TC59LM813AMG-55 [TOSHIBA]

IC,DRAM,FCRAM(DDR),4X8MX16,CMOS,BGA,60PIN,PLASTIC;
TC59LM813AMG-55
型号: TC59LM813AMG-55
厂家: TOSHIBA    TOSHIBA
描述:

IC,DRAM,FCRAM(DDR),4X8MX16,CMOS,BGA,60PIN,PLASTIC

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总49页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59LM913/05AMG-50,-55,-60  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
8,388,608-WORDS ´ 4 BANKS ´ 16-BITS DOUBLE DATA RATE FAST CYCLE RAM  
16,777,216-WORDS ´ 4 BANKS ´ 8-BITS DOUBLE DATA RATE FAST CYCLE RAM  
DESCRIPTION  
TC59LM913/05AMG is a CMOS Double Data Rate Fast Cycle Random Access Memory (DDR-FCRAMTM  
)
containing 536,870,912 memory cells. TC59LM913AMG is organized as 8,388,608-words ´ 4 banks ´ 16 bits,  
TC59LM905AMG is organized as 16,777,216-words ´ 4 banks ´ 8 bits. TC59LM913/05AMG feature a fully  
synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which  
enables high performance and simple user interface coexistence. TC59LM913/05AMG can operate fast core cycle  
compared with regular DDR SDRAM.  
TC59LM913/05AMG is suitable for Server, Network and other applications where large memory density and low  
power consumption are required. The Output Driver for FCRAMTM is capable of high quality fast data transfer  
under light loading condition.  
FEATURES  
TC59LM913/05  
PARAMETER  
-50  
5.5 ns  
5.0 ns  
25.0 ns  
22.0 ns  
TBD  
-55  
6.0 ns  
5.5 ns  
27.5 ns  
24.0 ns  
TBD  
-60  
6.5 ns  
6.0 ns  
30.0 ns  
26.0 ns  
TBD  
CL = 3  
CL = 4  
t
Clock Cycle Time (min)  
CK  
t
t
Random Read/Write Cycle Time (min)  
Random Access Time (max)  
RC  
RAC  
I
Operating Current (single bank) (max)  
Power Down Current (max)  
DD1S  
l
TBD  
TBD  
TBD  
DD2P  
l
Self-Refresh Current (max)  
TBD  
TBD  
TBD  
DD6  
·
·
Fully Synchronous Operation  
Double Data Rate (DDR)  
·
·
Data input/output are synchronized with both edges of DQS.  
Differential Clock (CLK and CLK ) inputs  
CS , FN and all address input signals are sampled on the positive edge of CLK.  
Output data (DQs and DQS) is aligned to the crossings of CLK and CLK .  
Fast clock cycle time of 5 ns minimum  
Clock: 200 MHz maximum  
Data: 400 Mbps/pin maximum  
Fast cycle and Short Latency  
Distributed Auto-Refresh cycle in 7.8 ms  
Self-Refresh  
Power Down Mode  
Variable Write Length Control  
Write Latency = CAS Latency-1  
Programable CAS Latency and Burst Length  
CAS Latency = 3, 4  
·
·
·
·
·
·
·
Burst Length = 2, 4  
·
·
Organization: TC59LM813AMG : 8,388,608 words ´ 4 banks ´ 16 bits  
TC59LM805AMG : 16,777,216 words ´ 4 banks ´ 8 bits  
Power Supply Voltage  
V
V
:
2.5 V ± 0.15V  
DD  
: 2.5 V ± 0.15 V  
DDQ  
·
·
2.5 V CMOS I/O comply with SSTL-2 (half strength driver)  
Package: 60Ball BGA, 1mm ´ 1mm Ball pitch  
Notice : FCRAM is trademark of Fujitsu Limited, Japan.  
2002-05-16 1/49  
TC59LM913/05AMG-50,-55,-60  
TC59LM905AMG  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 1.0mm  
PIN  
NAME  
Address Input  
x8  
A0~A14  
BA0, BA1  
DQ0~DQ7  
CS  
1
2
3
4
5
6
Bank Address  
Data Input/Output  
Chip Select  
Index  
A
B
V
DQ7  
DQ0  
V
DD  
SS  
FN  
Function Control  
Power Down Control  
Clock Input  
NC  
DQ6  
NC  
V
Q
V Q  
DD  
NC  
DQ1  
NC  
PD  
SS  
CLK, CLK  
DQS  
V
Q
V
Q
SS  
C
D
DD  
Write/Read Data Strobe  
Power (+2.5 V)  
Ground  
DQ5  
DQ2  
V
V
DD  
SS  
NC  
V
Q
V
Q
NC  
E
F
G
H
J
SS  
DD  
Power (+2.5 V)  
(for I/O buffer)  
V
DDQ  
DQ4  
NC  
V
Q
Q
V
Q
Q
DQ3  
NC  
DD  
SS  
Ground  
(for I/O buffer)  
V
V
SSQ  
REF  
V
V
DD  
SS  
Reference Voltage  
Not Connected  
NC  
DQS  
NC  
NC  
NC  
VREF  
CLK  
A12  
A11  
A8  
V
V
DD  
A14  
A13  
NC  
SS  
CLK  
FN  
K
L
PD  
A9  
A7  
A6  
A4  
CS  
BA1  
A0  
BA0  
A10  
A1  
M
N
A5  
A2  
P
R
V
A3  
V
DD  
SS  
2002-05-16 2/49  
TC59LM913/05AMG-50,-55,-60  
TC59LM913AMG  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 1.0mm  
PIN  
NAME  
Address Input  
X16  
A0~A14  
BA0, BA1  
DQ0~DQ15  
CS  
1
2
3
4
5
6
Bank Address  
Data Input/Output  
Chip Select  
Index  
A
B
V
DQ15  
DQ0  
V
DD  
SS  
FN  
Function Control  
Power Down Control  
Clock Input  
DQ14  
DQ13  
V
V
Q
Q
V Q  
DD  
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
NC  
PD  
SS  
CLK, CLK  
UDQS / LDQS  
V
Q
SS  
C
D
DD  
Write/Read Data Strobe  
Power (+2.5 V)  
Ground  
DQ12 DQ11  
DQ4  
V
V
DD  
SS  
DQ10  
DQ9  
DQ8  
NC  
V
V
Q
Q
Q
V
Q
E
F
G
H
J
SS  
DD  
Power (+2.5 V)  
(for I/O buffer)  
V
DDQ  
V
Q
Q
DD  
SS  
Ground  
(for I/O buffer)  
V
V
SSQ  
REF  
V
V
DD  
SS  
Reference Voltage  
Not Connected  
UDQS  
LDQS  
NC  
VREF  
CLK  
A12  
A11  
A8  
V
V
DD  
A14  
A13  
NC  
SS  
CLK  
FN  
K
L
PD  
A9  
A7  
A6  
A4  
CS  
BA1  
BA0  
A10  
A1  
M
N
A0  
A2  
A3  
A5  
P
R
V
V
DD  
SS  
2002-05-16 3/49  
TC59LM913/05AMG-50,-55,-60  
BLOCK DIAGRAM  
CLK  
CLK  
PD  
DLL  
CLOCK  
To each block  
BUFFER  
CONTROL  
SIGNAL  
GENERATOR  
CS  
FN  
COMMAND  
DECODER  
BANK #3  
BANK #2  
BANK #1  
BANK #0  
MODE  
REGISTER  
MEMORY  
A0~A14  
CELL ARRAY  
ADDRESS  
BUFFER  
UPPER ADDRESS  
LATCH  
BA0, BA1  
LOWER ADDRESS  
LATCH  
COLUMN DECODER  
READ  
DATA  
WRITE  
DATA  
WRITE ADDRESS  
REFRESH  
COUNTER  
LATCH/  
ADDRESS  
BUFFER  
BUFFER  
COMPARATOR  
BURST  
COUNTER  
DQS  
DQ BUFFER  
DQ0~DQn  
Note: The TC59LM905AMG configuration is 4 Bank of 32768 ´ 512 ´ 8 of cell array with the DQ pins numbered DQ0~DQ7.  
The TC59LM913AMG configuration is 4 Bank of 32768 ´ 256 ´ 16 of cell array with the DQ pins numbered DQ0~DQ15.  
2002-05-16 4/49  
TC59LM913/05AMG-50,-55,-60  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Power Supply Voltage  
RATING  
UNIT  
NOTES  
V
V
V
V
V
- 0.3~ 3.3  
V
V
DD  
Power Supply Voltage (for I/O buffer)  
Input Voltage  
- 0.3~V + 0.3  
DD  
DDQ  
IN  
- 0.3~V + 0.3  
V
DD  
Output and I/O pin Voltage  
Input Reference Voltage  
Operating Temperature  
Storage Temperature  
- 0.3~V  
+ 0.3  
DDQ  
V
OUT  
REF  
- 0.3~V + 0.3  
V
DD  
T
opr  
0~70  
- 55~150  
260  
°C  
°C  
°C  
W
mA  
T
stg  
T
solder  
Soldering Temperature (10 s)  
Power Dissipation  
P
D
2
I
Short Circuit Output Current  
±50  
OUT  
Caution: Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device.  
The device is not meant to be operated under conditions outside the limits described in the operational section of this  
specification.  
Exposure to “ABSOLUTE MAXIMUM RATINGSconditions for extended periods may affect device reliability.  
RECOMMENDED DC, AC OPERATING CONDITIONS (Notes: 1)(Ta= 0~70°C)  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
2.5  
MAX  
2.65  
UNIT NOTES  
V
V
V
V
V
V
2.35  
2.35  
V
V
DD  
Power Supply Voltage (for I/O buffer)  
Input Reference Voltage  
V
V
DD  
DDQ  
REF  
DD  
V
/2 ´ 96%  
DDQ  
V
/2  
DDQ  
V /2 ´ 104%  
DDQ  
V
V
V
V
2
5
(DC)  
Input DC High Voltage  
V
+ 0.2  
¾
V
V
V
+ 0.2  
- 0.2  
+ 0.1  
IH  
IL  
REF  
DDQ  
REF  
(DC)  
(DC)  
Input DC Low Voltage  
- 0.1  
¾
¾
5
Differential Clock DC Input Voltage  
- 0.1  
10  
ICK  
DDQ  
Input Differential Voltage.  
CLK and CLK inputs (DC)  
V
(DC)  
0.4  
¾
V
V
+ 0.2  
+ 0.2  
V
7, 10  
ID  
DDQ  
DDQ  
V
V
(AC)  
Input AC High Voltage  
Input AC Low Voltage  
V
+ 0.35  
REF  
¾
¾
V
V
3, 6  
4, 6  
IH  
IL  
(AC)  
(AC)  
- 0.1  
V
- 0.35  
REF  
Input Differential Voltage.  
CLK and CLK inputs (AC)  
V
0.7  
¾
V
+ 0.2  
DDQ  
V
7, 10  
ID  
V (AC)  
Differential ACInput Cross Point Voltage  
Differential Clock AC Middle Level  
V
/2 - 0.2  
¾
¾
V
/2 + 0.2  
/2 + 0.2  
V
V
8, 10  
9, 10  
X
DDQ  
DDQ  
V
(AC)  
V
/2 - 0.2  
DDQ  
V
ISO  
DDQ  
2002-05-16 5/49  
TC59LM913/05AMG-50,-55,-60  
Note:  
(1) All voltages referenced to V , V  
SS SSQ  
.
(2) V  
is expected to track variations in V  
DC level of the transmitting device.  
REF  
Peak to peak AC noise on V  
DDQ  
may not exceed ±2% V  
(DC).  
REF  
REF  
(3) Overshoot limit: V  
= V  
+ 0.9 V with a pulse width £ 5 ns.  
IH (max)  
DDQ  
= - 0.9 V with a pulse width £ 5 ns.  
(4) Undershoot limit: V  
IL (min)  
(5) V (DC) and V (DC) are levels to maintain the current logic state.  
IH IL  
(6) V (AC) and V (AC) are levels to change to the new logic state.  
