NUMBER  
VALUE  
VIN20V  
TDK  
4.7uF/50V  
(*1)  
CIN1  
CGA6P3X7R1H475K250AB  
VIN20V  
4.7uF/50V 2parallel  
0.1uF/50V  
CIN2  
-
TDK  
Murata  
Murata  
TDK  
CGA3E2X7R1H104K080AA  
GRT21BR71A106KE13  
GRM21BZ71C106KE15  
CGA5L1X7R1C106K160AC  
10μF/10V 2parallel  
10μF/16V 2parallel  
10μF/16V 2parallel  
(*2)  
-
CL  
Select parts considering the DC bias characteristics and rated voltage of ceramic capacitors.  
(*1) For CIN1, use a capacitor with the same or higher effective capacity value as the recommended components.  
(*2) For CL, use a capacitor with the same or higher effective capacity value as the recommended components.  
If a capacitor with a low effective capacity value is used, the output voltage may become unstable.  
However, if large capacity capacitors, such as electrolytic capacitors, are connected in parallel,  
the inrush current during startup could increase or the output could become unstable.  
10/29  
XDL605/XDL606  
Series  
TYPICAL APPLICATION CIRCUIT / Parts Selection Method (Continued)  
< Output Voltage Setting Value VOUTSET Setting >  
The output voltage can be set by adding an external dividing resistor.  
The output voltage is determined by the equation below based on the values of RFB1 and RFB2  
.
VOUT=VFB × (RFB1+RFB2) / RFB2  
With RFB2 200kΩ and RFB1 + RFB2 1MΩ  
Under the condition that the difference between VIN and VOUT is big, the ripple voltage can be big due to the unstable duty.  
When the ripple voltage needs to be reduced, please be sure to use this product within the Operation Area stated in the Electric  
Characteristics Example of "VIN-VOUT Operation Area".  
<CFB setting>  
Adjust the value of the phase compensation speed-up capacitor CFB using the equation below.  
1
CFB  
=
2π × fzfb× RFB1  
1
fzfb =  
2π CL × L  
Setting Example】  
XDL605  
RFB2  
CFB  
CFB  
VOUTSET  
CL  
fzfb  
RFB1  
(Calculated)  
369pF  
(E24 series)  
390pF  
1.8V  
3.3V  
5.0V  
20μF  
20μF  
20μF  
24kHz  
24kHz  
24kHz  
18kΩ  
51kΩ  
68kΩ  
13kΩ  
15kΩ  
12kΩ  
130pF  
98pF  
130pF  
100pF  
XDL606  
CFB  
CFB  
(E24 series)  
39pF  
VOUTSET  
CL  
fzfb  
RFB1  
RFB2  
(Calculated)  
36.9pF  
1.8V  
3.3V  
5.0V  
20μF  
20μF  
20μF  
24kHz  
24kHz  
24kHz  
180kΩ  
510kΩ  
680kΩ  
130kΩ  
150kΩ  
120kΩ  
13.0pF  
9.8pF  
13pF  
10pF  
11/29  
XDL605/XDL606 Series  
OPERATIONAL EXPLANATION  
The XDL605/XDL606 series consists internally of a reference voltage supply with soft-start function, a ramp wave circuit, an error  
amp, a PWM comparator, a High side driver FET, a Low side driver FET, a High side buffer circuit, a Low side buffer circuit, a  
current sense circuit, a phase compensation (Current feedback) circuit, a current limiting circuit, an under voltage lockout (UVLO)  
circuit, an internal power supply (Local Reg) circuit, a gate clamp (CLAMP) circuit and other elements.  
The control method is the current mode control method for handling low ESR ceramic capacitors.  
L1  
L2  
L
VIN  
Current  
SENSE  
LocalReg  
each  
circuit  
Chip  
Enable  
EN/SS  
Current  
feed  
back  
Current  
Limit  
PFM  
Current  
Limit  
High  
Side  
Buffer  
Gate  
CLAMP  
Under  
Voltage  
Lock Out  
Lx  
Low  
Side  
Buffer  
Thermal  
Shutdown  
each  
circuit  
Operation  
Enable  
Vref  
Soft Start  
+
Err Amp  
-
+
-
PWM/PFM  
ControlLOGIC  
FB  
PWM  
Comparator  
PG  
+
-
Ramp  
Wave  
OSC  
GND  
Power-Good  
Comparator  
*
Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
12/29  
XDL605/XDL606  
Series  
OPERATIONAL EXPLANATION(Continued)  
< Normal Operation >  
The standard voltage Vref and FB pin voltage are compared using an error amplifier and then the control signal to which phase  
compensation has been added to the error amplifier output is input to the PWM comparator. The PWM comparator compares the  
above control signal and lamp wave to control the duty width during PWM control. Continuously conducting these controls  
stabilizes the output voltage.  
