TB7102AF(TE85L,F) [TOSHIBA]

IC SWITCHING REGULATOR, 1150 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.65 MM PITCH, PLASTIC, SON-8, Switching Regulator or Controller;
TB7102AF(TE85L,F)
型号: TB7102AF(TE85L,F)
厂家: TOSHIBA    TOSHIBA
描述:

IC SWITCHING REGULATOR, 1150 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.65 MM PITCH, PLASTIC, SON-8, Switching Regulator or Controller

CD 开关 光电二极管
文件: 总17页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB7102AF  
Toshiba BiCD Integrated Circuit Silicon Monolithic  
TB7102AF  
Buck DC-DC Converter IC  
The TB7102AF is a single-chip buck DC-DC converter IC. The  
TB7102AF contains high-speed and low-on-resistance power  
MOSFETs for the main switch and synchronous rectifier to  
achieve high efficiency.  
Features  
Enables up to 1 A of load current (I ) with a minimum of  
OUT  
external components.  
High efficiency (η = 95% typ.)  
Weight: 0.017 g (typ.)  
(@V = 5 V, V  
= 3.3 V and I  
= 300 mA)  
IN  
OUT  
OUT  
Operating voltage (V ) range: 2.7 V to 5.5 V  
IN  
A high 1-MHz oscillation frequency (typ.) allows the use of small external components.  
Uses internal phase compensation to achieve high efficiency with a minimum of external components.  
Allows the use of a small surface-mount ceramic capacitor as an output filter capacitor.  
Enable threshold voltage : V  
= 1.5 V, V  
= 0.5 V(@V = 5 V)  
IL(EN) IN  
IH(EN)  
Housed in a small surface-mount package (PS-8) with low thermal resistance.  
Undervoltage lockout (UVLO), thermal shutdown (TSD) and overcurrent protection (OCP)  
Part Marking  
Pin Assignment  
Part Number (Abbrev.)  
Lot No.  
L
V
N.C.  
6
N.C.  
5
X
FB  
8
7
7 1 0 2A  
*
1
2
3
4
The dot () on the top surface indicates pin 1.  
PGND  
V
EN SGND  
IN  
*: The lot number consists of three digits. The first digit represents the last digit of the year of manufacture, and the  
following two digits indicates the week of manufacture between 01 and either 52 or 53.  
Manufacturing week code  
(The first week of the year is 01; the last week is 52 or 53.)  
Manufacturing year code (last digit of the year of manufacture)  
This product has a MOS structure and is sensitive to electrostatic discharge. Handle with care.  
The product(s) in this document (“Product”) contain functions intended to protect the Product from temporary  
small overloads such as minor short-term overcurrent, or overheating. The protective functions do not necessarily  
protect Product under all circumstances. When incorporating Product into your system, please design the system (1)  
to avoid such overloads upon the Product, and (2) to shut down or otherwise relieve the Product of such overload  
conditions immediately upon occurrence. For details, please refer to the notes appearing below in this document and  
other documents referenced in this document.  
1
2009-10-26  
TB7102AF  
Ordering Information  
Part Number  
Shipping  
Embossed tape (3000 units per reel)  
TB7102AF (TE85L, F)  
Block Diagram  
V
IN  
Undervoltage  
lockout & soft-start  
EN  
reference voltage  
Current detection  
Driver  
Oscillator  
L
X
Control logic  
PWM comparator  
Slope  
compensation  
Driver  
PGND  
Phase  
compensation  
Error amplifier  
0.8 V (typ.)  
Thermal  
shutdown  
V
COMP  
V
FB  
SGND  
Pin Description  
Pin No.  
Symbol  
PGND  
Description  
1
2
Ground for the output section  
Input pin  
V
IN  
This pin is placed in the standby state if V  
= low. Standby current is 1 μA or less.  
EN  
Enable pin  
3
EN  
When EN 1.5 V (@V = 5 V), the control logic is allowed to operate and thus enable the switching  
IN  
operation of the output section.  
Ground for the control logic  
No-connect  
4
5
6
SGND  
N.C.  
N.C.  
No-connect  
Feedback pin  
7
8
V
FB  
This input is fed into an internal error amplifier with a reference voltage of 0.8 V (typ.).  
Switch pin  
L
X
This output is connected to the high-side P-channel MOSFETs and low-side N-channel MOSFET.  
2
2009-10-26  
TB7102AF  
Timing Diagram  
