TB1251N [TOSHIBA]

IC SPECIALTY CONSUMER CIRCUIT, PDIP56, 0.600 INCH, 1.78 MM PITCH, PLASTIC, SDIP-56, Consumer IC:Other;
TB1251N
型号: TB1251N
厂家: TOSHIBA    TOSHIBA
描述:

IC SPECIALTY CONSUMER CIRCUIT, PDIP56, 0.600 INCH, 1.78 MM PITCH, PLASTIC, SDIP-56, Consumer IC:Other

信息通信管理 光电二极管 商用集成电路
文件: 总61页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TENTATIVE TOSHIBA Bi-CMOS INTEGRATED CIRCUIT, SILICON MONOLITHIC  
TB1251N  
PAL / NTSC / SECAM 1CHIP (IF+VCD PROCESSOR) IC  
The TB1251N is a TV signal processor IC, which contains  
PIF, SIF, Video, Chroma and deflection signal processors  
for worldwide Multi-color systems. Also, it has V and EW  
geometric correction Outputs.  
The line-up and flexibility of this TB1251 series contributes  
to reduce development costs and components in a TV  
sets.  
SDIP56-P-600  
Weight: 5.55g (typ)  
FEATURES  
IF STAGE  
Multi-system IF  
TEXT STAGE  
SIF 4.5 ~ 6.5 MHz  
One External BPF for Multi-SIF carrier  
Inter/Sprit carrier inputs  
VCO tank coil alignment free  
for L system,  
Built-in AKB  
AKB on/off  
AKB Color temperature control  
Analog RGB interface  
ABL / ACL  
Positive demodulation  
V low Ch  
AM Sound demodulation(Sprit carrier)  
DEFLECTION STAGE  
Built-in H-VCO  
VIDEO STAGE  
V/EW geometric corrections  
Stand Along Sync input  
Sand Castle Pulse Output  
(HD+VD+Gate Pulse)  
Built-in Y delay line (8 adjustable steps)  
Built in C trap filter (Switchable)  
VSM output  
CHROMA STAGE  
Multi-color Demodulation  
Automatic Chroma Identification  
1 Xtal for Multi-color Systems  
(3.58MHz/4.43MHz/M-PAL/N-PAL)  
Built-in1H Delay line  
Cb/Cr input  
Built-in BPF / TOF  
Fsc Output  
Two NTSC demodulation phase  
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless,  
semiconductor devices in general can malfunction or jail due to their inherent electrical sensitivity and  
vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to  
observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could  
cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that  
TOSHIBA products are used within specified operating range as set forth in the most recent products specifications.  
Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability  
Handbook.  
The products described in this document are subject to foreign exchange and foreign trade control laws.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of  
00/01/28 1  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
H.AFC  
ABCL IN  
ref R  
+
FBP IN/SCP OUT  
H Vcc(9V)  
V OUT  
V NFB  
V RAMP  
IK IN  
B OUT  
G OUT  
R OUT  
+
H OUT  
Dig GND  
SCL  
SDA  
BLACK Det  
+
Dig.VDD  
+
Sync in  
YC GND  
Y IN  
EXT.B IN  
DC Restor  
EXT.G IN  
EXT.R IN  
Ys/Ym  
EW OUT  
YC Vcc(5V)  
+
RGB Vcc(9V)  
C in  
+
Cr in  
CW OUT  
4.43MHz X'tal  
Cb in  
VSM OUT  
APC Filter  
+
LOOP Filter  
+
IF AGC  
+
EHT in  
DE-EMP.  
RF AGC  
+
DC NF  
+
IF GND  
PIF VCO  
BIAS Filter  
AUDIO OUT  
IF DET OUT  
AFT OUT  
SIF OUT  
Ripple F  
IF Vcc(5V)  
Hcorr IN/SIF IN  
+
00/01/28 2  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TERMINAL INTERFACE  
PIN NAME  
FUNCTION  
INTERFACE  
1
2
IF VCC  
A Vcc terminal for the IF circuit.  
Supply 5V.  
RIPPLE  
FILTER  
A terminal should be connected to an internal  
bias filter. Put a capacitor.  
1
1kƒ¶  
2kƒ¶  
330ƒ¶  
2
330ƒ¶  
27.5kƒ¶  
45kƒ¶  
5
3
SIF OUT  
An output terminal for a 2’nd SIF signal, that  
is mixed down by a regenerated carrier.  
The SIF frequencies are able to convert into  
only 6.5MHz, in order to eliminate SIF BPFs  
to single 6.5MHz.  
9V  
14  
100ƒ¶  
500ƒ¶  
3
7p  
300ƒ¶  
30kƒ¶  
5
4
AUDIO OUT  
An output terminal for audio signal.  
FM Det.signal, inputted to pin53, is output.  
An internal audio attenator controls the output  
levels.  
9V  
14  
100ƒ¶  
ATT  
4
50kƒ¶  
5.3V  
30kƒ¶  
5
5
IF GND  
The GND terminal for IF circuit.  
6
7
IF IN  
IF IN  
Input terminals for IF signals. Pin 6 and 7 are  
the both input poles of a differential amplifier.  
The normal input level is 90dB(V)(Pin6-7),  
input impedance is 1.5 k ohms.  
1
5
100kƒ¶  
6
7
1.44kƒ¶  
1.44kƒ¶  
2.75V  
1.5V  
00/01/28 3  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
RF AGC  
FUNCTION  
INTERFACE  
8
An output terminal for RF AGC.  
9V  
14  
A pull up resister is required because of its  
open collector output. A de-coupling  
capacitor is also connected to reduce noise.  
300ƒ¶  
8
30kƒ¶  
30kƒ¶  
to SELF ADJ  
5
1
9
1’st SIF IN  
An input terminal for 1’st SIF signal.  
9
500ƒ¶  
10kƒ¶  
50kƒ¶  
3.1V  
5
1
10 IF AGC  
A terminal should be connected to an IF AGC  
filter. Connect 2.2uF capacitor to Vcc.  
10  
2kƒ¶  
5
11 APC FILTER  
A terminal should be connected with an APC  
filter for chroma demodulation.  
This terminal voltage controls the frequency  
of VCXO.  
42  
110kƒ¶  
11  
220ƒ¶  
3.2V  
19  
12 X’TAL  
(4.43MHZ)  
A terminal should be connected with a  
4.433619MHz X’tal oscillator. The oscillated  
signal leads to the chroma demodulation, H  
out frequency tuning, AFT, etc.  
42  
19  
12  
500ƒ ¶  
2.5kƒ ¶  
00/01/28 4  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
13 CW OUT  
FUNCTION  
INTERFACE  
An output terminal for the continuous chroma  
sub-carrier frequency wave, with an  
amplitude of 0.7Vp-p (typ).  
42  
1kƒ¶  
Also the dc level shows chroma killer status,  
with a level of 3.5V for B/W and 1.5V for  
Color.  
13  
14 RGB VCC (9V) A Vcc terminal for RGB block, PIF det. Output  
and sound output circuit.  
Supply 9V.  
15 YS/YM SW  
A terminal for switching of EXT RGB Mode  
and fast Half tone.  
42  
Spot killer  
15  
250ƒ¶  
3.3V  
0.7V  
14  
42  
16 EXT. R IN  
17 EXT. G IN  
18 EXT. B IN  
Input terminals for EXT RGB signals. The  
signals are clamped by capacitors, therefore  
the input impedance should be low, 100  
ohms or less is recommended.  
For this input, the brightness and RGB  
contrast is adjustable, the ABL/ACL limits the  
output level. This ABL/ACL may be turned On  
and OFF.  
OFF: for small area like OSD  
ON: for large area like TELETEXT  
(input level 0.7Vp-p/100IRE)  
250ƒ¶  
16  
250ƒ¶  
17  
18  
250ƒ¶  
250ƒ¶  
2.3V  
100uA  
19  
14  
19 Y/C GND  
The GND terminal for Y/C circuit.  
20 R OUT  
21 G OUT  
22 B OUT  
Terminals for R/G/B signal output.  
Connect resistances to GND, for the current  
source if the slew rate is not enough. Due to  
the source current limitation, the resistances  
should be 2.0kor more.  
20  
100ƒ¶  
21  
22  
19  
00/01/28 5  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
FUNCTION  
INTERFACE  
42  
23 IK IN  
An input terminal to sense AKB cathode  
current.  
VK  
Connect this terminals to GND if the AKB  
system is not being used.  
1kƒ¶  
23  
VF  
soft  
start  
19  
limitter  
over circuit  
24 V RAMP  
A terminal should be connected with a  
capacitor to generate the V.Ramp signal.  
The V.Ramp amplitude is kept constant by  
the V.AGC.  
31  
200ƒ¶  
24  
V AGC  
33  
25 V NFB  
An input terminal for the V saw-tooth signal  
feedback.  
31  
If the DC voltage on this pin is less than 1.7V,  
it blanks RGB output for V guard.  
25  
2V  
12.5kƒ¶  
33  
V GUARD  
26 V OUT  
An output terminal for the vertical driving  
pulses.  
31  
30kƒ¶  
200ƒ¶  
26  
1kƒ¶  
0.5V  
33  
V OUT read  
00/01/28 6  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
FUNCTION  
INTERFACE  
27 REF. R  
A terminal should be connected with  
resistance to stabilize internal current  
sources.  
31  
Connect 5.6 k  
1% resistance to GND.  
6.8k  
27  
49k  
33  
28 ABCL IN  
An input terminal for ABL/ACL control.  
Control voltage range is 5.56.0V.  
The ratio of ABL versus ACL can be set by  
bus control.  
29 H AFC FILTER A terminal should be connected with H. AFC  
Filter to GND. The DC voltage of this pin  
controls the H VCO frequency.  
31  
237ƒ¶  
29  
100kƒ¶  
33  
31  
30 FBP IN/ SCP An input terminal for FBP.  
OUT  
The V and GP Pulses are overlaid as SCP.  
3VF  
VD  
3.5V  
30  
1.4V  
GP  
33  
protect  
GP  
VD  
H
AFC  
H BLK  
31 H VCC (9V)  
A Vcc terminal for DEF circuit, HOUT,  
IICBUS POR, etc.  
Supply 9V.  
00/01/28 7  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
FUNCTION  
INTERFACE  
32 H OUT  
An output terminal for horizontal driving  
pulses.  
31  
50ƒ¶  
32  
2VF  
6kƒ¶  
33  
33 DIG GND  
34 SCL  
A GND terminal for digital block.  
An input terminal for IICBUS clock.  
31  
3.25V  
34  
5kƒ¶  
33  
31  
35 SDA  
An input/output terminal for IICBUS data.  
3.25V  
35  
5kƒ¶  
33  
42  
36 BLACK DET  
A terminal should be connected with Black  
det. filter for black stretch.  
This terminal voltage controls the Black  
stretching gain.  
The IIC Bus controls the on/off and start point  
of the Black stretch.  
4kƒ¶  
36  
2.5V  
19  
00/01/28 8  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
37 DIG. VDD  
FUNCTION  
INTERFACE  
A Vdd terminal for of digital block.  
Supply HVcc voltage through 270 ohms of  
resistance.  
The voltage of this terminal is clipped to  
approximately 3.3V by the internal regulator.  
H VCC  
31  
37  
VDD  
30ƒ¶  
30ƒ¶  
30ƒ¶  
2.6V  
750ƒ¶  
38 SYNC IN  
An input terminal for Sync signal.  
The input sync tip is clamped by  
charging/discharging the coupling capacitors  
so as to align the Sync slice level.  
Input is through a low impedance buffer.  
(input level 1Vp-p/140IRE)  
31  
832ƒ¶  
38  
3VF  
1kƒ¶  
6kƒ¶  
24kƒ¶  
33  
42  
39 Y IN  
An input terminal for Y signal.  
The pedestal level is clamped by means of  
charging/discharging the coupling capacitor,  
therefore input through low impedance buffer.  
(1Vp-p/140IRE input level)  
39  
1kƒ¶  
1kƒ¶  
1kƒ¶  
19  
<Amp>  
<Clamp> <read Bus>  
40 DC RESTOR  
A terminal to be connected with a capacitor to  
detect the average picture level for DC  
restoration.  
42  
The ratio of the DC restoration is set by bus.  
Leave this terminal open if the DC restoration  
is not required.  
50k  
40  
10k  
19  
00/01/28 9  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
FUNCTION  
INTERFACE  
41 EW OUT  
An output terminal for E-W OUT.  
31  
41  
100ƒ¶  
42 Y/C VCC  
43 C-IN  
An Vcc terminal for Y/C circuit.  
Supply 5V.  
An input terminal for chroma signal.  
(standard burst amplitude level 286mVp-p•  
The low/High impedance status of this pin  
can be read by bus to detect if S port is  
connected or not.  
42  
43  
1kƒ¶  
75kƒ¶  
2.25V  
19  
42  
44 Cr IN  
45 Cb IN  
Input terminals for Cb/Cr signals.  
This terminal is clamped by charging /  
discharging the coupling capacitors  
It is recommended that input impedance is  
kept at or below 100.  
44  
45  
2.5V  
B.B.TINT-/+12deg/ Sub color control are  
available for Cb/Cr input signals.  
19  
42  
clamp  
46 VSM OUT  
The output terminal for veracity scanning  
modulation (VSM).  
200ƒ¶  
The IIC Bus controls phase and Gain of VSM.  
46  
14  
00/01/28 10  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
47 LOOP FILTER  
FUNCTION  
INTERFACE  
5V  
A terminal to be connected with loop filter for  
1
PIF PLL.  
The terminal voltage controls the PIF VCO  
frequency.  
1kƒ¶  
1kƒ¶  
500ƒ¶  
15kƒ¶  
47  
5
48 EHT IN  
The input terminal for EHT.  
The ratio of EW / V is controlled by bus.  
31  
48  
13kƒ¶  
13kƒ¶  
3.5V  
49 De-Emphasis  
/Mon-OUT  
A terminal to De-Emphasis Audio signal, and  
pick up detected Audio signal. Connect  
capacitor (0.01F to GND.  
14  
The time constant 50/75us is set by the  
IICBUS control “SIF Freq”.  
Remove the capacitor in case of use US/JPN  
sound multiplex system.  
49  
15kƒ¶ 7.5kƒ¶ 500ƒ¶  
5
1
50 PIF TANK  
51  
Terminals to connect a PIF tank coil.  
The tank coil should be pre-set within +/-2%  
for the automatic tuning. Manual tuning is  
also available.  
The resonance capacitance of the tank  
should be 18pF.  
50  
51  
5
00/01/28 11  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
FUNCTION  
INTERFACE  
52 DC NF  
A terminal for connect the capacitor for DC  
NF.  
14  
52  
2kƒ¶ 10kƒ¶  
5
1
53 VCO  
Filter  
Bias A terminal to be connected with a filter for PIF  
VCO.  
14  
2kƒ¶  
1.5kƒ¶  
53  
15kƒ¶  
5
54 IF DET OUT  
Detected PIF output terminal.  
(typical output level 2.2Vp-p)  
14  
200ƒ¶  
54  
1kƒ¶  
5
55 AFT OUT  
An output terminal for AFT.  
1
output dc range;  
02.55V.  
100kƒ¶  
output impedance; 50 k ohms (typ.)  
55  
100ƒ¶  
100kƒ¶  
5
SELF TEST  
OUT  
AFT OUT  
AFT READ  
00/01/28 12  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
PIN NAME  
56 SIF in / H corr.  
FUNCTION  
INTERFACE  
An input terminal for 2’nd SIF signal and  
H.curve correction.  
1
H corr  
500 7pF  
56  
20kƒ¶  
SIF  
2.5V  
5
00/01/28 13  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
BUS CONTROL MAP for TB1251N  
Write Mode  
Slave Address: 88 HEX  
Sub  
Addr.  
00  
D7  
MSB  
WPS  
B.B.  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
PRESET  
Uni-Color  
0000 0000  
0100 0000  
0100 0000  
0010 0000  
0110 0000  
0011 0000  
0001 0000  
0100 0000  
1000 1000  
01  
Brightness ( TV / Text )  
Color  
02  
C-Trap  
03  
N Phase  
Sharpness  
04  
Y MUTE  
RGB Mt  
Y D.L.  
RGB Contrast  
05  
Sub Color  
B.B.Tint  
06  
VSM Gain  
07  
N-Comb  
TINT  
08  
SECAM R-Y Black Adjust  
S- GP Phase  
/ S- inhibit  
SECAM B-Y Black Adjust  
S-Black L-SECAM L-S AGC  
Monitor  
S-ID  
Mode  
09  
0A  
0B  
S-ID Sens  
Bell fo  
0000 0000  
0000 0000  
0000 0000  
Mode  
Speed-up  
PIF Freq  
SIF Freq.  
Color System  
6.5MHz  
SIF Fix  
Audio Att  
P/N-  
ID Sens  
Over Mod  
SW  
Coring  
off  
SIF  
PIF VCO PIF VCO PIF VCO  
Center  
0C  
BPF/TOF  
Split/Inter  
F ID  
0000 0000  
5.74MHz Adj. Stop Adj. Req  
Q Det  
Gain  
0D  
0E  
0F  
10  
11  
AFT Sens Au Gain AFT Mute  
RF AGC  
STD by Mode  
0000 0000  
0000 0000  
0000 0000  
0000 1000  
0001 1000  
Self Test  
RGB  
ABCL  
Ysm M  
DC Restoration  
ABL Gain  
AKB System  
Black Stretch  
Sub Contrast  
Buzz  
Point  
ABL Start Point  
color -  
reducer  
12  
13  
14  
15  
16  
R Cut Off  
G Cut Off  
B Cut Off  
0000 0000  
0000 0000  
0000 0000  
0100 0000  
0100 0000  
Cb/Cr SW  
G Drive Gain  
B Drive Gain  
BLK  
V Ramp  
Ref.  
312/313  
Mode  
17  
H-Stop  
V-Stop  
V AGC  
V-Freq.  
Horizontal Position  
V S Correction  
0000 0000  
18  
19  
1A  
1B  
Vertical Position  
0001 0000  
1000 1000  
0010 0000  
0010 0000  
0010 0000  
1000 0100  
V Linearity  
AFC G  
test(0)  
Vertical Size  
Horizontal Size  
test(0)  
0
1C F-Halftone  
1D  
EW Parabola correction  
EW Trapezium Correction  
V. EHT  
H. EHT  
VSM  
1E  
EW Corner Correction  
0100 0100  
0000 0000  
Phase  
1F  
Test Mode  
READ Mode  
7
6
5
4
3
2
1
0
R0  
R1  
POR  
Y-IN  
IF Lock  
RGB  
OUT  
H Lock  
H-OUT  
IF Level  
V-OUT  
V Freq  
PIF VCO  
Adj.  
Color System  
V Lock  
AFT  
R2  
Coil error PIF- VCO  
error det  
SYNC  
DET  
C IN DC  
Product Code  
00/01/28 14  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
R3  
AKB  
CRT  
AKB  
finish  
STD/Non  
-STD  
P ID  
N-ID  
S ID  
noise  
det  
Overflow Warm up  
IIC BUS CONROL FUNCTION  
WRITE MODE  
PIF STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
00000  
:Mute  
RF AGC  
Sub; 0E h  
6
RF AGC delay point (Pin6-7)  
01: 65 dB(V)  
3F: 100 dB(V)  
00: IF MUTE Stops Demodulation  
IF Freq.  
3
Setting IF frequency for digital AFT count down  
000  
Sub; 0A h  
000: 58.75 MHz  
010: 39.5 MHz  
100: 38.0 MHz  
110: 33.95 MHz  
AFT Mute Switch  
0: normal  
001: 45.75 MHz  
011: 38.9 MHz  
101: 34.47 MHz  
111: 34.2 MHz  
:58.75MHz  
AFT Mute  
Sub; 0D h  
AFT sens.  
Sub; 0D h  
Over mod SW  
Sub; 0D h  
Q det. Gain  
Sub; 0D h  
L-SECAM Mode  
Sub; 09 h  
1
1
1
0:normal  
0:100kHz  
0:off  
1: AFT defeat (mute)  
1: 25kHz/V  
AFT sensitivity  
0: 100kHz/v  
on/off the over modulation switch  
0: off  
1: on  
Q detector gain  
0: high  
0:high  
1: low  
1
L SECAM  
0: Not L-SECAM  
1: L-SECAM  
0:Not  
L-SECAM  
turn the polarity for TV Det Out for positive modulation•  
Delay the AGC time constant (Peek AGC)  
SIF AM demodulation  
L-SECAM AGC  
Speed  
Sub; 09 h  
VCO Center  
Sub; 0C h  
1
1
1
Speed up the AGC sense for channel search  
0: normal  
1: speed-up Ch Search  
0:normal  
0: normal  
0: normal  
VCO center SW  
0: normal  
1: Center  
In adjusting a tank coil, set this bit to 1.  
VCO adjust trigger  
VCO Adj. Request  
Sub; 0C h  
0: normal  
1: VCO adjust trigger  
The PIF VCO starts adjusting after requested.  
While adjusting, the picture is blanked  
Stop the readjustment on detecting the loosing adjustment  
VCO Adj. Stop  
Sub; 0C h  
1
0: normal  
0: normal  
1: stop self adjustment  
“VCO Adj request” prier it  
SIF STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
SIF Freq.  
Sub; 0A h  
2
SIF Frequency  
00: 5.5MHz  
10: 6.5MHz  
00:5.5MHz  
01: 6.0MHz  
11: 4.5MHz  
Set the SIF frequency for;  
Select the SIF FM demodulator band  
select the de-emphasis speed  
Set the ref.freq. for single •••MHz beet up if using  
00/01/28 15  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
0:other  
frequencies  
SIF 574  
Sub; 0C h  
1
Set the SIF freq. to 5.74MHz for IGR Bilingual.  
