TA2131FLG [TOSHIBA]

Low Current Consumption Headphone Amplifier for Portable MD Player (With Bass Boost; 低电流消耗耳机放大器的便携式MD播放器(带低音增强
TA2131FLG
型号: TA2131FLG
厂家: TOSHIBA    TOSHIBA
描述:

Low Current Consumption Headphone Amplifier for Portable MD Player (With Bass Boost
低电流消耗耳机放大器的便携式MD播放器(带低音增强

放大器 便携式
文件: 总21页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TA2131FLG  
TOSHIBA Bipolar Linear IC Silicon Monolithic  
TA2131FLG  
Low Current Consumption Headphone Amplifier for Portable MD Player (With Bass Boost  
Function)  
The TA2131FLG is a low current consumption headphone  
amplifier developed for portable digital audio. It is particularly  
well suited to portable MD players that are driven by a single dry  
cell. It also features a built-in bass boost function with AGC, and  
is capable of bass amplification of DAC output and analog signals  
such as tuner.  
An ultra-compact QON package is utilized, enabling sets to be  
compacted.  
Features  
Weight: 0.05 g (typ.)  
Low current consumption: I  
I
(V  
) = 0.55 mA (typ.)  
) = 0.20 mA (typ.)  
CCQ CC1  
Actual product display name: 2131  
(V  
CCQ CC2  
Output power: P = 8 mW (typ.)  
o
(V  
CC1  
= 2.8 V, V  
= 1.2 V, f = 1 kHz, THD = 10%, R = 16 )  
CC2 L  
Low noise: V = 102dBV (typ.)  
no  
Built-in low-pass boost (with AGC)  
I/O pin for beep sound  
Outstanding ripple rejection ratio  
Built-in power mute  
Built-in power ON/OFF switch  
Operating supply voltage range (Ta = 25°C): V  
V
= 1.8~4.5 V  
= 0.9~4.5 V  
CC1  
CC2  
1
2006-04-19  
TA2131FLG  
Block Diagram  
V
CC1  
V
CC1  
BEEP  
OFF  
OFF  
OFF  
ON  
ON  
ON  
BEEP  
IN  
V
ref  
PW  
SW  
MT  
SW  
BST  
SW  
IN  
GND  
18  
17  
16  
15  
14  
13  
MT  
TC  
V
ref  
PW  
SW  
MUTE  
SW  
BOOST  
SW  
BEEP  
V
ref  
19  
20  
21  
22  
23  
24  
12  
V
CC1  
LPF  
1
V
CC  
11  
V
V
V
V
ref  
ref  
ref  
ref  
(2.8 V)  
ADD  
BST  
NF  
1
IN  
B
BST1  
10  
DAC  
OUT  
V
ref  
LPF  
2
9
8
7
IN  
A
BST  
NF  
BEEP  
BST2  
PW  
A
PW  
2
OUT  
B
B
BEEP  
BST  
OUT  
OUT  
A
BST  
AGC  
1
16  
3
4
5
6
AGC  
IN  
V
OUT  
PWR  
GND  
OUT  
B
DET  
CC2  
A
+B (1.2 V)  
R
L
R
L
2
2006-04-19  
TA2131FLG  
Terminal Explanation (Terminal voltage: Typical terminal voltage at no signal with test  
circuit, V = 2.8 V, V = 1.2 V, Ta = 25°C)  
CC1  
CC2  
Terminal  
Voltage  
(V)  
Terminal No.  
Terminal Explanation  
InternaL Circuit  
V
(+B) at power  
CC  
1
2
V
1.2  
CC2  
amplifier output stage  
OUT  
OUT  
A
PW  
A
22  
Power amplifier  
output  
0.61  
2
ADD  
4
21  
22  
7
B
10 kΩ  
15 kΩ  
BST1  
OUT  
IN  
B
A
BST  
7
2
Power amplifier input  
0.61  
10 kΩ  
IN  
10 kΩ  
15 kΩ  
BST amplifier 2 output  
terminal  
BST OUT  
0.61  
4
21  
BST amplifier 2 NF  
terminal (low-pass  
compensation  
condenser connection  
terminal)  
PW  
B
8
3
BST NF  
0.61  
0
2
8
GND of power  
amplifier output stage  
PWR GND  
20  
Smoothing of boost  
AGC level detection  
5
DET  
5
3
2006-04-19  
TA2131FLG  
Terminal  
Voltage  
(V)  
Terminal No.  
Terminal Explanation  