Normal Operation  
OSC  
0
I
OUT  
OUT  
0
0
V
V
COMP  
0
0
I
L
V
LX  
T
ON  
OSC:  
Internal oscillator output signal  
T
I
:
Converter output current  
Converter output voltage  
Output voltage of error amplifier  
Inductor current  
OUT  
V
V
:
OUT  
:
COMP  
I :  
L
V
:
Switch pin voltage  
LX  
3
2009-10-26  
TB7102AF  
Absolute Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Input voltage  
Enable pin voltage  
V voltage difference  
V
0.3 to 6  
0.3 to 6  
V
V
IN  
V
EN  
V
V
V  
V V < 0.3  
EN IN  
V
EN IN  
EN  
V
IN  
Feedback pin voltage  
Switch pin voltage  
Switch pin current  
Power dissipation  
0.3 to 6  
0.3 to 6  
±1.3  
V
FB  
LX  
LX  
V
V
I
A
(Note 1)  
P
0.7  
W
°C  
°C  
°C  
D
Operating junction temperature  
T
40 to 125  
150  
jopr  
Junction temperature  
Storage temperature  
(Note 2)  
T
j
T
stg  
55 to 150  
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly  
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute  
maximum ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc)  
Thermal Resistance Characteristics  
Characteristics  
Symbol  
Max  
Unit  
Thermal resistance, junction to ambient  
R
th (j-a)  
178.6 (Note 1)  
°C/W  
Note 1:  
Glass epoxy board  
Material: FR-4  
25.4 × 25.4 × 0.8  
(Unit: mm)  
Note 2: The TB7102AF may go into thermal shutdown at the rated maximum junction temperature. Thermal design is  
required to ensure that the rated maximum operating junction temperature, T , will not be exceeded.  
jopr  
4
2009-10-26  
TB7102AF  
Electrical Characteristics (unless otherwise specified: T = 25°C and V = 2.7 to 5.5 V)  
j
IN  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Operating input voltage  
V
2.7  
0.68  
0.55  
5.5  
0.9  
0.69  
1
V
mA  
mA  
μA  
μA  
V
IN (OPR)  
I
I
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 5 V, V = 5 V, V = 5 V  
EN FB  
IN1  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Operating current  
Standby current  
= 2.7 V, V = 2.7 V, V = 2.7 V  
EN FB  
IN2  
I
I
= 5 V, V = 0 V, V = 0 V  
EN FB  
IN (STBY) 1  
IN (STBY) 2  
= 2.7 V, V = 0 V, V = 0 V  
EN FB  
1
V
V
= 5 V  
1.5  
1.5  
IH (EN) 1  
IH (EN) 2  
= 2.7 V  
= 5 V  
V
EN threshold voltage  
EN input current  
V
V
0.5  
0.5  
12.4  
6.7  
0.824  
0.824  
1
V
IL (EN) 1  
IL (EN) 2  
IH (EN) 1  
IH (EN) 2  
= 2.7 V  
V
I
I
= 5 V, V = 5 V  
EN  
7.6  
4.1  
0.776  
μA  
μA  
V
= 2.7 V, V = 2.7 V  
EN  
V
V
= 5 V, V = 5 V, I  
EN OUT  
= 10 mA  
0.8  
0.8  
FB1  
FB2  
FB1  
FB2  
V
V
input voltage  
input current  
FB  
FB  
= 2.7 V, V = 2.7 V, I  
EN OUT  
= 10 mA 0.776  
V
I
I
= 5 V, V = 5 V  
EN  
1  
1  
μA  
μA  
Ω
= 2.7 V, V = 2.7 V  
EN  
1
R
R
R
= 5 V, V = 5 V, I = −0.5 A  
EN LX  
0.27  
0.36  
0.27  
0.36  
DS (ON) (H) 1  
DS (ON) (H) 2  
DS (ON) (L) 1  
High-side switch on-state resistance  
Low-side switch on-state resistance  
= 2.7 V, V = 2.7 V, I = −0.5 A  
EN LX  
Ω
= 5 V, V = 5 V, I = 0.5 A  
EN LX  
Ω
R
= 2.7 V, V = 2.7 V, I = 0.5 A  
EN LX  
Ω
DS (ON) (L) 2  
High-side switch leakage current  
Low-side switch leakage current  
I
= 5 V, V = 0 V, V = 0 V  
EN LX  
1  
μA  
μA  
MHz  
MHz  
ms  
ms  
LEAK (H)  
I
= 5 V, V = 0 V, V = 5 V  
EN LX  
1
LEAK (L)  
f
f
= 5 V, V = 5 V  
EN  
0.85  
0.85  
1
1
1.15  
1.15  
osc1  
osc2  
Oscillation frequency  
= 2.7 V, V = 2.7 V  
EN  
1
t
t
= 5 V, V = 5 V, I  
= 0 A  
= 0 A  
OUT  
2
ss1  
EN OUT  
Soft-start time  
Detection  
= 2.7 V, V = 2.7 V, I  
1.3  
2.4  
ss2  
EN  
T
SD  
V
= 5 V  
= 5 V  
160  
°C  
IN  
Thermal  
shutdown (TSD)  
temperature  
Hysteresis  
ΔT  
SD  
V
V
V
V
V
2.2  
2.3  
20  
2.4  
2.5  
0.1  
2.8  
2.6  
2.7  
°C  
V
IN  
IN  
IN  
IN  
IN  
Detection votage  
Recovery voltage  
Hysteresis  
V
= V  
= V  
= V  
UV  
EN  
EN  
EN  
Undervoltage  
lockout (UVLO)  
V
V
UVR  
ΔV  
V
UV  
L
X
current limit  
I
= 5 V  
1.3  
A
LIM  
Note on Electrical Characteristics  
The test condition T = 25°C means a state where any drifts in electrical characteristics incurred by an increase in  
j