It sets the reference freq. for beet up the 5.74MHz to 6.5MHz.  
0: other frequencies  
Audio attenuator  
1: 5.74MHz  
Audio ATT  
Sub; 0B h  
Au Gain  
7
1
00: Mute  
00: Mute  
01: -85 dB ~ 7F: 0 dB  
Audio Gain Switch  
0:  
0: 927mVrms at 25kHz/DEV  
1: 500mVrms at 25kHz/DEV  
927mVrms  
at  
Sub; 0D h  
25kHz/DEV  
Split / Inter  
Sub; 0D h  
1
Split carrier / Inter carrier  
0: Split carrier  
0: Split carrier  
1: Inter carrier  
6.5MHz SIF Fix  
Sub; 0A h  
1
1
Beet up the SIF carrier frequency to 6.5MHz (single carrier)  
0: normal  
0: on  
0: normal  
1: beet up to uni- 6.5MHz  
Buzz Reducer  
Sub; 11 h  
Nyquist Buzz Reducer SW  
0: on  
1: off  
VIDEO STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
Sharpness  
6
Sharpness control  
peak:2.75MHz  
00:-5.4dB  
••Sub; 03 h  
00: -5.4dB ~ 20: 3.3dB ~ 3F: 6.6 dB  
DC Restoration control  
DC Rest.  
2
00:120%  
00: off  
Sub; 0F h  
00: 120%  
10: 100%  
01: 90%  
11: 110%  
Black Stretch  
Sub; 0F h  
2
2
3
Set the black stretch start point  
00: off  
10: 35IRE  
01: 25IRE  
11: 45IRE  
point  
Sub; 0F h  
Set the non linear curve for Y signal  
00: off  
10: 80IRE  
00: off  
01: 90IRE  
11: 70IRE  
Y DL  
Sub; 05 h  
Y Delay time  
000: -40ns  
001: 0ns  
010: +40ns  
011: +80ns  
Chroma trap filter for Y input  
001: 0ns  
100: +120ns  
101: +160ns  
110: +200ns  
111: +240ns  
C-Trap  
1
0:OFF  
Sub; 02 h  
0: OFF for Y / C Separated input  
1: ON for internal C trap(-20dB or less)  
WPS  
1
1
1
3
White Peak Suppresser Switch  
0: ON  
0:ON  
Sub; 00 h  
coring SW  
Sub; 0Ch  
VSM Phase  
Sub; 1E h  
VSM Gain  
Sub; 06 h  
1: OFF  
1: off  
on/off the coring  
0: on  
0: on  
VSM output phase switching  
0: 0ns  
0:0ns  
000: off  
1: -40ns  
VSM output gain switching  
000:  
off  
100: ×4/7  
101: ×5/7  
110: ×6/7  
111: ×1  
001: ×1/7  
010: ×2/7  
011: ×3/7  
CHROMA STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
00/01/28 16  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
TINT  
7
Tint control for NTSC (CW TINT)  
00:0deg  
Sub; 07 h  
Color System  
Sub; 0A h  
00: -33 deg  
~ 7F: 33 deg  
3
Color system switch  
000: Auto 1 443PAL , 358NTSC , SECAM , 443NTSC  
001: Auto 2 358NTSC , M-PAL , N-PAL (for S-America)  
000: Auto 1  
010: Fixed 358NTSC  
100: Fixed 443PAL  
011: Fixed 443NTSC  
101: Fixed SECAM  
110: Fixed M PAL 111: Fixed N PAL  
N-Comb  
Sub; 07 h  
1
2
Comb filter for base-band color signal of NTSC  
0: ON  
0:  
set the relative phase / amplitude  
00: NTSC1 (90 deg) 01: NTSC2 (105 deg)  
ON  
1:  
OFF  
00:NTSC1  
(90 deg)  
NTSC Phase  
Sub; 03 h  
10/11: DVD (90 deg, 245 deg) for U/V inputs  
Select chroma BPF frequency response  
0: BPF for EXT input 1: TOF for RF input  
PAL / NTSC ID sensitivity for digital comb filter  
BPF/TOF  
Sub; 0C h  
1
1
0:BPF  
0:Normal  
P/N ID Sens  
Sub; 0C h.  
F ID  
0: Normal  
1: Low  
1
Forced killer off  
0: normal  
systems  
0:normal  
Sub; 0E h  
1: always color on in a fixed color  
(This function dose not work in Auto 1 and Auto 2 mode)  
SECAM STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
SECAM GP Phase  
/ SECAM inhibit  
2
4
4
SECAM ID phase / SECAM inhibit  
00:+200ns  
00: +200ns  
01: normal  
10: -200ns  
11: SECAM inhibit  
S Black Adj. R-Y  
Sub; 08 h  
SECAM Black level adjust  
1000: 0 mV  
1000: 0mV  
0:  
-92 mV  
14mV/dev  
~ F:  
~ F:  
+85mV  
+85mV  
S Black Adj. B-Y  
Sub; 08 h  
SECAM Black level adjust  
0:  
-92 mV  
14mV/dev  
Bell fo  
1
1
1
1
SECAM Bell filter fo shift  
0: 0 kHz  
SECAM ID Sensitivity  
0: normal  
SECAM ID mode  
0:  
0:0 kHz  
0:normal  
0:H  
Sub; 09 h  
S ID sense  
Sub; 09 h  
S ID mode  
Sub; 09 h  
S Black monitor  
Sub; 09 h  
1:  
1:  
1:  
+35 kHz  
Low  
H
H+V  
SECAM Black level alignment mode  
0: normal 1:  
0:normal  
Alignment  
TEXT STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
0000000  
:0dB  
Uni-Color  
Sub; 00 h  
Brightness  
Sub; 01 h  
Color  
7
7
7
6
Uni-Color control  
00: -12 dB  
~ 7F: 12dB  
Brightness control  
00: 1.75 V  
1000000  
:2.50V  
~ 7F: 3.25 V (Pedestal Level)  
~ 7F: 6.5 dB  
Color control  
1000000  
:0dB  
Sub; 02 h  
00:  
-20 dB or less  
RGB Contrast  
Sub; 04 h  
Contrast control for RGB input  
00: -8.0 dB  
100000  
:6.2dB  
~ 3F: 11.4 dB 0.2Vinpuit  
00/01/28 17  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
0:Cb/Cr  
internal  
100000  
:0dB  
Cb/Cr SW  
Sub; 05 h  
Sub-color  
Sub; 05 h  
B.B Tint  
Sub; 06 h  
Sub-Contrast  
Sub; 10 h  
ABL Start Point  
Sub; 10 h  
ABL Gain  
Sub; 10 h  
B. B.  
1
5
5
4
2
2
1
1
8
7
1
Cb/Cr Switch  
0: Cb/Cr internal  
1: Cb/Cr external  
Sub color control (for Cb/Cr input)  
00: -3 dB or less ~ 7F: +3 dB  
Base band tint control (for Cb/Cr input)  
10000  
:0deg  
00: -12deg  
1F: +12deg  
Sub contrast control  
0: -3 dB  
1000  
:0dB  
~ F: 2.5 dB  
Selecting ABL start point  
00: 0V  
00:0V  
01: -0.20V 10: -0.30 V 11: -0.50 V  
ABL Gain control  
00: -0.21 V 01: -0.38 V 10: -0.50 V 11: -0.67 V  
Blue Back Switch  
00:-0.21V  
0: FF  
Sub; 06 h  
Color •  
0: OFF  
1: ON (50 IRE )  
on/off the color •  
0: OFF  
0:OFF  
Sub; 11 h  
RGB - Cutoff  
Sub; 12~14 h  
G/B Drive  
Sub; 15~16 h  
BLK  
1: ON  
R,G,B Cutoff control  
00: -0.65 V  
G,B Drive control  
00: -5.5 dB  
00:-0.65 V  
~ FF: 0.65 V  
0000000  
:0dB  
~ 7F: 3.5 dB  
Hor. And Vert. blanking for RGB outputs  
0: Blanking ON ( Normal mode)  
1: Blanking OFF  
0
Sub; 16 h  
:Blanking ON  
AKB System  
Sub; 11 h  
6
00: AKB off(bus control)  
11:AKB  
off , drive  
cut  
10: ACB cutoff  
drive  
-> align to targets  
-> BUS control  
11: AKB cut off , drive -> align to targets  
on / off the Y MUTE  
Y-Mute  
1
1
1
0:off  
1:on  
Sub; 04 h  
RGB-Mute  
Sub; 04 h  
Ysm Mode  
Sub; 0F h  
0: off  
1: on  
on / off the RGB mute  
0: off  
1: on  
Select the Ys mode  
0: Half tone mode (TV / HT / Ext RGB)  
0:Half tone  
mode  
1: Blank  
(TV / Ext RGB / Blank)  
RGB ABCL  
Sub; 0F h  
F- Half tone  
1
1
on / off the ABL / ACL for Ext. RGB  
0: on  
0: off  
0: on  
Full-screen Half tone mode  
0: off 1: off  
1: off  
DEF STAGE  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
Vertical Position  
Sub; 18 h  
3
5
3
Vertical Position control by delaying the V-ramp timing  
0:0H  
0: 0H  
~ 7: 7H  
Horizontal Position  
Sub; 18 h  
Horizontal Position control  
00: -3ms  
10000:0ms  
000:AUTO  
~ 1F: 3ms  
V-Freq  
Sub; 17 h  
Vertical frequency pull-in mode selection  
000: AUTO  
001: 50 Hz  
010: 60 Hz  
011: Forced 50Hz on no input  
100:: Forced 312.5 H Stops V-synchronization  
101: Forced 262.5 H Stops V-synchronization  
110: Forced 313 H  
111: Forced 263 H  
Stops V-synchronization  
Stops V-synchronization  
00/01/28 18  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
AFC Gain  
Sub; 1A h  
2
Select AFC gain  
00: Normal  
00:Normal  
01: 1 / 3 sensitivity  
10: X 3 at V blanking duration  
11: AFC OFF  
0: off  
V-stop  
Sub; 17 h  
H STP  
1
1
1
1
6
4
0:off  
1: on  
H OUT stop  
0: normal  
0:normal  
0:normal  
0:normal  
100000:0%  
1000:0%  
Sub; 17 h  
312/313 Mode  
Sub; 17 h  
V-AGC  
Sub; 17 h  
Vertical Size  
Sub; 1A h  
V Linearity  
Sub; 19 h  
1 & Y-mute & RGB mute; H STOP  
Synchronize the V freq. to 312/313  
0: normal  
1: TELETXT(312/313) Forced sync  
1: X 5  
V AGC sensitivity  
0: normal  
Vertical size alignment  
00: -40 %  
~ 3F: 40 %  
V linearity alignment  
0: 16 % at upper side , -20 % at lower side  
~ F: -14 % at upper side , 17.5 % at lower side  
V-S correction  
0: 12 % at upper side , 15 % at lower side  
~ F: -12 % at upper side , -15 % at lower side  
Select the reference voltage  
V-S Correction  
Sub; 19 h  
4
1000:0%  
V Ramp Ref.  
Sub; 17 h  
V.EHT  
Sub; 1D h  
H Size  
Sub; 1B h  
EW Parabola  
Sub; 1C h  
EW Corner  
Sub; 1E h  
EW Trapezium  
Sub; 1D h  
H.EHT  
1
3
6
6
4
5
3
0:External  
0: -3.5 %  
00:5.2 V  
0: External(YC Vcc)  
Adjust the sensitivity for V EHT  
0: -3.5 % ~ 7: 3.5%  
Adjust the H size by biasing the EW DC voltage  
1: Internal  
00: 5.2 V~ 3F: 2.7 V  
Adjust the EW amplitude  
( at top )  
00:2.3Vp-p  
0:-0.7Vp-p  
00: - 6.5 %  
0:3.9V  
00: 2.3Vp-p  
~ 3F: 0.08Vp-p  
Adjust the EW corner  
0: -0.7Vp-p  
~ F: 0.7 Vp-p  
Adjusting EW trapezium  
00: - 6.5 %  
~ 1F: 6.5 %  
Adjust the sensitivity for H EHT  
Sub; 1E h  
0: 3.9V  
~ 7: 3.4V  
OTHERS  
ITEMS  
BITS DESCRIPTIONS  
PRESET  
STD by Mode  
Sub; 0D h  
2
Stand by mode  
00,01: normal  
00,:normal  
10 : IF (Working IF Block ,IICBUS and 443VCXO)  
11 : STD-by (Working IICBUS and 443VCXO )  
Self Test  
Sub; 0E h  
TEST  
2
8
Selecting out put on AFT terminal for self Adjustment  
00: AFT (Normal) 10: RF AGC X 1/2  
00:AFT  
(Normal)  
00000000  
For testing / Leave these bits preset data ; 0000 0000  
Sub; 1F h  
00/01/28 19  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
READ MODE  
item  
bits  
Description  
preset  
POR  
1
Power on reset  
0: normal  
1: Resister Preset  
1: Lock in  
IF Lock Det  
H Lock Det  
IF level  
1
1
1
IF lock detection  
0: Lock out  
Horizontal lock detection  
0: Lock out  
1: Lock in  
IF AGC gain detection  
0: High IF AGC gain  
1: Low IF AGC gain  
Monitoring the IF AGC level to detect if the IF input level is weak or  
not.  
( The threshold level is around 50 ~ 60 dB  
Vertical Frequency  
V Freq  
1
3
0: 50 Hz  
1: 60 Hz  
Color System  
Present color system status  
000: B / W  
010: M-PAL  
100: 358 NTSC  
110: SECAM  
001: 4.43 PAL  
011: N-PAL  
101: 443 NTSC  
111: N/A  
Y-in  
1
1
1
1
Y in for self diagnostic  
0: no signal  
1: detected  
1: detected  
RGB OUT  
H OUT  
V OUT  
PIF VCO Adj.  
V Lock  
AFT  
RGB OUT for self diagnostic  
0: no signal  
H OUT for self diagnostic  
0: detected  
1: no signal  
V OUT for self diagnostic  
0: detected  
1: no signal  
Turn to 1 while the PIFVCO  
0: normal  
1: PIF VCO adjusting  
1: detected  
1
2
V Lock for self diagnostic  
0: Lock out  
AFT status  
00: Lock OUT  
10: too low  
01: too high  
11: Good  
Sync Det  
C-in DC  
1
1
Detecting if the H sync. Pulses are or are not.  
0: no signal 1: detected  
The DC voltage on C input terminal. It is for detecting the S-jack  
swith.  
0: open  
1: Low  
Product code  
3
000: TB1258  
010: TB1252  
100: TB1254  
110: TB1256  
0: normal  
001: TB1251  
011: TB1253  
101: TB1255  
111: TB1257  
1: overflowed  
1: not warm up  
1: finished  
AKB Overflow  
CRT Warm up  
AKB Finish  
STD/Non -Std  
P-ID  
1
1
1
1
1
1
1
1
1
1
0: normal  
0: active  
0: non-standard V freq.  
0: detected  
0: detected  
0: detected  
0: normal  
1: Standard V freq.  
1: not identified  
1: not identified  
1: not identified  
1: Large noise level  
1:error detect  
1:NG  
N-ID  
S ID  
Noise det  
PIF VCO error detect  
Coil error  
0: normal  
0: OK  
00/01/28 20  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
DATA TRANSFER FORMAT VIA I2C BUS  
Start and stop condition  
SDA  
SCL  
S
P
Start con dition  
Stop con dition  
Bit transfer  
SDA  
SCL  
SDA stable  
Ch an ge of SDA allowed  
Acknowledge  
SDA by  
tran sm itter  
Th e tran sm itter releases th e SDA lin e (HIGH)  
du rin g th e ackn owledge clock pu lse.  
SDA by  
receiver  
Th e receiver h as to pu ll down th e SDA lin e  
(LOW) du rin g th e ackn owledge clock pu lse.  
SCL from  
m aster  
1
8
9
S
Clock pu lse for ackn owledgm en t  
Data tran sm it form at 1  
S
Slave address  
0
A
Su b address  
8bit  
A
A
Tran sm it data  
8bit  
A
P
7bit  
MSB  
MSB  
A : Ackn owledge  
MSB  
S : Start con dition  
P : Stop con dition  
Data tran sm it form at 2  
S
Slave address  
0
1
A
Su b address  
Tran sm it data 1  
A
A
Su b address  
Tran sm it data n  
A
P
Data received form at  
S
Slave address  
A
Received data 01  
8bit  
A
Received data 02  
A
P
7bit  
MSB  
MSB  
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver  
becomes a slave transmitter. This acknowledge is still generated by the slave.  
The Stop condition is generated by the master.  
00/01/28 21  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Option al data tran sm it form at : au tom atic in crem en t m ode  
S
Slave address  
0
A
1
Su b address  
A
Tran sm it data 1  
8bit  
Tran sm it data n  
8bit  
A
P
7bit  
7bit  
MSB  
MSB  
MSB  
MSB  
In this transmission methods, data is set on automatically incremented sub-address from the specified sub-address.  
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components  
in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
00/01/28 22  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
MAXIMUM RATINGS (Ta=25)  
ITEM  
SYMBOL  
Vcc max9  
Vcc max•  
PD max  
V in  
RATING  
UNIT  
mW  
V
Supply Voltage (9V Vcc)  
Supply Voltage (5V Vcc)  
Power Dissipation  
Input terminal Voltage  
Operating Temperature  
Storage Temperature  
12  
8
1980(*1)  
GND – 0.3 ~ Vcc + 0.3  
-20 ~ 65  
-55 ~ 150  
Topr  
Tstg  
(*1)When using this device at above Ta=25, the power dissipation decreases by 15.9mV per 1rise.  
(*2) This IC is not proof enough against a strong E-M field by CRT which may cause function errors and/or poor  
Characteristics. Keeping the distance from CRT to the IC longer than 20 cm, or if cannot, placing shield metal  
over the IC, is recommended in an application.  
(*3)This IC is weak against static electoricity and surge impulse. Please take counter measure to meet, if necessary.  
Ta-PD Curve ( on a PCB)  
1980  
1349  
0
65  
150  
•@ƒ  
Atmosphere Temperature  
Ta (  
)
RECOMMENDED OPERATING POWER SUPPLY VOLTAGE  
PIN NO.  
PIN NAME  
MIN.  
4.75  
8.55  
8.55  
3.1  
TYP.  
5
9
9
3.3  
5
MAX.  
5.25  
9.45  
9.45  
3.5  
UNIT  
NOTE  
1
IF Vcc  
V
V
V
V
V
14  
31  
37  
42  
RGB VCC (9V)  
H VCC (9V)  
DIGITAL VDD  
Y/C VCC (5V)  
4.75  
5.25  
In the condition that IIC BUS data “V  
Ramp Ref.” is 0:External(Y/C Vcc),  
the thermal drift of the Y/C Vcc  
should be less than 50mV.  
00/01/28 23  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
ELECTRICAL CHARACTERISTICS  
CURRENT CONSUMTION  
PIN NO.  
PIN NAME  
SYMBOL  
Icc1  
Icc14  
Icc31  
Icc37  
CONDITION  
Supply 5V  
Supply 9V  
Supply 9V  
Supply 3.3V  
Supply 5V  
MIN.  
29.8  
20.2  
16.3  
16.0  
75.3  
TYP.  
39.8  
27.0  
21.7  
21.4  
MAX. UNIT  
1
IF Vcc  
49.8  
33.8  
27.2  
26.8  
mA  
mA  
mA  
mA  
mA  
14  
31  
37  
42  
RGB VCC (9V)  
H VCC (9V)  
DIGITAL VDD  
Y/C VCC (5V)  
Icc42  
100.4 125.5  
DC CHARACTERISTIC  
PIN VOLTAGE  
PIN NO.  
2
PIN NAME  
SYMBOL  
V2  
CONDITION  
MIN.  
3.1  
3.2  
3.2  
0.9  
2.5  
2.5  
3
2.9  
1.5  
1.5  
1.5  
2.15  
2.15  
2.15  
1.1  
0.8  
5.7  
6
1.9  
2.1  
1.5  
1.8  
1.7  
1.7  
2.6  
2
TYP.  
3.8  
3.8  
3.6  
1.5  
3.1  
3.2  
3.3  
3.3  
2.2  
2.2  
2.2  
2.5  
2.5  
2.5  
1.4  
1.1  
6.1  
6.8  
2.2  
2.4  
2.3  
2.1  
2.4  
2.4  
2.9  
2.5  
4.5  
3.5  
3.5  
5.2  
2.5  
3
MAX. UNIT  
RIPPLE FILTER  
SIF OUT  
AUDIO OUT  
IF IN  
1’st SIF IN  
APC FILTER  
X’TAL (4.43MHZ)  
CW OUT  
EXT. R IN  
EXT. G IN  
EXT. B IN  
R OUT  
4.5  
4.4  
4.2  
2.1  
3.7  
3.9  
3.6  
3.7  
2.9  
2.9  
2.9  
2.85  
2.85  
2.85  
1.7  
1.4  
6.4  
7.5  
2.6  
2.8  
3.5  
2.4  
3.1  
3.1  
3.2  
3
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3
4
6
9
V3  
V4  
V6  
V9  
11  
12  
13  
16  
17  
18  
20  
21  
22  
23  
27  
28  
29  
38  
39  
40  
43  
44  
45  
46  
47  
49  
50  
51  
54  
55  
56  
V11  
V12  
V13  
V16  
V17  
V18  
V20  
V21  
V22  
V23  
V27  
V28  
V29  
V38  
V39  
V40  
V43  
V44  
V45  
V46  
V47  
V49  
V50  
V51  
V54  
V55  
V56  
G OUT  
B OUT  
IK IN  
REF. R  
ABCL IN  
H AFC FILTER  
SYNC IN  
Y IN  
DC RESTOR  
C-IN  
Cr IN  
Cb IN  
VSM OUT  
LOOP FILTER  
DE-EMP  
PIF VCO  
PIF VCO  
IF DET OUT  
AFT OUT  
H CORR/SIF IN  
4
5
2.9  
2.9  
4.7  
2
4.1  
4.1  
5.7  
3
V
V
2.4  
3.6  
00/01/28 24  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
AC CHARACTERISTIC  
PIF STAGE  
ITEM  
TEST  
TEST  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CONDITON  
PIF input sensitivity  
PIF maximum input signal  
PIF gain control range  
RF AGC maximum output voltage  
RF AGC minimum output voltage  
RF AGC delay point (minimum)  
RF AGC delay point (maximum)  
PIF input resistance (*)  
PIF input capacitance (*)  
Differential gain  
Differential phase  
Intermodulation  
Video output signal amplitude (Nega)  
Video output signal amplitude (Posi)  
Video output S/N  
Synchronous signal level (Nega)  
Synchronous signal level (Posi)  
Video bandwidth (-3dB)  
Capture range of the PLL (Upper)  
Capture range of the PLL (Lower)  
Hold range of the PLL (Upper)  
Hold range of the PLL (Lower)  
Control steepness of the VCO  
vin min(p)  
vin max(p)  
RAGC(p)  
VAGC max  
VAGC min  
v Dly min  
v Dly max  
Zin R(p)  
Zin C(p)  
DG  
-
-
-
-
42  
105  
63  
-
47  
-
-
dB V  
P1  
100  
53  
dB  
V
-
P2  
P3  
P4  
-
-
-
-
-
-
-
-
-
-
-
-
0.3  
80  
-
-
-
5.0  
5.0  
-
2.4  
2.4  
-
70  
110  
dB V  
100  
-
-
-
-
40  
2.0  
2.0  
50  
k•  
pF  
%
deg.  
dB  
V
2.0  
2.0  
45  
2.2  
2.2  
55  
2.6  
2.6  
8
3.5  
-2.2  
3.5  
-2.2  
3.0  
P5  
P6  
DP  
I M  
V Det (p)n  
V Det (p)p  
S/N(p)  
Vsync n  
Vsync p  
fDet(p)  
fpH(p)  
fpL(p)  