InternaL Circuit  
20  
6
Signal input level to  
BST amplifier is  
varied according to  
the input level to the  
boost AGC input  
terminal. Input  
V
ref  
6
AGC IN  
0.61  
10 kΩ  
impedance: 15 kΩ  
(typ.)  
AGC  
BST amplifier 1 output  
(filter terminal)  
PW  
A
9
LPF  
2
0.61  
BST  
1
22  
11  
21  
ADD  
BST  
AMP  
2
20 kΩ  
20 kΩ  
12 kΩ  
10 kΩ  
10  
11  
BST NF  
BST amplifier 1 NF  
0.61  
0.61  
1
PW  
B
30 kΩ  
10  
9
ADD amplifier output  
(filter terminal)  
LPF  
1
V
ref  
V
ref  
20  
Reference voltage  
circuit  
12  
V
0.61  
ref  
10 kΩ  
13  
12  
Reference voltage  
circuit filter terminal  
13  
14  
V
IN  
0.61  
ref  
GND of input stage in  
power amplifier  
GND  
0
4
2006-04-19  
TA2131FLG  
Terminal  
Voltage  
(V)  
Terminal No.  
Terminal Explanation  
InternaL Circuit  
Beep sound input  
terminal  
Receives beep sound  
signals from  
15  
BEEP IN  
0
20  
15  
microcomputer.  
10 kΩ  
23  
24  
BEEP  
23  
24  
OUT  
B
Beep sound output  
terminal  
BEEP  
OUT  
A
20  
Bass boost ON/OFF  
switch  
“H” level/OPEN:  
BST ON  
“L” level: BST OFF  
Refer to function  
explanation 5  
16  
BST SW  
20 kΩ  
16  
V
CC1  
20  
Mute switch  
“L” level: Mute reset  
“H” level: Mute ON  
Refer to function  
explanation 5  
17  
MT SW  
47 kΩ  
17  
V
CC1  
20  
18  
Power ON/OFF  
switch  
“H” level: IC operation  
“L” level: IC OFF  
Refer to function  
explanation 5  
47 kΩ  
18  
PW SW  
5
2006-04-19  
TA2131FLG  
Terminal  
Voltage  
(V)  
Terminal No.  
Terminal Explanation  
InternaL Circuit  
20  
19  
Mute smoothing  
Power mute switch  
Reduces the shock  
noise during switching  
19  
MT TC  
1.2  
2.8  
20  
V
Main V  
CC1  
CC  
6
2006-04-19  
TA2131FLG  
Function Explanation  
1. Bass Boost Function  
1-1 Description of Operation  
TA2131FLG has a bass boost function for bass sound reproduction built-in to the power amplifier.  
With the bass boost function, at medium levels and lower, channel A and channel B are added for the  
low frequency component, and output to BST amplifier 2 (BST ) in negative phase. That signal is  
2
inverted and added before being subjected to bass boost. If the signal of the low-frequency component  
reaches a high level, the boost gain is controlled to main a low distortion (see Fig.1).  
20 kΩ  
V (OUT)  
V (R )  
L
IN  
A
OUT  
A
22  
220 µF  
PW  
ADD  
10 kΩ  
2
A
10 kΩ  
16 Ω  
20 kΩ  
10 µF  
10 µF  
12 kΩ  
R
L
V
ref  
DAC  
OUT  
BST  
1
BST  
NF  
10 k15 kΩ  
10 k15 kΩ  
BST  
2
2
1 µF  
8
V
ref  
10 kΩ  
20 kΩ  
30 kΩ  
IN  
21  
B
V (NF )  
2
220 µF  
5 kΩ  
BST  
AGC  
10 kΩ  
PW  
4
B
16 Ω  
OUT  
B
R
L
AGC  
IN  
DET  
5
BST NF  
10  
BST OUT  
1
LPF  
LPF  
2
1
11  
6
9
7
V (LPF )  
2
V (LPF )  
V (NF )  
1
1
V (BST OUT)  
V
V
ref  
ref  
V
ref  
Figure 1 System Diagram of Bass Boost  
1-2 AGC Circuit  
The AGC circuit of the bass boost function detects with “AGC DET” the voltage component created  
by “BST ,” and as the input level increases, the variable impedance circuit is changed, and the bass  