the chip’s junction temperature can be ignored during pulse testing.  
5
2009-10-26  
TB7102AF  
Application Circuit Example  
V
IN  
EN  
V
IN  
V
FB  
TB7102AF  
L
L
X
V
OUT  
SGND  
PGND  
GND  
GND  
Figure 1 TB7102AF Application Circuit Example  
Component values (@V = 5 V, V  
= 3.3 V, Ta = 25°C)  
IN  
OUT  
These values are presented only as a guide.  
C
IN  
:
Input filter capacitor = 10 μF  
(ceramic capacitor: GRM21BB30J106K from Murata Manufacturing Co., Ltd.)  
C : Output filter capacitor = 10 μF  
OUT  
(ceramic capacitor: GRM21BB30J106K from Murata Manufacturing Co., Ltd.)  
R
R
: Output voltage setting resistor = 7.5 kΩ  
: Output voltage setting resistor = 2.4 kΩ  
FB1  
FB2  
L:  
Inductor = 3.3 μH (NP04SB3R3N from Taiyo Yuden Co., Ltd.)  
Component values (@V = 5 V, V  
= 1.2 V, Ta = 25°C)  
IN  
OUT  
These values are presented only as a guide.  
C
IN  
:
Input filter capacitor = 10 μF  
(ceramic capacitor: GRM21BB30J106K from Murata Manufacturing Co., Ltd.)  
C : Output filter capacitor = 22 μF  
OUT  
(ceramic capacitor: GRM31CB30J226K from Murata Manufacturing Co., Ltd.)  
R
R
: Output voltage setting resistance = 1.2 kΩ  
: Output voltage setting resistance = 2.4 kΩ  
FB1  
FB2  
L:  
Inductor = 3.3 μH (NP04SB3R3N from Taiyo Yuden Co., Ltd.)  
Component values need to be adjusted, depending on the TB7102AF’s input/output conditions and the board layout.  
Application Notes  
Inductor Selection  
The inductance required for inductor L can be calculated as follows:  
V
V
:
Input voltage (V)  
Output voltage (V)  
Oscillation frequency = 1 MHz (typ.)  
Inductor ripple current (A)  
IN  
V
V  
V
V
IN  
:
IN  
f
OUT OUT  
OUT  
:
L =  
········· (1)  
⋅ ΔI  
f
osc  
osc  
L
ΔI :  
L
*: Generally, ΔI should be set to approximately 30% of the maximum output current. Since the maximum output  
L
current of the TB7102AF is 1 A, ΔI should be 0.3 A or so. Therefore, the inductor should have a current rating  
L
greater than the peak output current of 1.15 A. If the inductor current rating is exceeded, the inductor becomes  
saturated, leading to an unstable DC-DC converter operation.  
When V = 5 V and VOUT = 3.3 V, the required inductance can be calculated as follows. Be sure to select an  
IN  
appropriate inductor, taking the V range into account.  
IN  
6
2009-10-26  
TB7102AF  
V
V  
V
V
IN  
IN  
f
OUT OUT  
L =  
I
L
⋅ ΔI  
osc  
L
5 V 3.3 V  
1 MHz300 mA 5 V  
3.3 V  
0
=
······ (2)  
V
OUT  
1
T
= Τ ⋅  
T =  
ON  
V
f
IN  
osc  
= 3.7 μH  
Figure 2 Inductor Current Waveform  
Setting the Output Voltage  
A resistive voltage divider is connected as shown in Figure 3 to set the output voltage; it is given by Equation 3  
based on the reference voltage of the error amplifier, which is connected to the Feedback pin, V . RFB1 should  
FB  
be up to 10 kΩ or so, because an extremely large value RFB1 incurs a delay due to parasitic capacitance at the  
V
FB  
pin. If the difference between the input and output voltages is small, the output voltage may drop,  
depending on the load current conditions. For optimal operation, output voltage should be set to 0.8 V (typ.) at  
the minimum and to (V 1) V at the maximum. It is recommended that resistors with a precision of ±1% or  
IN  
higher be used for R  
and R  
.
FB1  
FB2  
L
V
OUT  
R
R
X
FB1  
V
= V 1+  
OUT  
FB  
FB2  
FB  
R
R
FB1  
= 0.8 V × 1+  
······ (3)  
FB2  
Figure 3 Output Voltage Setting Resistors  
Output Capacitor Selection  
Use a ceramic capacitor as the output filter capacitor. Since a ceramic capacitor is generally sensitive to  
temperature, choose one with excellent temperature characteristics (such as the JIS B characteristic). As a rule  
of thumb, its capacitance should be 10 μF or greater for applications where V  
2.0 V, and 20 μF or greater  
OUT  
for applications where V  
< 2.0 V. The capacitance should be set to an optimal value that meets the system's  
OUT  
ripple voltage requirement and transient load response characteristics. Since the ceramic capacitor has a very  