IH IL  
(7) V is magnitude of the difference between CLK input level and CLK input level.  
ID  
(8) The value of V (AC) is expected to equal V  
/2 of the transmitting device.  
X
DDQ  
(9) V  
means {V  
(CLK) + V  
ICK ICK  
(CLK )} /2  
ISO  
(10) Refer to the figure below.  
CLK  
V
V
V
V
V
V (AC)  
ID  
x
x
x
x
x
CLK  
V
V
V
V
ICK  
ICK  
ICK  
ICK  
V
SS  
|V (AC)|  
ID  
0 V Differential  
V
ISO  
V
V
ISO (max)  
ISO (min)  
V
SS  
(11) In the case of external termination, VTT (termination voltage) should be gone in the range of V  
0.04 V.  
(DC) ±  
REF  
CAPACITANCE (V = 2.5V, V  
= 2.5 V, f = 1 MHz, Ta = 25°C)  
DD  
DDQ  
SYMBOL  
PARAMETER  
MIN  
MAX  
Delta  
UNIT  
C
Input pin Capacitance  
TBD  
TBD  
TBD  
¾
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
¾
pF  
pF  
pF  
pF  
IN  
C
INC  
Clock pin (CLK, CLK ) Capacitance  
DQ, DQS, UDQS, LDQS Capacitance  
NC pin Capacitance  
C
I/O  
C
NC  
Note: These parameters are periodically sampled and not 100% tested.  
2002-05-16 6/49  
TC59LM913/05AMG-50,-55,-60  
RECOMMENDED DC OPERATING CONDITIONS  
(V =2.5V ± 0.15V, V  
=2.5V ± 0.15V, Ta = 0~70°C)  
DDQ  
DD  
MAX  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
1, 2  
-50  
-55  
-60  
Operating Current  
= min; I = min,  
t
CK  
RC  
Read/Write command cycling,  
0 V £ V £ V (AC) (max), V (AC) (min) £ V £ V ,  
DDQ  
I
TBD  
TBD  
TBD  
DD1S  
IN  
IL  
IH  
IN  
1 bank operation, Burst length = 4,  
Address change up to 2 times during minimum I  
.
RC  
Standby Current  
= min, CS = V , PD = V ,  
IH  
t
CK  
IH  
I
0 V £ V £ V (AC) (max), V (AC) (min) £ V £ V ,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1
1
1
DD2N  
IN  
IL  
IH  
IN  
DDQ  
All banks: inactive state,  
Other input signals are changed one time during 4 ´ t  
.
CK  
mA  
Standby (power down) Current  
t
= min, CS = V , PD = V (power down),  
CK  
IH  
IL  
I
DD2P  
0 V £ V £ V  
,
IN  
DDQ  
All banks: inactive state  
Auto-Refresh Current  
t
= min; I  
= min, t = min,  
REFI  
CK  
REFC  
I
Auto-Refresh command cycling,  
0 V £ V £ V (AC) (max), V (AC) (min) £ V £ V ,  
DDQ  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
DD5  
IN  
IL  
IH  
IN  
REFC  
Address change up to 2 times during minimum I  
.
Self-Refresh Current  
Self-Refresh mode  
I
DD6  
PD = 0.2 V, 0 V £ V £ V  
IN  
DDQ  
SYMBOL  
PARAMETER  
MIN  
MAX  
5
UNIT  
NOTES  
Input Leakage Current  
I
LI  
- 5  
mA  
( 0 V£ V £ V  
, all other pins not under test = 0 V)  
IN  
DDQ  
Output Leakage Current  
(Output disabled, 0 V £ V  
I
- 5  
- 5  
5
5
mA  
mA  
LO  
£ V  
)
DDQ  
OUT  
I
V
Current  
REF  
REF  
Output Source DC Current  
= V - 0.4V  
I
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
- 10  
¾
3
3
3
3
3
3
3
3
OH  
V
OH  
DDQ  
Normal  
Output Driver  
Output Sink DC Current  
= 0.4V  
I
OL  
10  
- 11  
11  
- 8  
8
¾
¾
¾
¾
¾
¾
¾
V
OL  
Output Source DC Current  
= V - 0.4V  
I
OH  
V
OH  
DDQ  
Strong Output  
Driver  
Output Sink DC Current  
= 0.4V  
I
OL  
V
OL  
mA  
Output Source DC Current  
= V - 0.4V  
I
OH  
V
OH  
DDQ  
Weaker  
Output Driver  
Output Sink DC Current  
= 0.4V  
I
OL  
V
OL  
Output Source DC Current  
= V - 0.4V  
I
- 7  
7
OH  
V
OH  
DDQ  
Weakest  
Output Driver  
Output Sink DC Current  
= 0.4V  
I
OL  
V
OL  
Notes: 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of  
, t and I  
t
.
RC  
CK RC  
2. These parameters depend on the output loading. The specified values are obtained with the output open.  
3. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.  
2002-05-16 7/49  
TC59LM913/05AMG-50,-55,-60  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2)  
-50  
-55  
-60  
SYMBOL  
PARAMETER  
Random Cycle Time  
UNIT NOTES  
MIN  
25  
MAX  
¾
MIN  
27.5  
6.0  
MAX  
¾
MIN  
30  
MAX  
¾
t
t
3
3
3
RC  
CK  
C = 3  
5.5  
5.0  
8.5  
8.5  
12.0  
12.0  
6.5  
6.0  
12.0  
12.0  
L
Clock Cycle Time  
C = 4  
L
5.5  
t
t
t
t
t
t
t
Random Access Time  
Clock High Time  
¾
22.0  
¾
¾
24.0  
¾
¾
26.0  
¾
3
3
RAC  
0.45 ´ t  
0.45 ´ t  
0.45 ´ t  
0.45 ´ t  
0.45 ´ t  
0.45 ´ t  
CH  
CK  
CK  
CK  
Clock Low Time  
¾
¾
¾
3
CL  
CK  
CK  
CK  
QS Access Time from CLK  
Data Output Skew from QS  
Data Access Time from CLK  
Data Output Hold Time from CLK  
- 0.65  
¾
0.65  
0.4  
0.65  
0.65  
- 0.75  
¾
0.75  
0.45  
0.75  
0.75  
- 0.85  
¾
0.85  
0.55  
0.85  
0.85  
3, 8  
4
CKQS  
QSQ  
AC  
- 0.65  
- 0.65  
- 0.75  
- 0.75  
- 0.85  
- 0.85  
3, 8  
3, 8  
OH  
0.9 ´ t  
- 0.2  
1.1 ´ t  
+ 0.2  
0.9 ´ t  
- 0.2  
1.1 ´ t  
+ 0.2  
0.9 ´ t  
1.1 ´ t  
+ 0.2  
CK  
CK  
CK  
CK  
CK CK  
t
t
t
t
QS (read) Preamble Pulse Width  
3, 8  
3
QSPRE  
- 0.2  
min(t  
CH  
CLK half period (minimum of  
min(t  
,
min(t  
,
,
CH  
)
CH  
)
¾
¾
¾
HP  
Actual t  
,
t )  
CL  
t
t
t )  
CL  
CH  
CL  
CL  
t
t
-
t
t
-
t
t
-
HP  
QHS  
HP  
QHS  
HP  
QHS  
QS (read) Pulse Width  
¾
¾
¾
4, 8  
QSP  
t
t
-
t
t
-
t -  
HP  
HP  
HP  
Data Output Valid Time from QS  
DQ, QS Hold Skew factor  
¾
¾
¾
4, 8  
ns  
QSQV  
t
QHS  
QHS  
QHS  
t
t
t
t
t
t
¾
0.55  
¾
0.6  
¾
0.65  
QHS  
DS (write) Low to High Setup Time 0.75 ´ t  
1.25 ´ t  
0.75 ´ t  
1.25 ´ t  
0.75 ´ t  
1.25 ´ t  
3
4
3
3
4
DQSS  
CK  
CK  
CK  
CK  
CK  
CK  
DS (write) Preamble Pulse Width  
DS First Input Setup Time  
0.4 ´ t  
¾
¾
0.4 ´ t  
¾
¾
0.4 ´ t  
¾
¾
DSPRE  
DSPRES  
DSPREH  
DSP  
CK  
CK  
CK  
0
0
0
DS First Low Input Hold Time  
0.25 ´ t  
¾
0.25 ´ t  
¾
0.25 ´ t  
¾
CK  
CK  
CK  
CK  
CK  
DS High or Low Input Pulse Width 0.45 ´ t  
0.55 ´ t  
0.45 ´ t  
0.55 ´ t  
0.45 ´ t  
0.55 ´ t  
CK  
CK  
CK  
CK  
C = 3  
1.3  
1.3  
¾
¾
1.4  
1.4  
¾
¾
1.5  
1.5  
¾
¾
3, 4  
3, 4  
L
DS Input Falling Edge  
to Clock Setup Time  
t
DSS  
C = 4  
L
t
t
DS (write) Postamble Pulse Width  
0.45 ´ t  
1.3  
¾
¾
¾
¾
¾
0.45 ´ t  
1.4  
¾
¾
¾
¾
¾
0.45 ´ t  
1.5  
¾
¾
¾
¾
¾
4
3, 4  
3, 4  
4
DSPST  
CK  
CK  
CK  
C = 3  
L
DS (write) Postamble  
Hold Time  
DSPSTH  
C = 4  
L
1.3  
1.4  
1.5  
t
t
Data Input Setup Time from DS  
Data Input Hold Time from DS  
0.5  
0.5  
0.6  
DS  
0.5  
0.5  
0.6  
4
DH  
Command/Address Input Setup  
Time  
t
0.9  
0.9  
¾
¾
0.9  
0.9  
¾
¾
1.0  
1.0  
¾
¾
3
3
IS  
IH  
Command/Address Input Hold  
Time  
t
2002-05-16 8/49  
TC59LM913/05AMG-50,-55,-60  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (continued)  
-50  
-55  
-60  
SYMBOL  
PARAMETER  
UNIT NOTES  
3,6,8  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Data-out Low Impedance Time  
from CLK  
t
LZ  
- 0.65  
¾
- 0.75  
¾
- 0.85  
¾
Data-out High Impedance Time  
from CLK  
t
t
¾
0.65  
¾
0.75  
¾
0.85  
3,7,8  
3,6,8  
HZ  
QS-out Low Impedance Time from  
CLK  
- 0.65  
¾
- 0.75  
¾
- 0.85  
¾
QSLZ  
QS-out High Impedance Time from  
CLK  
t
t
- 0.65  
0.65  
- 0.75  
0.75  
- 0.85  
0.85  
3,7,8  
QSHZ  
QPDH  
Last output to PD High Hold  
Time  
0
¾
0
¾
0
¾
ns  
t
t
Power Down Exit Time  
Input Transition Time  
0.9  
0.1  
¾
0.9  
0.1  
¾
1.0  
0.1  
¾
3
PDEX  
1
1
1
T
PD Low Input Window for  
Self-Refresh Entry  
t
- 0.5 ´ t  
5
- 0.5 ´ t  
5
- 0.5 ´ t  
CK  
5
3
FPDL  
CK  
CK  
t
t
Auto-Refresh Average Interval  
Pause Time after Power-up  
0.4  
7.8  
0.4  
7.8  
0.4  
7.8  
5
REFI  
ms  
200  
¾
200  
¾
200  
¾
PAUSE  
C = 3  
5
5
¾
¾
5
5
¾
¾
5
5
¾
¾
Random Read/Write  
Cycle Time  
(applicable to same bank)  
L
I
RC  
C = 4  
L
RDA/WRA to LAL Command Input  
Delay  
I
1
1
1
1
1
1
RCD  
(applicable to same bank)  
C = 3  
4
4
¾
¾
4
4
¾
¾
4
4
¾
¾
LAL to RDA/WRA  
Command Input Delay  
(applicable to same bank)  
L
I
RAS  
C = 4  
L
Random Bank Access Delay  
(applicable to other bank)  
I
2
¾
2
¾
2
¾
RBD  
B = 2  
2
3
¾
¾
2
3
¾
¾
2
3
¾
¾
LAL following RDA to  
WRA Delay  
(applicable to other bank)  
L
I
RWD  
B = 4  
L
LAL following WRA to RDA Delay  
(applicable to other bank)  
I
1
¾
1
¾
1
¾
WRD  
cycle  
C = 3  
5
5
¾
¾
5
5
¾
¾
5
5
¾
¾
L
Mode Register Set Cycle  
Time  
I
RSC  
C = 4  
L
PD Low to Inactive State of Input  
Buffer  
I
¾
¾
1
1
¾
¾
1
1
¾
¾
1
1
PD  
PD High to Active State of Input  
Buffer  
I
PDA  