In addition, the current detecting circuit monitors the driver FET current for each switching and modulates the error amplifier  
output signal into a multiple feedback signal (current feedback circuit). This achieves stable feedback control even when low ESR  
capacitors, such as ceramic capacitors, are used to stabilize the output voltage.  
XDL605 Series  
The XDL605 Series (PWM control) performs switching at a set switching frequency fOSC regardless of the output current. At light  
loads the on time is short and the circuit operates in discontinuous mode, and as the output current increases, the on time becomes  
longer and the circuit operates in continuous mode.  
fOSC  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XDL605 series: Example of light load operation  
XDL605 series: Example of heavy load operation  
XDL606 Series  
The XDL606 Series (PWM/PFM automatic switching control) lowers the switching frequency during light loads by turning on the  
High side driver FET when the coil current reaches the PFM current (IPFM). This operation reduces the loss during light loads and  
achieves high efficiency from light to heavy loads. As the output current increases, the switching frequency increases proportional  
to the output current, and when the switching frequency increases fOSC, the circuit switches from PFM control to PWM control and  
the switching frequency becomes fixed.  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IPFM  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XDL606 series: Example of light load operation  
XDL606 series: Example of heavy load operation  
< 100% Duty Cycle Mode >  
When the dropout voltage is low or there is a transient response, the circuit might change to the 100% Duty cycle mode where  
the High side driver FET is continuously on.  
The 100% Duty cycle mode operation makes it possible to maintain the output current even when the dropout voltage is low  
such as when the input voltage declines due to cranking, etc.  
13/29  
XDL605/XDL606 Series  
OPERATIONAL EXPLANATION(Continued)  
< CE Function >  
When an “H” voltage (VEN/SSH) is input to the EN/SS pin, normal operation is performed after the output voltage is started up by  
the soft start function, normal operation is performed. When the “L” voltage (VEN/SSL) is input to the EN/SS pin, the circuit enters  
the standby state, the supply current is suppressed to the standby current ISTB (TYP. 1.65μA), and the High side driver FET and  
Low side driver FET are turned off.  
< Soft Start Function >  
This function gradually starts up the output voltage to suppress the inrush current.  
The soft start time is the time until the output voltage from VEN/SSH reaches 90% of the output voltage set value, and when the  
output voltage increases further, the soft start function is cancelled to switch to normal operation.  
Internal Soft Start Time  
The internal soft start time (tSS1) is configured so that after the “H” voltage (VEN/SSH) is input to the EN/SS pin, the standard voltage  
connected to the error amplifier increases linearly during the soft-start period. This causes the output voltage to increase  
proportionally to the standard voltage increase. This operation suppresses the inrush current and smoothly increases the output  
voltage.  
tss1  
EN/SS  
V1  
V1  
90% of setting voltage  
VOUT  
< Overview of internal soft start >  
< Internal soft start EN/SS circuit >  
External Setting Soft Start Time  
The external setting soft start time (tSS2) can adjust the increase speed of the standard voltage in the IC by adjusting the EN/SS  
pin voltage inclination during startup using externally connected component RSS and CSS. This makes it possible to externally  
adjust the soft start time.  
Soft start time (tSS2) is approximated by the equation below according to values of V1, RSS, and CSS  
When tss2 is shorter than tss1, the output voltage rises at the internal soft start time.  