fhH(p)  
fhL(p)  
P7  
-
-
-
-
-
-
-
-
-
-
P8  
dB  
V
P9  
P10  
6
1.5  
-
1.5  
-
-
MHz  
MHz  
-
-1.5  
-
-1.5  
-
P11  
P12  
MHz/V  
kHz/V  
-
Steepness of the AFT Detection  
(steep)  
SAFT(S)  
SAFT(G)  
20  
75  
25  
30  
Steepness of the AFT Detection  
(gentle)  
P13  
P14  
100  
125  
AFT maximum output voltage  
AFT minimum output voltage  
AFT output voltage on defeating  
VAFT max  
VAFT min  
AFT Def  
-
-
-
4.5  
-
2.3  
4.8  
0.2  
2.5  
-
V
0.5  
2.7  
(*) Not tested  
SIF STAGE  
ITEM  
TEST  
CIRCUIT  
TEST  
CONDITION  
SYMBOL  
in max(s)1  
in min(s)1  
AGC(s)1  
vSIF1  
MIN  
105  
-
TYP  
115  
45  
MAX  
UMIT  
dB V  
dB V  
dB  
SIF maximum input signal (non  
conversion)  
SIF minimum input signal (non  
conversion)  
SIF gain control range (non  
conversion)  
2nd SIF output level (non  
conversion)  
SIF maximum input signal (6.5MHz  
conversion)  
SIF minimum input signal (6.5MHz  
conversion)  
SIF gain control range (6.5MHz  
conversion)  
2nd SIF output level (6.5MHz  
conversion)  
-
-
-
-
-
-
-
-
S1  
-
55  
-
50  
70  
100  
105  
-
103  
110  
45  
106  
dB V  
dB V  
dB V  
dB  
in max(s)2  
in min(s)2  
AGC(s)2  
vSIF2  
55  
55  
70  
100  
103  
106  
dB V  
00/01/28 25  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
CIRCUIT  
TEST  
CONDITION  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UMIT  
SIF input resistance*•  
SIF input capacitance*•  
Limiting sensitivity (4.5MHz Low)  
Limiting sensitivity (4.5MHz High)  
Limiting sensitivity (5.5MHz)  
Limiting sensitivity (6.0MHz)  
Limiting sensitivity (6.5MHz)  
in R(s)  
in C(s)  
vin lim(s)4.5ML  
vin lim(s)4.5MH  
vin lim(s)5.5M  
vin lim(s)6.0M  
vin lim(s)6.5M  
-
-
-
-
-
-
-
S2  
-
-
10  
5
40  
45  
40  
40  
45  
-
-
45  
50  
45  
45  
50  
k•  
pF  
-
-
-
-
S3  
S4  
dB V  
dB V  
AM demodulation sensitivity  
vin minAM  
-
-
40  
50  
AM demodulation maximum input  
level  
vin maxAM  
100  
110  
-
AM reduction ratio (4.5MHz High)  
AM reduction ratio (4.5MHz Low)  
AM reduction ratio (5.5MHz)  
AM reduction ratio (6.0MHz)  
AM reduction ratio (6.5MHz)  
AF output signal amplitude (4.5MHz  
High)  
AF output S/N AF output signal  
amplitude (4.5MHz High)  
Total harmonics distortion AF output  
signal amplitude (4.5MHz High)  
AF output signal amplitude (4.5MHz  
Low)  
AF output S/N AF output signal  
amplitude (4.5MHz Low)  
Total harmonics distortion AF output  
signal amplitude (4.5MHz Low)  
AF output signal amplitude  
(5.5MHz)  
AF output S/N AF output signal  
amplitude (5.5MHz)  
Total harmonics distortion AF output  
signal amplitude (5.5MHz)  
AF output signal amplitude  
(6.0MHz)  
AF output S/N AF output signal  
amplitude (6.0MHz)  
Total harmonics distortion AF output  
signal amplitude (6.0MHz)  
AF output signal amplitude  
(6.5MHz)  
AMR4.5MH  
AMR 4.5ML  
AMR5.5M  
AMR6.0M  
AMR6.5M  
-
-
-
-
-
50  
50  
50  
50  
50  
55  
55  
55  
55  
55  
-
-
-
-
-
dB  
dB  
dB  
S5  
S6  
mVrms  
vDet(s)4.5MH  
S/N(s)4.5MH  
THD4.5MH  
vDet(s)4.5ML  
S/N(s)4.5ML  
THD4.5ML  
vDet(s)5.5M  
S/Ns)5.5M  
THD5.5M  
-
-
-
649  
50  
-
927  
55  
1324  
-
dB  
%
0.5  
500  
55  
1.0  
710  
-
mVrms  
350  
50  
-
S7  
S8  
S9  
dB  
%
0.5  
927  
58  
1.0  
1236  
-
mVrms  
-
-
-
-
-
-
-
-
695  
53  
-
dB  
%
0.5  
927  
58  
1.0  
1236  
-
mVrms  
vDet(s)6.0M  
S/N(s)6.0M  
THD6.0M  
695  
53  
dB  
%
-
0.5  
927  
58  
1.0  
1236  
-
mVrms  
vDet(s)6.5M  
S/N(s)6.5M  
695  
53  
AF output S/N AF output signal  
amplitude (6.5MHz)  
S10  
S11  
dB  
Total harmonics distortion AF output  
signal amplitude (6.5MHz)  
AF output signal amplitude (AM)  
AF output S/N AF output signal  
amplitude (AM)  
Total harmonics distortion AF output  
signal amplitude (AM)  
Demodulation band width of the FM  
demodulator (Upper 1)  
Demodulation band width of the FM  
demodulator (Lower1)  
Demodulation band width of the FM  
demodulator (Upper2)  
Demodulation band width of the FM  
demodulator (Lower2)  
Audio attenuater gain (Max)  
Audio attenuater gain (Mid)  
Audio attenuater gain (Min)  
THD6.5M  
vDet(s)AM  
S/N(s)AM  
-
-
-
-
0.5  
500  
48  
1.0  
710  
-
%
mVrms  
350  
43  
dB  
%
THDAM  
fpH(s)1  
fpL(s)1  
fpH(s)2  
fpL(s)2  
-
-
-
-
-
-
5.0  
-
1.0  
2.0  
-
S12  
-
-
-
-
MHz  
4.0  
-
7.0  
-
S13  
S14  
MHz  
dB  
5.0  
G att max  
G att mid  
G att min  
-
-
-
-2  
-
-
0
-15  
-85  
2
-
-75  
00/01/28 26  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
CIRCUIT  
-
TEST  
CONDITION  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
+150  
UMIT  
Audio attenuater off-set  
(*) Not tested  
Vos att  
S15  
-50  
50  
mV  
VIDEO STAGE  
ITEM  
TEST  
CIRCUIT  
TEST  
CINDITION  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Y Input Dynamic Range  
Y Input Pedestal Clamp Voltage  
Y frequency response  
Y Delay time  
••Y  
V1  
V2  
V3  
V4  
0.9  
2.5  
5.5  
370  
-44  
214  
34  
2.80  
2.20  
1.30  
4.70  
10.2  
4.2  
1.0  
2.7  
8.0  
460  
-38  
238  
38  
3.25  
2.50  
1.75  
11.8  
11.6  
5.7  
2.9  
Vp-p  
V
MHz  
ns  
YCLP  
FRY  
tYDEL  
550  
-34  
254  
44  
3.70  
2.80  
2.20  
19.0  
13.2  
7.2  
-40ns  
•••••••240ns  
1step  
tYDEL-40  
tYDEL240  
tYDEL 1step  
VBRTMAX  
VBRTCEN  
VBRTMIN  
VBRT  
ns  
Brightness Control Characteristics  
V5  
V
Brightness Control resolution  
Uni-color Control Characteristics  
MV/bit  
dB  
V6  
V7  
UCYMAX  
UCYCEN  
-9.8  
1.5  
-7.8  
2.5  
-5.8  
3.5  
UCYMIN  
Sub Contrast Control Characteristics  
dB  
SCONMAX  
-4.0  
2.05  
3.6  
-3.0  
2.75  
6.6  
-2.0  
3.80  
9.6  
SCONMIN  
Sharpness Peaking Frequency  
Sharpness Control Characteristics  
SHP  
V8  
V9  
MHz  
dB  
SHMAX  
SHCEN  
1.3  
3.3  
5.  
SHMIN  
-8.4  
-5.4  
-2.4  
Y correction start point  
VY  
V10  
V11  
V12  
70  
77  
84  
73  
80  
87  
76  
83  
90  
IRE  
70  
VY  
80  
VY  
90  
Y correction curve  
Black Expansion AMP Gain  
Black Expansion Start Point  
GY  
-5  
1.2  
25  
34  
dB  
V
BLEX  
1.05  
21  
30  
1.45  
29  
38  
VBLEX 25IRE  
VBLEX 35IRE  
VBLEX 45IRE  
39  
85  
43  
90  
47  
95  
DC restration gain  
Vdcrest85  
IRE  
Vdcrest120  
Vdcrest step  
VWPS  
GTRAP358  
GTRAP443  
GHTY  
110  
5
2.5  
-6.5  
115  
8
2.8  
-29  
-27  
-6  
120  
11  
3.3  
-25  
-23  
-5.5  
WPS Level  
Chroma Trap Gain  
V13  
V14  
Vp-p  
dB  
Half Tone reduction for Y  
VSM Peak Frequency  
VSM Gain  
V15  
V16  
V17  
dB  
MHz  
dB  
FVSM  
3
-
4
-34  
-4.8  
0
5
-30  
-3.58  
1.21  
3.4  
GVSM Min  
GVSM Cen  
GVSM Max  
VVMMHARF  
VVMMBLK  
TVMMON  
TVMMOFF  
TVMFP  
-6.2  
-1.41  
3.2  
0.6  
0
VSM Ys Mute Threshold Level  
VSM Ys Mute Response Time  
V18  
V19  
3.3  
0.7  
50  
V
0.8  
100  
100  
87  
ns  
ns  
0
50  
VSM Phase  
vs. Peak Freq.  
vs. 2T Pulse  
BUS  
59  
64  
-45  
73  
TVM2T  
80  
94  
TVMBUS  
-40  
-35  
00/01/28 27  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
CHROMA STAGE  
TEST  
CIRCUIT  
TEST  
CINDITION  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
ACC Chara.  
C1  
600  
25  
40  
mV p-p  
ACCL  
ACCH  
1000  
5.16  
1.86  
4.45  
1.86  
4.30  
1.92  
3.67  
1.92  
TOF Chara.(4.43)  
BPF Chara. (4.43) fo  
TOF Chara. (3.58)  
BPF Chara. (3.58)  
fo  
Q
0T443  
C2  
MHz  
MHz  
MHz  
MHz  
T443  
0B443  
Q
fo  
Q
fo  
Q
B443  
0T358  
T358  
0B358  
B358  
595  
510  
765  
-60  
4.0  
700  
600  
805  
690  
1035  
60  
8.0  
-20  
C Delay Time (P/N)  
tCDELPN  
C3  
C4  
ns  
C Delay Time (SECAM)  
Time Difference between Y / C  
Color Control Characteristics MAX  
MIN  
tCDELS  
tY/C  
900  
0
6.5  
dB  
COLMAX  
COLMIN  
Uni-Color Control Characteristics  
C5  
C6  
-27  
28  
-28  
28  
-28  
0.47  
0.31  
0.62  
0.26  
0.70  
0.24  
0.67  
0.36  
84  
230  
83  
232  
95  
232  
86  
236  
350  
350  
350  
350  
300  
300  
300  
300  
1.5  
-24  
42  
-42  
42  
-42  
0.57  
0.38  
0.72  
0.32  
0.80  
0.30  
0.77  
0.44  
89  
236  
89.5  
241  
105  
240  
92.8  
245  
500  
500  
500  
500  
500  
500  
500  
500  
2.5  
1.1  
1.5  
1.9  
3.4  
5.0  
1.3  
2.1  
4
-21  
56  
-56  
56  
dB  
deg  
UCCMIN  
TINT Chara.(4.43NTSC)  
TINT Chara.(3.58NTSC)  
MAX  
MIN  
MAX  
MIN  
R/B  
G/B  
R/B  
G/B  
R/B  
G/B  
R/B  
G/B  
R-B  
G-B  
R-B  
G-B  
R-B  
G-B  
R-B  
G-B  
••443MAX  
••443MIN  
••358MAX  
••358MIN  
VPR/B  
VPG/B  
VNR/B  
VNG/B  
VNR/B  
VNG/B  
VNR/B  
VNG/B  
-56  
Relative Amplitude (PAL)  
Relative Amplitude (NTSC1)  
Relative Amplitude (NTSC2)  
Relative Amplitude (DVD)  
Relative Phase (PAL)  
C7  
C8  
0.67  
0.45  
0.82  
0.38  
0.90  
0.36  
0.87  
0.52  
94  
deg  
PR-B  
242  
95  
PG-B  
Relative Phase (NTSC1)  
Relative Phase (NTSC2)  
Relative Phase (DVD)  
N1R-B  
248  
115  
248  
100  
254  
2500  
-2500  
2500  
-2500  
2500  
-2500  
2500  
-2500  
3.5  
1.6  
3
4
6
8
2.6  
4.2  
7
N1G-B  
N2R-B  
N2G-B  
DVDR-B  
DVDG-B  
APC Pull- In Range (4.43MHz)  
APC Hold Range (4.43MHz)  
APC Pull-In Range (3.58MHz)  
APC Hold Range (3.58MHz)  
C9  
Hz  
4APCP+  
-
4APCP  
4APCH+  
4APCH-  
3APCP+  
3APCP-  
3APCH+  
3APCH-  
APC Control Sensitivity (4.43MHz)  
APC Control Sensitivity (3.58MHz)  
PAL ID Sensitivity (Normal Mode)  
443  
Hz/mV  
mVp-p  
C10  
C11  
358  
0.6  
0.7  
1.0  
1.7  
2.5  
0.6  
1.0  
2.0  
PIDON  
PIDOFF  
PIDLON  
PAL ID Sensitivity (Low Mode)  
NTSC ID Sensitivity (Normal Mode)  
NTSC ID Sensitivity (Low Mode)  
PIDLOFF  
NIDON  
NIDOFF  
NIDLON  
4.0  
8
12  
NIDLOFF  
00/01/28 28  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
CIRCUIT  
TEST  
CINDITION  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CWOUT Amplitude  
DC Bias at killer on  
DC Bias at killer off  
Half Tone Chara. for C  
Sub-Color Control  
Characteristics  
C12  
0.35  
1.0  
3.0  
-6.7  
+2.5  
-4.5  
0.5  
1.5  
3.5  
-6.0  
+3.5  
-3.5  
64  
0.65  
2.0  
4.0  
-5.3  
4.5  
-2.5  
V p-p  
V
CW  
VBCWKON  
VBCWKOFF  
HTC  
C13  
C14  
dB  
dB  
MAX  
MIN  
SCOLMAX  
SCOLMIN  
1H Delay Time  
TBDL  
TRDL  
s  
64  
SECAM STAGE  
ITEM  
TEST  
CIRCUIT  
TEST  
CINDITION  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Bell Monitor Output Amplitude  
Bell Filter f0  
Bell Filter f0 Variable Range  
embo  
f0B-C  
f0B-VR  
QBEL  
VBS  
SE1  
SE2  
SE3  
SE4  
SE5  
63  
-23  
15  
13  
1.29  
100  
0
30  
15  
1.85  
163  
23  
45  
17  
2.41  
mV p-p  
kHz  
Bell Filter Q  
Color Difference Output Amplitude  
Vp-p  
VRS  
R/B-S  
SNB-S  
SBR-S  
LinB  
1.12  
0.7  
-38  
-44  
85  
85  
-
1.57  
0.80  
-34  
2.22  
0.90  
-28  
Color Difference Relative Amplitude  
Color Difference S/N Ratio  
SE6  
SE8  
-
dB  
-39  
-32  
Linearity  
SE9  
SE10  
SE11  
100  
100  
1.1  
117  
117  
1.5  
%
s  
LinR  
Rising-Fall Time  
trfB  
trfR  
-
1.1  
1.5  
SECAM ID Sensitivity  
(Normal Mode)  
H
0.66  
1.82  
0.6  
1.0  
1.7  
4.5  
1.1  
2.8  
1.7  
1.9  
2.1  
80  
1.32  
3.64  
1.20  
1.9  
3.3  
9
2.2  
5.6  
1.8  
2.0  
2.2  
85  
2.64  
6.5  
2.4  
3.8  
6.0  
14  
4.4  
10  
1.9  
2.1  
2.3  
90  
mV  
SIDHON  
SIDHOFF  
H+V  
H
SIDHVON  
SIDHVOFF  
SECAM ID Sensitivity  
(Low Mode)  
SIDLHON  
SIDLHOFF  
H+V  
SIDLHVON  
SIDLHVOFF  
Gate Pulse Width Variable Range  
WGP+200  
WGP  
SE12  
SE13  
•s  
WGP-200  
VSBMAX  
VSRMAX  
VSRMIN  
VSRMIN  
VSB  
SECAM black adjustment  
characteristic  
mV  
80  
85  
90  
-97  
-97  
12  
-92  
-92  
14  
-87  
-87  
16  
SECAM black adjustment sensitivity  
VSR  
12  
14  
16  
TEXT STAGE  
TEST  
TEST  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CINDITION  
V-BLK Pulse Output Level  
H-BLK Pulse Output Level  
RGB Output Black Level (0IRE DC)  
RGB Output White Level (100IRE  
AC)  
0.1  
0.1  
2.25  
0.6  
0.6  
2.5  
1.1  
1.1  
2.75  
VBLK  
T1  
T2  
T3  
T4  
V
V
HBLK  
BLACK  
WHITE  
2.50  
Vp-p  
V
Cut-Off Voltage Variable Range  
CUT+  
0.6  
-0.7  
2.5  
0.65  
-0.65  
3.5  
0.7  
-0.6  
4.5  
CUT-  
Drive Control Variable Range  
Ver3.8  
T5  
dB  
DR+  
00/01/28 29  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
TEST  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CINDITION  
-8.0  
5.7  
-5.5  
6.0  
-4.5  
6.3  
DR-  
ABCL Control Voltage Range  
ABCLH  
T6  
V
ABCLL  
4.5  
4.8  
5.1  
ACL Gain  
ABL Point  
-21  
-19  
0
-17  
0.1  
dB  
V
ACL  
ABLP1  
T7  
T8  
-0.1  
-0.3  
-0.4  
-0.6  
-0.31  
-0.48  
-0.60  
-0.77  
0.7  
0.59  
0.34  
0.06  
2.8  
ABLP2  
-0.2  
-0.3  
-0.5  
-0.21  
-0.38  
-0.50  
-0.67  
-
0.74  
0.41  
0.08  
3.25  
-0.1  
-0.2  
-0.3  
-0.11  
-0.28  
-0.40  
-0.57  
-
ABLP3  
ABLP4  
ABL Gain  
ABLG1  
V
ABLG2  
ABLG3  
ABLG4  
Analog RGB Dynamic Range  
Analog RGB Contrast Control MAX.  
Characteristic  
••TX  
T9  
T10  
Vp-p  
Vp-p  
0.94  
0.49  
0.1  
TXCMAX  
CEN.  
TXCCEN  
MIN.  
MAX.  
TXCMIN  
Analog RGB Brightness  
T11  
3.7  
Vp-p  
TXBRMAX  
Control Characteristic  
CEN.  
MIN.  
TXBRCEN  
2.2  
1.3  
2.5  
2.8  
2.2  
1.75  
TXBRMIN  
Analog RGB Mode Switching Level  
••YS  
t••YS  
••YS  
t••YS  
T12  
T13  
3.3  
0.7  
40  
40  
40  
40  
0.7  
-55  
-55  
12  
-12  
-
YSHALF  
V
YSBLK  
Analog RGB Mode Transfer  
Characteristic  
100  
100  
100  
100  
ns  
Half Tone Mode Switching Level  
Cross Talk from Analog RGB to••  
Cross Talk from to Analog RGB•  
Baseband TINT Characteristic  
HT  
T14  
T15  
T16  
T17  
V
••TX-TV  
••TV-TX  
••BBMAX  
••BBMIN  
VR-G  
7
-40  
-40  
17  
dB  
dB  
deg  
-7  
-17  
40  
Analog RGB / RGB Output Voltage  
Axes Difference  
T18  
-40  
-40  
-40  
mV  
VG-B  
VB-R  
-
-
40  
40  
DEF STAGE  
TEST  
TEST  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CINDITION  
AFC Inactive Period  
50Hz  
60Hz  
••  
4.7  
38.5  
308-7  
260-10  
5.0  
5.3  
42.5  
H
50AFCOFF  
60AFCOFF  
H-OUT Start Voltage  
H-OUT Pulse Duty  
H-OUT Freq. On AFC Stop Mode  
Horizontal Free-Run Frequency 50Hz  
60Hz  
HON  
••  
••  
••  
••  
kHz  
kHz  
HOUT  
40.5  
15.585 15.734 15.885  
15.475 15.625 15.775  
15.585 15.734 15.885  
16.200 16.400 16.600  
14.600 14.900 15.200  
HAFCOFF  
H50FR  
H60FR  
Horizontal Freq. Variable  
Range  
MAX.  
MIN.  
HMAX  
••  
kHz  
HMIN  
Horizontal Freq. Control Sensitivity  
Horizontal Pull-In Range  
••  
••  
1.3  
500  
500  
4.0  
1.8  
4.4  
0.15  
0
2.3  
4.8  
0.30  
20  
Hz/mV  
Hz  
HAFC  
HPH  
HPL  
H-OUT Voltage  
HOUTH  
••  
V
HOUT  
Horizontal Freq. Dependence on cc  
FBP Phase  
••HVCC  
••FBP  
•••  
•••  
-20  
2.7  
Hz/V  
s  
3.2  
3.7  
00/01/28 30  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
TEST  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CINDITION  
H-Sync. Phase  
••HSYNC  
•••HPOS  
0.2  
6.3  
3.3  
0.8  
7.5  
13.5  
2.8  
1.8  
4.7  
45  
55  
45  
55  
0.3  
6.8  
3.6  
1.3  
8.0  
14.0  
3.0  
2.0  
5.0  
50  
60  
50  
60  
308-7  
260-10  
3.2  
224.5  
343.5  
274.5  
343.5  
224.5  
293.5  
312.5  
262.5  
313  
263  
29  
0.4  
7.3  
3.9  
1.6  
8.5  
14.5  
3.2  
2.2  
5.3  
55  
65  
55  
65  
Horizontal Position Variable Range  
AFC-2 Pulse Threshold Level  
H-BLK Pulse Threshold Level  
BLACK Peak Det. Stop Period (H)  
•••  
•••  
•••  
•••  
s  
V
AFC2  
HBLK  
HBPDET  
BPDET  
••GP  
s  
s  
Gate Pulse Start Phase  
Gate Pulse Width  
Vertical Oscillation Start Voltage  
Vertical Free-Run Frequency Auto50  
Auto60  
••6  
GP  
VON  
••7  
18  
V
Hz  
VAUFR50  
VAUFR60  
50Hz  
60Hz  
V50FR  
V60FR  
Gate Pulse V-Masking Period 50Hz  
60Hz  
V.Ramp DC on Service Mode  
Vertical Pull-In Range (Auto)  
50GPM  
19  
H
60GPM  
3.0  
3.4  
20  
21  
V
H
NOVRAMP  
VPAUL  
VPAUH  
Vertical Pull-In Range (50Hz)  
Vertical Pull-In Range (60Hz)  
FVP50L  
FVP50H  
VP60L  
VP60H  
Vertical Period on Fixed Mode  
TV312.5  
TV262.5  
TV313  
22  
23  
H
V263  
27  
27  
31  
31  
V-BLK Start Phase  
V-BLK Width  
50Hz  
60Hz  
50Hz  
60Hz  
••50VBLK  
••60VBLK  
s  
H
29  
22  
18  
50VBLK  
60VBLK  
Sand Castle Pulse Level  
24  
6.70  
4.60  
1.55  
1.50  
18  
1.8  
11  
1.74  
43  
-51  
-23  
21  
7.00  
4.90  
1.85  
1.67  
22  
2.3  
0.0  
15  
1.90  
47  
-47  
-21  
24  
20  
-25  
-23  
24  
7.30  
5.20  
2.15  
1.83  
26  
2.8  
0.3  
19  
2.06  
51  
-43  
-18  
27  
V
SCPH  
SCPM  
SCPL  
Vertical Ramp Amplitude  
Vertical AMP Gain  
Vertical AMP MAX. Output Level  
Vertical AMP Min. Output Level  
Vertical AMP Max. Output Current  
Vertical NFB Amplitude  
VRAMP  
25  
26  
Vp-p  
dB  
V
VAMP  
VOMAX  
VOMIN  
VOMAX  
27  
28  
mA  
Vp-p  
%
NFB  
••VRAMPH  
••VRAMPL  
••LIN1+  
••LIN1-  
••LIN2+  
••LIN2-  
••S1+  
Vertical Amplitude Variable Range  
Vertical Linearity Variable Range  
29  
30  
%
17  
23  
-28  
-26  
21  
-22  
-20  
27  
Vertical S Correction Variable Range  
%
••S1-  
••S2+  
••S2-  
-26  
21  
-23  
24  
-20  
27  
Vertical Guard Voltage  
31  
32  
33  
1.80  
2.00  
2.20  
V
%
V
VG  
VEHT  
Vertical Amplitude EHT Correction  
E-W MAX. DC Level (Picture Width)  
5.7  
5.1  
2.5  
6.7  
5.2  
2.7  
7.7  
5.3  
VEWDCMAX  
VEWDCMIN  
VEWPMAX  
E-W MIN. DC Level (Picture Width)  
E-W MAX. Parabolic Correction  
(Parabola)  
E-W MIN. Parabolic Correction  
(Parabola)  
2.95  
34  
2.1  
0
2.3  
2.5  
Vp-p  
VEWPMIN  
0.08  
0.18  
00/01/28 31  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST  