2
boost signal is controlled so that it is not assigned to BST amplifier 1. In this way, the bass signal to  
“BST ” input is shut-off, and that boost gain is controlled.  
2
1-3 Bass Boost System  
As shown in Fig.1, the flow of the bass boost signal is that the signal received from power amplifier  
input goes through LPF , ADD amplifier, ATT (variable impedance circuit), BPF (BST amplifier 1)  
1
1
and LPF , and the negative phase signal to the power amplifier input signal is output from BST  
2
amplifier 2. The reason why it becomes the negative phase of the BST amplifier 2 signal is that the  
phase is inverted by 180° in the audible bandwidth by the secondary characteristics of LPF and  
1
LPF in Fig.1.  
2
Ultimately the main signal and the bass boost signal formed before BST are added.  
2
Fig.2 shows the frequency characteristics to each terminal.  
7
2006-04-19  
TA2131FLG  
40  
20  
V (OUT)  
V (R  
)
L
V (NF  
)
2
V (BST OUT)  
0
20  
40  
V (LPF  
)
2
V (NF  
)
1
V (LPF  
)
1
60  
1
10  
100  
1 k  
10 k  
100 k  
f
(Hz)  
Figure 2 During Bass Boost (Frequency Characteristics to Each Terminal)  
2.  
Low-Pass Compensation  
2-1. Function  
In C-couple type power amplifiers, it is necessary to give the output condenser C a large capacity to  
flatten out the frequency characteristics to the low frequency band (this is because the loss in the low  
frequency bandwidth becomes larger due to the effect of the high-pass filter comprising C and RL).  
Particularly when the headphone load is approximately 16 and an attempt is being made to achieve  
frequency characteristics of ±3 dB at 20 Hz, a large capacity condenser of  
C = 470 µF is required.  
Bearing this situation in mind, a low-pass compensation function was built in to the TA2131FLG, and  
while reducing the capacity of the output coupling condenser, almost flat (±3 dB) frequency  
characteristics in all audible bandwidths (20 Hz to 20 kHz) have been achieved.  
Fig.3 shows the low-pass system diagram, and Fig.4 shows the frequency characteristics at each point.  
In Fig.4, (a) represents the status lost by the low-pass as a result of the high-pass filter comprising  
the headphone load (RL = 16 ) and the output coupling condenser (220 µF) in the C-coupling system.  
20 kΩ  
10 kΩ  
V (OUT)  
IN  
V (R )  
L
A
OUT  
A
22  
220 µF  
PW  
2
A
16 Ω  
10 µF  
10 µF  
ADD  
R
L
V
ref  
DAC  
OUT  
BST  
NF  
10 k15 kΩ  
10 k15 kΩ  
BST  
2
2
1 µF  
8
V
ref  
10 kΩ  
20 kΩ  
21  
IN  
220 µF  
B
10 kΩ  
20 kΩ  
PW  
4
B
16 Ω  
OUT  
B
R
L
Figure 3 Low-Pass Compensation System Diagram  
8
2006-04-19  
TA2131FLG  
20  
10  
(b)  
(c)  
0
(a)  
10  
20  
1 k  
1
10  
100  
10 k  
100 k  
f
(Hz)  
Figure 4 Power Amplifier Frequency Characteristics  
<Principle of Low-Pass Compensation>  
The low-pass component alone is extracted from the composite signal of PW /PW output, and that  
A
B
frequency signal is fed back to PW /PW once more via the inversion amplifier, thereby making it  
A
B