tss2=Css×Rss× ln ( V1 / (V1-1.45V) )  
Setting Example】  
CSS = 0.47μF, RSS = 430kΩ, V1 = 12V  
tSS2 = 0.47μF x 430kΩ x ( ln (12V/(12V-1.45V)) = 26ms  
tss2  
V1  
RSS  
EN/SS  
CSS  
V1  
1.45V  
EN/SS  
VOUT  
90% of setting voltage  
< External soft start EN/SS circuit >  
< Overview of external soft start >  
14/29  
XDL605/XDL606  
Series  
OPERATIONAL EXPLANATION (Continued)  
< Power Good >  
The output state can be monitored using the power good function. The PG pin is an Nch open drain output, therefore a pull-up  
resistor (approx. 100kΩ) must be connected to the PG pin.  
The pull-up voltage should be 5.5V or less. When not using the power good function, connect the PG terminal to GND or leave  
it open.  
CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
Undefined State  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO (VIN < VUVLOD  
Stand-by  
)
L (Low impedance)  
< UVLO Function >  
When the VIN pin voltage falls below VUVLOD (TYP. 2.7V), the high side driver FET and low side driver FET are forcibly turned off  
to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above VUVLOR (TYP.  
2.8V), the UVLO function is released, the soft start function activates, and output start operation begins. Stopping by UVLO is not  
shutdown; only pulse output is stopped and the internal circuits continue to operate.  
< Thermal Shutdown Function >  
Athermal shutdown (TSD) function is built in for protection from overheating. When the junction temperature reaches the thermal  
shutdown detection temperature TTSD, the High side driver FET and Low side driver FET are compulsorily turned off.  
If the driver FET continues in the off state, the junction temperature declines, and when the junction temperature falls to the  
thermal shutdown cancel temperature, the thermal shutdown function is cancelled and the soft-start function operates to start up  
the output voltage.  
15/29  
XDL605/XDL606 Series  
OPERATIONAL EXPLANATION (Continued)  
< Current Limit Function >  
The current limiting circuit of the XDL605/XDL606 series monitors the current that flows through the High side driver FET and  
Low side driver FET, and when over current is detected, the current limiting function activates.  
High side driver FET current limiting  
The current in the High side driver FET is detected to equivalently monitor the peak value of the coil current. The High side driver  
FET current limiting function forcibly turns off the High side driver FET when the peak value of the coil current reaches the High  
side driver current limit value ILIMH  
.
High side driver FET current limit value ILIMH=1.3A (TYP.)  
Low side driver FET current limiting  
The current in the Low side driver FET is detected to equivalently monitor the bottom value of the coil current. The Low side  
driver FET current limiting function operates when the High side driver FET current limiting value reaches ILIMH. The Low side  
driver FET current limiting function prohibits the High side driver FET from turning on in an over current state where the bottom  
value of the coil current is higher than the Low side driver FET current limit value ILIML  
.
Low side driver FET current limit value ILIML=0.9A (TYP.)  
When the output current increases and reaches the current limit value, the current foldback circuit operates and lowers the  
output voltage and FB voltage. The ILIMH and ILIML decline accompanying the FB voltage decrease to restrict the output current.  
When the overcurrent state is removed, the foldback circuit operation increases the ILIMH and ILIML together with output voltage  
to return the output to the output voltage set value.  
Current Limit  
ILIMH=1.3A(TYP.)  
ILIML=0.9A(TYP.)  
Coil  
Current  
0A  
Lx  
0V  
VOUT  
0V  
RLOAD  
0Ω  
16/29  
XDL605/XDL606  
Series  
NOTES ON USE  
1) In the case of a temporary and transient voltage drop or voltage rise.  