TEST  
ITEM  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CIRCUIT CINDITION  
E-W Corner Correction (Corner)  
E-W Trapezium Correction  
E-W Parabolic EHT Correction  
E-W DC EHT Correction  
VCOR  
VTR  
VEWPEHT  
VEWDCEHT  
REW  
35  
36  
37  
38  
39  
1.3  
12.0  
4.8  
0.42  
50  
1.4  
13.3  
6.8  
0.50  
100  
1.5  
14.6  
8.8  
0.58  
150  
Vp-p  
%
%
V
E-W Amplifier Output Impedance  
00/01/28 32  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEST CONDITION  
PIF STAGE  
Note Items/Symbols  
Bus conditions  
Measurement methods  
P1  
RF AGC:except 0  
PIF Freq. :  
38.9MHz  
VCO Adj. Center  
:•  
(1)Input a signal that 38.9[MHz], 90[dB V], and 30 [%] modulated  
by 15 [kHz] sine wave at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Measure the amplitude at Pin 54(vo#54 [Vp-p]).  
(4)Decreasing the IF input level, measure the input level at which  
the output amplitude at pin 54 turns to be –3dB against “vo#54”  
(vin min(p)[dB V]).  
PIF Input Sensitivity  
/ vin min(p)  
PIF maximum input  
signal  
/ vin max(p)  
0/1  
PIF gain control range  
/ RAGC(p)  
Others : Preset  
(5)Increasing the IF input level, measure the input level at which  
the output amplitude at pin 54 turns to be -1dB against “vo#54” (vin  
min(p)[dB V]).  
(6)RAGC(p)[dB] = vin max(p) - vin min(p)  
P2  
P3  
RF AGC output  
voltage  
/ VAGC max  
/ VAGC min  
RF  
(1)Input a 38.9[MHz], 90[dB V] signal at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Adjust RF AGC so that the pin 9 voltage is 4.5V.  
(4)Increase the IF input level to 107dBuV.  
(5)Measure the pin 9 voltage (VAGC min[V]).  
(6)Connect pin 6 and pin 7 to GND.  
(7)Measure the pin 9 voltage (VAGC max[V]).  
(1)Input a 38.9[MHz], 90[dB V] signal at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
AGC:Adjust  
PIF Freq. :  
38.9MHz  
VCO Adj. Req.:  
0/1  
Others : Preset  
RF delay point  
/ v Dly min  
/ v Dly max  
RF  
AGC:Adjust  
PIF Freq.  
38.9MHz  
(3)Set the data of “RF AGC” to 01(h).  
VCO Adj. Req. :  
0/1  
RF AGC: 01/3F  
Others : Preset  
(4)Decrease the IF input level, measure the input level at which the  
voltage at pin 9 turn to be 4.5[V] (v Dly min[dB V]).  
(5)Set the data of “RF AGC” to 3F(h).  
(6)Increase the IF input level, measure the input level at which the  
voltage at pin 9 turn to be 4.5[V] (v Dly max[dB V]).  
(1)Remove all connection from pin 6 and pin 7.  
(2)Measure the resistance (Zin R(p)[k ]) and capacitance (Zin  
C(p)[pF]) of pin 6 and pin 7 by the impedance meter.  
P4  
P5  
Preset  
PIF input resistance  
/ Zin R(p)  
PIF input capacitance  
/ Zin C(p)  
Differential Gain  
/ DG  
RF AGC:except 0  
PIF Freq.:  
38.9MHz  
VCO Adj. Req.:  
0/1  
Vi Pol:0/1  
(1)Input a signal that 38.9[MHz], 90[dB V], and 87.5 [%] modulated  
by 10 stair video signal at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
Differential Phase  
/ DP  
(3)Measure "DG[%]" and "DP[deg]" for Pin54 output.  
Others : Preset  
P6  
Intermodulation  
/ IM  
RF AGC:except 0 (1)Input a signal composed of following 3 signals at pin 6;  
PIF Freq. :  
38.9MHz  
VCO Adj. Req.:  
0/1  
38.90[MHz]/90[dB V],  
34.47[MHz]/80dB V]  
33.40[MHz]/80[dB V]  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Others : Preset  
Req.” to “0”.  
(3)Adjust pin 10 voltage so that the bottom of pin 54 output is equal  
to sync. tip level.  
(4)Measure the 1.07[MHz] level against the 4.43[MHz] level(=0[dB])  
(IM[dB]).  
00/01/28 33  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditions  
RF AGC:except 0  
PIF Freq. :  
38.9MHz  
VCO Adj. Req. :  
0/1  
Measurement methods  
P7  
Video output signal  
amplitude  
(1)Input a signal that 38.9[MHz], 90[dB V], and 87.5 [%] negative  
modulated by 100% white video signal at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
/ vDet(p)n  
/ vDet(p)p  
(3)Set the bit of “L-SECAM MODE” to “0”.  
L-SECAM MODE  
:0/1  
Others : Preset  
(4)Measure the amplitude of the pin 54 output signal (vDet(p)n[Vp-  
p]).  
(5)Input a signal that 38.9[MHz], 90[dB V], and 97 [%] positive  
modulated by 100% white video signal at pin 6.  
(6)Set the bit of “L-SECAM MODE” to “1”.  
(7)Measure the amplitude of the pin 54 output signal (vDet(p)p[Vp-  
p]).  
P8  
P9  
Video output S/N  
/ S/N(p)  
RF AGC:except 0  
PIF Freq. :  
38.9MHz  
VCO Adj. Req. :  
0/1  
Others : Preset  
RF AGC:except 0  
PIF Freq. :  
38.9MHz  
VCO Adj. Req.:  
0/1  
(1)Input a signal that 38.9[MHz], 90[dB V], and 87.5 [%] modulated  
by black video signal at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Measure the video S/N for pin 54 output (HPF : 100[kHz], LPF :  
5[MHz], CCIR weighted) (S/N(p)[dB]).  
(1)Input a signal that 38.9[MHz], 90[dB V], 87.5[%] negative  
modulated by 100% white signal at pin 6.  
Synchronous signal  
level  
/ Vsync n  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Set the bit of “L-SECAM MODE” to “0”.  
/ Vsync p  
L-SECAM MODE  
:0/1  
Others : Preset  
(4)Measure the voltage of the sync. tip at pin 54 (Vsync n[V]).  
(5)Input a signal that 38.9[MHz], 90[dB V], and 97 [%] positive  
modulated by 100% white video signal at pin 6.  
(6)Set the bit of “L-SECAM MODE” to “1”.  
(7)Measure the voltage of the sync. tip at pin 54 (Vsync p[V]).  
(1)Input the mixture of 2 signals (signal1 : 38.9[MHz]/82[dB V],  
signal 2 : 38.8[MHz]/69[dB V]) to pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Measure the minimum voltage of the output signal at pin 54  
(Vo#54).  
(4)Apply the DC voltage to pin 10 and adjust it so that the minimum  
voltage of the output signal at pin 54 is equal to Vo#54.  
(5)Decrease frequency of the input signal 2 at pin 6, and measure  
amplitude of the output signal at pin 54.  
P10  
Video bandwidth  
(-3dB)  
/ fDet(p)  
RF AGC:except 0  
PIF Freq.:  
38.9MHz  
VCO Adj. Req.:  
0/1  
L-SECAM MODE  
:0/1  
Others : Preset  
(6)Measure fDet(p) shown as below.  
3[dB]  
Ref.level  
f Det(p)  
Frequency of  
the output signal at pin54  
100[kHz]  
00/01/28 34  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditions  
RF AGC : except  
0
PIF Freq. :  
38.9MHz  
VCO Adj. Req. :  
0/1  
Others : Preset  
Measurement methods  
(1)Input a signal that 38.9[MHz], 90[dB V] at pin 6.  
(2)Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO Adj.  
Req.” to “0”.  
(3)Sweep down the input signal frequency to 34.9[MHz], and  
sweep up to 43.9[MHz]. Sweep down the input signal frequency to  
38.9[MHz].  
P11  
Capture range of the  
PLL  
/ fpH(p)  
/ fpL(p)  
Hold range of the PLL  
/ fhH(p)  
(4)Measure the voltage at pin 55 and measure the frequency of the  
input signal shown as below.  
/ fhL(p)  
f h(p)L f p(p)L  
38.9[MHz]  
f p(p)H  
f h(p)H  
Frequency of  
the input signal  
P12  
Control steepness of PIF Freq. :  
(1) Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO  
Adj. Req.” to “0”.  
(2) Set the FET probe which connected to the spectrum analyzer  
near by pin 50 or pin 51 (Don’t touch the probe directly to pin 50  
or to pin 51).  
the VCO  
/
38.9MHz  
VCO Adj. Req. :  
0/1  
Others : Preset  
(3) Apply 2.3[V] to pin 47, and measure frequency of the VCO  
oscillation by the spectrum analyzer (fLVCO[MHz]).  
(4) Apply 2.7[V] to pin 47, and measure frequency of the VCO  
oscillation by the spectrum analyzer (fHVCO[MHz]).  
(5) [MHz/V] = (fHVCO-fLVCO)/0.4  
P13  
Steepness of the AFT PIF Freq. :  
(1) Input a 38.9[MHz], 90[dB V] signal at pin 6.  
(2) Set the bit of “VCO Adj. Req.” to “1”, and set the bit of “VCO  
Adj. Req.” to “0”.  
(3) Input a 38.9[MHz]-20[kHz], 90[dB V], non-modulation signal at  
pin 6.  
(4) Measure the voltage at pin 55 (VH#55[V]).  
(5) Input a 38.9[MHz]+20[kHz], 90[dB V], non-modulation signal  
at pin 6.  
detection  
/ S AFT  
AFT Voltage  
/ VAFTmax  
/ VAFTmin  
38.9MHz  
VCO Adj. Req.:  
0/1  
Others : Preset  
(6) Measure the voltage at pin 55 (VL#55[V]).  
(7) S AFT[kHz/V] = 40/(VH#55-VL#55)  
(8) Input a 38.9[MHz]-500[kHz], 90[dB V], non-modulation signal  
at pin 6.  
(9) Measure the voltage at pin 55 (VAFTmax[V]).  
(10) Input a 38.9[MHz]+500[kHz], 90[dB V], non-modulation signal  
at pin 6.  
(11) Measure the voltage at pin 55 (VAFTmin[V]).  
P14  
AFT output voltage on Preset  
defeating  
(1)Measure the voltage at pin 55 (VAFT Def[V]).  
00/01/28 35  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
SIF STAGE  
Note Items/Symbols  
Bus conditions  
RF  
AGC:except 0  
PIF Freq. :  
38.9MHz  
Measurement methods  
S1  
SIF maximum input  
signal  
(1) Input a 38.9[MHz], 90[dB V] signal at pin 6.  
(2) Input a 33.4[MHz], 90[dB V] signal at pin 9.  
(3) Set the bit of “VCO Adj. Req..” to “1”, and set the bit of “VCO  
Adj. Req..” to “0”.  
(non conversion)  
/ vin max(s)1  
VCO Adj. Req.  
:0/1  
(4) Set the bit of “6.5MHz SIF FIX” to “0”.  
(5) Measure the amplitude at pin 3 (vSIF1[dB V]).  
SIF minimum input  
signal  
6.5MHz SIF FIX : (6) Decreasing the 33.4[MHz] signal level, measure the  
(non conversion)  
/ vin min(s)1  
0/1  
33.4[MHz] signal level at which the amplitude at pin 3 turns to  
be –3[dB] against “vSIF1” (vin min(s)1[dB V]).  
(7) Increasing the 33.4[MHz] signal level, measure the 33.4[MHz]  
signal level at which the amplitude at pin 3 turns to be +3[dB]  
against “vSIF1” (vin max(s)1[dB V]).  
Others : Preset  
SIF gain control range  
(non conversion)  
/ R AGC(s)1  
2nd SIF output level  
/ vSIF1  
(8) R AGC[dB] = vin max1(s) – vin min1(s)  
(9) Set the bit of “6.5MHz SIF FIX” to “1”.  
(10) Do same measuring as above (5)~(8) (vin max(s)1[dB V], R  
AGC(s)2, vSIF2[dB V]).  
SIF maximum input  
signal (6.5MHz  
conversion)  
/ vin max(s)2  
SIF minimum input  
signal (6.5MHz  
conversion)  
/ vin min(s)2  
SIF gain control range  
(6.5MHz conversion)  
/ R AGC(s)2  
2nd SIF output level  
/ vSIF1  
S2  
S3  
SIF input resistance  
/ Zin R(s)  
Preset  
(1)Remove all connection from pin 9.  
(2)Measure the resistance (Zin R(s)[k ]) and capacitance (Zin  
C(s)[pF]) of pin 9 by the impedance meter.  
SIF input capacitance  
/ Zin C(s)  
Limiting sensitivity  
/ vin lim(s)4.5MH  
/ vin lim(s)4.5ML  
/ vin lim(s)5.5M  
/ vin lim(s)6.0M  
/ vin lim(s)6.5M  
SIF-Freq. :  
4.5M/5.5M/6.0M/  
6.5M  
AUDIO ATT : 127  
Others : Preset  
(1) Set the bits of “SIF-Freq.” to “11”.  
(2) Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(3) Measure the amplitude at pin 4 (vo#4[mVrms]).  
(4) Decreasing the 4.5[MHz] signal level, measure the 4.5[MHz]  
signal level at which the amplitude at pin 4 turns to be –3[dB]  
against “vo#4” (vin lim(s)4.5MH[dB V]).  
(5) Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(6) Do same measuring as above (3)~(4) (vin lim(s)4.5ML).  
(7) Set the bits of “SIF-Freq.” to “00”.  
(8) Change the frequency of the input signal to 5.5MHz, and  
change the deviation of the input signal to 50[kHz].  
(9) Do same measuring as above (3)~(4) (vin lim(s)5.5M).  
(10) Set the bits of “SIF-Freq.” to “01”.  
(11) Change the frequency of the input signal to 6.0MHz, and do  
same measuring as above (3)~(4) (vin lim(s)6.0M).  
(12) Set the bits of “SIF-Freq.” to “10”.  
(13) Change the frequency of the input signal to 6.5MHz, and do  
same measuring as above (3)~(4) (vin lim(s)6.5M).  
00/01/28 36  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditions  
RF  
AGC:except 0  
PIF Freq. :  
38.9MHz  
SIF Freq. :  
6.5MHz  
VCO Adj. Req.  
:0/1  
Measurement methods  
S4  
AM demodulation  
sensitivity  
(1) Input a 38.9[MHz], 90[dB V] signal at pin 6.  
(2) Input a signal that 32.4[MHz], 80[dB V] and 54[%] modulated  
by 400[Hz] sine wave at pin 9.  
(3) Set the bit of “VCO Adj. Req..” to “1”, and set the bit of “VCO  
Adj. Req..” to “0”.  
(4) Measure the amplitude at pin 4 (v#4[mVrms]).  
(5) Decrease the 32.4[MHz] signal level, measure the 32.4[MHz]  
signal level at which the amplitude at pin 4 turns to be –3[dB]  
against “v#4” (vin minAM[dB V]).  
/ vin minAM  
AM demodulation  
maxmum input level  
/ vin maxAM  
L-SECAM MODE  
: 1  
Others : Preset  
(6) Increase the 32.4[MHz] signal level, measure the 32.4[MHz]  
signal level at which the amplitude at pin 4 turns to be +3[dB]  
against “v#4” (vin maxAM[dB V]).  
AM reduction ratio  
/ AMR4.5MH  
/ AMR4.5ML  
/ AMR5.5M  
/ AMR6.0M  
/ AMR6.5M  
SIF-Freq. :  
4.5M/5.5M/6.0M/  
6.5M  
AUDIO ATT : 127  
Others : Preset  
(1) Set the bits of “SIF-Freq.” to “11”.  
(2) Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(3) Measure the amplitude at pin 4 (vo#4[mVrms]).  
(4) Input a signal that 4.5[MHz], 100[dB V], and 30 [%] modulated  
by 400 [Hz] sine wave at pin 56.  
S5  
(5) Measure the amplitude at pin 4 (v#4[mVrms]).  
(6) AMR4.5H[dB] = 20log(v#4/ vo#4)  
(7) Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(8) Do same measuring as above (3)~(6) (AMR4.5ML).  
(9) Set the bits of “SIF-Freq.” to “00”.  
(10) Change the frequency of the input signals to 5.5MHz, and  
change the deviation of the input signal to 50[kHz].  
(11) Do same measuring as above (3)~(6) (AMR5.5M).  
(12) Set the bits of “SIF-Freq.” to “01”.  
(13) Change the frequency of the input signals to 6.0MHz, and do  
same measuring as above (3)~(6) (AMR6.0M).  
(14) Set the bits of “SIF-Freq.” to “10”.  
(15) Change the frequency of the input signals to 6.5MHz, and do  
same measuring as above (3)~(6) (AMR6.5M).  
S6  
SIF-Freq. : 4.5M  
AUDIO ATT : 127  
Others : Preset  
(1)Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
1[kHz] sine wave at pin 56.  
AF output signal  
amplitude  
(2)Measure the amplitude at pin 4 (vDet(s)4.5MH[mVrms]).  
(3)Measure the total harmonics distortion at pin 4 (THD4.5MH[%]).  
(4)Input a 4.5[MHz], 100[dB V] signal at pin 56.  
(5)Measure the amplitude at pin 4 (vn(s)[mVrms]).  
(6)S/N4.5MH[dB] = 20log(vDet(s)/vn(s))  
/ vDet(s)4.5MH  
AF output S/N  
/ S/N(s)4.5MH  
Total harmonics  
distortion  
/ THD4.5MH  
S7  
SIF-Freq. : 4.5M  
AUDIO ATT : 127  
Others : Preset  
(1)Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
1[kHz] sine wave at pin 56.  
(2)Do same measuring as vDet(s)4.5MH et al. (vDet(s)4.5ML,  
S/N(s)4.5ML, THD4.5ML).  
AF output signal  
amplitude  
/ vDet(s)4.5ML  
AF output S/N  
/ S/N(s)4.5ML  
Total harmonics  
distortion  
/ THD4.5ML  
AF output signal  
amplitude  
/ vDet(s)5.5M  
AF output S/N  
/ S/N(s)5.5M  
Total harmonics  
distortion  
S8  
SIF-Freq. :5.5M  
AUDIO ATT : 127  
Others : Preset  
(1)Input a signal that 5.5[MHz], 100[dB V], 50[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(2)Do same measuring as vDet(s)4.5MH et al. (vDet(s)5.5M,  
S/N(s)5.5M, THD5.5M).  
/ THD5.5M  
00/01/28 37  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditions  
SIF-Freq. : 6.0M  
AUDIO ATT : 127  
Others : Preset  
Measurement methods  
(1)Input a signal that 6.0[MHz], 100[dB V], 50[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(2)Do same measuring as vDet(s)4.5MH et al. (vDet(s)6.0M,  
S/N(s)6.0M, THD6.0M).  
S9  
AF output signal  
amplitude  
/ vDet(s)6.0M  
AF output S/N  
/ S/N(s)6.0M  
Total harmonics  
distortion  
/ THD6.0M  
S10  
SIF-Freq. : 6.5M  
AUDIO ATT : 127  
Others : Preset  
(1)Input a signal that 6.5[MHz], 100[dB V], 50[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(2)Do same measuring as vDet(s)4.5MH et al. (vDet(s)6.5M,  
S/N(s)6.5M, THD6.5M).  
AF output signal  
amplitude  
/ vDet(s)6.5M  
AF output S/N  
/ S/N(s)6.5M  
Total harmonics  
distortion  
/ THD6.5M  
S11  
AF output signal  
amplitude  
(1) Input a signal that 6.5[MHz], 90[dB V] and 54[%] modulated by  
400[Hz] sine wave at pin 56.  
(2)Do same measuring as vDet(s)4.5MH et al. (vDet(s)AM,  
S/N(s)AM, THDAM).  
/ vDet(s)AM  
AF output S/N  
/ S/N(s)AM  
Total harmonics  
distortion  
/ THDAM  
S12  
S13  
S14  
Demodulation band  
width of the FM  
demodulator  
/ fpH(s)1  
SIF-Freq. : 4.5M  
AUDIO ATT : 127  
Others : Preset  
(1)Input a signal that 4.5[MHz], 100[dB V], 25[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(2)Measure the amplitude at pin 4(vo#4 [Vp-p]).  
(3)Increase the input signal frequency, measure the input signal  
frequency at which the output amplitude at pin 4 turn to be -3[dB]  
against “vo#4” (fpH(s)1[MHz])  
(4)Decrease the input signal frequency, measure the input signal  
frequency at which the output amplitude at pin 4 turn to be -3[dB]  
against “vo#4” (fpL(s)1[MHz])  
(1)Input a signal that 5.5[MHz], 100[dB V], 50[kHz] deviated by  
400[Hz] sine wave at pin 56.  
(2)Measure the amplitude at pin 4(vo#4 [Vp-p]).  
(3)Increase the input signal frequency, measure the input signal  
frequency at which the output amplitude at pin 4 turn to be -3[dB]  
against “vo#4” (fpH(s)2[MHz])  
(4)Decrease the input signal frequency, measure the input signal  
frequency at which the output amplitude at pin 4 turn to be -3[dB]  
against “vo#4” (fpL(s)2[MHz])  
(1) Input a 400[Hz], 927[mVrms] sine wave at pin 53.  
(2) Set the “AUDIO ATT” data to “127”.  
/ fpL(s)1  
Demodulation band  
width of the FM  
demodulator  
/ fpH(s)2  
SIF-Freq. : 5.5M  
AUDIO ATT : 127  
Others : Preset  
/ fpL(s)2  
Audio attenuater gain AUDIO-SW : 1  
/ G att max  
/ G att mid  
/ G att min  
AUDIO ATT :  
