XE61CC2502MR-G [TOREX]

Power Management Circuit;
XE61CC2502MR-G
型号: XE61CC2502MR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Power Management Circuit

文件: 总15页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XE61CSeries  
ETR0208-014  
Standard Voltage Detectors (VDF=1.6V6.0V)  
GENERAL DESCRIPTION  
The XE61C series is a highly precise, low power consumption voltage detector, manufactured using CMOS process and laser  
trimming technologies.  
Detect voltage is extremely accurate with minimal temperature drift.  
Both CMOS and N-ch open drain output configurations are available.  
The XE61C assures all temperature range (Ta= - 40OC ~ + 85OC).  
FEATURES  
APPLICATIONS  
Microprocessor reset circuitry  
Memory battery back-up circuits  
Power-on reset circuits  
Detect Voltage Accuracy : ± 2% (Ta=25OC)  
± 4% (Ta=-40OC+85)  
: 1.6V6.0V (0.1V increments)  
Detect Voltage  
Temperature Characteristics : ±400ppm/(Ta=- 40 C~+85 C)  
Operating Voltage Range : 0.7V10.0V  
Low Power Consumption : 0.7μA TYP. (VIN=1.5V)  
Output Configuration  
Packages  
O
O
Power failure detection  
System battery life and charge voltage monitors  
: N-ch open drain output or CMOS  
: SOT-23  
SOT-89  
Environmentally Friendly  
: EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUITS  
CHARACTERISTICS  
XE61CC4502 (4.5V)  
3.5  
3.0  
2.5  
2.0  
Ta=85  
25  
1.5  
1.0  
0.5  
0
-40  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
1/15  
XE61C Series  
PIN CONFIGURATION  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
SOT-23  
SOT-89  
3
2
1
2
3
1
VIN  
VSS  
Supply Voltage Input  
Ground  
VOUT  
Output  
PRODUCT CLASSIFICATION  
Ordering Information  
*1  
(
)
XE61C①②③④⑤⑥⑦-⑧  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
C
N
CMOS output  
Output Configuration  
N-ch open drain output  
e.g.1.6V → ②1, 6  
No delay  
②③  
Detect Voltage (VDF)  
Output Delay  
16 ~ 60  
0
Detect Accuracy  
2
Within ±2%  
MR  
MR-G  
PR  
SOT-23 (3,000/Reel)  
SOT-23 (3,000/Reel)  
SOT-89 (1,000/Reel)  
Packages  
⑥⑦-⑧  
(Oder Unit)  
(*1)  
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.  
2/15  
XE61C  
Series  
BLOCK DIAGRAMS  
(1) CMOS Output  
(2) N-ch Open Drain Output  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25OC  
UNITS  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
RATINGS  
VSS-0.312.0  
50  
VIN  
V
IOUT  
mA  
CMOS  
VSS -0.3 ~ VIN +0.3  
VSS -0.3 ~ 12.0  
250  
Output Voltage  
VOUT  
Pd  
V
N-ch Open Drain Output  
SOT-23  
Power Dissipation  
mW  
SOT-89  
500  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
- 40+85  
-55+125  
OC  
OC  
3/15  
XE61C Series  
ELECTRICAL CHARACTERISTICS  
XE61C Series  
VDF(T)=1.6~6.0V, Ta= - 40~ 85℃  
CIRCUITS  
PARAMETER  
Detect Voltage  
SYMBOL  
VDF  
CONDITIONS  
MIN.  
TYP.  
VDF(T)  
VDF  
MAX. UNITS  
VDF(T)  
x 0.96  
VDF  
VDF(T)  
V
1
x 1.04  
VDF  
V
Hysteresis Width  
VHYS  
1
x 0.02 x 0.05  
x 0.08  
VIN = 1.5V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
-
-
0.7  
0.8  
2.8  
3.3  
Supply Current  
ISS  
VIN  
μA  
2
1
3
4
-
0.9  
3.5  
-
1.0  
3.7  
-
1.1  
3.9  
Operating Voltage  
VDF(T) = 1.6V to 6.0V  
VIN = 1.0V  
0.7  
0.4  
3.0  
5.0  
6.0  
7.0  
-
-
10.0  
V
2.2  
-
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 8.0V  
7.7  
-
N-ch VDS = 0.5V  
10.1  
11.5  
13.0  
-10.0  
-
Output Current  
IOUT  
mA  
nA  
-