If the absolute maximum ratings are exceeded, the IC may be deteriorate or destroyed.  
If a voltage exceeding the absolute maximum voltage is applied to the IC due to chattering caused by a mechanical switch  
or an external surge voltage, please use a protection element such as a TVS and a protection circuit as a countermeasure.  
Please see the countermeasures from (a) to (d) shown below.  
(a) When voltage exceeding the absolute maximum ratings comes into the VIN pin due to the transient change on the  
power line, there is a possibility that the IC breaks down in the end.  
To prevent such a failure, please add a TVS between VIN and GND as a countermeasure  
(b) When the input voltage decreases below the output voltage, there is a possibility that an overcurrent will flow in the IC’s  
Internal parasitic diode and exceed the absolute maximum rating of the Lx pin.  
If the current is pulled into the input side by the low impedance between VIN -GND, then countermeasures, such as adding  
an SBD between VOUT-VIN, should be taken.  
(c) When a negative voltage is applied to the input voltage by a reverse connection or chattering, an overcurrent could flow  
in the IC’s parasitic diode and damage the IC. Take countermeasures, such as adding a reverse touching protection diode  
(d) When a sudden surge of electrical current travels along the VOUT pin and GND due to a short-circuit, electrical resonance  
of a circuit involving parasitic inductor of cable related to short circuit and an output capacitor (CL) and impedance such as  
VOUT line generates a negative voltage exceeding the breakdown voltage and may damage the device.  
Take countermeasures, such as connecting a schottky diode between the VOUT and GND.  
17/29  
XDL605/XDL606 Series  
NOTES ON USE(Continued)  
2) Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.  
3)  
The DC/DC converter characteristics depend greatly on the externally connected components as well as on the  
characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully  
considering which components to select.  
Be especially careful of the capacitor characteristics and use X7R or X5R (EIA standard) ceramic capacitors.  
The capacitance decrease caused by the bias voltage may become large depending on the external size of the  
capacitor.  
4)  
The current limit value is the coil current peak value when switching is not conducted.  
The coil current peak value when the actual current limit function begins to operate may exceed the current limit of the  
electrical characteristics due to the effect of the propagation delay inside the circuit.  
5)  
6)  
7)  
When the On time is less than the Min On Time (tONMIN) and the dropout voltage is large or the load is low, the PWM control  
operates intermittently and the ripple voltage may become large or the output voltage may become unstable.  
The ripple voltage could be increased when switching from discontinuous conduction mode to continuous conduction mode  
and when switching to 100% Duty cycle.  
The PWM/PFM auto series may cause superimposed ripple voltage by continuous pulses if used in high temperature and  
no load conditions. It is necessary to set an idle current of higher than 100μA from VOUT if used at no load.  
It can have the same effect as when RFB2 is lower than 7.5kΩ. Please refer to the  
< Output Voltage Setting Value VOUTSET Setting > section under TYPICAL APPLICATION CIRCUIT.  
8)  
9)  
If the voltage at the EN/SS Pin does not start from 0V but is at the midpoint potential when the power is switched on, the  
soft start function may not work properly and it may cause larger inrush current and bigger ripple voltages.  
Torex places an importance on improving our products and their reliability. We request that users incorporate fail safe  
designs and post aging protection treatment when using Torex products in their systems.  
18/29  
XDL605/XDL606  
Series  
NOTES ON USE(Continued)  
10) Instructions of pattern layouts  