0/64/127  
Others : Preset  
(3) Measure the amplitude at pin 4 (v#4max[mVrms]).  
(4) G att max[dB] = 20log(v#4max/927)  
(5) Set the “AUDIO ATT” data to “64”.  
(6) Measure the amplitude at pin 4 (v#4mid[mVrms]).  
(7) G att mid[dB] = 20log(v#4mid/927)  
(8) Set the “AUDIO ATT” data to “0”.  
(9) Measure the amplitude at pin 4 (v#4min[mVrms]).  
(10) G att min[dB] = 20log(v#4min/927)  
S15  
Audio attenuater off- AUDIO-SW : 1  
(1) Connect pin 53 to GND through a 4.7[ F] capacitor.  
(2) Set the “AUDIO ATT” data to “127”.  
(3) Measure the DC voltage at pin 4 (V#4max[mV]).  
(4) Set the “AUDIO ATT” data to “0”.  
set  
/ Vos att  
AUDIO ATT :  
0/127  
Other : Preset  
(5) Measure the DC voltage at pin 4 (V#4min[mV]).  
(6) Vos[mV] = V#4min-V#4max  
00/01/28 38  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
VIDEO stage (RGB Mute:0 / R cut off:127 / DC rest.:10 / WPS:1)  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
V1  
Y Input Dynamic  
Range  
/ DRY  
WPS:1  
(1)Input a white signal with sync into Pin38&39.  
Uni-Color:63  
Brightness:0  
Color:0  
(2)Increasing the Pin39 input amplitude, measure the amplitude  
(includesync) at which the Pin20 output is clipped, that is  
"DRY".  
RGB Mute:0  
R cut off:127  
DC rest.:10  
WPS:1  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Uni-Color:127  
Sharpness:Adjust  
Color:0  
V2  
V3  
Y Input Pedestal  
Clamp Voltage  
/ VYCLP  
(1)Input a composite sync signal into Pin38.  
(2)Connect Pin39 to GND via a 1uF capacitor.  
(3)Measure the DC Voltage at Pin39, that is "VYCLP".  
Y Frequency  
Response  
/ FRY  
(1)Input a 0.5Vp-p sweep signal with sync into Pin38&39.  
(2)Adjust Sharpness so that the output amplitude for FSHP  
equals VSH100k  
.
(3)Measure the frequency at which the output amplitude is 3dB  
down  
against VSH100k, which is "FRY".  
Others:Preset  
Uni-Color:127  
Color:0  
V4  
Y Delay Time  
/ tYDEL  
(1)Input a 2T pulse with sync into Pin38&39.  
(2)Set the BUS data so that Y DL is 0ns(001).Observe the Pin20  
Y DL:000/001/111 output, measure the delay time between Pin39 and Pin20, that is  
/ tYDEL-40  
/ tYDEL+240  
/ tYDEL  
RGB Mute:0  
R cut off:127  
DC rest.:10  
"tYDEL".  
(3)Set the BUS data so that Y DL is –40ns(000). Observe the  
Pin20 output, measure the delay time between Pin39 and Pin20,  
Others:Preset  
that is tYDEL-40.  
(4)Set the BUS data so that Y DL is +240ns(111). Observe the  
Pin20 output, measure the delay time between Pin39 and Pin20,  
that is tYDEL+240  
(5)Calculate, “tYDEL-40”= tYDEL-40 - "tYDEL  
tYDEL+240”= tYDEL+240 - "tYDEL  
.
"
"
tYDEL”= (“tYDEL+240”- “tYDEL-40”)/7  
V5  
Brightness:  
0/64/127  
Color:0  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Others:Preset  
(1)Input a 0IRE black signal with sync into Pin38&39.  
(2)Measure the DC level of picture period at Pin20 for  
Brightness:127/64/0,  
that is "VBRTMAX" / "VBRTCEN" / "VBRTMIN".  
(3)Calculate;"VBRT"=(VBRTMAX-VBRTMIN)/127  
Brightness  
Characteristics  
/ VBRTMAX  
/ VBRTCEN  
/ VBRTMIN  
Brightness Data  
Sensitivity  
/ VBRT  
V6  
V7  
Uni-Color  
Characteristics for Y  
/ GUCYMAX  
/ GUCYCEN  
/ GUCYMIN  
Uni-  
Color:0/64/127  
Color:0  
RGB Mute:0  
R cut off:127  
DC rest.:10  
WPS:1  
Others:Preset  
Sub-Contrast:  
0/8/15  
(1)Input a 50IRE white signal with sync into Pin38&39.  
(2)Measure the output picture amplitude at Pin20 for Uni-  
Color:127/64/0, that is VUCYMAX / VUCYCEN / VUCYMIN  
(3)Calculate; "GUCYMAX"=20*log(VUCYMAX/0.357)"  
"GUCYCEN"=20*log(VUCYCEN/0.357)  
.
"GUCYMIN"=20*log(VUCYMIN/0.357)  
Sub-Contrast  
Characteristics  
/ GSCONMAX  
(1)Input a 50IRE white signal with sync into Pin38&39.  
(2)Measure the output picture amplitude at Pin20 for Sub-  
Contrast 15/8/0, that is VSCONMAX / VSCONCEN / VSCONMIN.  
Uni-Color:127  
Color:0  
/ GSCONMIN  
(3)Calculate; "GSCONMAX"=20*log(VSCONMAX/VSCONCEN  
)
RGB Mute:0  
R cut off:127  
DC rest.:10  
WPS:1  
"GSCONMIN"=20*log(VSCONMIN/VSCONCEN  
)
Others:Preset  
00/01/28 39  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
V8  
Sharpness  
Frequency  
/ FSHP  
Peaking Sharpness:63  
Uni-Color:63  
Color:0  
(1)Input a 0.5Vp-p sweep signal with sync into Pin38&39.  
(2)Measure the frequency at which the Pin20 output amplitude is  
Max., that is "FSHP".  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Others:Preset  
Control Sharpness:0/32/6  
3
V9  
Sharpness  
Characteristics  
/ GSHMAX  
/ GSHCEN  
/ GSHMIN  
(1)Input a 0.5Vp-p sweep signal with sync into Pin38&39.  
(2)Measure the output picture amplitude for 100kHz at Pin20, that  
is VSH100k.  
(3)Measure the output picture amplitude for FSHP when  
Sharpness is max.,center and min., that is VSHMAX, VSHCEN and  
Uni-Color:63  
Color:0  
RGB Mute:0  
R cut off:127  
DC rest.:10  
VSHMIN  
(4)Calculate; "GSHMAX"=20*log(VSHMAX/VSH100k  
"GSHCEN"=20*log(VSHCEN/VSH100k  
"GSHMIN"=20*log(VSHMIN/VSH100k  
.
)
Others:Preset  
)
)
V10  
Uni-Color:127  
Color:0  
(1)Input a gray raster with sync to Pin38&39.  
(2)Set BUS data so that point is 90IRE.  
(3)Increasing a video amplitude of input from 50IRE, measure a  
video ampitude as the figure below, that is “VY  
(4)Set BUS data so that point is 80IRE.And repeat (3), that is  
Y correction start  
point  
RGB Mute:0  
R cut off:127  
DC rest.:10  
point:01/10/11  
WPS:1  
/ V  
Y70  
90  
/ V  
Y80  
/ V  
Y90  
“VY 80”.  
(5)Set BUS data so that point is 70IRE.And repeat (3), that is  
Others:Preset  
“VY 70”.  
Y correction curve  
(6)From the measurement in the above, find gain of the portion  
/ GY  
that the correction has an effect on.  
#20  
output  
Y ƒÁ=off  
Y ƒÁ=90/80/70IRE  
VYƒÁ90  
#39 input  
V11  
Black Expansion Start Uni-Color:127  
(1)Input a gray raster with sync to Pin38&39.  
(2)Set black stretch to 25IRE.  
Point  
Color:0  
/ VBLEX25  
/ VBLEX35  
/ VBLEX45  
Black stretch:  
00/01/10/11  
RGB Mute:0  
R cut off:127  
(3)Decreasing Y amplitude of input from 50IRE, measure a Y  
amplitude as the figure below, that is “VBLEX25  
(4)Set black stretch to 35IRE/45IRE.  
(5)Repeat (3), that is ‘VBLEX35”, “VBLEX45”. below, that is “VY  
90  
Black Expansion AMP DC rest.:10  
(6)Find gain of the portion that the black stretch has an effect on.  
#20  
Gain  
Others:Preset  
output  
/ GBLEX  
Black  
stretch  
25/35/45IRE  
=off  
VBLEX25  
#39 input  
00/01/28 40  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
V12  
DC Restration Gain  
/ VDcrest120  
Uni-Color:127  
Color:0  
(1)Input a 100IRE signal with sync into Pin38&39.  
(2)Set DC rest. to 10.  
/ VDcrest90  
/ VDcrest step  
DC rest.:00/01  
/10/11  
(3)Measure a Y amplitude of pin20 output, that is V100.  
(4)Set DC rest to 00.  
RGB Mute:0  
R cut off:127  
Others:Preset  
(5)Measure a Y amplitude of pin20 output, that is V120.  
(6)Calculate, “Vdcrest120” =(V120/V100)×100  
(7)Set DC rest to 11.  
(8)Repeat (5)&(6), that is “VDcrest90”.  
(9)Calculate, “VDcrest step”=(Vdcrest120 - VDcrest90)/4  
(1)Input a 120IRE ramp signal with sync into Pin38&39.  
(2)Measure the amplitude from cut-off level to peak(at which  
output signal is clipped), that is "VWPS".  
V13  
WPS Level  
/ VWPS  
Uni-Color:127  
Brightness:127  
Color:0  
RGB Mute:0  
R cut off:127  
DC rest.:10  
WPS:0/1  
Others:Preset  
C-Trap:0/1  
Uni-Color:127  
Color:0  
RGB Mute:0  
R cut off:127  
V14  
V15  
Chroma Trap Gain  
/ GTRAP  
(1)Input a 0.5Vp-p, 3.58MHz signal with sync into Pin43&39.  
(2)Measure the 3.58MHz amplitude at PIn20 for Chroma  
Trap:1/0, that is VTRAPON / VTRAPOFF  
.
(3)Calculate;"GTRAP"=20*log(VTRAPON/VTRAPOFF  
)
DC  
rest.:10  
Others:Preset  
Ysm Mode:0  
Uni-Color:127  
Color:0  
Half Tone  
Characteristics for Y  
/ GHTY  
(1)Input a 100IRE white signal with sync into Pin38&39.  
(2)Measure the output picture amplitude at PIn20 , that is  
VHTYOFF  
.
RGB Mute:0  
R cut off:127  
DC rest.:10  
Others:Preset  
(3)Suppry Pin15 2V.  
(4) Measure the output picture amplitude at PIn20 , that is VHTYON  
.
(3)Calculate;"GHTY"=20*log(VHTYON/VHTYOFF  
)
V16  
V17  
VSM Peak Frequency RGB Mute:0  
(1)Input 100mVp-p sweep signal to pin39(Y in).  
(2)Measure the peak point frequency “FVSM” at pin46(VSM OUT)  
by using a spectrum analyzer.  
/FVSM  
VSM gain:111  
Others:Preset  
RGB Mute:0  
VSM gain:  
VSM Gain  
/ GVSMON  
/ GVSMOFF  
(1)Input 100mVp-p FVSM sine wave signal (see V18) to pin39(Y  
in).  
(2)Set VSM Gain (000/011/111) and measure the amplitude at  
pin46(VSM OUT),that is “VVSMMIN “/ “VVSMCEN “/ “VVSMMAX “.  
(4)Calculate, GVSMMIN=20*log(VVSMMIN/0.1)  
000/011/111  
Others:Preset  
G
G
VSMCEN=20*log(VVSMCEN/0.1)  
VSMMAX=20*log(VVSMMAX/0.1)  
V18  
VSM Ys Mute  
Threshold Voltage  
/ VVMMHARF  
RGB Mute:0  
(1) Input 100mVp-p FVSM sine wave signal (see V18) to pin39(Y  
in).  
(2) Set Ysm Mode to 0.Connect a external power supply to  
pin15(Ys/Ym) and increase the voltage from 2.5V.  
Measure the power supply voltage when pin46(VSM OUT)  
VSM gain:111  
Ysm Mode:0/1  
Others:Preset  
/ VVMMBLK  
outpu disappears, that is VVMMHALF  
.
(3)Set Ysm Mode 1.Connect a external power supply to  
pin15(Ys/Ym) and increase the voltage from 2.5V.  
Measure the power supply voltage when pin46(VSM OUT) output  
disappears, that is VVMMBLK  
.
00/01/28 41  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
V19  
VSM Ys Mute  
Response Time  
/ TVMON  
RGB Mute:0  
VSM gain:111  
Ysm Mode:0  
Others:Preset  
(1)Input 100mVp-p FVSM sine wave signal (see V18) to pin39(Y  
in).  
(2)Input 0-4V rectangular pulse to pin15(Ys/Ym).  
Measure Mute ON/OFF timing from the timing at VVMM point.,  
/ TVMOFF  
those are TVMON/TVMOFF  
.
VVMMBLK  
VVMMHALF  
Pin15 Input  
TVMON  
TVMOFF  
VSM OUT  
waveform  
Am plitu de V  
0
V20  
VSM Phase  
/ TVMFP  
/ TVM2T  
RGB Mute:0  
VSM gain:111  
Ysm Mode:0  
Uni-color : MAX  
Sharpness :  
Variable  
(1) Input 700mVp-p FVSM sine wave signal or 2T pulse to pin39(Y  
in).  
(2)Set the BUS data of Unicolor to the maximum and increase the  
BUS data of Sharpness from the minimum to a value where  
pin20(R OUT) waveform is not distorted.  
(3)Measure the phase difference between the timing at the center  
level of pin20(R OUT) and the timing at peak level of pin46(VSM  
Others:Preset  
OUT) which responses the pin39 input., that is TVM24  
.
(4) In case that pin39 input signal is FVSM sine wave, the phase  
difference is TVMFP  
(5)In case that pin39 input signal is 2T pulse, the phase  
difference is TVM2T  
TVMFP  
50%  
R OUT  
VSM OUT  
50%  
TVM21  
00/01/28 42  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
CHROMA STAGE (RGB Mute:0 / RGB cut off:127 / DC rest.:10)  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
C1  
ACC Characteristics  
/ VACCH  
/ VACCL  
RGB Mute:0  
Y Mute:1  
Uni-Color:127  
Others:Preset  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Changing the amplitude of burst and chroma, measure the input  
amplitude at which Pin20 output amplitude is +1dB/-1dB against  
the one for 300mVp-p input, that is "VACCH"/"VACCL".  
(1)Set “C-BPF” to 1, “Color System” to 010, “TEST Mode” to  
00001000, and Sub address “0A” is X0011XXX.  
(2)Input a sweep signal into Pin43.  
(3)Observe the frequency response at Pin13 and measure the  
Peaking Frequency / Q of chroma filter, that is "F0T443" / "QT443".  
(4)Set C-BPF to 0 and Color System to 010 and repeat (2)&(3),  
that is "F0B443" / "QB443".  
C2  
RGB Mute:0  
Y Mute:1  
TEST:01000111  
C-BPF:0/1  
Color System:  
010/100  
TEST Mode:  
00001000  
TOF Characteristics  
(4.43MHz)  
/ F0T443  
/ QT443  
BPF Characteristics  
(4.43MHz)  
/ F0B443  
(5)Set C-BPF to 1 and Color System to 100 and repeat (2)&(3),  
that is "F0T358" / "QT358".  
(6)Set C-BPF to 0 and Color System to 100 and repeat (2)&(3),  
that is "F0B358" / "QB358".  
Sub Add.”0A”:  
X0011XXX  
Others:Preset  
/ QB443  
TOF Characteristics  
(3.58MHz)  
/ F0T358  
/ QT358  
BPF Characteristics  
(3.58MHz)  
/ F0B358  
/ QB358  
C3  
C4  
RGB Mute:0  
Y Mute:1  
Uni-Color:127  
Others:Preset  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Observe the Pin20 output, measure the delay time between  
Pin43 and Pin20, that is "tCDEL".  
C Delay Time  
/ tCDEL  
Delay Time  
Difference between  
Y/C  
/ tY/C  
Color Characteristics  
/ GCOLMAX  
(3)Calculate;"tY/C"=tYDEL-tCDEL  
RGB Mute:0  
Color:0/64/127  
Y Mute:1  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Measure the Pin20 amplitude for Color 127/64/0, that is VCOLMAX  
/ GCOLMIN  
Uni-Color:127  
Others:Preset  
/ VCOLCEN/ VCOLMIN  
(3)Calculate; "GCOLMAX"=20*log(VCOLMAX/VCOLCEN  
"GCOLMIN"=20*log(VCOLMIN/VCOLCEN  
.
)
)
C5  
C6  
Uni-Color  
Characteristics for C  
/ GUCC  
RGB Mute:0  
Uni-Color:0/127  
Y Mute:1  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Measure the Pin20 amplitude for Uni-Color 127/0, that is  
Others:Preset  
V
UCCMAX, and VUCCMIN  
.
(3)Calculate;"GUCC"=20*log(VUCCMIN/VUCCMAX  
)
RGB Mute:0  
Tint:0/64/127  
Y Mute:1  
Uni-Color:127  
Others:Preset  
(1)Input a 3.58MHz NTSC rainbow color-bar (286mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Set Tint to 64 and adjust the burst phase so that the 6th bar of  
Tint Characteristics  
(3.58MHz)  
/ 358MAX  
/ 358MIN  
Tint Characteristics  
(4.43MHz)  
Pin20 output is maximum, that is 358CEN  
(3)Change Tint to 127/0 and adjust the burst phase so that the 6th  
bar of Pin20 output is maximum, that is 358MAX /358MIN  
(4)Calculate; "358MAX"=-(358MAX-358CEN  
"358MIN"=-(358MIN-358CEN  
.
.
)
/ 443MAX  
)
(5)Input a 4.43MHz NTSC rainbow color-bar (286mVp-p,  
/ 443MIN  
burst:chroma=1:1) with sync into Pin43 and repeat (2)&(3), that is  
443CEN /443MAX /443MIN  
(6)Calculate; "443MAX"=-(443MAX-443CEN  
"443MIN"=-(443MIN-443CEN  
.
)
)
00/01/28 43  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
C7  
Relative Amplitude  
(PAL)  
/ VPR/B  
RGB Mute:0  
Y Mute:1  
Uni-Color:127  
Others:Preset  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Measure the amplitude of Pin18/19/20 output, that is "VPROUT"/  
"VPGOUT" / "VPBOUT"  
/ VPG/B  
Relative Amplitude  
(NTSC1)  
(3)Calculate; " VPR/B "=VPROUT/VPBOUT  
" VPG/B "=VPGOUT/VPBOUT  
/ VN1R/B  
/ VN1G/B  
Relative Amplitude  
(NTSC2)  
/ VN2R/B  
(4)Input a 3.58MHz NTSC rainbow color-bar (286mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(5)Set NTSC Phase to NTSC1/NTSC2.  
(6)Repeat (2)&(3), that is “VN1R/B”/” VN1G/B”/” VN2R/B”/” VN G/B”.  
2
/ VN2G/B  
Relative Amplitude  
(DVD)  
/ VDR/B  
/ VDG/B  
C8  
RGB Mute:0  
Y Mute:01  
Uni-Color:127  
NTSC Phase:  
00/01/10  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Observe the Pin18/19/20 output, measure the R/G/B modulation  
angle (PR/PG/PB) accoeding following figure and equality.  
For PR ; Peak:3rd bar, 0R=90  
For PG ; Peak(nagative):4th bar, 0G=240  
For PB ; Peak:6th bar, 0B=0  
Relative Phase (PAL)  
/ PR-B  
/ PG-B  
Relative Phase  
(NTSC1)  
/ N1R-B  
Others:Preset  
/ N1G-B  
(3)Calculate; "PR-B"=PR-PB  
Relative Phase  
(NTSC2)  
/ N2R-B  
"PG-B"=PG-PB  
(4)Set NTSC Phase 00(NTSC1).  
(5)Input a 3.58MHz NTSC rainbow color-bar (286mVp-p,  
burst:chroma=1:1) with sync into Pin38&43, then repeat (2), that is  
N1R /N1G /N1B.  
(6)Calculate; "N1R-B"=N1R-N1B  
"N1G-B"=N1G-N1B  
(7)Set NTSC Phase 01(NTSC2).  
(8) Repeat (5), that is N2R /N2G /N2B  
(9)Calculate; "N2R-B"=N2R-N2B  
"N1G-B"=N1G-N1B  
/ N2G-B  
Relative Phase (DVD)  
/ DR-B  
/ DG-B  
.
(10)Set NTSC Phase 10(DVD).  
C9  
RGB Mute:0  
Color System:  
100/010  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Set Color System to 100(443PAL).  
(3)For higher frequency than 4.43MHz, measure the burst  
frequency at which Pin13 DC level changes from low to high / from  
APC Pull-in Range  
(4.43MHz)  
/ F4APCP+  
Others:Preset  
/ F4APCP-  
APC Hold Range  
(4.43MHz)  
/ F4APCH+  
high to low, that is F4APCP+ / F4APCH+  
(4)For lower frequency than 4.43MHz, repeat (2), that is F4APCP-  
F4APCH-  
(5)Calculate; "F4APCP+"=F4APCP+-4433619  
"F4APCP-"=4433619-F4APCP-  
"F4APCH+"=F4APCH+-4433619  
"F4APCH-"=4433619-F4APCH-  
(6)Input a 3.58MHz NTSC rainbow color-bar (286mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(7)Set Color System to 010(358NTSC).  
.
/
.
/ F4APCH-  
APC Pull-in Range  
(3.58MHz)  
/ F3APCP+  
/ F3APCP-  
APC Hold Range  
(3.58MHz)  
/ F3APCH+  
(8)For higher frequency than 3.58MHz, repeat (2), that is F3APCP+  
F3APCH+  
(9)For lower frequency than 3.58MHz, repeat (2), that is F3APCP-  
F3APCH-  
/
.
/
/ F3APCH-  
.
(10)Calculate; "F3APCP+"=F3APCP+-3579545  
"F3APCP-"=3579545-F3APCP-  
"F3APCH+"=F3APCH+-3579545  
"F3APCH-"=3579545-F3APCH-  
00/01/28 44  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
RGB Mute:0  
Measurement methods  
(1)Connect Pin43 to GND via a 1uF capacitor.  
C10  
APC Control  
Sensitivity (4.43MHz)  
/ 443  
Color  
System: (2)Set Color System to 100(443PAL).  
(3)Adjust Pin11 voltage so that the Pin13 output frequency is  
4.433619MHz, that is V4APCCEN  
(4)Measure the Pin13 output frequency when Pin11 voltage is  
4APCCEN+100mV / V4APCCEN-100mV, that is F4APC+ / F4APC-  
100/010  
Others:Preset  
.
APC Control  