C = 3  
15  
18  
15  
18  
¾
¾
¾
¾
15  
18  
15  
18  
¾
¾
¾
¾
15  
18  
15  
18  
¾
¾
¾
¾
L
Power down mode valid  
from REF command  
I
PDV  
C = 4  
L
C = 3  
L
I
Auto-Refresh Cycle Time  
REFC  
C = 4  
L
REF Command to Clock Input  
Disable at Self-Refresh Entry  
I
16  
¾
¾
16  
¾
¾
16  
¾
¾
CKD  
DLL Lock-on Time (applicable to  
RDA command)  
I
200  
200  
200  
LOCK  
2002-05-16 9/49  
TC59LM913/05AMG-50,-55,-60  
AC TEST CONDITIONS  
SYMBOL  
PARAMETER  
Input High Voltage (minimum)  
VALUE  
UNIT  
NOTES  
V
V
V
V
V
V
V
+ 0.35  
V
V
IH (min)  
IL (max)  
REF  
REF  
REF  
Input Low Voltage (maximum)  
Input Reference Voltage  
- 0.35  
/2  
V
V
DDQ  
Termination Voltage  
V
V
TT  
REF  
Input Signal Peak to Peak Swing  
Differential Clock Input Reference Level  
Input Differential Voltage  
1.0  
V
SWING  
Vr  
V (AC)  
X
V
V
(AC)  
1.5  
1.0  
V
ID  
SLEW  
Input Signal Minimum Slew Rate  
Output Timing Measurement Reference Voltage  
V/ns  
V
V
V
/2  
DDQ  
9
OTR  
V
DDQ  
V
TT  
R =50 W  
T
V
V
(AC)  
(AC)  
Measurement point  
IH min  
REF  
V
SWING  
Output  
Z = 50 W  
V
IL max  
V
REF  
CL=30pF  
V
SS  
DT  
DT  
(AC))/DT  
AC Test Load  
SLEW = (V  
(AC) - V  
IL max  
IH min  
Note:  
(1)  
Transition times are measured between V  
(DC) and V  
(DC).  
IL max  
IH min  
Transition (rise and fall) of input signals have a fixed slope.  
(2)  
If the result of nominal calculation with regard to t  
rounded up to the nearest decimal place.  
contains more than one decimal place, the result is  
CK  
(i.e., t  
= 0.75 ´ t , t = 5 ns, 0.75 ´ 5 ns = 3.75 ns is rounded up to 3.8 ns.)  
CK CK  
DQSS  
(3)  
(4)  
(5)  
There parameters are measured from the differential clock (CLK and CLK ) AC cross point.  
These parameters are measured from signal transition point of DS crossing V level.  
REF  
The t  
The t  
applies to equally distributed refresh method.  
applies to both burst refresh method and distributed refresh method.  
REFI (max)  
REFI (min)  
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns  
always. In other words, the number of Auto-Refresh cycles which can be performed within 3.2 ms (8 ´ 400 ns)  
is to 8 times in the maximum.  
(6)  
(7)  
(8)  
(9)  
Low Impedance State is specified at V  
/2 ± 0.2 V from steady state.  
DDQ  
High Impedance State is specified where output buffer is no longer driven.  
These parameters depend on the clock jitter. These parameters are measured at stable clock.  
Output timing is measured by using Normal driver strength.  
2002-05-16 10/49  
TC59LM913/05AMG-50,-55,-60  
POWER UP SEQUENCE  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
As for PD , being maintained by the low state (£ 0.2 V ) is desirable before a power-supply injection.  
Apply V  
Apply V  
before or at the same time as V  
.
DD  
DDQ  
before or at the same time as V  
.
REF  
DDQ  
Start clock (CLK, CLK ) and maintain stable condition for 200 ms (min).  
After stable power and clock, apply DESL and take PD =H.  
Issue EMRS to enable DLL and to define driver strength. (Note: 1)  
Issue MRS for set CAS latency (CL), Burst Type (BT), and Burst Length (BL). (Note: 1)  
Issue two or more Auto-Refresh commands (Note: 1).  
Ready for normal operation after 200 clocks from Extended Mode Register programming.  
Notes:  
(1)  
Sequence 6, 7 and 8 can be issued in random order.  
(2)  
L = Logic Low, H = Logic High  
2.5V(TYP)  
2.5V(TYP)  
V
DD  
V
DDQ  
1.25V(TYP)  
V
REF  
CLK  
CLK  
t
PDEX  
l
l
l
l
l
REFC  
200us(min)  
PDA  
RSC  
RSC  
REFC  
PD  
Command  
Address  
200clock cycle(min)  
DESL RDA MRS DESL RDA MRS  
DESL WRAREF DESL  
WRAREF DESL  
op-code  
EMRS  
op-code  
MRS  
DQ  
Hi-Z  
DQS  
EMRS  
MRS  
Auto Refresh cycle  
Normal Operation  
2002-05-16 11/49  
TC59LM913/05AMG-50,-55,-60  
TIMING DIAGRAMS  
Input Timing  
Command and Address  
t
CK  
t
t
t
CL  
CK  
CH  
CLK  
CLK  
t
IS  
t
IS  
t
IS  
t
t
t
t
IS  
t
IS  
t
IS  
t
IH  
t
IH  
t
IH  
IH  
IH  
IH  
1st  
1st  
2nd  
CS  
FN  
2nd  
LA  
A0~A14  
UA, BA  
BA0, BA1  
Data  
DQS  
t
t
t
t
DS DH  
DS DH  
DQ (input)  
Refer to the Command Truth Table.  
Timing of the CLK, CLK  
t
t
CL  
CH  
V
V
CLK  
IH  
IH  
(AC)  
(AC)  
V
V
IL  
IL  
CLK  
t
T
t
T
t
CK  
CLK  
CLK  
V
V
IH  
IL  
V
(AC)  
ID  
V
V
V
X
X
X
2002-05-16 12/49  
TC59LM913/05AMG-50,-55,-60  
=
Read Timing (Burst Length 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA )  
Input  
(control &  
DESL  
addresses)  
t
IPW  
t
t
CKQS  
CKQS  
t
QSLZ  
t
t
t
t
t
CKQS QSP QSP  
QSHZ  
CAS latency = 3  
t
QSPRE  
DQS  
(output)  
Hi-Z  
Preamble  
Postamble  
t
t
LZ  
t
QSQV  
QSQ  
t
t
t
QSQ QSQ QSQV  
HZ  
DQ  
(output)  
Hi-Z  
Q0  
Q1  
Q2  
Q3  
t
t
t
OH  
t
t
AC  
AC  
AC  
CKQS  
t
CKQS  
t
QSLZ  
t
CKQS  
t
t
t
QSHZ  
QSP QSP  
t
CAS latency = 4  
QSPRE  
DQS  
(output)  
Hi-Z  
Hi-Z  
Preamble  
t
Postamble  
t
t
LZ  
QSQV  
QSQ  
t
t
t
t
HZ  
QSQ QSQ QSQV  
DQ  
Q0  
Q1  
Q2  
Q3  
(output)  
t
t
t
OH  
AC  
t
AC  
AC  
Note: DQ0 to DQ15 are aligned with DQS or LDQS/UDQS.  
The correspondence of LDQS, UDQS to DQ. (TC59LM913AMG)  
LDQS  
UDQS  
DQ0~DQ7  
DQ8~DQ15  
2002-05-16 13/49  
TC59LM913/05AMG-50,-55,-60  
Write Timing (Burst Length = 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after WRA)  
Input  
(control &  
DESL  
addresses)  
t
IPW  
t
DSPSTH  
t
DQSS  
t
DSS  
t
DSPRES  
t
t
t t  
DSP DSP DSPST  
DSP  
t
DSPREH  
CAS latency = 3  
DQS  
(input)  
t
Preamble  
DSS  
Postamble  
t
DSPRE  
t
t
t
DS  
DS  
DS  
t
t
t
DH  
DIPW  
t
DH  
DH  
DQ  
(input)  
D0  
D1  
D2  
D3  
t
DQSS  
t
t
DSS  
t
DSPSTH  
DSS  
t
DSPRES  
t
t t t  
DSP DSP DSPST  
CAS latency = 4  
DSP  
t
DSPREH  
DQS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
t
DS  
DS  
DS  
t
t
t
t
DH  
DIPW  
DH  
DH  
DQ  
(input)  
D0  
D1  
D2  
D3  
t
t
DQSS  
DQSS  
Note: DQ0 to DQ15 are sampled at both edges of DQS or LDQS / UDQS.  
The correspondence of LDQS, UDQS to DQ. (TC59LM913AMG)  
LDQS  
UDQS  
DQ0~DQ7  
DQ8~DQ15  
2002-05-16 14/49  
TC59LM913/05AMG-50,-55,-60  
t
, t  
, Ixxxx Timing  
REFI PAUSE  
CLK  
CLK  
t
, t  
, I  
REFI PAUSE XXXX  
t
t
t
t
IS IH  
IS IH  
Input  
(control &  
addresses )  
Command  
Note: “I ” means “I ”, “I  
Command  
”, “I ”, etc.  
RAS  
XXXX  
RC  
RCD  
2002-05-16 15/49  
TC59LM913/05AMG-50,-55,-60  
Write Timing (x16 device) (Burst Length =4)  
CLK  
CLK  
Input  
(control &  
WRA  
LAL  
(DESL)  
addresses )  
t
t
t
t
DSSK DSSK DSSK DSSK  
CAS latency = 3  
LDQS  
Preamble  
Postamble  
t
t
DS  
t
t
DS  
DS  
DS  
t
t
DH  
t
DH  
t
DH  
DH  
DQ0~DQ7  
UDQS  
D0  
D1  
D2  
D3  
Preamble  
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
t
t
t
DH  
DH  
DH  
DH  
D0  
D1  
D2  
D3  
DQ8~DQ15  
t
t
t
t
DSSK DSSK DSSK DSSK  
CAS latency = 4  
LDQS  
Preamble  
t
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
DH  
DQ0~DQ7  
UDQS  
D0  
D1  
D2  
D3  
Preamble  
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
D0  
D1  
D2  
D3  
DQ8~DQ15  
2002-05-16 16/49  
TC59LM913/05AMG-50,-55,-60  
FUNCTION TRUTH TABLE (Notes: 1, 2, 3)  
Command Truth Table (Notes: 4)  
· The First Command  
SYMBOL  
FUNCTION  
Device Deselect  
CS  
FN  
BA1~BA0  
A14~A9  
A8  
A7  
A6~A0  
DESL  
RDA  
H
L
L
´
´
´
´
´
´
Read with Auto-close  
Write withAuto-close  
H
L
BA  
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
WRA  
· The Second Command (The next clock of RDA or WRA command)  
BA1~  
BA0  
A14,  
A13  
A12~  
A11  
SYMBOL  
FUNCTION  
CS  
FN  
A10~A 9  
A8  
A7  
A6~A0  
LAL  
LAL  
REF  
MRS  
Lower Address Latch (x16)  
Lower Address Latch (x8)  
Auto-Refresh  
H
H
L
´
´
´
´
´
´
V
V
´
V
´
´
´
LA  
´
LA  
LA  
´
LA  
LA  
´
´
´
´
´
Mode Register Set  
L
V
L
L
L
L
V
V
Notes: 1. L = Logic Low, H = Logic High, ´ = either L or H, V = Valid (specified value), BA = Bank Address, UA = Upper Address,  
LA = Lower Address  
2. All commands are assumed to issue at a valid state.  
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where  
CLK goes to High.  
4. Operation mode is decided by the combination of 1st command and 2nd command. Refer to “STATE DIAGRAMand  