possible to increase the gain only of the low-pass component. The frequency characteristics of the  
power amplifier output V (OUT) in this state are shown in Fig.4 (b). In practice they are the  
frequency characteristics (c) viewed from load terminal V (R ), and the low-pass is compensated  
L
relative to the state in (a).  
2-2. Low-Pass Compensation Condenser and Crosstalk  
In this low-pass compensation condenser circuit, processing is carried out using the composite  
signal of power amplifier output, so this affects crosstalk, according to the amount of compensation.  
f characteristics and crosstalk generated by the capacity of the condenser for compensation (8-pin) are  
shown below.  
10  
V
V
= 2.8 V  
= 1.2 V  
CC1  
CC2  
R
R
= 620 Ω  
g
L
= 16 Ω  
Filter: LPF 80 kHz  
C = 0.47 µF  
Output C = 220 µF  
0
V
ref  
short  
C = 1 µF  
C = 2.2 µF  
10  
10  
30  
100  
300  
1 k  
3 k  
10 k  
30 k  
f
(Hz)  
Figure 5 Condenser and f Characteristics for Low-Pass Compensation  
9
2006-04-19  
TA2131FLG  
CT – f  
V
= 2.8 V  
= 1.2 V  
CC1  
V
CC2  
0
R
R
V
= 620 Ω  
= 16 Ω  
= −22dBV  
g
L
o
WIDE BAND  
Output C = 220 µF  
C = 0.47 µF  
20  
C = 1 µF  
C = 2.2 µF  
40  
60  
V
ref  
short  
10  
30  
100  
300  
1 k  
3 k  
10 k 30 k 100 k  
f
(Hz)  
Figure 6 Low-Pass Compensation Condenser and Crosstalk  
Beep  
3.  
Beep sound signals from microcomputer can be received by the beep input terminal (15-pin).  
The PW and PW of the power amplifier during power mute are turned OFF, and the beep signal input  
A
B
from BEEP-IN (15-pin) is output from the BEEP-OUT terminal (23/24-pin) as fixed current, after passing  
through the converter and current amplification stage. Connecting this terminal to the headphone load  
outputs the beep sound.  
If the beep sound is not input, fix the BEEP-IN (15-pin) terminal to GND level.  
V
CC  
PW SW  
(18-pin)  
ON  
OFF  
OFF  
OFF  
MT SW  
(17-pin)  
ON  
OFF  
BEEP IN  
(15-pin)  
200 ms  
100 ms  
100 ms  
20  
15  
I
BEEP  
23  
24  
I
BEEP  
I
D
4.  
Power Switch  
As long as the power switch is not connected to “H” level, the IC does not operate. If it malfunctions due  
to external noise, however, it is recommended to connect a pull-down resistor externally (the power switch  
is set to be highly sensitive).  
10  
2006-04-19  
TA2131FLG  
5.  
Threshold Voltages of Switches  
(1) PW SW  
(2) MT SW, BST SW  
5
5
4
4.5 V  
4.5 V  
4
H
3
2
1
3
2
H
1.6 V  
0.6 V  
1
0.8 V  
0.3 V  
L
L
0
1
2
3
4
5
0
1
2
3
4
5
Power supply voltage  
V
(V)  
CC  
Power supply voltage  
V
(V)  
CC  
PW SW (V  
)
MT SW (V )  
17  
18  
“H” level  
“L” level  
IC operation  
IC OFF  
“H” level  
“L” level  
Mute ON  
Mute reset  
BST SW (V  
BST ON  
)
16  
“H” level/OPEN  
“L” level  
BST OFF  
6.  
These capacitors which prevent oscillation of the power amplifier, and are between  
the V and V -GND must have a small temperature coefficient and outstanding  
ref  
CC  
frequency characteristics.  
11  
2006-04-19  
TA2131FLG  
Absolute Maximum Ratings  
Characteristic  
Symbol  
Rating  
Unit  