Sensitivity (3.58MHz)  
/ 358  
V
.
(5)Calculate; "443"=(F4APC+-F4APC-)/200  
(6)Set Color System to 010(358NTSC).  
(7)Adjust Pin11 voltage so that the Pin13 output frequency is  
3.579545MHz, that is V3APCCEN  
(8)Measure the Pin13 output frequency when Pin11 voltage is  
3APCCEN+100mV / V3APCCEN-100mV, that is F3APC+ / F3APC-  
.
V
.
(9)Calculate; "358"=(F3APC+-F3APC-)/200  
C11  
P/N ID Sens:0/1  
Color System:  
100/010  
(1)Set P/N ID Sens. to 0.  
PAL ID Sensitivity  
(Normal Mode)  
/ VPALIDON  
/ VPALIDOFF  
PAL ID Sensitivity  
(Low Mode)  
(2)Set Color System to 100(443PAL).  
(3)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(4)Measure the burst amplitude at which Pin13 DC level changes  
from low to high / from high to low, that is "VPALIDON" / "VPALIDOFF".  
(5)Set Color System to 010(358NTSC).  
Y Mute:01  
Uni-Color:127  
RGB Mute:0  
Others:Preset  
(6)Input a 3.58MHz NTSC rainbow color-bar (286mVp-p,  
burst:chroma=1:1) with sync into Pin38&43, and repeat (3), that is  
"VNTIDON" / "VNTIDOFF".  
(7)Set P/N ID Sens.to 1, repeat (2) ~ (6), that is "VPALIDLON" ,  
"VPALIDLOFF" , "VNTIDLON" and "VNTIDLOFF".  
/ VPALIDLON  
/ VPALIDLOFF  
NTSC ID Sensitivity  
(Normal Mode)  
/ VNTIDON  
/ VNTIDOFF  
NTSC ID Sensitivity  
(Low Mode)  
/ VNTIDLON  
/ VNTIDLOFF  
C12  
C13  
fsc Continuous Wave RGB Mute:00  
Measure the amplitude of Pin20 output, that is "VCW".  
Output Level  
/ VCW  
Others:Preset  
Half Tone  
Characteristics for C  
/ GHTC  
RGB Mute:0  
Ysm Mode:0  
Y Mute:01  
(1)Input a 4.43MHz PAL rainbow color-bar(300mVp-p,  
burst:chroma=1:1) with sync into Pin38&43.  
(2)Supply Pin15 2V and measure the amplitude of Pin20 output,  
Uni-Color:127  
Others:Preset  
RGB Mute:00  
Y Mute:01  
Uni-Color:127  
Sub-Color:0  
/16/32  
that is VPBHTC  
(3)Calculate;"GHTC"=20*log(VPBHTC/VPBOUT  
1)Input a signal(f0=100kHz,300mV) of following figure into  
Pin38,44&45.  
(2)Measure the Pin20 amplitude for Sub-olor 32/16/0, that is  
.
)
C14  
Sub-Color Control  
Characteristics  
/ SCOLMAX  
VSCMAX / VSCLCEN/VSCMIN  
.
/ SCOLMIN  
(3)Calculate; "SCOLMAX "=20*log(VSCMAX / VSCLCEN  
)
Others:Preset  
"SCOLMIN "=20*log(VSCMIN / VSCLCEN  
)
Sinusoidal wave  
Frequency f0  
Amplitude V0  
pin38 input  
pin16 input  
00/01/28 45  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
SECAM STAGE  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
SE1  
Bell Monitor output RGB Mute:0  
(1)Input a 75% color bar signal (200mVp-p at R ID) into Pin43.  
(2)Set BUS data so that “  
(3)TEST Mode” is 00001000 and Sub address “0A” is X0111XXX.  
(3) Measure R-Y ID amplitude at Pin13, that is "ebmo".  
voltage  
/ embo  
TEST Mode:  
00001000  
Sub Add.”1A”:  
X0111XXX  
Others:Preset  
SE2  
Bell filter f0  
/ f0B-C  
RGB Mute:00  
TEST Mode:  
00001000  
Sub Add.”0A”:  
X0111XXX  
Bell f0:0  
(1) Input a 20mVp-p sine wave whose frequency is sweep into  
Pin43.  
(2) Set BUS data so that “TEST Mode” is 00001000 and Sub  
address “0A” is X0111XXX.  
(3) Measure the frequency at which Pin13 output is the biggest,  
that is "f0BEL" .  
Y Mute:1  
(4)Calculate : "f0B-C"=f0BEL-4,286 [kHz].  
Others:Preset  
SE3  
SE4  
Bell filter f0 variable RGB Mute:00  
(1)Input a 20mVp-p sine wave whose frequency is sweep into  
Pin43.  
(2)Set BUS data so that “TEST Mode” is 00001000 and Sub  
address “0A” is X0111XXX.  
(3)Set BUS data so that “Bell f0” is +35kHz.  
(4) Measure the frequency at which Pin 13 output is the biggest,  
range  
/ f0B-VR  
TEST Mode:  
00001000  
Sub Add.”0A”:  
X0111XXX  
Bell f0:1  
Y Mute:1  
that is f0BELH.  
Others:Preset  
RGB Mute:00  
TEST Mode:  
00001000  
(5) Calculate : " f0B-VR "= f0BELH -4,286 [kHz]  
(1)Input a 20mVp-p sine wave whose frequency is sweep into  
Pin43.  
(2)Set BUS data so that “TEST Mode” is 00001000 and Sub  
address “0A” is X0111XXX.  
Bell filter Q  
/ QBEL  
Sub Add.”0A”:  
X0111XXX  
Y Mute:1  
(4) Observe the frequency response of Pin13 output.  
(5) Calculate : "QBEL = (MAX-3dB Band Width)/f0BEL.  
Others:Preset  
SE5  
SE6  
Color  
output amplitude  
/ VBS  
/ VRS  
Color  
difference RGB Mute:00  
(1)Input a 75% color bar(200mVp-p at R ID) into Pin43.  
(2) Measure the R-Y output amplitude at Pin20, that is "VRS".  
(3) Measure the B-Y output amplitude at Pin22, that is "VBS".  
Uni-Color:63  
Y Mute:1  
Others:preset  
Difference  
(1)Calculate : "R/B-S"=VRS/VBS  
Relative Amplitude  
/ R/B-S  
SE8  
Color Difference S/N RGB Mute:00  
(1)Input a 200mVp-p non-modulated chroma signal into Pin43.  
(2) Measure the amplitude of noise on Pin20, that is nR.  
(3) Measure the amplitude of noise on Pin22, that is nB.  
(4) Calculate : "SNB-S"=20log(22VBS/nB)  
Ratio  
/ SNB-S  
/ SBR-S  
Uni-Color:63  
Y Mute:1  
Others:preset  
"SNR-S"=20log(22VRS/nR)  
00/01/28 46  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
SE9  
Linearity  
/ LinB  
/ LinR  
RGB Mute:00  
Uni-Color:63  
Y Mute:1  
(1)Input a 75% color bar(200mVp-p at R ID) into Pin43.  
(2)Set BUS data so that “S black monitor” is “alignment”.  
(2) Measure the amplitude between Black and Cyan/Red, that is  
VCyan/VRed.  
Others:preset  
(3) Measure the amplitude between Black and Yellow/Blue, that is  
VYellow/VBlue.  
(4) Calculate : "LinR"=VCync/VRed  
"LinB"=VYellow/VBlue  
red  
LinR  
cyan  
blue  
LinB  
yellow  
SE10 Rising-Fall Time  
RGB Mute:00  
Uni-Color:63  
Y Mute:1  
(1)Input a 75% color bar(200mVp-p at R ID) into Pin43.  
(2)Set BUS data so that “S black monitor” is “alignment”.  
(3)Measure the rising time(from 10% to 90%) between Green and  
Magenta at Pin 20/Pin 22, that is "trR"/"trB".  
Magenta  
/ trfB  
/ trfR  
Others:preset  
trB•CtrR  
Green  
10%  
90%  
SE11 SECAM ID Sensitivity RGB Mute:00  
(1)Input a 75% color bar(200mVp-p at R ID) into Pin43.  
(2)Set BUS data so that “S ID Sens” is Normal, “S ID Mode” is H.  
(3)Measure the burst amplitude at which Pin13 DC level changes  
from low to high / from high to low, that is "VSIDHON" / "VSIDHOFF".  
(4)Set BUS data so that “S ID Mode” is H+V.  
(Normal Mode)  
/ VSIDHON  
Y Mute:1  
S ID Sens:0/1  
S ID Mode:0/1  
Color  
/ VSIDHOFF  
/ VSIDHVON  
/ VSIDHVOFF  
System:101  
(5)Repeat (3), that is "VSIDHVON" / "VSIDHVOFF".  
SECAM ID Sensitivity Others:Preset  
(Low Mode)  
/ VSIDLHON  
(6)Set BUS data so that “S ID Sens” is Low, “S ID Mode” is H.  
(7)Repeat (3), that is "VSIDLHON" / "VSIDLHOFF".  
(8)Set BUS data so that “S ID Mode” is H+V.  
/ VSIDLHOFF  
/ VSIDLHVON  
(9)Repeat (3), that is "VSIDLHVON" / "VSIDLHVOFF".  
/ VSIDLHVOFF  
SE12 Gate Pulse Width RGB Mute:00  
(1)Input a 75% color bar(200mVp-p at R ID) into Pin43.  
(2)Set BUS data so that “TEST Mode” is 00001000 , Sub address  
“0A” is X1001XXX , and“Color System” is Fixed SECAM.  
(3)Measure the gate pulse widths when BUS data of “SECAM GP  
Phase” is +200ns / normal / -200ns, those are “WGP+200”, “WGP”  
and “WGP-200”.  
Variable Range  
/ WGP+200  
/ WGP  
TEST Mode:  
00001000  
Sub Add.”0A”:  
X1001XXX  
Color  
/ WGP-200  
System:101  
Others:Preset  
RGB Mute:00  
Color  
System:101  
S black Monitor:1  
S B-Y black Adj.:  
0/15  
S13  
SECAM black  
adjustment  
characteristic  
/ VSBMAX  
/ VSRMAX  
/ VSRMIN  
(1)For B-Y/R-Y Black Adj.:8, measure the DC level of picture period  
at Pin22/20, that is V  
/ V .  
SBCEN  
SRCEN  
(2)For B-Y Black Adj.:0/15, measure the DC level change of picture  
period against V at Pin22, that is "V " / "V ".  
SBCEN SBMIN SBMAX  
(3)For R-Y Black Adj.:0/15, measure the DC level change of picture  
period against V  
at Pin20, that is "V  
" / "V ".  
SRCEN  
SRMIN SRMAX  
/ VSRMIN  
SECAM black  
S R-Y black Adj.:  
0/15  
(4)Calculate;  
"V  
"V  
"=(V  
"=(V  
-V  
)/16  
adjustment sensitivity Others:Preset  
SECB  
SECR  
SBMAX SBMIN  
/VSB  
-V  
)/16  
SECRMAX SECRMIN  
/VSR  
00/01/28 47  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
TEXT STAGE(RGB Mute:0 / RGB cut off:127 / DC rest.:10 / WPS:1)  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
T1  
V-BLK Pulse Output  
Level  
/ VVBLK  
All:Preset  
(1)Input a cmposite sync signal into Pin38.  
(2)Measure the DC level of V/H blanking period at Pin20, that is  
"VVBLK" / "VHBLK".  
H-BLK Pulse Output  
Level  
/ VHBLK  
T2  
T3  
RGB Output Black RGB Mute:0  
(1)Input a 0IRE Y signal with sync into Pin38&39.  
(2)Measure the DC level of picture period at Pin20, that is "VBLACK".  
Level (0IRE DC)  
/ VBLACK  
Color:0  
R cut off:127  
DC rest.:10  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Uni-Color:127  
Color:0  
RGB Output White  
Level(100 IRE AC)  
/ VWHITE  
(1)Input a 100IRE Y signal with sync into Pin38&39.  
(2)Measure the amplitude from 0 to 100IRE at Pin20, that is  
"VWHITE".  
WPS:1  
Others:Preset  
RGB Mute:0  
DC rest.:10  
B Cut Off:0/255 off:255/0 , that is VCUTMAX / VCUTMIN  
Color:0  
T4  
T5  
Cut-off Voltage  
Variable Range  
/ VCUT+  
(1)Input a 0IRE Y signal with sync into Pin38&39.  
(2)Measure the DC level of picture period at Pin22 for B Cut-  
.
(3)Calculate; "VCUT+"=VCUTMAX-VBLACK "VCUT-"=VCUTMIN-VBLACK  
/ VCUT-  
Others:Preset  
Drive Control Variable RGB Mute:0  
(1)Input a 100IRE Y signal with sync into Pin38&39.  
Range  
/ GDR+  
/ GDR-  
DC rest:10  
B Drive:0/127  
Uni-Color:127  
Color:0  
(2)Measure the amplitude from 0 to 100IRE at Pin20 for B  
drive127/0, that is VDRMAX / VDRMIN  
(3)Calculate; "GDR+"=20*log(VDRMAX/VWHITE  
"GDR-"=20*log(VDRMIN/VWHITE  
.
)
)
WPS:1  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
ABL Gain:11  
Uni-Color:127  
Color:0  
T6  
T7  
ABCL Contorol  
Voltage Range  
/ VABCLH  
/ VABCLL  
ACL Gain  
(1)Input a 100IRE Y signal with sync into Pin38&39.  
(2)Decreasing the Pin28 voltage, measure the voltage at which  
Pin20 output begins/stops decreasing, that is "VABCLH" / "VABCLL".  
(3)Measure the minimum amplitude of Pin20 output, that is VACLMIN  
.
(4)Calculate; "GACL"=20*log(VACLMIN/VWHITE  
)
/ GACL  
WPS:1  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
ABL Start Point:  
00/01/10/11  
ABL Gain:11  
Uni-Color:127  
Color:0  
ABL Start Point  
/ VABLP0  
/ VABLP1  
/ VABLP2  
/ VABLP3  
(1)Input a 0IRE Y signal with sync into Pin38&39.  
(2)For ABL Point 00/01/10/11, decreasing the Pin28 voltage,  
measure the voltage at which Pin20 output begins decreasing, that  
is VABL1/VABL2/VABL3/VABL4.  
(3)Calculate; "VABLP0"=VABL1-VABCLH  
"VABLP1"=VABL2-VABCLH  
"VABLP2"=VABL3-VABCLH  
"VABLP3"=VABL4-VABCLH  
WPS:1  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
ABL Gain:  
00/01/10/11  
Uni-Color:127  
Color:0  
T8  
ABL Gain  
/ VABLG0  
/ VABLG1  
/ VABLG2  
/ VABLG3  
(1)Input a 0IRE Y signal with sync into Pin38&39.  
(2)For ABL Gain 00/01/10/11, measure the DC level of picture  
period at Pin20 when Pin28 voltage is VABCLL, that is  
VABL5/VABL6/VABL7/VABL8.  
(3)Calculate; "VABLG0"=VABL5-VBLACK  
"VABLG1"=VABL6-VBLACK  
"VABLG2"=VABL7-VBLACK  
WPS:1  
"VABLG3"=VABL8-VBLACK  
Others:Preset  
00/01/28 48  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
T9  
Analog RGB Dynamic RGB Mute:0  
(1)Input a composite sync signal into Pin38.  
(2)Supply 2V to Pin15.  
(3)Input a signal of following figure into Pin16.  
Range  
/ DRTX  
R cut off:127  
DC rest.:10  
RGB Contrast:32 (4)Increasing the amplitude of Pin16 input, measure the amplitude  
Ysm Mode:1  
Others:Preset  
at which the Pin20 amplitude stops increasing, that is "DRTX".  
Sinusoidal wave  
Frequency f0  
Amplitude V0  
pin38 input  
pin16 input  
T10  
Analog RGB Contrast RGB Mute:0  
Control Characteristic R cut off:127  
(1)Input a cmposite sync signal into Pin38.  
(2)Supply 2V to Pin15.  
/ GTXCMAX  
/ GTXCCEN  
/ GTXCMIN  
DC rest.:10  
Ysm Mode:1  
RGB Contrast:  
0/32/63  
(3)Input a signal of NOTE:T9 figure(f0=100kHz,V0=0.2Vp-p) into  
Pin16.  
(4)For RGB Contrast 63/32/0, measure the amplitude of Pin20  
output, that is VTXCMAX / VTXCCEN / VTXCMIN  
.
Others:Preset  
(5)Calculate; "GTXCMAX"=20*log(VTXCMAX/0.2)  
"GTXCCEN"=20*log(VTXCCEN/0.2)  
"GTXCMIN"=20*log(VTXCMIN/0.2)  
T11  
Analog RGB  
Brightness Control  
Characteristic  
/ VTXBRMAX  
/ VTXBRCEN  
/ VTXBRMIN  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Ysm Mode:1  
Brightness:  
0/64/127  
(1)Supply 2V to Pin15.  
(2)Connect Pin16 to GND via a 0.1uF capacitor.  
(3)For Brightness 127/64/0, measure the DC level of picture period  
at Pin20, that is "VTXBRMAX" / "VTXBRCEN" / "VTXBRMIN".  
Others:Preset  
T12  
T13  
Analog RGB Mode RGB Mute:0  
(1)Input a cmposite sync signal into Pin38.  
(2)Input a signal of NOTE:T9 figure into Pin16.  
Switching Level  
/ VYS  
Ysm Mode:1  
RGB Contrast:32 (3)Increasing the Pin15 voltage, measure the voltage at which the  
Others:Preset  
signal inputted into Pin16 appears at Pin20, that is "VYS".  
Analog RGB Mode RGB Mute:0  
(1)Input a 50IRE Y singnal with sync into Pin38&39.  
(2)Connect Pin16 to GND via a 0.1uF capacitor.  
(3)According to following figure, measure the Analog RGB Mode  
Transfer Characteristic.  
Transfer  
Characteristic  
/ RYS  
R cut off:127  
DC rest.:10  
Ysm Mode:1  
Others:Preset  
/ tPRYS  
1H  
/ FYS  
/ tPFYS  
20 ƒÊ  
s
20 ƒÊ  
s
Pin 15 In pu t  
20  
n
s
20  
ns  
50%  
tPR  
tPF  
YS  
YS  
Pin 20 Ou tpu t  
100%  
90%  
50%  
10%  
0%  
ƒÑR YS  
ƒÑF YS  
T14  
Cross  
Analog RGB to TV  
/ CTTX-TV  
Talk  
from RGB Mute:0  
R cut off:127  
(1) Input a composite sync signal into Pin38.  
(2) Connect Pin39 to GND via a 1uF capacitor.  
(3) Input a sine wave signal (f=4MHz, Video amplitude=0.5Vp-p)  
into Pin16.  
DC rest.:10  
Ysm Mode:1  
Uni-color:127  
RGB contrast:63  
Others:Preset  
(4) Supply 0V to Pin15.  
(5) Measure the amplitude at Pin20, that is VTV.  
(6) Supply 2V to Pin15.  
(7) Measure the amplitude of 4MHz signal at Pin20, that is VTX  
.
(8) (8)Calculate;"CTTX-TV"=20*log(VTV/ VTX)  
00/01/28 49  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
T15  
Cross Talk from TV to RGB Mute:0  
(1)Input a sine wave signal (f=4MHz, Video amplitude=0.5Vp-p)  
with sync into Pin38&39.  
(2)Connect Pin16 to GND via a 0.1uF capacitor.  
(3)Supply 2V to Pin15.  
(4)Measure the amplitude at Pin20, that is VTX.  
(5)Supply 0V to Pin15.  
Analog RGB  
/ CTTV-TX  
R cut off:127  
DC rest.:10  
Ysm Mode:1  
Uni-color:127  
RGB contrast:63  
Others:Preset  
(6)Measure the amplitude of 4MHz signal at Pin20, that is VTV  
(7)Calculate;"CTTV-TX"=20*log(VTX/ VTV)  
(1) Set S black monitor to 1.  
.
T16  
SECAM Black Level  
Adj. Characteristics  
/ VSECBMAX  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Color  
(2)For B-Y/R-Y Black Adj.:8, measure the DC level of picture period  
at Pin22/20, that is VSECBCEN / VSECRCEN  
(3)For B-Y Black Adj.:0/15, measure the DC level change of picture  
.
/ VSECRMAX  
/ VSECBMIN  
System:111 B-Y period against VSECBCEN at Pin22, that is "VSECBMIN" / "VSECBMAX".  
/ VSECRMIN  
Black Adj:  
(4)For R-Y Black Adj.:0/15, measure the DC level change of picture  
period against VSECRCEN at Pin20, that is "VSECRMIN" / "VSECRMAX".  
(5)Calculate; "VSECB"=(VSECBMAX-VSECBMIN)/16  
SECAM Black Level  
Adj. Data Sensitivity  
/ VSECB  
0/8/15  
R-Y Black Adj:  
0/8/15  
"VSECR"=(VSECRMAX-VSECRMIN)/16  
S black monitor:1  
Others:Preset  
RGB Mute:0  
R cut off:127  
DC rest.:10  
Uni-color:127  
Others:Preset  
/ VSECR  
T17  
Base band TINT  
characteristic  
/ ••BBMAX  
(1)Input a signal(f0=100kHz, 100mVp-p) of NOTE T9 into  
Pin44&38.  
(2)Into Pin45, into a signal with the same amplitude but 90deg  
phase advanced compared to the signal input to pin44.  
(3)When baseband TINT is changed ‘10000’ to“00000”, measure  
the amount of change in the output phase of Pin20, that is  
••BBMIN”.  
/ ••BBMIN  
(4)When baseband TINT is changed ‘10000’ to“11111”, measure  
the amount of change in the output phase of Pin20, that is  
••BBMIN”.  
T18  
RGB Mute:0  
R/G/B cut off:63  
Brightness:63  
DC rest.:10  
Color:0  
Uni-color:127  
Others:Preset  
Analog RGBRGB  
Output Voltage Axes  
Difference  
••VR-G  
••VG-B  
(1)Input a 0IRE signal with sync into Pin38&39.  
(2)Connect Pin16,17,18 to GND via 0.01F.  
(3)Measure the DC level of picture period at Pin20,21,22, that is  
RY/GY/BY.  
(4)Supply Pin15 to 2V.  
(5) Measure the DC level of picture period at Pin20,21,22, that is  
••VB-R  
RT/GT/BT.  
(6)Calculate;  
R RT RY  
G GT GY  
B BT BY  
VR-GR G  
VG-BG B  
VB-RB R  
00/01/28 50  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
DEF STAGE  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D1  
AFC Inactive Period  
/ T50AFCOFF  
All:Preset  
(1)Input a 50Hz/60Hz composite sync signal into Pin38.  
(2)Measure "T50AFCOFF" / "T60AFCOFF" at Pin29. (cf. Fig.D1)  
/ T60AFCOFF  
D2  
H-OUT Start Voltage  
/ VHON  
All:Preset  
All:Preset  
(1)Let Pin1/14/37/42 be open.  
(2)Increasing Pin31 voltage, measure the voltage at which H  
OUT pulse appears at Pin32, that is "VHON".  
D3  
H-OUT Pulse Duty  
/ WHOUT  
(1)Measure tHOUT1 & tHOUT2 at Pin32.  
(2)Calculate;"WHOUT"=tHOUT1/(tHOUT1+tHOUT2)*100  
tHOUT1  
tHOUT2  
D4  
D5  
H-OUT Freq. on AFC AFC  
Gain:11 (1)Input a 50Hz composite sync signal into Pin38.  