the command table below.  
Read Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0 A14~A9  
A8  
A7  
A6~A0  
NOTES  
5
RDA (1st)  
LAL (2nd)  
L
H
BA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
H
´
´
´
Note 5 : For x16 device, A 8 is “X” (either L or H).  
Write Command Table  
·
TC59LM913AMG  
BA1~  
BA0  
A10~  
A9  
COMMAND(SYMBOL)  
CS  
FN  
A14  
UA  
A13  
A12  
UA  
A11  
A8  
A7  
A6~A0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
UA  
UA  
UA  
UA  
UA  
LA  
UA  
LA  
H
´
´
LVW0 LVW1 UVW0 UVW1  
´
´
·
TC59LM905AMG  
BA1~  
BA0  
A10~  
A9  
COMMAND(SYMBOL)  
CS  
FN  
A14  
A13  
A12  
A11  
A8  
A7  
A6~A0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
UA  
UA  
UA  
UA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
H
´
´
VW0  
VW1  
´
´
´
Notes: 6. A14 and A11 are used for Variable Write Length (VW) control at Write Operation.  
2002-05-16 17/49  
TC59LM913/05AMG-50,-55,-60  
FUNCTION TRUTH TABLE (continued)  
VW Truth Table  
Burst Length  
Function  
Write All Words  
VW0  
VW1  
L
´
BL=2  
Write First One Word  
Reserved  
H
L
´
L
L
H
H
Write All Words  
H
L
BL=4  
Write First Two Words  
Write First One Word  
H
Note 7 : For x16 device, LVW0 and LVW1 control DQ0~DQ7.  
UVW0 and UVW1 control DQ8~DQ15.  
Mode Register Set Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0 A14~A9  
A8  
A7  
A6~A0  
NOTES  
8
RDA (1st)  
L
L
H
´
´
´
´
´
MRS (2nd)  
´
V
L
L
V
V
Notes: 8. Refer to “MODE REGISTER TABLE.  
Auto-Refresh Command Table  
PD  
n - 1  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A14~A9 A8 A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
H
H
H
H
L
L
L
´
´
´
´
´
´
´
´
´
´
Auto-Refresh  
´
Self-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A14~A9 A8 A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n - 1  
H
n
Active  
WRA (1st)  
REF (2nd)  
¾
Standby  
Active  
H
L
L
L
´
L
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
Self-Refresh Entry  
Self-Refresh Continue  
Self-Refresh Exit  
H
9, 10  
11  
Self-Refresh  
Self-Refresh  
L
L
´
SELFX  
L
H
H
´
Power Down Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A14~A9 A8 A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n - 1  
n
L
L
H
Power Down Entry  
Power Down Continue  
Power Down Exit  
PDEN  
¾
Standby  
H
L
L
H
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
´
10  
11  
Power Down  
Power Down  
PDEX  
H
Notes: 9. PD has to be brought to Low within t  
from REF command.  
FPDL  
10. PD should be brought to Low after DQ’s state turned high impedance.  
11. When PD is brought to High from Low, this function is executed asynchronously.  
2002-05-16 18/49  
TC59LM913/05AMG-50,-55,-60  
FUNCTION TRUTH TABLE (continued)  
PD  
CURRENT STATE  
CS  
FN  
ADDRESS COMMAND  
ACTION  
NOTES  
12  
n - 1  
n
H
H
H
H
H
L
H
H
H
L
L
´
H
L
L
H
L
´
´
´
DESL  
RDA  
WRA  
PDEN  
¾
NOP  
H
L
´
BA, UA  
BA, UA  
Row activate for Read  
Row activate for Write  
Power Down Entry  
Illegal  
Idle  
´
´
´
´
´
¾
Refer to Power Down State  
H
H
H
H
L
H
H
L
L
´
H
L
H
L
´
´
´
´
´
´
´
´
´
´
´
LA  
LAL  
Begin Read  
Op-code  
MRS/EMRS Access to Mode Register  
PDEN Illegal  
MRS/EMRS Illegal  
Row Active for Read  
Row Active for Write  
´
´
´
¾
Invalid  
H
H
H
H
L
H
H
L
L
´
H
L
H
L
´
LA  
´
LAL  
REF  
PDEN  
Begin Write  
Auto-Refresh  
Illegal  
´
´
REF (self) Self-Refresh Entry  
´
¾
Invalid  
H
H
H
H
H
L
H
H
H
L
L
´
H
L
L
H
L
´
´
´
DESL  
RDA  
WRA  
PDEN  
¾
Continue Burst Read to End  
H
L
´
BA, UA  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
13  
13  
BA, UA  
Read  
´
´
´
´
´
¾
Data Write & Continue Burst Write to  
End  
H
H
H
´
´
DESL  
H
H
H
H
L
H
H
L
L
´
L
L
H
L
´
H
L
´
BA, UA  
RDA  
WRA  
PDEN  
¾
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
13  
13  
BA, UA  
Write  
´
´
´
´
´
¾
H
H
H
H
H
L
H
H
H
L
L
´
H
L
L
H
L
´
´
´
DESL  
RDA  
WRA  
PDEN  
¾
NOP ® Idle after I  
Illegal  
REFC  
H
L
´
BA, UA  
BA, UA  
Illegal  
Auto-Refreshing  
´
´
´
Self-Refresh Entry  
Illegal  
14  
´
´
¾
Refer to Self -Refreshing State  
NOP ® Idle after I  
H
H
H
H
H
L
H
H
H
L
L
´
H
L
L
H
L
´
´
´
DESL  
RDA  
WRA  
PDEN  
¾
RSC  
H
L
´
BA, UA  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
BA, UA  
Mode Register  
Accessing  
´
´
´
´
´
¾
H
L
´
´
´
´
´
´
´
¾
¾
Invalid  
L
Maintain Power Down Mode  
Power Down  
Exit Power Down Mode ® Idle after  
L
H
H
´
´
PDEX  
t
PDEX  
L
H
L
L
L
H
´
L
´
´
´
´
´
´
´
´
´
´
´
¾
¾
Illegal  
Invalid  
L
H
H
´
¾
Maintain Self-Refresh  
Exit Self-Refresh ® Idle after I  
Illegal  
Self-Refreshing  
H
L
SELFX  
¾
REFC  
Notes: 12. Illegal if any bank is not idle.  
13. Illegal to bank in specified states; Function may be legal in the bank inidicated by Bank Address (BA).  
14. Illegal if t is not satisfied.  
FPDL  
2002-05-16 19/49  
TC59LM913/05AMG-50,-55,-60  
MODE REGISTER TABLE  
Regular Mode Register (Notes: 1)  
*1  
*1  
*3  
ADDRESS  
Register  
BA1  
BA0  
A14~A8  
0
A7  
A6~A4  
CL  
A3  
BT  
A2~A0  
BL  
0
0
TE  
A7  
TEST MODE (TE)  
A3  
BURST TYPE (BT)  
0
1
Regular (default)  
Test Mode Entry  
0
1
Sequential  
Interleave  
A6  
A5  
A4  
CAS LATENCY (CL)  
A2  
A1  
A0 BURST LENGTH (BL)  
*2  
*2  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
´
Reserved  
0
0
0
0
1
0
0
1
1
´
0
1
0
1
´
Reserved  
*2  
0
1
0
1
0
1
Reserved  
2
4
3
4
*2  
Reserved  
*2  
Reserved  
*2  
Reserved  
*2  
Reserved  
Extended Mode Register (Notes: 4)  
*4  
*4  
*6  
*5  
ADDRESS  
Register  
BA1  
BA0  
A14~A 12  
A11  
1
A10~A 7  
0
A6  
DIC  
A5~A2  
0
A1  
A0  
0
1
0
DIC  
DS  
OUTPUT DRIVE IMPEDANCE CONTROL  
(DIC)  
A6 A1  
0
0
1
1
0
Normal Output Driver  
Strong Output Driver  
Weaker Output Driver  
Weakest Output Driver  
1
0
1
A0  
DLL SWITCH (DS)  
0
1
DLL Enable  
DLL Disable  
Notes: 1. Regular Mode Register is chosen using the combination of BA0 = 0 and BA1 = 0.  
2. “Reserved” places in Regular Mode Register should not be set.  
3. A7 in Regular Mode Register must be set to “0” (low state).  
Because Test Mode is specific mode for supplier.  
4. Extended Mode Register is chosen using the combination of BA0 = 1 and BA1 = 0.  
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.  
6. A11 in Extended Mode Register must be set to “1”.  
2002-05-16 20/49  
TC59LM913/05AMG-50,-55,-60  
STATE DIAGRAM  
SELF-  
REFRESH  
POWER  
DOWN  
SELFX  
PDEX  
( PD = H)  
( PD = H)  
PDEN  
PD = L  
( PD = L)  
STANDBY  
(IDLE)  
PD = H  
AUTO-  
MODE  
REFRESH  
REGISTER  
WRA  
RDA  
REF  
MRS  
ACTIV E  
(RESTORE)  
ACTIVE  
LAL  
LAL  
WRITE  
(BUFFER)  
READ  
Command input  
Automatic return  
The second command at Active state  
must be issued 1 clock after RDA or  
WRA command input.  
2002-05-16 21/49  
TC59LM913/05AMG-50,-55,-60  
TIMING DIAGRAMS  
SINGLE BANK READ TIMING(CL 3)  
=
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA  
Command  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RCD  
RAS  
RCD  
RAS  
RCD  
RAS  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
BL = 2  
Hi-Z  
DQS  
(output)  
CL = 3  
CL = 3  
CL = 3  
DQ  
(output)  
Hi-Z  
Hi-Z  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0 Q1  
BL = 4  
DQS  
(output)  
CL = 3  
CL = 3  
CL = 3  
DQ  
(output)  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
2002-05-16 22/49  
TC59LM913/05AMG-50,-55,-60  
=
SINGLE BANK READ TIMING(CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA  
Command  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RCD  
RAS  
RCD  
RAS  
RCD  
RAS  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
BL = 2  
Hi-Z  
DQS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Hi-Z  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
BL = 4  
DQS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
(output)  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
2002-05-16 23/49  
TC59LM913/05AMG-50,-55,-60  
=
SINGLE BANK WRITE TIMING (CL 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
Command  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RCD  
RAS  
RCD  
RAS  
RCD  
RAS  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