low ESR value, it helps reduce the output ripple voltage; however, because the ceramic capacitor provides less  
phase margin, it should be thoroughly evaluated.  
Component Values (@V = 5 V, Ta = 25°C)  
IN  
These values are presented only as a guide.  
The following values may need tuning depending on the TB7102AF’s input/output conditions and the board  
layout.  
Output Voltage  
Inductance  
Input Capacitance Output Capacitance Feedback Resistor Feedback Resistor  
Setting  
V
L
C
IN  
C
OUT  
R
FB1  
R
FB2  
OUT  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
3.3 μH  
3.3 μH  
3.3 μH  
3.3 μH  
3.3 μH  
10 μF  
10 μF  
10 μF  
10 μF  
10 μF  
22 μF  
22 μF  
22 μF  
10 μF  
10 μF  
1.2 kΩ  
2.1 kΩ  
3.0 kΩ  
5.1 kΩ  
7.5 kΩ  
2.4 kΩ  
2.4 kΩ  
2.4 kΩ  
2.4 kΩ  
2.4 kΩ  
7
2009-10-26  
TB7102AF  
Undervoltage Lockout (UVLO)  
The TB7102AF has undervoltage lockout (UVLO) protection circuitry. The TB7102AF does not provide output  
voltage (V ) until the input voltage has reached V (2.5 V typ.). UVLO has hysteresis of 0.1 V (typ.). After  
OUT  
UVR  
the switch turns on, if V drops below V  
(2.4 V typ.), UVLO shuts off the switch at V  
.
IN  
UV  
OUT  
Undervoltage lockout  
recovery voltage: V  
UVR  
Undervoltage lockout  
detection voltage: V  
UV  
V
IN  
Hysteresis: ΔVUV  
GND  
Switching operation starts  
V
OUT  
GND  
Switching operation stops  
Soft start  
Figure 4 Undervoltage Lockout Operation  
Thermal Shutdown (TSD)  
The TB7102AF provides thermal shutdown. When the junction temperature continues to rise and reaches T  
SD  
(160°C typ.), the TB7102AF goes into thermal shutdown and shuts off the power supply. TSD has a hysteresis of  
about 20°C. The device is enabled again when the junction temperature has dropped by approximately 20°C from  
the TSD trip point. The device resumes the power supply when the soft-start circuit is used upon recovery from  
the TSD state .  
Thermal shutdown is intended to protect the device against abnormal system conditions. It should be ensured  
that the TSD circuit will not be activated during normal operation of the system.  
TSD Detection threshold: T  
SD  
Recovery from TSD  
Hysteresis: ΔT  
SD  
T
j
0
Switching operation starts  
Soft start  
V
OUT  
GND  
Switching operation stops  
Figure 5 Thermal Shutdown Operation  
8
2009-10-26  
TB7102AF  
Usage Precautions  
The input voltage, output voltage, output current and temperature conditions should be considered when  
selecting capacitors, inductors and resistors. These components should be evaluated on an actual system  
prototype for best selection.  
External components such as capacitors, inductor and resistors should be placed as close to the TB7102AF as  
possible.  
The TB7102AF has an ESD diode between the EN and V pins. The voltage between these pins should satisfy  
IN  
V
EN  
V < 0.3 V.  
IN  
Operation might become unstable due to board layout. In that case, add a decoupling capacitor (C ) of 0.1 μF to  
C
1μF between the SGND and V pins.  
IN  
The overcurrent protection circuits in the Product are designed to temporarily protect Product from minor  
overcurrent of brief duration. When the overcurrent protective function in the Product activates, immediately  
cease application of overcurrent to Product. Improper usage of Product, such as application of current to Product  
exceeding the absolute maximum ratings, could cause the overcurrent protection circuit not to operate properly  
and/or damage Product permanently even before the protection circuit starts to operate.  
The thermal shutdown circuits in the Product are designed to temporarily protect Product from minor  
overheating of brief duration. When the overheating protective function in the Product activates, immediately  
correct the overheating situation. Improper usage of Product, such as the application of heat to Product  
exceeding the absolute maximum ratings, could cause the overheating protection circuit not to operate properly  