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high,  
please place the input capacitor(CIN1,CIN2) and the output capacitor (CL) as close to the IC as possible.  
(1)  
In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible  
to the VIN and GND pins.  
(2)  
Please mount each external component as close to the IC as possible.  
Please place the external parts on the same side of the PCB as the IC, not on the reverse side of the PCB and  
elsewhere.  
(3)  
(4)  
(5)  
Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
This product has a built in driver FET and inductor, which causes heat generation from the on resistance, so take  
measures to dissipate the heat when necessary.  
Recommended Pattern Layout  
Layer 1  
Layer 2  
19/29  
XDL605/XDL606 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output current  
XDL605/XDL606  
(VIN=12V, VOUT=5V)  
XDL605/XDL606  
(VIN=12V, VOUT=3.3V)  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
XDL605B75D  
XDL606B75D  
XDL605B75D  
XDL606B75D  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(2) Output Voltage vs. Output Current  
XDL605/XDL606  
XDL605/XDL606  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
XDL605B75D  
XDL606B75D  
XDL605B75D  
XDL606B75D  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
(3) Ripple Voltage vs. Output Current  
(4) FB Voltage vs. Ambient Temperature  
XDL605/XDL606  
(VIN=12V, VOUT=5V)  
XDL605/XDL606  
VIN=12V  
CIN=2.2μF(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
0.760  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.755  
0.750  
0.745  
0.740  
XDL605B75D  
XDL606B75D  
0.1  
1
10  
100  
1000  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Output Current :IOUT[mA]  
20/29  
XDL605/XDL606  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(5) UVLO Voltage vs. Ambient Temperature  
(6) Oscillation Frequency vs. Ambient Temperature  
XDL605/XDL606  
XDL605/XDL606  
VIN=12V  
2650  
3.0  
2.9  
2500  
2350  
2200  
2050  
1900  
1750  
VUVLOR  
2.8  
2.7  
2.6  
2.5  
VUVLOD  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(7) Stand-by Current vs. Ambient Temperature  
XDL605/XDL606  
(8) Lx SW ON Resistance vs. Ambient Temperature  
XDL605/XDL606  
VIN=12V  
VIN=12V  
4
3
2
1
0
2.0  
RLXH  
1.5  
1.0  
RLXL  
0.5  
0.0  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(9) Quiescent Current vs. Ambient Temperature  
XDL605  
XDL606  
VIN=12V  
VIN=12V  
40  
35  
30  
25  
20  
15  
10  
5
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
21/29  
XDL605/XDL606 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Internal Soft-Start Time vs. Ambient  
(11) External Soft-Start Time vs. Ambient  
XDL605/XDL606  
XDL605/XDL606  
VIN=12V  
VIN=12V, RSS=430, CSS=0.47μF  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
31  
29  
27  
25  
23  
21  
19  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(12) PG Detect Voltage vs. Ambient Temperature  
(13) PG Output Voltage vs. Ambient Temperature  
XDL605/XDL606  
XDL605/XDL606  
0.75  
VIN=12V, IPG=1mA  
VIN=12V  
0.4  
0.3  
0.2  
0.1  
0.0  
0.70  
0.65  
0.60  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(14) EN/SS Voltage vs. Ambient Temperature  
XDL605/XDL606  
VIN=12V  
2.5  
EN/SS "H"  
EN/SS "L"  
2.0  
1.5  
1.0  
0.5  
0.0  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature :Ta[]  
22/29  
XDL605/XDL606  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) VIN-VOUT Operation Area  
XDL605  
XDL606  
IOUT>50mA  
IOUT50mA  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Operation  
Area  
Operation  
Area  
0
0
1
2
3
4
5
6
1
2
3
4
5
6
Output Voltage:VOUT[V]  
Output Voltage:VOUT[V]  
(16) Output Current Operation Area  
XDL605/XDL606  
XDL605/XDL606  
VOUT= 1.8V  
VI N=5V  
VOUT= 3.3V  
VI N=12V  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
Operation  
Area  
Operation  
Area  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
XDL605/XDL606  
VOUT= 5V  
700  