BL = 2  
DQS  
(input)  
WL = 2  
WL = 2  
WL = 2  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DQS  
(input)  
WL = 2  
WL = 2  
WL = 2  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
2002-05-16 24/49  
TC59LM913/05AMG-50,-55,-60  
=
SINGLE BANK WRITE TIMING (CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
UA  
Command  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
DQS  
(input)  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DQS  
(input)  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
2002-05-16 25/49  
TC59LM913/05AMG-50,-55,-60  
=
SINGLE BANK READ-WRITE TIMING (CL 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
Command  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
Hi-Z  
DQS  
CL = 3  
CL = 3  
WL = 2  
Hi-Z  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0 Q1  
BL = 4  
DQS  
CL = 3  
WL = 2  
CL = 3  
Hi-Z  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0 Q1 Q2 Q3  
DQ  
2002-05-16 26/49  
TC59LM913/05AMG-50,-55,-60  
=
SINGLE BANK READ-WRITE TIMING (CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
Command  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
Hi-Z  
DQS  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
DQS  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0  
DQ  
2002-05-16 27/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK READ TIMING(CL 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL  
Command  
Address  
RDA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
Hi-Z  
DQS  
(output)  
CL = 3  
CL = 3  
DQ  
(output)  
Hi-Z  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
Qd0 Qd1  
BL = 4  
DQS  
(output)  
CL = 3  
CL = 3  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2Qc3Qd0Qd1  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 28/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK READ TIMING(CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cyclesI  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL  
Command  
Address  
RDA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
Hi-Z  
DQS  
(output)  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
BL = 4  
DQS  
Hi-Z  
Hi-Z  
(output)  
CL = 4  
CL = 4  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
(output)  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 29/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK WRITE TIMING (CL 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
DQS  
(input)  
WL = 2  
WL = 2  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
BL = 4  
DQS  
(input)  
WL = 2  
WL = 2  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1Dd0Dd1  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 30/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK WRITE TIMING (CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
Command  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
DQS  
(input)  
WL = 3  
WL = 3  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
BL = 4  
DQS  
(input)  
WL = 3  
WL = 3  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 31/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK READ-WRITE TIMING(BL 2)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
Command  
WRA LAL RDA LAL DESL WRA LAL RDA  
LAL DESL WRA LAL RDA LAL DESL WRA  
= 2 cycles  
I
= 1 cycle  
I
= 2 cycles  
I
= 1 cycle  
I
RWD  
WRD  
RWD  
WRD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
CL = 3  
Hi-Z  
DQS  
CL = 3  
WL = 2  
Hi-Z  
Hi-Z  
DQ  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
CL = 4  
DQS  
CL = 4  
WL = 3  
Hi-Z  
DQ  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 32/49  
TC59LM913/05AMG-50,-55,-60  
=
MULTIPLE BANK READ-WRITE TIMING(BL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
Command  
WRA LAL RDA LAL  
DESL  
= 3 cycles  
WRA LAL RDA  
LAL  
LA  
DESL  
= 3 cycles  
WRA LAL RDA LAL  
I
= 1 cycle  
I
I
= 1 cycle  
I
I = 1 cycle  
WRD  
WRD  
RWD  
WRD  
RWD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
CL = 3  
Hi-Z  
DQS  
CL = 3  
WL = 2  
Hi-Z  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
CL = 4  
DQS  
CL = 4  
WL = 3  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
Note: l  
to the same bank must be satisfied.  
RC  
2002-05-16 33/49  
TC59LM913/05AMG-50,-55,-60  
=
WRITE with VARIAVLE WRITE LENGTH (VW) CONTROL(CL 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
BL = 2, SEQUENTIAL MODE  
WRA LAL  
DESL  
WRA LAL  
DESL  
Command  
LA=#3  
LA=#1  
Address  
UA  
UA  
VW=All  
VW=1  
VW0 = Low  
VW1 = don't care  
VW0 = High  
VW1 = don't care  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DQS  
(input)  
DQ  
(input)  
D0 D1  
D0  
Lower Address #3 #2  
#1 (#0)  
Last one data is masked.  
BL = 4, SEQUENTIAL MODE  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
Command  
Address  
LA=#3  
LA=#1  
LA=#2  
UA  
UA  
UA  
VW=All  
VW=1  
VW=2  
VW0 = High  
VW1 = Low  
VW0 = High  
VW1 = High  
VW0 = Low  
VW1 = High  
Bank  
"a"  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
D0  
D0 D1  
Lower Address #3 #0 #1 #2  
#1(#2)(#3)(#0)  
#2 #3 (#0)(#1)  
Last three data are masked.  
Note: DQS input must be continued till end ofburst count even if some of laster data is masked.  
Last two data are masked.  
2002-05-16 34/49  
TC59LM913/05AMG-50,-55,-60  
=
=
POWER DOWN TIMING (CL 4, BL 4)  
Read cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-1  
n
n+1  
n+2  
n+3  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
I
= 1 cycle  
IS PD  
t
IH  
PD  
t
t
PDEX  
QPDH  
l
, t  
RC(min) REFI(max)  
Hi-Z  
DQS  
(output)  
CL = 4  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
(output)  
Power Down Entry  
Note: PD must be kept "High" level until end of Burst data output.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
Power Down Exit  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied lPDA cycles later.  
2002-05-16 35/49  
TC59LM913/05AMG-50,-55,-60  
=
=
POWER DOWN TIMING (CL 4, BL 4)  
Write cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-1  
n
n+1  
n+2  
n+3  
CLK  
CLK  
I
PDA  
RDA  
or  
WRA  
WRA LAL  
DESL  
Command  
Address  
DESL  
UA  
LA  
UA  
t
I
= 1 cycle  
IS PD  
t
IH  
PD  
WL = 3  
2 clock cycles  
t
PDEX  
l
, t  
RC(min) REFI(max)  
DQS  
(input)  
WL = 3  
DQ  
D0 D1 D2 D3  
(input)  
Note: PD must be kept "High" level until WL+2 clock cycles from LAL command.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied lPDA cycles later.  
2002-05-16 36/49  
TC59LM913/05AMG-50,-55,-60  
=
=
MODE REGISTER SET TIMING(CL 4, BL 2)  
From Read operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A14~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
UA  
BA  
LA  
UA  
BA  
(opcode)  
BA0="0"  
BA1="0"  
BA0, BA1  
CL + BL/2  
Hi-Z  
DQS  
(output)  
DQ  
(output)  
Q0 Q1  
Note: Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2.  
2002-05-16 37/49  
TC59LM913/05AMG-50,-55,-60  
=
=
MODE REGISTER SET TIMING(CL 4, BL 4)  
From Write operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
Command  
A14~A0  
WRA  
Valid  
UA  
BA  
LA  
UA  
BA  
(opcode)  
BA0="0"  
BA1="0"  
BA0, BA1  
WL+BL/2  
DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
Note: Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.  
2002-05-16 38/49  
TC59LM913/05AMG-50,-55,-60  
=
=
EXTENDED MODE REGISTER SET TIMING(CL 4, BL 2)  
From Read operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A14~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
UA  
BA  
LA  
UA  
BA  
(opcode)  
BA0="1"  
BA1="0"  
BA0, BA1  
CL + BL/2  
Hi-Z  
DQS  
(output)  
DQ  
(output)  
Q0 Q1  
Note: Minimum delay from LAL following RDA to RDA of EMRS operation is CL+BL/2.  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
2002-05-16 39/49  
TC59LM913/05AMG-50,-55,-60  
=
=
EXTENDED MODE REGISTER SET TIMING (CL 4, BL 4)  
From Write operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
Command  
A14~A0  
WRA  
Valid  
UA  
BA  
LA  
UA  
BA  
(opcode)  
BA0="1"  
BA1="0"  
BA0, BA1  
WL+BL/2  
DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
Note: DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.  