and/or damage Product permanently even before the protection circuit starts to operate.  
9
2009-10-26  
TB7102AF  
Typical Performance Characteristics  
I
– V  
IN  
I
– T  
j
IN  
IN  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
= 2.7 V  
IN  
= 2.7 V  
EN  
FB  
= V  
IN  
0.6  
0.4  
0.2  
0
V
= V  
= V  
FB IN  
EN  
T = 25°C  
j
0
2
4
6
-50  
-25  
0
25  
50  
75  
100  
125  
Input voltage,  
V
IN  
(V)  
Junction temperature,  
T
(°C)  
j
I
– T  
j
V
, V – T  
IH(EN) IL(EN) j  
IN  
2
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
= 5 V  
IN  
V
= 2.7 V  
IN  
= 5 V  
= V  
IN  
EN  
FB  
1.5  
V
V
IH(EN)  
IL(EN)  
1
0.5  
0
-50  
-25  
0
25  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
50  
Junction temperature,  
T
(°C)  
Junction temperature,  
T
(°C)  
j
j
V
V
– T  
I
– V  
IH(EN) EN  
IH(EN), IL(EN)  
j
2
20  
16  
12  
8
V = 5.5 V  
IN  
T = 25°C  
j
V
= 5.5 V  
IN  
1.5  
1
V
IH(EN)  
V
IL(EN)  
0.5  
0
4
0
-50  
-25  
0
25  
50  
75  
j
100  
125  
0
1
2
3
4
5
6
Junction temperature,  
T
(°C)  
EN input voltage,  
V
EN  
(V)  
10  
2009-10-26  
TB7102AF  
I
– T  
V
, V – T  
UV UVR j  
IH(EN)  
j
20  
16  
12  
8
2.6  
V
V
= 5 V  
IN  
= 5 V  
EN  
Recovery voltage V  
UVR  
2.5  
2.4  
2.3  
Detection voltage V  
UV  
4
V
= V  
EN  
IN  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
j
100  
125  
Junction temperature,  
T
(°C)  
Junction temperature,  
T
(°C)  
j
V
– V  
V
– V  
FB IN  
OUT  
IN  
0.82  
2
1.5  
1
V
V
= V  
EN  
IN  
= 1.2 V  
V
= V  
IN  
EN  
OUT  
T = 25°C  
j
T = 25°C  
j
0.81  
0.8  
0.79  
0.78  
0.5  
0
2
3
4
5
6
2.3  
2.4  
2.5  
2.6  
2.7  
2.2  
Input voltage,  
V
IN  
(V)  
Input voltage,  
V
IN  
(V)  
V
– T  
V
– T  
FB j  
FB  
j
0.82  
0.81  
0.8  
0.82  
0.81  
0.8  
V
V
V
= 5.5 V  
V
V
V
= 2.7 V  
IN  
IN  
= 1.2 V  
= 1.2 V  
OUT  
EN  
OUT  
EN  
= V  
= V  
IN  
IN  
0.79  
0.78  
0.79  
0.78  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction temperature,  
T
(°C)  
Junction temperature,  
T
(°C)  
j
j
11  
2009-10-26  
TB7102AF  
f
– V  
IN  
f
– T  
osc j  
osc  
1.2  
1.1  
1
1.2  
1.1  
1
V
= 5 V  
V
= 1.2 V  
IN  
OUT  
V
= 1.2 V  
T = 25°C  
j
OUT  
0.9  
0.8  
0.9  
0.8  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
125  
Input voltage,  
V
IN  
(V)  
Junction temperature,  
T
(°C)  
j
ΔV  
– I  
OUT  
ΔV  
– I  
OUT  
OUT  
OUT  
20  
15  
10  
5
20  
15  
10  
5
V
= 5 V, V  
= 1.2 V  
= 22 μF  
V
= 3.3 V, V  
= 1.2 V  
= 22 μF  
IN  
OUT  
IN  
OUT  
L = 3.3 μH, C  
Ta = 25°C  
L = 3.3 μH, C  
Ta = 25°C  
OUT  
OUT  
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
Output current,  
I
(A)  
Output current,  
I
(A)  
OUT  
OUT  
ΔV  
– I  
OUT  
ΔV  
– V  
OUT IN  
OUT  
30  
20  
V
= 5 V, V  
= 3.3 V  
= 10 μF  
IN  
OUT  
V
= 1.2 V, I  
= 0.2 A  
OUT  
OUT  
= 22 μF  
L = 3.3 μH, C  
Ta = 25°C  
15  
10  
5
OUT  
L = 3.3 μH, C  
Ta = 25°C  
OUT  
20  
10  
0
0
-5  
10  
15  
20  
-10  
-20  
-30  
0
0.2  
0.4  
0.6  
0.8  
1
2
3
4
5
6
Output current,  
I
(A)  
Input voltage,  
V
IN  
(V)  
OUT  
12  
2009-10-26  
TB7102AF  
ΔV  
– V  
η – I  
OUT  
OUT  
IN  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
V
= 3.3 V, I  
= 0.2 A  
OUT  
OUT  
= 10 μF  
L = 3.3 μH, C  
T = 25°C  
OUT  
-10  
-20  
-30  
V
= 5 V, V  
= 1.2 V  
OUT  
IN  
L = 3.3 μH, C  
Ta = 25°C  
= 22 μF  
OUT  
0
0.2  
0.4  
0.6  
0.8  
1
2
3
4
5
6
Input voltage,  
V
IN  
(V)  
Output current,  
I
(A)  
OUT  
η – I  
η – I  
OUT  
OUT  
100  
80  
100  
80  
60  
60  
40  
20  
40  
V
V
= 5 V  
V
V
= 3.3 V  
IN  
IN  
= 3.3 V  
= 1.2 V  
OUT  
OUT  
L = 3.3 μH  
= 10 μF  
L = 3.3 μH  
= 22 μF  
20  
0
C
C
OUT  
Ta = 25°C  
OUT  
Ta = 25°C  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
Output current,  
I
(A)  
Output current,  
I
(A)  
OUT  
OUT  
Load Response  
Startup Characteristic  
V
V
= 5 V  
IN  
= 1.2 V  
OUT  
= 0 A  
I
OUT  
L = 3.3 μH,  
= 22 μF  
Output voltage V  
(500 mV/Div)  
:
OUT  
C
OUT  
Ta = 25°C  
Output voltage  
(200 mV/Div)  