(2)Measure the H OUT frequency at Pin32, that is "FHAFCOFF".  
Stop Mode  
/ FHAFCOFF  
Horizontal  
Frequency  
/ FH50FR  
(OFF)  
Others:Preset  
Free-run V-Freq:001/010  
Others:Preset  
For V-Freq 001/010, measure the H OUT frequency at Pin32, that  
is "FH50FR" / "FH60FR".  
/ FH60FR  
D6  
D7  
Horizontal  
Variable Range  
/ FHMAX  
Freq. All:Preset  
(1)Connect Pin29 to Vcc via a 10kand measure the H OUT  
frequency at Pin32, that is "FHMAX".  
(2)Connect Pin29 to GND via a 68kand measure the H OUT  
frequency at Pin32, that is "FHMIN".  
/ FHMIN  
Horizontal  
Freq. All:Preset  
(1)Measure the Pin29 voltage at which H OUT frequency is  
Control Sensitivity  
/ HAFC  
15.734kHz, that is VH15734  
(2)Measure the H OUT frequency when Pin29 voltage is VH15734  
.
+
50mV /VH15734 - 50mV, that is FHHIGH / FHLOW  
.
(3)Calculate;"HAFC"=(FHHIGH-FHLOW)/100  
D8  
Horizontal Pull-in  
Range  
/ FHPH  
All:Preset  
(1)Input a composite sync signal into Pin38.  
(2)Decreasing the horizontal frequency from 17kHz, measure the  
frequency at which H OUT synchronized with SCP Out(Pin29),  
that is FHPH  
.
/ FHPL  
(3)Increasing the horizontal frequency from 14kHz, measure the  
frequency at which H OUT synchronized with SCP Out(Pin29),  
that is FHPL  
.
(4)Calculate; "FHPH"=FHPH-15734  
"FHPL"=15625-FHPL  
D9  
H-OUT Voltage  
/ VHOUTH  
/ VHOUTL  
Horizontal Freq.  
Dependence on Vcc  
/ FHVCC  
FBP Phase  
/ PHFBP  
All:Preset  
All:Preset  
All:Preset  
(1)Measure the high level of H OUT at Pin32, that is "VHOUTH".  
(2)Measure the low level of H OUT at Pin32, that is "VHOUTL".  
D10  
D11  
(1)Measure the H OUT frequency when H Vcc(Pin31) is  
8.5V/9.5V, that is FHVCCH/FHVCCL.  
(2)Calculate;"FHVCC"=(FHVCCH-FHVCCL)/1  
(1)Input a composite sync signal into Pin38.  
(2)According to the following figure, measure "PHFBP" &  
"PHHSYNC".  
H-Sync. Phase  
/ PHHSYNC  
Sync in(Pin38)  
H AFC(Pin29)  
FBP in(Pin30)  
00/01/28 51  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D12  
Horizontal  
Position  
H
Position:0/31 (1)Input a composite sync signal into Pin38.  
Variable Range  
Others:Preset  
(2)Changing BUS data of “Horizontal Position” from 0 to 31,  
/ PHHPOS  
measure "PHHPOS" according to the following figure.  
(00)  
ƒ¢PHHPOS  
FBP in(Pin30)  
(1F)  
D13  
D14  
AFC-2 Pulse  
Threshold Level  
/ VAFC2  
H-BLK Pulse  
Threshold Level  
/ VHBLK  
All:Preset  
All:Preset  
(1)Input a composite sync signal into Pin38.  
(2)Decreasing the FBP high level, measure the DC level at which  
H OUT phase changes against Sync Out phase, that is "VAFC2".  
(1)Input a composite sync signal into Pin38.  
(2)Increasing the FBP high level, measure the DC level at which  
H blanking begins to work, that is "VHBLK".  
D15  
Black Peak Det. Stop TEST:00001000  
(1) Input a composite sync signal into Pin38.  
Period (H)  
/ PHBPDET  
/ WBPDET  
Black Stretch:01  
Others:Preset  
(2) According to the following figure, measure "PHBPDET" &  
"WBPDET".  
63.5ƒÊs  
Sync in(Pin38)  
4.7ƒÊs  
0.25V  
H AFC(Pin29)  
ƒ¢PHHPOS  
4.3V  
0V  
WBPDET  
SCP OUT(Pin30)  
D16  
Gate Pulse Start  
Phase  
All:Preset  
(1)Input a composite sync signal into Pin38.  
(2)According to the following figure, measure "PHGP" & "WGP".  
/ PHGP  
63.5ƒÊs  
Gate Pulse Width  
Sync in(Pin38)  
4.7ƒÊs  
0.25V  
/ WGP  
H AFC(Pin29)  
PHGP  
WGP  
4.3V  
0V  
SCP OUT(Pin30)  
D17  
D18  
Vertical Oscillation  
Start Voltage  
/ VVON  
Vertical Free-run  
Frequency  
/ FVAUFR50  
All:Preset  
(1)Let Pin1/14/37/42 be open.  
(2)Increasing Pin31 voltage, measure the voltage at which V  
Ramp signal appears at Pin24, that is "VVON".  
(1)Input a 50Hz composite sync signal into Pin38.  
(2)Set V-Freq to 000.  
(3)For no input, measure the frequecy of V Ramp at Pin22, that is  
"FVAUFR50".  
V-Freq:  
000/001/010  
Others:Preset  
/ FVAUFR60  
/ FV50FR  
(4)Input a 60Hz composite sync signal into Pin38.  
/ FV60FR  
(5)Repeat (2)&(3), that is “FVAUFR60”  
(6)Set V-Freq. To 001/101, repeat (2), that is "FV50FR" / "FV60FR".  
(1)Input a 50Hz/60Hz composite sync signal into Pin38.  
(2)Measure "T50GPM" / "T60GPM" at Pin30. (cf. Fig.D21)  
D19  
D20  
Gate Pulse V-  
Masking Period  
/ T50GPM  
All:Preset  
/ T60GPM  
V. Ramp DC on  
Service Mode  
/ VNOVRAMP  
V STOP:1  
Others:Preset  
(1)Set V STOP to 1.  
(2)Measure the DC level of Pin24, that is "VNOVRAMP".  
00/01/28 52  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D21  
Vertical Pull-in Range V-Freq:  
(1)Input a composite sync signal into Pin38.  
(Auto)  
/ FVPAUL  
/ FVPAUH  
Vertical Pull-in Range  
(50Hz)  
000/001/010  
Others:Preset  
(2)For V-Freq 000/001/010, increasing the input vertical period  
from 220H by 0.5H step, measure the period at which input signal  
synchronized with V Ramp(Pin24), that is "FVPAUL" /” FVP50L”/  
"FVP60L".  
(3)For V-Freq 000/001/010, decreasing the input vertical period  
from 360H by 0.5H step, measure the period at which input signal  
synchronized with V Ramp, that is "FVPAUH" /” FVP50H”/ "FVP60H".  
/ FVP50L  
/ FVP50H  
Vertical Pull-in Range  
(60Hz)  
/ FVP60L  
/ FVP60H  
D22  
D23  
Vertical Period on V-Freq:  
For V-Freq 100/101/110/111, measure the vertical period at SCP  
out (Pin30), that is "TV312.5"/"TV262.5" / "TV313"/"TV263" .  
Fixed Mode  
/ TV3125  
100/101/110/  
111  
/ TV2625  
Others:Preset  
/ TV313  
/ TV263  
V-BLK Start Phase  
/ PH50VBLK  
/ PH60VBLK  
V-BLK Width  
/ W50VBLK  
All:Preset  
(1)Input a 50Hz/60Hz composite sync signal into Pin38.  
(2)Measure "T50AFCOFF" / "1T60AFCOFF" at Pin30. (cf. Fig.D25)  
/ W60VBLK  
D24  
Sand Castle Pulse All:Preset  
Measure "VSCPH" / "VSCPM" / "VSCPL" at Pin30.  
Level  
VSCPH  
/ VSCPH  
/ VSCPM  
/ VSCPL  
VSCPM  
VSCPL  
D25  
D26  
Vertical  
Amplitude  
/ VVRAMP  
Vertical AMP Gain  
/ GVAMP  
Vertical AMP  
Max.Output Level  
/ VVOMAX  
Ramp All:Preset  
Measure the V Ramp amplitude at Pin24, that is "VVRAMP".  
All:Preset  
(1)Let Pin26 be open.  
(2)Changing the Pin25 DC voltage, measure "VVOMAX" / "VVOMIN" /  
"GVAMP" according to a following figure.  
#26DC  
Vertical AMP  
Min.Output Level  
/ VVOMIN  
VVOMAX  
ƒ¢V=GVAMP  
=20log(ƒ¢V#26/ƒ¢V#25)  
VVOMIN  
#25DC  
D27  
D28  
Vertical  
Max.Output Current  
/ IVOMAX  
Vertical NFB  
Amplitude  
/ VNFB  
AMP All:Preset  
(1)Supply 7V to Pin25.  
(2)Measure the current from Pin26 to GND, that is "IVOMAX".  
V
Size:0/32/63 (1)Measure the amplitude of NFB V Ramp at Pin25, that is  
Others:Preset  
"VNFB". (2)Measure the amplitude of NFB V Ramp at Pin25 for V-  
Size 0/63, that is VNFBMIN / VNFBMAX  
.
Vertical Amplitude  
Variable Range  
/ VVRAMPH  
(3)Calculate; "VVRAMPH"=(VNFBMAX-VNFB)/VNFB*100  
"VVRAMPL"=(VNFBMIN-VNFB)/VNFB*100  
/ VVRAMPL  
00/01/28 53  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D29  
Vertical  
Linearity  
V Linearity:0/8/15 (1)For V Linearity 8, measure V1(from center to max.) and  
Variable Range  
/ VLIN1+  
/ VLIN1-  
/ VLIN2+  
Others:Preset  
V2(from center to min.) at Pin24 according to a follownig figure.  
(2)For V Linearity 15/0, measure VLIN1+ / VLIN1- and VLIN2+ / VLIN2-  
(3)Calculate; "VLIN1+"=(VLIN1+-V1)/V1*100  
"VLIN1-"=(VLIN1--V1)/V1*100  
.
"VLIN2+"=(VLIN2+-V2)/V2*100  
/ VLIN2-  
"VLIN2-"=(VLIN2--V2)/V2*100  
Pin24  
signal  
V1  
V2  
D30  
Vertical S Correction  
Variable Range  
/ VS1+  
/ VS1-  
/ VS2+  
V
S
Corr.:0/8/15 (1)For V S Correction:8, measure V1 and V2 at Pin24 according to  
Others:Preset  
a figure of NOTE:D32 .  
(2)For V S Correction:15/0, measure VS1+ / VS1- and VS2+ / VS2-  
(3)Calculate; "VS1+"=(VS1+-V1)/V1*100  
"VS1-"=(VS1--V1)/V1*100  
.
"VS2+"=(VS2+-V2)/V2*100  
/ VS2-  
"VS2-"=(VS2--V2)/V2*100  
D31  
D32  
Vertical Guard  
Voltage  
/ VVG  
All:Preset  
Decreasing the Pin25 voltage from 5V, measure the voltage at  
which Pin20 output drops to blanking level, that is "VVG".  
Vertical Amplitude  
EHT Correction  
/VEHT  
Parabola  
correction:  
32/63  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
Trapezium  
correction:  
0~31  
V.EHT:0/7  
Others:Preset  
(2)Set the BUS data of Parabola correction to 32(CEN).  
(3)Supply 1V into pin48(EHT in).  
(4)Set the BUS data of V.EHT to 0(MIN).  
Measure the amplitude of waveform at pin25(V NFB),that is  
VEHT(00).  
(5)Set the BUS data of V.EHT to 7(MAX).  
Measure the amplitude of waveform at pin25(V NFB),that is  
VEHT(07).  
(6) VEHT =(VEHT(00)-VEHT(07))/VEHT(00))×100%  
VEHT  
Pin25 Waveform  
00/01/28 54  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D33  
E-W MAX. DC Level  
(Picture Width)  
/ VEWDCMAX  
E-W MIN. DC Level  
(Picture Width)  
/ VEWDCMIN  
Parabola  
correction:  
32/63  
Trapezium  
correction:  
0~31  
Horizontal  
size:0/63  
Others:Preset  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
(2)Set the BUS data of Parabola correction to 32(CEN).  
(3)Supply 6V into pin48(EHT in).  
(4)Set the BUS data of Horizontal size to 0(MAX).  
Measure the voltage at pin41(EW OUT),that is "VEWDCMAX".  
(5)Set the BUS data of Horizontal size to 63(MIN).  
Measure the voltage at pin41(EW OUT),that is "VEWDCMIN".  
center  
Pin41 Waveform  
D34  
E-W MAX. Parabolic  
Correction (Parabola) correction:  
/ VEWPMAX  
E-W MIN. Parabolic  
Parabola  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
(2)Set the BUS data of Horizontal size to 32(CEN).  
(3)Supply 6V into pin48(EHT in).  
0/63  
Trapezium  
Correction (Parabola) correction:  
/ VEWPMIN  
0~31  
Horizontal size:32  
Others:Preset  
(4)Set the BUS data of Parabola correction to 0(MAX).  
Measure the amplitude of waveform at pin41(EW OUT),that is  
" VEWPMAX".  
(5)Set the BUS data of Parabola correction to 63(MIN).  
Measure the amplitude of waveform at pin41(EW OUT),that is  
" VEWPMIN ".  
VEWPMIN  
VEWPMAX  
Pin41 Waveform  
00/01/28 55  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D35  
E-W Corner  
Correction (Corner)  
/ VCOR  
Parabola  
correction:  
63  
Trapezium  
correction:  
0~31  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
(2)Set the BUS data of Parabola correction to 0(MAX).  
(3)Supply 1V into pin48(EHT in).  
(4)Set the BUS data of Corner correction to 0.  
Corner correction:  
0/15  
Measure the amplitude of waveform at pin41(EW OUT),that is  
VCR(0).  
Others:Preset  
(5)Set the BUS data of Corner correction to 15.  
Measure the amplitude of waveform at pin41(EW OUT),that is  
VCR(15).  
(6) VCOR =VCR(15)-VCR(0)  
VCR(0)  
VCR(15)  
Pin41 Waveform  
(1)Measure the amplitude of waveform at pin25(V NFB), that is  
VP25  
D36  
E-W Trapezium  
Correction  
/ VTR  
Trapezium  
correction:  
0/31  
.
(2)Supply 6V into pin48(EHT in).  
Others:Preset  
(3)Set the BUS data of Trapezium correction to 0.  
Measure the vertical center voltage of waveform at pin25(V  
NFB),that is VTR(00).  
(4)Set the BUS data of Trapezium correction to 31.  
Measure the vertical center voltage of waveform at pin25(V  
NFB),that is VTR(31).  
(5)VTR=±(VTR(00)-VTR(31))/2*VP23×100%  
VP25 VTR  
Pin25 Waveform  
00/01/28 56  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
Note Items/Symbols  
Bus conditoins  
Measurement methods  
D37  
E-W Parabolic EHT  
Correction  
/VEWP EHT  
Trapezium  
correction:0~31  
H.EHT:7  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
(2)Set the BUS data of H.EHT to 7.  
Others:Preset  
(3)Supply 6V into pin48(EHT in).  
Measure the amplitude of waveform at pin41(EW OUT),that is  
VEHP(6).  
(4)Supply 1V into pin48(EHT in).  
(5)Measure the amplitude of waveform at pin41(EW OUT),that is  
VEHP(1).  
(6)VEWP EHT =(VEHP(6)-VEHP(1))/VEHP(6)×100%  
VEHP(1)  
VEHP(6)  
Pin41 Waveform  
D38  
E-W DC EHT  
Correction  
/ VEWDCEHT  
Trapezium  
correction:  
0~31  
H.EHT:0/7  
Others:Preset  
(1)Set the BUS data of Parabola correction to 0(MAX),and  
change the BUS data of Trapezium correction so that the  
parabola waveform at pin41(EW OUT) is symmetrical.  
(2)Supply 1V into pin48(EHT in).  
(3)Set the BUS data of H.EHT to 0.  
Measure the vertical phase center voltage of waveform at  
pin41(EW OUT),that is VEHD(0).  
(4)Set the BUS data of H.EHT to 7.  
Measure the vertical phase center voltage of waveform at  
pin41(EW OUT),that is VEHD(7).  
(5) VEWDCEHT =VEHD(7)-VEHD(0)  
VEHD(7)  
VEHD(0)  
center  
Pin41 Waveform  
D39  
E-W Amplifier Output  
Impedance  
All data:Preset  
(1)Connect an ammeter between pin41 and GND.  
Measure the current, that is I41.  
/ REW  
(2)Measure the voltage at pin41, that is V41.  
(3) REW =V41/I41  
00/01/28 57  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
R50:51kƒ¶  
+
CE24:10ƒÊF  
R51:  
51kƒ¶  
VR2:  
50kB  
VR1:  
50kB  
+
CE25:100ƒÊF  
C16:0.01ƒÊF  
+
CE13:100ƒÊF  
C31:0.01ƒÊF  
CE26:47ƒÊF  
+
SW3:  
CE14:0.22ƒÊF  
R35:8.2kƒ¶  
C32:0.01ƒÊF  
C15:0.1ƒÊF  
H.AFC Filter  
ABCL IN  
+
C17:  
R33:10kƒ¶ D1:  
C106:2200pF  
+
8200pF  
R34:15kƒ¶  
CE27:100ƒÊF  
FBP IN/  
SCP OUT  
ref  
R
R29:5.6kƒ¶,1%  
C18:0.01ƒÊF  
C14:0.47ƒÊF  
R30:1kƒ¶  
H
H
Vcc(9V)  
OUT  
+
V
V
OUT  
NFB  
R32:1kƒ¶  
R53:  
4.7kƒ¶  
CE15:100ƒÊF  
Q10:  
R31:510ƒ¶  
R36:  
390ƒ¶  
C13:8200pF  
R37:  
91ƒ¶  
CE31:0.47ƒÊF  
+
R52:  
4.7kƒ¶  
SW2:  
Dig. GND  
SCL  
ZD1:  
4.7v  
V
RAMP  
R22:100ƒ¶  
R24:100ƒ¶  
Q4:  
R38:100ƒ¶  
R39:100ƒ¶  
R21:100ƒ¶  
R20:3kƒ¶  
R23:10kƒ¶  
Q5:  
IK IN  
SDA  
B
G
R
OUT  
OUT  
OUT  
R19:100ƒ¶  
R18:3kƒ¶  
+
R40:100kƒ¶  
Q6:  
Q7:  
CE28:47ƒÊF  
BLACK Det  
Dig. VDD  
Sync IN  
+
C019:  
0.01ƒÊF  
R17:100ƒ¶  
R16:3kƒ¶  
CE16:1ƒÊF  
+
R15:100ƒ¶  
CE17:100ƒÊF  
Q8:  
Q9:  
+
Y/C GND  
EXT.B IN  
EXT.G IN  
EXT.R IN  
Ys/Ym SW  
RGB Vcc(9V)  
CW OUT  
CE18:1ƒÊF  
C12:0.1ƒÊF  
R26:510ƒ¶  
+
Y
IN  
CE19:0.22ƒÊF  
CE29:  
47ƒÊF  
R27:510ƒ¶  
+
R28:1.2kƒ¶  
R14:75ƒ¶  
C11:0.1ƒÊF  
+
DC Restor  
EW OUT  
CE11:100ƒÊF  
C20:0.1ƒÊF  
R13:75ƒ¶  
C10:0.1ƒÊF  
C33:  
0.01ƒÊF  
+
C021:0.01ƒÊF  
R12:75ƒ¶  
CE30:100ƒÊF  
Y/C Vcc(5V)  
R300:10kƒ¶  
CE10:100ƒÊF  
+
CE21:1ƒÊF  
+
C
IN  
75ƒ¶  
C9:0.01ƒÊF  
C22:0.1ƒÊF  
R11:  
Q3:  
Cr IN  
X1:  
75ƒ¶  
C23:0.1ƒÊF  
4.433619MHz  
C8:9pF  
Cb IN  
X'tal  
C7:2200pF  
+
VSM OUT  
APC Filter  
IF AGC  
R10:33kƒ¶  
CE9:0.22ƒÊF  
CE8:2.2ƒÊF  
R110:1kƒ¶  
Q12:  
CE22:0.22ƒÊF  
+
VR3:  
10kƒ¶  
R41:220ƒ¶  
+
LOOP Filter  
EHT IN  
C302:  
0.01ƒÊF  
R108:62kƒ¶ R296•F62kƒ¶  
C24:1000pF  
C103  
R112:5.1kƒ¶  
1'st SIF IN  
RF AGC  
+
CE104:  
10ƒÊF  
CE7:4.7ƒÊF  
+
R297:  
R111:  
Q16:  
DE-EMP.  
PIF tank  
PIF tank  
DC NF  
5.1kƒ¶  
R8:33kƒ¶  
C6:0.01ƒÊF  
C25:0.01ƒÊF  
R101:  
75ƒ¶  
IF IN  
R46:  
1kƒ¶  
C4  
IF IN  
R45:  
C5:  
0.01ƒÊF  
330ƒ¶  
CE23:10ƒÊF  
Q1:  
+
IF GND  
R6:  
Q2:  
PIF VCO BIAS  
FILTER  
F1:Trap  
R5:  
R3:  
R4:  
AUDIO OUT  
SIF OUT  
RIPPLE FIL  
IF Vcc  
CE203:1ƒÊF  
R2:  
+
IF DET OUT  
CE6:  
C3:  
R43:2kƒ¶  
CE3:  
R1:  
R42:3kƒ¶  
22ƒÊF  
+
L2:  
AFT OUT  
R47:51ƒ¶  
P1:  
C26:0.1ƒÊF  
+5V  
+9V  
SIF IN•^  
C27:0.01ƒÊF  
Reg.  
C28:0.01ƒÊF  
R49:1kƒ¶  
H
CORRECTION IN  
L1:12ƒÊH  
R48:1kƒ¶  
F2:  
BPF  
00/01/28 58  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
0.01ƒÊF  
0.01ƒÊF  
+
+
100ƒÊF  
100ƒÊF  
CE26:47ƒÊF  
+
CE14:0.22ƒÊF  
R35:8.2kƒ¶  
C15:0.1ƒÊF  
C32:0.01ƒÊF  
H.AFC Filter  
ABCL IN  
ref  
+
R33:10kƒ¶ D1:  
C106:2200pF  
C17:  
+
8200pF  
CE27:100ƒÊF  
FBP IN/  
SCP OUT  
R34:15kƒ¶  
R
R29:5.6kƒ¶,1%  
C18:0.01ƒÊF  
C14:0.47ƒÊF  
R30:1kƒ¶  
H
H
Vcc(9V)  
OUT  
+
V
V
OUT  
NFB  
R32:1kƒ¶  
CE15:100ƒÊF  
Q10:  
R31:510ƒ¶  
R36:  
390ƒ¶  
C13:8200pF  
R37:  
91ƒ¶  
CE31:0.47ƒÊF  
+
Dig. GND  
SCL  
V
RAMP  
ZD1:4.7v  
R38:100ƒ¶  
R39:100ƒ¶  
R21:100ƒ¶  
R20:3kƒ¶  
IK IN  
SDA  
B
G
R
OUT  
OUT  
OUT  
R19:100ƒ¶  
R18:3kƒ¶  
R16:3kƒ¶  
R40:220ƒ¶  
BLACK Det  
Dig. VDD  
Sync IN  
+
R17:100ƒ¶  
C019:0.01ƒÊF CE16:1ƒÊF  
+
R15:100ƒ¶  
CE17:100ƒÊF  
+
Y/C GND  
EXT.B IN  
EXT.G IN  
EXT.R IN  
Ys/Ym SW  
RGB Vcc(9V)  
CW OUT  
CE18:1ƒÊF  
C12:0.1ƒÊF  
+
Y
IN  
CE19:0.22ƒÊF  
R14:75ƒ¶  
R13:75ƒ¶  
C11:0.1ƒÊF  
C10:0.1ƒÊF  
DC Restor  
EW OUT  
C20:0.1ƒÊF  
C021:0.01ƒÊF  
R12:75ƒ¶  
Y/C Vcc(5V)  
R300:10kƒ¶  
CE10:100ƒÊF  
+
CE21:1ƒÊF  
+
75ƒ¶  
C
IN  
C9:0.01ƒÊF  
C22:0.1ƒÊF  
Cr IN  
Cb IN  
X1:  
75ƒ¶  
C23:0.1ƒÊF  
4.433619MHz  
C8:9pF  
X'tal  
C7:2200pF  
+
VSM OUT  
APC Filter  
IF AGC  
R10:33kƒ¶  
CE9:0.22ƒÊF  
CE8:2.2ƒÊF  
CE22:0.22ƒÊF  
+
R41:220ƒ¶  
+
LOOP Filter  
EHT IN  
C302:  
0.01ƒÊF  
C24:1000pF  
C103  
1'st SIF IN  
RF AGC  
CE7:4.7ƒÊF  
+
R297:  
Q16:  
DE-EMP.  
PIF tank  
PIF tank  
DC NF  
R8:33kƒ¶  
C6:0.01ƒÊF  
C25:0.01ƒÊF  
IF IN  
R46:  
1kƒ¶  
C4  
IF IN  
R45:  
C5:  
0.01ƒÊF  
330ƒ¶  
CE23:10ƒÊF  
+
Q1:  
IF GND  
R6:  
Q2:  
PIF VCO  
BIAS FILTER  
F1:Trap  
R5:  
R3:  
R4:  
AUDIO OUT  
SIF OUT  
RIPPLE FIL  
IF Vcc  
CE203:1ƒÊF  
R2:  
+
IF DET OUT  
CE6:  
R43:2kƒ¶  
CE3:  
R1:  
R42:3kƒ¶  
C3:  
22ƒÊF  
+
L2:  
AFT OUT  
C26:0.1ƒÊF  
C28:0.01ƒÊF  
R48:1kƒ¶  
R49:1kƒ¶  
SIF IN•^  
H
CORRECTION IN  
0.01ƒÊF  
P1:  
F2:  
BPF  
+
Reg.  
+5V  
+9V  
0.01ƒÊF  
+
100ƒÊF  
00/01/28 59  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
OUTLINE DRAWING  
Unit : mm  
SDIP56-P-600-1.78  
00/01/28 60  
Ver3.8  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢅꢇꢈꢉꢇꢊ  
RGB out63 127  
Audio SW  
open 100k•  
Ripple filter 10u 22u  
loop filter 470• • 220•  
00/01/28 61  
Ver3.8  