-
CMOS, P-ch VDS = 2.1V,  
-2.0  
CMOS  
Output  
VIN=VDFx0.9V,VOUT=0V  
-
-
-10  
10  
-
Leakage  
Current  
(Pch)  
N-ch Open  
Drain  
ILEAK  
3
VIN=10.0V,VOUT=10.0V  
400  
Output  
Temperature  
ΔVDF  
/
ppm/  
-40℃ ≦ Topr 85℃  
-
-
±100  
±400  
1
5
Characteristics  
Delay Time  
(
Δ
Topr  
V
DF)  
tDLY  
Inverts from VDR to VOUT  
0.03  
0.20  
ms  
(VDRVOUT inversion)  
NOTE:  
VDF(T): Nominal detect voltage  
Release Voltage: VDR = VDF + VHYS  
4/15  
XE61C  
Series  
OPERATIONAL EXPLANATION  
(Especially explained for the CMOS output products)  
When input voltage (VIN) is higher than detect voltage (VDF), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
When input voltage (VIN) falls below detect voltage (VDF), output voltage (VOUT) will be equal to the ground voltage  
(VSS) level.  
When input voltage (VIN) falls to a level below that of the minimum operating voltage (VMIN), output will become  
unstable.(As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)  
When input voltage (VIN) rises above the ground voltage (VSS) level, output will be unstable at levels below the  
minimum operating voltage (VMIN). Between the VMIN and detect release voltage (VDR) levels, the ground voltage (VSS)  
level will be maintained.  
When input voltage (VIN) rises above detect release voltage (VDR), output voltage (VOUT) will be equal to VIN.  
(A condition of high impedance exists with N-ch open drain output configurations.)  
The difference between VDR and VDF represents the hysteresis range.  
Timing Chart  
5/15  
XE61C Series  
NOTES ON USE  
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising  
phenomenon, the IC is liable to malfunction should the ratings be exceeded.  
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may  
occur as a result of voltage drops at RIN if load current (IOUT) exists. (refer to the Oscillation Description (1) below)  
3. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, irrespective of  
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release  
even if load current (IOUT) does not exist. (refer to the Oscillation Description (2) below )  
4. Please use N-ch open drain output configuration, when a resistor RIN is connected between the VIN pin and power  
source.  
In such cases, please ensure that RIN is less than 10kand that C is more than 0.1μF, please test with the actual device.  
(refer to the Oscillation Description (1) below)  
5. With a resistor RIN connected between the VIN pin and the power supply, the VIN pin voltage will be getting lower than the  
power supply voltage as a result of the IC's supply current flowing through the VIN pin.  
6. In order to stabilize the IC's operations, please ensure that VIN pin input frequency's rise and fall times are more than 2 μ  
s/ V.  
7. Torex places an importance on improving our products and its reliability.  
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.  
XE61CN Series  
RIN  
Power supply  
V
IN  
VOUT  
C
V
SS  
Figure 1: Circuit using an input resistor  
Oscillation Description  
(1) Load current oscillation with the CMOS output configuration  
When the voltage applied at power supply, release operations commence and the detector's output voltage increases.  
Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the  
power supply and the VIN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the  