V
OUT  
Input Current  
: (200 mA/Div)  
I
IN  
Output current: I  
OUT  
:
(10 mA800 mA10 mA)  
V
= 5 V, V  
= 3.3 V  
OUT  
IN  
EN voltage: V :LH  
EN  
L = 3.3 μH, C  
Ta = 25°C  
= 10 μF  
OUT  
100 μs/Div  
400 μs/Div  
13  
2009-10-26  
TB7102AF  
Board Layout Example  
Component side silk  
Solder side silk  
Component side pattern  
Solder side pattern  
14  
2009-10-26  
TB7102AF  
TP1  
TP3  
TP4  
IC1  
V
P3  
OUT  
L1  
V
1
2
8
7
6
5
IN  
PGND  
L
x
C1  
P1  
V
V
FB  
IN  
C2  
1
2
P4  
3
4
EN  
N.C.  
N.C.  
R1  
GND  
SGND  
P2  
JP1  
GND  
3
TP2  
R2  
Figure 6 Circuit of the Board Layout Example  
External Component Examples  
Label  
IC1  
C1  
Vendor  
Part Number  
Toshiba Corporation  
TB7102AF  
GRM21BB30J106K  
GRM21BB30J106K  
RK73H1ET  
Murata Manufacturing Co., Ltd.  
Murata Manufacturing Co., Ltd.  
KOA Corporation  
C2  
R1  
R2  
KOA Corporation  
RK73H1ET  
L1  
Taiyo Yuden Co., Ltd.  
NP04SB3R3N  
15  
2009-10-26  
TB7102AF  
Package Dimensions  
Weight: 0.017 g (typ.)  
16  
2009-10-26  
TB7102AF  
RESTRICTIONS ON PRODUCT USE  
Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information  
in this document, and related hardware, software and systems (collectively “Product”) without notice.  
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with  
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.  
Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are  
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and  
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily  
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product,  
or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all  
relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for  
Product and the precautions and conditions set forth in the “TOSHIBA Semiconductor Reliability Handbook” and (b) the instructions for  
the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product  
design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or  
applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams,  
programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for  
such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.  
Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring  
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.  
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or  
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public  
impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the  
aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling  
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric  
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this  
document.  
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.  
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any  
applicable laws or regulations.  
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any  
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to  
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.  
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE  
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY  
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR  
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND  
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO  
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS  
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.  
Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation,  
for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology  
products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign  
Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software  
or technology are strictly prohibited except in compliance with all applicable export laws and regulations.  
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.  
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,  
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of  
noncompliance with applicable laws and regulations.  
17  
2009-10-26  