相关型号:

TB1253A

SAW Filter 707.5MHz 17MHz BW (SMD 13.3×6.5 mm)
TAI-SAW

TB1254N

PAL / NTSC / SECAM 1CHIP (IF+VCD PROCESSOR) IC
TOSHIBA

TB1255A

SAW Filter 787.5MHz 21MHz BW (SMD 13.3×6.5 mm)
TAI-SAW

TB1256A

SAW Filter 106MHz 40MHz BW (SMD 13.3×6.5 mm)
TAI-SAW

TB1261F

TOSHIBA BiCMOS INTEGRATED CIRCUIT, SILICON MONOLITHIC
TOSHIBA

TB1262F

TOSHIBA BiCMOS INTEGRATED CIRCUIT, SILICON MONOLITHIC
TOSHIBA

TB1263A

SAW Filter 112MHz 1.0MHz BW (SMD 7.0×5.0mm)
TAI-SAW

TB1265A

IF SAW Filter 256MHz SMD 7.0X5.0mm
TAI-SAW

TB1270A

SAW Filter 176MHz 60MHz BW (SMD 7.0×5.0mm)
TAI-SAW

TB1274BFG

LUMINANCE, CHROMA AND SYNCHRONIZING SIGNALS PROCESSOR IC FOR PAL / NTSC / SECAM COLOR TV
TOSHIBA

TB1277A

SAW Filter 243.875 MHz 0.13MHz BW
TAI-SAW

TB1278A

SAW Filter 170MHz 25MHz BW (SMD 7.0×5.0mm)
TAI-SAW