voltage level at the VIN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will  
commence. Following detect operations, load current flow will cease and since voltage drop at RIN will disappear, the  
voltage level at the VIN pin will rise and release operations will begin over again.  
Oscillation may occur with this " release - detect - release " repetition.  
Further, this condition will also appear via means of a similar mechanism during detect operations.  
(2) Oscillation as a result of through current  
Since the XE61C series are CMOS IC S, through current will flow when the IC's internal circuit switching operates (during  
release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through  
current's resistor (RIN) during release voltage operations. (refer to Figure 3)  
Since hysteresis exists during detect operations, oscillation is unlikely to occur.  
Power supply  
Power supply  
XE61CC Series  
XE61CN Series  
XE61CC Series  
6/15  
XE61C  
Series  
100kΩ*  
7/15  
XE61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Supply Current vs. Input Voltage  
XE61CC2702 (2.7V)  
XE61CC1802 (1.8V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85  
Ta=85  
25  
25  
-40  
8
-40  
8
0
2
4
6
10  
0
2
4
6
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XE61CC3602 (3.6V)  
XE61CC4502 (4.5V)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Ta=85  
Ta=85  
25  
25  
-40  
-40  
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(2) Detect, Release Voltage vs. Ambient Temperature  
XE61CC1802 (1.8V)  
1.90  
XE61CC2702 (2.7V)  
VDR  
2.80  
2.75  
2.70  
2.65  
1.85  
1.80  
1.75  
VDR  
VDF  
VDF  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
8/15  
XE61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Detect, Release Voltage vs. Ambient Temperature (Continued)  
XE61CC3602 (3.6V)  
XE61CC4502 (4.5V)  
VDR  
3.8  
3.7  
3.6  
3.5  
4.7  
4.6  
4.5  
4.4  
VDR  
VDF  
VDF  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(3) Output Voltage vs. Input Voltage  
XE61CN1802 (1.8V)  
2
XE61CN2702 (2.7V)  
3
2
1
0
Ta=25  
Ta=25  
1
0
0
1
2
0
1
2
3
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XE61CN3602 (3.6V)  
XE61CN4502 (4.5V)  
4
3
2
1
0
5
4
3
2
1
0
Ta=25  
Ta=25  
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
* Unless otherwise stated, the pull-up resistor’s value of the N-ch open drain output type is 100kΩ.  
9/15  
XE61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) N-ch Driver Output Current vs. VDS Characteristics  
XE61CC1802 (1.8V)  
VIN =1.5V  
XE61CC2702 (2.7V)  
10  
8
30  
25  
20  
15  
10  
5
Ta=25  
Ta=25  
VIN =2.5V  
6
2.0V  
4
1.0V  
1.5V  
2
1.0V  
0
0
0
0.5  
1.0  
VDS (V)  
1.5  
2.0  
0
0.5  
1.0  
1.5  
VDS (V)  
2.0  
2.5  
3.0  
XE61CC3602 (3.6V)  
XE61CC4502 (4.5V)  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=25  
Ta=25  
VIN =3.0V  
2.5V  
VIN =4.0V  
3.5V  
3.0V  
2.0V  
2.5V  
2.0V  
1.5V  
1.5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
VDS (V)  
VDS (V)  
XE61CC1802 (1.8V)  
VIN =0.8V  
XE61CC2802 (2.7V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Ta=25  
Ta=25  
VIN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
VDS (V)  
VDS (V)  
10/15  
XE61C  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) N-ch Driver Output Current vs. VDS Characteristics (Continued)  
XE61CC3602 (3.6V)  