Supply voltage  
V
4.5  
100  
V
CC  
Output current  
I
mA  
mW  
°C  
o (peak)  
Power dissipation  
Operating temperature  
Storage temperature  
P
(Note)  
350  
D
T
opr  
25~75  
55~150  
T
°C  
stg  
Note: Derated above Ta = 25°C in the proportion of 2.8 mW/°C.  
Electrical Characteristics (Unless specified otherwise, V  
= 2.8 V, V  
= 1.2 V,  
CC2  
CC1  
R = 600 , R = 16 , f = 1 kHz, Ta = 25°C)  
g
L
Characteristic  
Symbol  
Test Condition  
Min  
Typ.  
0.1  
Max  
Unit  
I
I
I
I
I
I
I
I
IC off (V  
IC off (V  
), SW1: b, SW2: b  
), SW1: b, SW2: b  
5
5
CC1  
CC2  
CC3  
CC4  
CC5  
CC6  
CC7  
CC8  
CC1  
µA  
0.1  
0.35  
5
CC2  
Mute on (V  
Mute on (V  
), SW1: a, SW2: b  
), SW1: a, SW2: b  
0.50  
10  
mA  
CC1  
CC2  
Quiescent supply current  
µA  
No signal (V  
No signal (V  
), SW1: a, SW2: a  
), SW1: a, SW2: a  
0.55  
0.20  
0.6  
5.3  
12  
0.75  
0.40  
CC1  
CC2  
mA  
P
o
P
o
V
o
V
o
= 0.5 mW + 0.5 mW output (V  
= 0.5 mW + 0.5 mW output (V  
= −22dBV  
)
)
CC1  
CC2  
Power supply current during  
drive  
Gain  
G
10  
1.5  
5
14  
V
dB  
Channel balance  
Output power  
CB  
= −22dBV  
0
1.5  
P
o max  
THD = 10%  
= 1 mW  
8
mW  
%
Total harmonic distortion  
Output noise voltage  
Crosstalk  
THD  
P
o
0.1  
102  
48  
0.3  
96  
V
R
= 600 , Filter: IHF-A, SW4: b  
= −22dBV  
dBV  
no  
g
o
CT  
V
42  
f = 100 Hz, V = −20dBV  
r
r
RR1  
71  
77  
inflow to V  
CC2  
Ripple rejection ratio  
dB  
f = 100 Hz, V = −20dBV  
r
r
RR2  
ATT  
54  
90  
53  
64  
100  
48  
inflow to V  
CC1  
Mute attenuation  
V
o
= −12dBV, SW2: a b  
Beep sound output  
voltage  
VBEEP  
V Beep IN = 2 V , SW2: b  
43  
dBV  
dB  
p-o  
V
= −20dBV, f = 100 Hz,  
o
BST1  
BST2  
BST3  
1
4
7
SW3: ON OPEN  
V
= −30dBV, f = 100 Hz,  
o
Boost gain  
10  
13  
16  
SW3: ON OPEN  
V
= −50dBV, f = 100 Hz,  
o
13.5  
16.5  
19.5  
SW3: ON OPEN  
12  
2006-04-19  
TA2131FLG  
Test Circuit  
V
CC  
V
CC  
R = 600 Ω  
g
SW3  
OFF  
ON  
(a)  
SW1  
18  
(b)  
SW2  
(b)  
(a)  
17  
16  
15  
14  
13  
PW  
SW  
MT  
BST  
SW  
BEEP  
IN  
GND  
V
ref  
IN  
1 µF  
MT  
TC  
SW  
V
19  
20  
21  
12  
11  
10  
9
ref  
10 µF  
V
CC1  
V
LPF  
V
ref  
CC1  
1
(2.8 V)  
0.1 µF  
600 Ω  
(b)  
(a)  
10 µF  
BST  
V
ref  
IN  
B
NF  
1
SW4B  
4.7 µF  
TA2131FLG  
(a)  
(b)  
10 µF  
LPF  
22 IN  
V
ref  
2
A
SW4A  
0.1 µF  
600 Ω  
BEEP  
BST  
NF  
V
ref  
23  
24  
8
V
ref  
OUT  
B
2
BEEP  
OUT  
BST  
OUT  
7
PWR  
GND  
AGC  
IN  
A
V
CC2  
1
OUT  
2
OUT  
4
DET  
5
A
B
3
6
(*)  
(*)  
+B (1.2 V)  
(*) 0.22 µF + 10 Ω  
Monolithic ceramic capacitor  
13  
2006-04-19  
TA2131FLG  
Application Circuit 1  
BEEP  
V
CC1  
V
CC1  
OFF  
ON  
OFF  
OFF  
ON  
ON  
0.1 µF  
18  
17  
16  
15  
14  
13  
MT  
SW  
PW  
SW  
BST  
SW  
BEEP  
IN  
GND  
V
ref  
IN  
MT  
TC  
19  
V
12  
ref  
10 µF  
1 µF  
V
CC  
20 V  
LPF 11  
1
V
V
CC1  
ref  
ref  
(2.8 V)  
0.1 µF  
4.7 µF  
0.1 µF  
1 µF  
BST  
10  
21 IN  
22 IN  
B
A
10 µF  
10 µF  
NF  
1
TA2131FLG  
DAC  
OUT  
V
ref  
LPF  
9
8
7