2002-05-16 40/49  
TC59LM913/05AMG-50,-55,-60  
=
=
AUTO-REFRESH TIMING(CL 4, BL 4)  
0
1
2
3
4
5
6
7
n - 1  
n
n + 1  
n + 2  
CLK  
CLK  
I
= 5 cycles  
I
= 18 cycles  
RC  
REFC  
RDA  
or  
LAL or  
MRS or  
REF  
RDA  
LAL  
DESL  
WRA  
REF  
DESL  
Command  
WRA  
Bank,  
UA  
LA  
Bank, Address  
I
= 1 cycle  
I
= 4 cycles  
CL = 4  
I = 1 cycle  
RCD  
RCD  
RAS  
DQS  
(output)  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Note: In case of CL = 4, I  
must be meet 18 clock cycles.  
REFC  
When the Auto-Refresh operation is performed, the synthetic average interval of Auto-Refresh command  
specified by t must be satisfied.  
REFI  
t
is average interval time in 8 Refresh cycles that is sampled randomly.  
REFI  
t
1
t
2
t
3
t
7
t
8
CLK  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
8 Refresh cycle  
Total time of 8 Refresh cycle  
8
t + t + t + t + t + t + t + t  
1 2 3 4 5 6 7 8  
t
=
=
REFI  
8
t
isspecified to avoid partly concentrated current of Refresh operation that is activated larger area  
REFI  
than Read / Write operation.  
2002-05-16 41/49  
TC59LM913/05AMG-50,-55,-60  
SELF-REFRESH ENTRY TIMING  
0
1
2
3
4
5
m - 1  
m
m + 1  
CLK  
CLK  
I
= 1 cycle  
I
REFC  
RCD  
WRA  
REF  
DESL  
Command  
PD  
t
t
FPDL (min) FPDL (max)  
Auto Refresh  
Self Refresh Entry  
*2  
I
PDV  
t
QPDH  
I
CKD  
Hi-Z  
DQS  
(output)  
DQ  
(output)  
Hi-Z  
Qx  
Notes: 1.  
is don’t care.  
2. PD must be brought to "Low" within the timing between t (min) and t (max) to Self  
FPDL FPDL  
Refresh mode.When PD is brought to "Low" after l , FCRAM perform Auto Refresh and enter  
PDV  
Power down mode.  
3. It is desirable that clock input is continued at least l  
brought to “Low ” for Self -Refresh Entry.  
from REF command even though PD is  
CKD  
SELF-REFRESH EXIT TIMING  
0
1
2
m - 1  
m
m + 1  
m + 2  
n - 1  
n
n + 1  
p - 1  
p
CLK  
CLK  
*2  
*6  
Command (1st)  
Command (2nd)  
I
I
REFC  
REFC  
*6  
*7  
*3  
*5  
*5  
*7  
DESL  
WRA  
REF  
DESL  
RDA  
LAL  
Command  
PD  
*4  
I
= 1 cycles  
I
= 1 cycle  
I
= 1 cycle  
PDA  
RCD  
RCD  
t
PDEX  
I
LOCK  
DQS  
Hi-Z  
(output)  
DQ  
(output)  
Hi-Z  
Self-Refresh Exit  
Notes: 1.  
2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode.  
3. DESL command must be asserted during I after PD is brought to “High”.  
is don’t care.  
REFC  
4.  
I
is defined from the first clock rising edge after PD is brought to “High”.  
PDA  
5. It is desirable that one Auto-Refresh command is issued just after Self -Refresh Exit before any  
other operation.  
6. Any command (except Read command) can be issued after I  
.
REFC  
7. Read command (RDA + LAL) can be issued after I  
.
LOCK  
2002-05-16 42/49  
TC59LM913/05AMG-50,-55,-60  
FUNCTIONAL DESCRIPTION  
TM  
DDR FCRAM  
DDR FCRAMTM is an acronym of Double Data Rate Fast Cycle Random Access Memory. The DDR FCRAMTM  
is competent to perform fast random core access, low latency and high-speed data transfer.  
PIN FUNCTIONS  
CLK  
CLOCK INPUTS: CLK &  
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input. The  
CS , FN and all address input signals are sampled on the crossing of the positive edge of CLK and the negative  
edge of CLK . The DQS and DQ output are aligned to the crossing point of CLK and CLK . The timing reference  
point for the differential clock is when the CLK and CLK signals cross during a transition.  
PD  
POWER DOWN:  
The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a Clock  
Suspend function like a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into low state if  
any Read or Write operation is being performed.  
CS  
CHIP SELECT & FUNCTION CONTROL:  
& FN  
The CS and FN inputs are a control signal for forming the operation commands on FCRAMTM. Each operation  
mode is decided by the combination of the two consecutive operation commands using the CS and FN inputs.  
BANK ADDRESSES: BA0~BA1  
The BA0 to BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the  
bank to be used for the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register  
Set command (MRS or EMRS).  
BA0  
BA1  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
0
1
0
1
0
0
1
1
ADDRESS INPUTS: A0~A14  
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The Upper  
Addresses with Bank addresses are latched at the RDA or WRA command and the Lower Addresses are latched at  
the LAL command. The A0 to A14 inputs are also used for setting the data in the Regular or Extended Mode  
Register set cycle.  
UPPER ADDRESS  
LOWER ADDRESS  
TC59LM905AMG  
TC59LM913AMG  
A0~A14  
A0~A14  
A0~A8  
A0~A7  
2002-05-16 43/49  
TC59LM913/05AMG-50,-55,-60  
DATA INPUT/OUTPUT: DQ0~DQ7 or DQ15  
The input data of DQ0 to DQ15 are taken in synchronizing with the both edges of DQS input signal. The  
output data of DQ0 to DQ15 are outputted synchronizing with the both edges of DQS signal.  
DATA STROBE: DQS, LDQS / UDQS  
The DQS is bi-directional signal. Both edge of DQS are used as the reference of data input or output. In write  
operation, the DQS used as an input signal is utilized for a latch of write data. In read operation, the DQS is an  
output signal provides the read data strobe.  
POWER SUPPLY: VDD, VDDQ, VSS, VSSQ  
V
V
and V  
DDQ  
are power supply pins for memory core and peripheral circuits.  
are power supply pins for the output buffer.  
SSQ  
DD  
SS  
and V  
REFERENCE VOLTAGE: VREF  
V
is reference voltage for all input signals.  
REF  
2002-05-16 44/49  
TC59LM913/05AMG-50,-55,-60  
COMMAND FUNCTIONS and OPERATIONS  
TC59LM913/05AMG are introduced the two consecutive command input method. Therefore, except for Power  
Down mode, each operation mode decided by the combination of the first command and the second command from  
stand-by states of the bank to be accessed.  
+
=
+
Read Operation (1st command 2nd command RDA LAL)  
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated  
by Bank Address in a read mode. When the LAL command with Lower Addresses is issued at the next clock of the  
RDA command, the data is read out sequentially synchronizing with the both edges of DQS output signal (Burst  
Read Operation). The initial valid read data appears after CAS latency from the issuing of the LAL command.  
The valid data is outputted for a burst length. The CAS latency, the burst length of read data and the burst type  
must be set in the Mode Register beforehand. The read operated bank goes back automatically to the idle state  
after l  
.
RC  
+
=
+
Write Operation (1st command 2nd command WRA LAL)  
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated  
by Bank Address in a write mode. When the LAL command with Lower Addresses is issued at the next clock of the  
WRA command, the input data is latched sequentially synchronizing with the both edges of DQS input signal  
(Burst Write Operation). The data and DQS inputs have to be asserted in keeping with clock input after CAS  
latency-1 from the issuing of the LAL command. The DQS has to be provided for a burst length. The CAS latency  
and the burst type must be set in the Mode Register beforehand. The write operated bank goes back automatically  
to the idle state after l . Write Burst Length is controlled by VW0 and VW1 inputs with LAL command. See VW  
RC  
truth table.  
+
=
+
Auto-Refresh Operation (1st command 2nd command WRA REF)  
TC59LM913/05AMG are required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with  
the REF command following to the WRA command. The Auto-Refresh mode can be effective only when all banks are  
in the idle state and all outputs are in Hi-Z states. In a point to notice, the write mode started with the WRA  
command is canceled by the REF command having gone into the next clock of the WRA command instead of the  
LAL command. The minimum period between the Auto-Refresh command and the next command is specified by  
l
. However, about a synthetic average interval of Auto-Refresh command, it must be careful. In case of equally  
REFC  