600  
500  
400  
300  
200  
100  
0
VI N=12V  
VI N=24V  
Operation  
Area  
-40 -20  
0
20 40 60 80 100 120  
Ambient Temperature :Ta[]  
23/29  
XDL605/XDL606 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) Load Transient Response  
XDL605  
XDL606  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA,tr=tf =5us  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA,tr=tf =5us  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
XDL605  
XDL606  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA,tr=tf =5us  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA,tr=tf =5us  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
V
OUT: 500mV/div  
VOUT: 500mV/div  
XDL605  
XDL606  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA,tr=tf =5us  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA,tr=tf =5us  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
24/29  
XDL605/XDL606  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(18) Input Transient Response  
XDL605/XDL606  
VIN=8V16V, VOUT=5.0V, IOUT=300mA,tr=tf =100us  
XDL605/XDL606  
VIN=16V32V, VOUT=5.0V, IOUT=300mA,tr=tf =100us  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
XDL605/XDL606  
IN=8V16V, VOUT=3.3V, IOUT=300mA,tr=tf =100us  
V
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
VIN=8V16V  
VOUT: 200mV/div  
(19) EN/SS Rising Response  
XDL605/XDL606  
VIN=12V, VENSS=0V12V, VOUT=5V, IOUT=300mA  
XDL605/XDL606  
VIN=24V, VENSS=0V24V, VOUT=5V, IOUT=300mA  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
25/29  
XDL605/XDL606 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) EN/SS Rising Response  
XDL605/XDL606  
VIN=12V, VENSS=0V12V, VOUT=3.3V, IOUT=300mA  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
VEN/SS=0V→12V  
VOUT : 2V/div  
(20) VIN Rising Response  
XDL605/XDL606  
IN=0V12V, VENSS=0V12V, VOUT=5V, IOUT=300mA  
XDL605/XDL606  
IN=0V24V, VENSS=0V24V, VOUT=5V, IOUT=300mA  
V
V
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
1.0ms/div  
VEN/SS=0V→24V  
VEN/SS=0V→12V  
VOUT : 2V/div  
VOUT : 2V/div  
XDL605/XDL606  
VIN=0V12V, VENSS=0V12V, VOUT=3.3V, IOUT=300mA  
XDL606B75D82-Q  
CIN=2.2μF×2(CGA4J3X7R1H225K125AB)  
CL=10μF×2 (CGA5L1X7R1C106K160AC)  
1.0ms/div  
VEN/SS=0V→12V  
VOUT : 2V/div  
26/29  
XDL605/XDL606  
Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
OUTLINE / LAND PATTERN  
DFN3625-11B PKG  
THERMAL CHARACTERISTICS  
DFN3625-11B  
JESD51-7 Board  
DFN3625-11B Power Dissipation  
27/29  
XDL605/XDL606 Series  
MARKING RULE  
DFN3625-11B  
TOREX  
① ② ③ ④ ⑤  
represents product series  
MARK  
PRODUCT SERIES  
E
F
XDL605****82-Q  
XDL606****82-Q  
represents Type  
MARK  
Type  
B
PRODUCT SERIES  
B
XDL60*B**82-Q  
represents FB Voltage  
MARK  
0
FB(V)  
0.75  
PRODUCT SERIES  
XDL60**75*82-Q  
,represents production lot number 01090A0Z119ZA1A9AAAZB1ZZ in order  
(G, I, J, O, Q, W excluded*)No Character inversion used  
28/29  
XDL605/XDL606  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions, excluding when specified for in-vehicle use or other uses.  
Do not use the product for in-vehicle use or other uses unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
29/29  

相关型号:

XDL606

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter
TOREX

XDL606B75D82-Q

36V Operation 600mA Inductor Built-in Step-down “micro DC/DC” Converter
TOREX

XDLP2021AFQUQ1

Automotive 0.2-inch DLP® digital micromirror device (DMD) | FQU | 64 | -40 to 105
TI

XDLP4621AFQXQ1

适用于外部照明应用的汽车类 0.46 英寸 DLP® 数字微镜器件 (DMD) | FQX | 120 | -40 to 105
TI

XDLP462SAFQXQ1

适用于内部显示应用的汽车类 0.46 英寸 DLP® 数字微镜器件 (DMD) | FQX | 120 | -40 to 105
TI

XDM2140P

Telecom Circuit, 1-Func, ROHS COMPLIANT, MODULE-30
MURATA

XDM2510HP

Telecom Circuit, 1-Func, ROHS COMPLIANT PACKAGE-30
MURATA

XDM3730ACBP

Digital Media Processors
TI

XDM3730ACUS

Applications Processor
TI

XDM3730CBC

Applications Processor
TI

XDM3730CBP

Digital Media Processors
TI

XDM3730CUS

Applications Processor
TI