V
2
ref  
BEEP  
OUT  
BST  
NF  
23  
24  
V
ref  
B
2
BEEP  
BST  
OUT  
PWR  
GND  
AGC  
IN  
OUT  
A
DET  
5
OUT  
B
V
OUT  
2
CC2  
A
1
3
4
6
(*)  
(*)  
+B (1.2 V)  
R
L
R
L
(*) 0.22 µF + 10 Ω  
Monolithic ceramic capacitor  
14  
2006-04-19  
TA2131FLG  
Application Circuit 2 (Low-Pass Compensation/Bass Boost Function/Beep Not Used)  
V
CC1  
V
CC1  
OFF  
OFF  
ON  
ON  
18  
17  
MT  
SW  
16  
15  
14  
13  
PW  
SW  
BST  
SW  
BEEP  
IN  
GND  
V
ref  
IN  
MT  
TC  
V
19  
12  
ref  
10 µF  
1 µF  
V
CC1  
20 V  
LPF 11  
1
V
V
CC1  
ref  
(2.8 V)  
BST  
10  
21 IN  
B
A
10 µF  
10 µF  
NF  
1
TA2131FLG  
DAC  
OUT  
V
ref  
22 IN  
LPF  
9
8
7
2
ref  
BEEP  
BST  
NF  
23  
24  
V
ref  
OUT  
B
2
BEEP  
OUT  
A
BST  
OUT  
PWR  
GND  
AGC  
IN  
DET  
5
OUT  
B
V
OUT  
2
CC2  
A
1
3
4
6
(*)  
(*)  
V
ref  
+B (1.2 V)  
R
L
R
L
(*) 0.22 µF + 10 Ω  
Monolithic ceramic capacitor  
15  
2006-04-19  
TA2131FLG  
Characteristics (Unless otherwise specified V  
f = 1 kHz, Ta = 25°C)  
= 2.8 V, V = 1.2 V, R = 600 ,  
CC2 g  
CC1  
I
– V  
V
DC  
– V  
(V , OUT)  
ref  
CC  
CC2  
CC2  
1.0  
0.8  
0.6  
1.0  
0.8  
0.6  
I
CC5  
0.4  
0.2  
0
0.4  
0.2  
0
I
CC6  
0.6  
0.8  
1.0 1.2 1.4  
Supply voltage  
1.6  
1.8  
CC2  
2.0 2.2  
(V)  
2.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
V
Supply voltage  
V
(V)  
CC2  
I
– V  
MUTE ON  
P – V  
o CC2  
CC  
CC2  
1.0  
0.8  
0.6  
100  
30  
10  
3
1
0.4  
0.2  
0
I
CC3  
0.3  
0.1  
THD = 10 %  
I
A/Bch IN  
CC4  
0.6  
0.8  
1.0 1.2 1.4  
Supply voltage  
1.6  
1.8  
CC2  
2.0 2.2  
(V)  
2.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
CC2  
2.0  
(V)  
2.2  
2.4  
V
Supply voltage  
V
I
– P  
V – V  
no CC2  
CC  
o
80  
85  
100  
IHF-A  
A/Bch IN  
30  
10  
90  
I
CC8  
95  
100  
105  
110  
115  
120  
3
1
I
CC7  
0.3  
0.1  
0.01  
0.03  
0.1  
0.3  
1
3
10  
30  
0.6  
0.8  
1.0  
1.2 1.4  
1.6  
1.8  
CC2  
2.0  
(V)  
2.2  
2.4  
Output voltage  
P
(mW)  
Supply voltage  
V
o
16  
2006-04-19  
TA2131FLG  
THD – P  
R.R. – V  
inflow to V  
CC1  
o
CC2  
10  
0
f
r
= 100 Hz  
V
r
= −20dBV  
3
1
20  
40  
60  
0.3  
0.1  
10 kHz  
100 Hz/1 kHz  
0.03  
0.01  
80  
0.1  
0.3  
1
3
10  
30  
100  
300  
100  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.4  
10  
Output voltage  
P
(mW)  
Supply voltage  
V
(V)  
o
CC2  
THD – V  
R.R. – V  
inflow to V  
CC2  
CC2  
CC  
30  
10  
0
R
= 16 Ω  
L
f
= 100 Hz  
r
P
o
= 1 mW  
V
= −20dBV  
r
A/Bch IN  
20  
3
1
40  
60  
0.3  
0.1  
10 kHz  
100 Hz  
80  
1 kHz  
0.8  
0.03  
0.6  
100  
0.4  
1.0 1.2  
1.4  
1.6  
1.8  
2.0  
(V)  
2.2  
2.4  
0.8  
1.2  
1.6  
2.0  
Supply voltage  
V
Supply voltage  
V
(V)  
CC2  
CC2  
V
– f  
BEEP  
o
0
10  
20  
30  
40  
30  
40  
50  
60  
70  
80  
50  
60  
70  
90  
f
= 400 Hz  
BEEP  
100  
rectangle wave  
110  
0.1  
10  
30  
100  
300  
1 k  
f
3 k 10 k  
30 k  
0.3 0.5  
beep input voltage  
1
3
5
Frequency  
(z)  
V
(V  
)
(V)  
BEEP  
p-o  
17  
2006-04-19  
TA2131FLG  
CT – f  
I
Ta  
CC  
0
10  