distributed refresh, Auto-Refresh command has to be issued within once for every 7.8 ms by the maximum. In case  
of burst refresh or random distributed refresh, the average interval of eight consecutive Auto-Refresh commands  
has to be more than 400 ns always. In other words, the number of Auto-Refresh cycles that can be performed within  
3.2 ms (8 ´ 400 ns) is to 8 times in the maximum.  
+
=
+
PD =  
Self-Refresh Operation (1st command 2nd command WRA REF with “L”)  
In case of Self-Refresh operation, refresh operation can be performed automatically by using an internal timer.  
When all banks are in the idle state and all outputs are in Hi-Z states, the TC59LM913/05AMG become  
Self-Refresh mode by issuing the Self-Refresh command. PD has to be brought to “Low” within t  
FPDL  
from the  
REF command following to the WRA command for a Self-Refresh mode entry. In order to satisfy the refresh period,  
the Self-Refresh entry command should be asserted within 7.8 ms after the latest Auto-Refresh command. Once the  
device enters Self-Refresh mode, the DESL command must be continued for l  
period. In addition, it is  
REFC  
period. The device is in Self-Refresh mode as long as PD held “Low”.  
desirable that clock input is kept in l  
CKD  
During Self-Refresh mode, all input and output buffers are disabled except for PD , therefore the power dissipation  
lowers. Regarding a Self-Refresh mode exit, PD has to be changed over from “Low” to “High” along with the DESL  
command, and the DESL command has to be continuously issued in the number of clocks specified by l  
. The  
REFC  
Self-Refresh exit function is asynchronous operation. It is required that one Auto-Refresh command is issued to  
avoid the violation of the refresh period just after l from Self-Refresh exit.  
REFC  
PD =  
Power Down Mode (  
“L”)  
When all banks are in the idle state and DQ outputs are in Hi-Z states, the TC59LM 913/05AMG become Power  
Down Mode by asserting PD is Low”. When the device enters the Power Down Mode, all input and output buffers  
are disabled after specified time except for PD . Therefore, the power dissipation lowers. To exit the Power Down  
Mode, PD has to be brought to “High” and the DESL command has to be issued for two clocks cycle after PD  
goes high. The Power Down exit function is asynchronous operation.  
2002-05-16 45/49  
TC59LM913/05AMG-50,-55,-60  
+
=
+
Mode Register Set (1st command 2nd command RDA MRS)  
When all banks are in the idle state, issuing the MRS command following to the RDA command can program the  
Mode Register. In a point to notice, the read mode started with the RDA command is canceled by the MRS  
command having gone into the next clock of the RDA command instead of the LAL command. The data to be set in  
the Mode Register is transferred using A0 to A14, BA0 to BA1 address inputs. The TC59LM 913/05AMG have two  
mode registers. These are Regular and Extended Mode Register. The Regular or Extended Mode Register is chosen  
by BA0 and BA1 in the MRS command. The Regular Mode Register designates the operation mode for a read or  
write cycle. The Regular Mode Register has four function fields.  
The four fields are as follows:  
(R-1) Burst Length field to set the length of burst data  
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle  
(R-3) CAS Latency field to set the access time in clock cycle  
(R-4) Test Mode field to use for supplier only.  
The Extended Mode Register has two function fields.  
The two fields are as follows:  
(E-1) DLL Switch field to choose either DLL enable or DLL disable  
(E-2) Output Driver Impedance Control field.  
(E-3) DQS enable field.  
(E-4) Interface select field to use for supplier only.  
Once those fields in the Mode Register are set up, the register contents are maintained until the Mode Register is  
set up again by another MRS command or power supply is lost. The initial value of the Regular or Extended Mode  
Register after power-up is undefined, therefore the Mode Register Set command must be issued before proper  
operation.  
·
Regular Mode Register/Extended Mode Register change bits (BA0, BA1)  
These bits are used to choose either Regular MRS or Extended MRS  
BA1  
BA0  
A14~A0  
0
0
1
0
1
´
Regular MRS Cycle  
Extended MRS Cycle  
Reserved  
Regular Mode Register Fields  
(R-1) Burst Length field (A2 to A0)  
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length  
to be 2 or 4 words.  
A2  
A1  
A0  
BURST LENGTH  
0
0
0
0
1
0
0
1
1
´
0
1
0
1
´
Reserved  
2 words  
4 words  
Reserved  
Reserved  
(R-2) Burst Type field (A3)  
The Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is “0”, Sequential  
mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both burst types support burst  
length of 2 and 4 words.  
A3  
BURST TYPE  
0
1
Sequential  
Interleave  
2002-05-16 46/49  
TC59LM913/05AMG-50,-55,-60  
·
Addressing sequence of Sequential mode (A3)  
A column access is started from the inputted lower address and is performed by incrementing the lower  
address input to the device.  
CAS Latency = 4  
CLK  
CLK  
Command  
DQS  
RDA  
LAL  
Data Data Data Data  
DQ  
0
1
2
3
Addressing sequence for Sequential mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
n
2 words (address bits is LA0)  
not carried from LA0~LA1  
n + 1  
n + 2  
n + 3  
4 words (address bits is LA1, LA0)  
not carried from LA1~LA2  
·
Addressing sequence of Interleave mode  
A column access is started from the inputted lower address and is performed by interleaving the address  
bits in the sequence shown as the following.  
Addressing sequence for Interleave mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
2 words  
Data 0  
Data 1  
Data 2  
Data 3  
???A8 A7 A6 A5 A4 A3 A2 A1 A0  
???A8 A7 A6 A5 A4 A3 A2 A1 A0  
???A8 A7 A6 A5 A4 A3 A2 A1 A0  
???A8 A7 A6 A5 A4 A3 A2 A1 A0  
4 words  
(R-3) CAS Latency field (A6 to A4)  
This field specifies the number of clock cycles from the assertion of the LAL command following the  
RDA command to the first data read. The minimum values of CAS Latency depends on the frequency of  
CLK. In a write mode, the place of clock that should input write data is CAS Latency cycles - 1.  
A6  
A5  
A4  
CAS LATENCY  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
3
4
Reserved  
Reserved  
Reserved  
(R-4) Test Mode field (A7)  
This bit is used to enter Test Mode for supplier only and must be set to “0” for normal operation.  
(R-5) Reserved field in the Regular Mode Register  
·
Reserved bits (A8 to A14, BA1)  
These bits are reserved for future operations. They must be set to “0” for normal operation.  
2002-05-16 47/49  
TC59LM913/05AMG-50,-55,-60  
Extended Mode Register fields  
(E-1) DLL Switch field (A0)  
This bit is used to enable DLL. When the A0 bit is set “0”, DLL is enabled.  
(E-2) Output Driver Impedance Control field (A1, A6)  
This field is used to choose Output Driver Strength. Three types of Driver Strength are supported.  
A6  
A1  
OUTPUT DRIVER IMPEDANCE CONTROL  
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weaker Output Driver  
Weakest Output Driver  
(E-3) DQS enable (A10)  
DQS is not supported. This bit must be always set “0”.  
(E-4) Interface mode select (A11)  
This bit must be always set “1”.  
(E-5) Reserved field (A2 to A5, A7 to A9, A12 to A14)  
These bits are reserved for future operations and must be set to “0” for normal operation.  
2002-05-16 48/49  
TC59LM913/05AMG-50,-55,-60  
RESTRICTIONS ON PRODUCT USE  
000707EBA  
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system , and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
· The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
· The products described in this document are subject to the foreign exchange and foreign trade laws.  
· The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other  
rights of the third parties which may result from its use. No license is granted by implication or otherwise under  
any intellectual property or other rights of TOSHIBA CORPORATION or others.  
· The information contained herein is subject to change without notice.  
2002-05-16 49/49  