XE61CC4502 (4.5V)  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Ta=25  
Ta=25  
VIN =0.8V  
VIN =0.8V  
0.7V  
0.7V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
VDS (V)  
VDS (V)  
(5) N-ch Driver Output Current vs. Input Voltage  
XE61CC1802 (1.8V)  
15  
XE61CC2702 (2.7V)  
VDS=0.5V  
25  
20  
15  
10  
5
VDS=0.5V  
Ta=-40  
Ta=-40  
25  
10  
5
25  
85  
85  
0
0
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XE61CC3602 (3.6V)  
XE61CC4502 (4.5V)  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
VDS=0.5V  
VDS=0.5V  
Ta=-40  
Ta=-40  
25  
25  
85  
85  
0
0
1
2
3
4
0
1
2
3
4
5
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
11/15  
XE61C Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(6) P-ch Driver Output Current vs. Input Voltage  
XE61CC1802 (1.8V)  
VDS=2.1V  
XE61CC2702 (2.7V)  
VDS=2.1V  
15  
10  
5
15  
10  
5
1.5V  
1.0V  
0.5V  
1.5V  
1.0V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
XE61CC3602 (3.6V)  
VDS=2.1V  
XE61CC4502 (4.5V)  
15  
10  
5
15  
10  
5
VDS=2.1V  
1.5V  
1.0V  
1.5V  
1.0V  
0.5V  
0.5V  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
12/15  
XE61C  
Series  
PACKAGING INFORMATION  
SOT-23  
SOT-89  
(unit : mm)  
4.5±0.1  
+0.03  
-0.02  
+0.15  
1.6  
0.4  
-0.2  
φ1.0  
0.42±0.06 0.47±0.06  
0.42±0.06  
+0.03  
-0.02  
0.4  
1.5±0.1  
1.5±0.1  
13/15  
XE61C Series  
MARKING RULE  
SOT-23, SOT-89  
a
e
b
c
g
d
a
b
c
d
e
f
g
h
f
h
SOT-23  
(TOP VIEW)  
SOT-89  
(TOP VIEW)  
represents integer of output configuration and detect voltage  
XE61CC Series (CMOS Output)  
XE61CN Series (N-ch Open Drain Output)  
MARK  
VOLTAGE (V)  
PRODUCT SEIRES  
XE61CC1xxxxx  
XE61CC2xxxxx  
XE61CC3xxxxx  
XE61CC4xxxxx  
XE61CC5xxxxx  
XE61CC6xxxxx  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
XE61CN1xxxxx  
XE61CN2xxxxx  
XE61CN3xxxxx  
XE61CN4xxxxx  
XE61CN5xxxxx  
XE61CN6xxxxx  
B
C
D
E
F
1.x  
2.x  
3.x  
4.x  
5.x  
6.x  
L
M
N
P
R
S
1.x  
2.x  
3.x  
4.x  
5.x  
6.x  
H
represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
PRODUCT SEIRES  
XE61Cxxx3xxx  
XE61Cxxx0xxx  
3
0
x.3  
x.0  
represents delay time  
MARK  
DELAY TIME  
No Delay  
PRODUCT SERIES  
XE61Cxxxx0xx  
3
represents production lot number  
Based on internal standard. (G, I, J, O, Q, W excluded)  
Bar Mark: a, b, c, d  
PRODUCTION YEAR  
a
-
-
-
-
-
-
b
-
-
-
-
c
-
-
-
-
-
-
d
-
-
-
-
-
-
xxx0  
xxx1  
xxx2  
xxx3  
xxx4  
xxx5  
xxx6  
xxx7  
xxx8  
xxx9  
-
-
Bar Mark: e, f, g, h  
PRODUCTION MONTH  
January  
e
-
-
-
-
-
-
f
-
-
-
-
g
-
-
-
-
-
-
-
h
-
-
-
-
-
-
-
February  
March  
April  
May  
June  
July  
August  
September  
October  
November  
December  
-
-
14/15  
XE61C  
Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
15/15  

相关型号:

XE61CC4202MR

Power Management Circuit
TOREX

XE61CC4202MR-G

Power Management Circuit
TOREX

XE61CC6002MR

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CC6002MR-G

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CC6002PR

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CN1602MR

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CN1602MR-G

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CN1602PR

Standard Voltage Detectors (VDF=1.6V~6.0V)
TOREX

XE61CN1802PR

Power Management Circuit
TOREX

XE61CN1902MR

Power Management Circuit
TOREX

XE61CN1902MR-G

Power Management Circuit
TOREX

XE61CN1902PR

Power Management Circuit
TOREX