相关型号:

TB7102AFTE85L

Buck DC-DC Converter IC
TOSHIBA

TB7102AFTE85LF

Buck DC-DC Converter IC
TOSHIBA

TB7102F

Step-down DC-DC Converter IC
TOSHIBA

TB7106F

Buck DC-DC Converter IC
TOSHIBA

TB7106F(TE12L,Q)

IC SWITCHING REGULATOR, 460 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB7107FN

Buck DC-DC Converter IC
TOSHIBA

TB7107FN(TE85L,F)

IC SWITCHING REGULATOR, 460 kHz SWITCHING FREQ-MAX, PDSO8, 3 X 3 MM, 0.65 MM PITCH, PLASTIC, SON-8, Switching Regulator or Controller
TOSHIBA

TB7109F

Power supply IC for LNB
TOSHIBA

TB7109F(TE12L,Q)

IC SWITCHING REGULATOR, 480 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB7110F

Buck DC-DC Converter IC갋Series Regulator IC
TOSHIBA

TB7110F(TE12L,Q)

IC SWITCHING REGULATOR, 600 kHz SWITCHING FREQ-MAX, PDSO8, 5 X 5 MM, 1.27 MM PITCH, PLASTIC, HSON-8, Switching Regulator or Controller
TOSHIBA

TB712-019.20M

LVCMOS Output Clock Oscillator
CONNOR-WINFIE