20  
30  
40  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= −22 dBV  
o
Application ciucuit 1  
I
CC5  
(No use Low-Pass  
Compensation)  
50  
60  
70  
I
CC6  
Application ciucuit 2  
10  
30  
100  
300  
1 k  
f
3 k 10 k  
30 k  
50  
25  
0
25  
50  
75  
100  
Frequency  
(z)  
Ambient temperature Ta (°C)  
V
Ta  
DC  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta (°C)  
18  
2006-04-19  
TA2131FLG  
Display of Actual Product  
Display of Actual Product (Labeling Example)  
*1  
*1  
9
0
*2  
*1 Display name of actual product: 2131  
*2 Weekly Code: 9 0 1 K A  
Toshiba’s internal  
management code  
1-pin display  
Weekly code  
*2  
Year (last digit)  
Requests Concerning Use of QON  
Outline Drawing of Package  
(Upper Surface)  
(Lower Surface)  
When using QON, please take into account the following items.  
(1) Do not carry out soldering on the island section in the four corners of the package (the section shown  
on the lower surface drawing with diagonal lines) with the aim of increasing mechanical strength.  
(2) The island section exposed on the package surface (the section shown on the upper surface drawing  
with diagonal lines) must be used as *1 below while electrically insulated from outside.  
Note 1: Ensure that the island section (the section shown on the lower surface drawing with diagonal  
lines) does not come into contact with solder from through-holes on the board layout.  
When mounting or soldering, take care to ensure that neither static electricity nor electrical  
overstress is applied to the IC (measures to prevent anti-static, leaks, etc.).  
When incorporating into a set, adopt a set design that does not apply voltage directly to the island  
section.  
19  
2006-04-19  
TA2131FLG  
Package Dimensions  
Weight: 0.05 g (typ.)  
20  
2006-04-19  
TA2131FLG  
RESTRICTIONS ON PRODUCT USE  
060116EBA  
The information contained herein is subject to change without notice. 021023_D  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc. 021023_A  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk. 021023_B  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others. 021023_C  
The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-37Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
21  
2006-04-19  

相关型号:

TA2131FN

Low Current Consumption Headphone Amplifier for Portable MD Player (With Bass Boost Function)
TOSHIBA

TA2131FNG

Low Current Consumption Headphone Amplifier for Portable MD Player (With Bass Boost Function)
TOSHIBA

TA2132A

SAW Filter 2085.5 MHz
TAI-SAW

TA2132BF

AM/FM Radio IC
TOSHIBA

TA2132BFG

暂无描述
TOSHIBA

TA2132BP

AM/FM Radio IC
TOSHIBA

TA2136F

TOSHIBA Bipolar Liner Integrated Circuit Silicon Monolithic
TOSHIBA

TA2136FG

Sound Retrieval System; 3D Sound IC
TOSHIBA

TA2136N

TOSHIBA Bipolar Liner Integrated Circuit Silicon Monolithic
TOSHIBA

TA2136NG

Sound Retrieval System; 3D Sound IC
TOSHIBA

TA21410200J0G

Barrier Strip Terminal Block
AMPHENOL

TA21412300J0G

Barrier Strip Terminal Block
AMPHENOL