相关型号:

TC59LM813AMG-60

IC,DRAM,FCRAM(DDR),4X8MX16,CMOS,BGA,60PIN,PLASTIC
TOSHIBA

TC59LM814CFT

4,194,304 / 8,388,608-WORDS x 4 BANKS x 16 / 8-BITS Network FCRAM
TOSHIBA

TC59LM814CFT-50

4,194,304 / 8,388,608-WORDS x 4 BANKS x 16 / 8-BITS Network FCRAM
TOSHIBA

TC59LM814CFT-55

4,194,304 / 8,388,608-WORDS x 4 BANKS x 16 / 8-BITS Network FCRAM
TOSHIBA

TC59LM814CFT-60

4,194,304 / 8,388,608-WORDS x 4 BANKS x 16 / 8-BITS Network FCRAM
TOSHIBA

TC59LM818DMB-33

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM818DMB-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM818DMG-33

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM818DMG-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM818DMGI-37

IC 16M X 18 DDR DRAM, 0.65 ns, PBGA60, 9 X 17 MM, 1.00 MM PITCH, LEAD FREE, PLASTIC, TFBGA-60, Dynamic RAM
TOSHIBA

TC59LM818DMGI-40

IC,DRAM,FCRAM(DDR),4X4MX18,CMOS,BGA,60PIN,PLASTIC
TOSHIBA

TC59LM836DKB-30

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA