TC59LM818DMGI-37 [TOSHIBA]

IC 16M X 18 DDR DRAM, 0.65 ns, PBGA60, 9 X 17 MM, 1.00 MM PITCH, LEAD FREE, PLASTIC, TFBGA-60, Dynamic RAM;
TC59LM818DMGI-37
型号: TC59LM818DMGI-37
厂家: TOSHIBA    TOSHIBA
描述:

IC 16M X 18 DDR DRAM, 0.65 ns, PBGA60, 9 X 17 MM, 1.00 MM PITCH, LEAD FREE, PLASTIC, TFBGA-60, Dynamic RAM

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总55页 (文件大小:673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59LM818DMGI-37  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
Lead-Free  
288Mbits Network FCRAM2 (I-version)  
4,194,304-WORDS × 4 BANKS × 18-BITS  
DESCRIPTION  
Network FCRAMTM is Double Data Rate Fast Cycle Random Access Memory. TC59LM818DMGI is Network  
FCRAMTM containing 301,989,888 memory cells. TC59LM818DMGI is organized as 4,194,304-words × 4 banks × 18  
bits. TC59LM818DMGI feature a fully synchronous operation referenced to clock edge whereby all operations are  
synchronized at a clock input which enables high performance and simple user interface coexistence.  
TC59LM818DMGI can operate fast core cycle compared with regular DDR SDRAM.  
TC59LM818DMGI is suitable for Network, Server and other applications where large memory density and low  
power consumption are required. The Output Driver for Network FCRAMTM is capable of high quality fast data  
transfer under light loading condition. TC59LM818DMGI guarantees 40deg°C to 100deg°C operating temperature  
so it is suitable for use in wide operating temperature system.  
FEATURES  
PARAMETER  
TC59LM818DMGI37  
CL = 4  
CL = 5  
CL = 6  
5.0 ns  
4.0 ns  
3.75 ns  
25 ns  
t
Clock Cycle Time (min)  
CK  
t
t
I
Random Read/Write Cycle Time (min)  
Random Access Time (max)  
RC  
25 ns  
RAC  
DD1S  
DD2P  
Operating Current (single bank) (max)  
Power Down Current (max)  
220 mA  
65 mA  
l
Fully Synchronous Operation  
Double Data Rate (DDR)  
Data input/output are synchronized with both edges of DS / QS.  
Differential Clock (CLK and CLK ) inputs  
CS , FN and all address input signals are sampled on the positive edge of CLK.  
Output data (DQs and QS) is aligned to the crossings of CLK and CLK .  
Fast clock cycle time of 3.75 ns minimum  
Clock: 266 MHz maximum  
Data: 533 Mbps/pin maximum  
Operating Temperature : 40deg°C ~ 100deg°C (Case Temperature)  
Quad Independent Banks operation  
Fast cycle and Short Latency  
Selectable Data Strobe  
Distributed Auto-Refresh cycle in 1.95 µs  
Power Down Mode  
Variable Write Length Control  
Write Latency = CAS Latency-1  
Programable CAS Latency and Burst Length  
CAS Latency = 4, 5, 6  
Burst Length = 2, 4  
Organization: 4,194,304 words × 4 banks × 18 bits  
Power Supply Voltage  
V
DD  
V
:
2.5 V ± 0.125V  
: 1.7 V ~ 1.9 V  
DDQ  
Low voltage CMOS I/O covered with SSTL_18 (Half strength driver)  
Package:  
60Ball BGA, 1mm × 1mm Ball pitch (P-BGA60-0917-1.00AZ)  
Lead-Free  
Notice: FCRAM is trademark of Fujitsu limited, Japan.  
Rev 1.2  
2005-11-08 1/55  
TC59LM818DMGI-37  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 1.0mm  
PIN  
NAME  
Address Input  
x18  
A0~A14  
BA0, BA1  
DQ0~DQ17  
CS  
1
2
3
4
5
6
Bank Address  
Data Input/Output  
Chip Select  
A
B
Index  
V
DQ17  
DQ0  
V
DD  
SS  
DQ16  
DQ15  
V
V
Q
Q
V
Q
DD  
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
DQ8  
A14  
A13  
NC  
SS  
FN  
Function Control  
Power Down Control  
Clock Input  
PD  
V
Q
C
D
DD  
SS  
CLK, CLK  
DS / QS  
DQ14 DQ13  
DQ4  
Write/Read Data Strobe  
Power (+2.5 V)  
Ground  
V
V
DD  
SS  
DQ12  
DQ11  
DQ10  
DQ9  
VREF  
CLK  
A12  
V
V
Q
Q
V
Q
DD  
E
F
SS  
V
Q
DD  
SS  
Power (+1.8 V)  
(for DQ buffer)  
V
DDQ  
V
Q
V
Q
G
H
J
SS  
DD  
Ground  
(for DQ buffer)  
V
V
SSQ  
REF  
DS  
QS  
Reference Voltage  
Not Connected  
NC  
V
V
DD  
SS  
CLK  
FN  
K
L
PD  
A9  
A7  
A6  
A4  
CS  
A11  
BA1  
BA0  
A10  
A1  
M
N
A8  
A0  
A2  
A3  
A5  
P
R
V
V
DD  
SS  
: Depopulated Ball  
Rev 1.2  
2005-11-08 2/55  
TC59LM818DMGI-37  
BLOCK DIAGRAM  
CLK  
CLK  
PD  
DLL  
CLOCK  
BUFFER  
To each block  
CS  
FN  
CONTROL  
SIGNAL  
COMMAND  
DECODER  
BANK #3  
BANK #2  
BANK #1  
BANK #0  
GENERATOR  
MODE  
REGISTER  
MEMORY  
CELL ARRAY  
A0~A14  
ADDRESS  
BUFFER  
UPPER ADDRESS  
LATCH  
BA0, BA1  
LOWER ADDRESS  
LATCH  
COLUMN DECODER  
READ  
DATA  
WRITE  
DATA  
WRITE ADDRESS  
REFRESH  
COUNTER  
LATCH/  
ADDRESS  
BUFFER  
BUFFER  
COMPARATOR  
BURST  
COUNTER  
DS  
QS  
DQ BUFFER  
DQ0~DQ17  
Note: The TC59LM818DMGI configuration is 4 Bank of 32768 × 128 × 18 of cell array with the DQ pins numbered DQ0~DQ17.  
Rev 1.2  
2005-11-08 3/55  
TC59LM818DMGI-37  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Power Supply Voltage  
RATING  
UNIT  
NOTES  
V
V
V
V
V
0.3~ 3.3  
V
V
DD  
Power Supply Voltage (for DQ buffer)  
Input Voltage  
0.3~V + 0.3  
DD  
DDQ  
IN  
0.3~V + 0.3  
V
DD  
Output and I/O pin Voltage  
Input Reference Voltage  
Operating Temperature (case)  
Storage Temperature  
0.3~V  
+ 0.3  
DDQ  
V
OUT  
REF  
opr  
0.3~V + 0.3  
V
DD  
T
T
T
40~100  
55~150  
260  
°C  
°C  
°C  
W
mA  
stg  
Soldering Temperature (10 s)  
Power Dissipation  
solder  
P
2
D
I
Short Circuit Output Current  
±50  
OUT  
Caution: Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device.  
The device is not meant to be operated under conditions outside the limits described in the operational section of this  
specification.  
Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may affect device reliability.  
RECOMMENDED DC, AC OPERATING CONDITIONS (Notes: 1)(T  
= -40~100°C)  
CASE  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
MAX  
UNIT  
NOTES  
V
V
V
V
V
V
2.375  
1.7  
2.5  
2.625  
1.9  
V
V
V
V
V
V
DD  
Power Supply Voltage (for DQ buffer)  
Reference Voltage  
DDQ  
REF  
V
/2 × 95%  
+ 0.125  
V
/2  
DDQ  
V
/2 × 105%  
DDQ  
2
5
DDQ  
(DC)  
Input DC High Voltage  
V
V
+ 0.2  
DDQ  
IH  
IL  
REF  
(DC)  
(DC)  
Input DC Low Voltage  
0.1  
0.1  
V
0.125  
5
REF  
Differential Clock DC Input Voltage  
V
V
V
+ 0.1  
+ 0.2  
10  
ICK  
DDQ  
DDQ  
DDQ  
Differential Input Voltage  
CLK and CLK inputs (DC)  
V
(DC)  
0.4  
V
7, 10  
ID  
V
V
(AC)  
Input AC High Voltage  
Input AC Low Voltage  
V
+ 0.2  
REF  
+ 0.2  
0.2  
V
V
3, 6  
4, 6  
IH  
IL  
(AC)  
(AC)  
(AC)  
0.1  
V
REF  
Differential Input Voltage.  
V
0.55  
V
+ 0.2  
V
7, 10  
ID  
X
DDQ  
CLK and CLK inputs (AC)  
V
V
Differential AC Input Cross Point Voltage  
Differential Clock AC Middle Level  
V
V
/2 0.125  
/2 0.125  
V
V
/2 + 0.125  
/2 + 0.125  
V
V
8, 10  
9, 10  
DDQ  
DDQ  
(AC)  
ISO  
DDQ  
DDQ  
Rev 1.2  
2005-11-08 4/55  
TC59LM818DMGI-37  
Note:  
(1) All voltages referenced to V , V  
.
SS SSQ  
(2) V  
REF  
is expected to track variations in V  
DC level of the transmitting device.  
DDQ  
may not exceed ±2% V  
Peak to peak AC noise on V  
REF  
(DC).  
REF  
+ 0.7 V with a pulse width 5 ns.  
= −0.7 V with a pulse width 5 ns.  
(3) Overshoot limit: V  
IH (max)  
= V  
DDQ  
(4) Undershoot limit: V  
IL (min)  
(5) V (DC) and V (DC) are levels to maintain the current logic state.  
IH IL  
(6) V (AC) and V (AC) are levels to change to the new logic state.  
IH IL  
(7) V is differential voltage of CLK input level and CLK input level.  
ID  
(8) The value of V (AC) is expected to equal V  
/2 of the transmitting device.  
DDQ  
X
(9) V  
ISO  
means {V  
(CLK) + V (CLK )} /2  
ICK  
ICK  
(10) Refer to the figure below.  
CLK  
V
V
V
V
V
V (AC)  
ID  
x
x
x
x
x
CLK  
V
V
V
V
ICK  
ICK  
ICK  
ICK  
V
SS  
|V (AC)|  
ID  
0 V Differential  
V
ISO  
V
V
ISO (max)  
ISO (min)  
V
SS  
(11) In the case of external termination, VTT (termination voltage) should be gone in the range of V  
0.04 V.  
(DC) ±  
REF  
CAPACITANCE (V = 2.5V, V  
= 1.8 V, f = 1 MHz, Ta = 25°C)  
DD  
DDQ  
SYMBOL  
PARAMETER  
MIN  
MAX  
Delta  
UNIT  
C
C
C
C
Input pin Capacitance  
1.5  
1.5  
2.5  
3.0  
3.0  
3.5  
1.5  
0.25  
0.25  
0.5  
pF  
pF  
pF  
pF  
IN  
Clock pin (CLK, CLK ) Capacitance  
DQ, DS, QS Capacitance  
NC pin Capacitance  
INC  
I/O  
NC  
Note: These parameters are periodically sampled and not 100% tested.  
Rev 1.2  
2005-11-08 5/55  
TC59LM818DMGI-37  
RECOMMENDED DC OPERATING CONDITIONS  
(V = 2.5 V ± 0.125 V, V  
= 1.7 V ~ 1.9 V, T  
= −40 ~ 100°C)  
DD  
DDQ  
CASE  
SYMBOL  
PARAMETER  
MAX  
UNIT  
NOTES  
Operating Current  
One bank read or write operation ;  
= min; I = min, I = 0mA ;  
t
CK  
RC  
OUT  
I
I
I
220  
1, 2  
DD1S  
DD2N  
DD2P  
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
,
DDQ  
IN  
IL  
IH  
IN  
Address inputs change up to 2 times during minimum I  
Read data change twice per clock cycle  
,
RC  
Standby Current  
All banks: inactive state ;  
t
= min, CS = V , PD = V  
;
IH  
CK  
IH  
95  
1, 2  
0 V V V (AC) (max), V (AC) (min) V V ;  
DDQ  
IN  
IL  
IH  
IN  
Other input signals change one time during 4 × t  
,
CK  
DQ and DS inputs change twice per clock cycle  
Standby (power down) Current  
All banks: inactive state ;  
t
= min, PD = V (power down) ;  
IL  
CK  
65  
1, 2  
CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V ;  
DDQ  
IN  
IL  
IH  
IN  
Other input signals change one time during 4 × t  
,
CK  
DQ and DS inputs are floating (V  
/2)  
DDQ  
mA  
Write Operating Current (4Banks)  
4 Bank interleaved continuous burst write operation ;  
= min, I = min ;  
t
CK  
RC  
I
I
I
420  
420  
220  
1, 2  
DD4W  
DD4R  
DD5B  
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
Address inputs change once per clock cycle,  
;
DDQ  
IN  
IL  
IH  
IN  
DQ and DS inputs change twice per clock cycle  
Read Operating Current (4Banks)  
4 Bank interleaved continuous burst read operation ;  
t
= min, I  
= min, I  
= 0mA ;  
OUT  
CK  
RC  
1, 2  
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
;
DDQ  
IN  
IL  
IH  
IN  
Address inputs change once per clock cycle,  
Read data change twice per clock cycle  
Burst Auto Refresh Current  
Refresh command at every I  
interval ;  
REFC  
t
= min; I  
= min ;  
REFC  
CK  
1, 2, 3  
CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V ,  
DDQ  
IN  
IL  
IH  
IN  
Address inputs change up to 2 times during minimum I  
DQ and DS inputs change twice per clock cycle  
,
REFC  
Notes: 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of  
, t and I  
t
.
RC  
CK RC  
2. These parameters define the current between V  
and V  
.
SS  
DD  
3.  
I
is specified under burst refresh condition. Actual system should use distributed refresh that meet to t  
DD5B REFI  
specification.  
Rev 1.2  
2005-11-08 6/55  
TC59LM818DMGI-37  
RECOMMENDED DC OPERATING CONDITIONS (continued)  
(V = 2.5 V ± 0.125 V, V  
= 1.7 V ~ 1.9 V, T = −40 ~ 100°C)  
DD  
DDQ  
CASE  
SYMBOL  
PARAMETER  
MIN  
5  
MAX  
UNIT  
NOTES  
Input Leakage Current  
( 0 V V V , all other pins not under test = 0 V)  
I
I
5
5
µA  
LI  
IN  
DDQ  
Output Leakage Current  
5  
µA  
µA  
LO  
(Output disabled, 0 V V  
V  
)
OUT  
DDQ  
I
I
V
Current  
REF  
5  
5
REF  
(DC)  
V
V
V
V
V
V
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
5.6  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
Normal Output  
Driver  
I
I
I
I
I
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
5.6  
9.8  
9.8  
Output DC Current  
(V = 1.7V~1.9V)  
Strong Output  
Driver  
mA  
1
DDQ  
2.8  
2.8  
Weak  
Output Driver  
Notes: 1. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.  
Rev 1.2  
2005-11-08 7/55  
TC59LM818DMGI-37  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2)  
(V = 2.5 V ± 0.125V, V  
= 1.7V ~ 1.9V, T = −40 ~ 100°C)  
DD  
DDQ  
CASE  
MIN  
MAX  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
25  
5.0  
4.0  
3.75  
7.5  
7.5  
7.5  
24  
3
3
C
C
C
= 4  
= 5  
= 6  
L
L
L
t
Clock Cycle Time  
3
CK  
3
t
t
t
t
t
t
t
Random Access Time  
Clock High Time  
3
RAC  
CH  
0.45 × t  
3
CK  
Clock Low Time  
0.45 × t  
3
CL  
CK  
QS Access Time from CLK  
Data Output Skew from QS  
Data Access Time from CLK  
0.6  
0.6  
0.3  
0.65  
0.65  
3, 8  
CKQS  
QSQ  
AC  
0.65  
0.65  
3, 8  
3, 8  
Data Output Hold Time from CLK  
OH  
CLK half period  
(minimum of Actual t , t  
t
min (t , t  
)
3
HP  
CH CL  
)
CH CL  
t
t
t
t
t
t
t
t
QS (read) Pulse Width  
t
t  
HP QHS  
4, 8  
4, 8  
QSP  
Data Output Valid Time from QS  
DQ, QS Hold Skew factor  
t
t  
HP QHS  
QSQV  
QHS  
0.055 × t + 0.17  
CK  
ns  
DS (write) Low to High Setup Time  
DS (write) Preamble Pulse Width  
DS First Input Setup Time  
0.8 × t  
1.2 × t  
3
4
3
3
4
DQSS  
DSPRE  
DSPRES  
DSPREH  
DSP  
CK  
CK  
0.4 × t  
CK  
0
DS First Low Input Hold Time  
DS High or Low Input Pulse Width  
0.3 × t  
CK  
0.45 × t  
0.55 × t  
CK  
CK  
C
= 4  
= 5  
= 6  
1.0  
3, 4  
3, 4  
3, 4  
L
L
L
DS Input Falling Edge to Clock  
Setup Time  
t
C
C
1.0  
1.0  
DSS  
t
t
DS (write) Postamble Pulse Width  
0.45 × t  
1.0  
4
3, 4  
3, 4  
3, 4  
4
DSPST  
CK  
C
L
C
L
C
L
= 4  
= 5  
= 6  
DS (write) Postamble Hold  
Time  
1.0  
DSPSTH  
1.0  
t
t
t
t
Data Input Setup Time from DS  
Data Input Hold Time from DS  
0.4  
DS  
DH  
IS  
0.4  
4
Command/Address Input Setup Time  
Command/Address Input Hold Time  
0.7  
3
0.7  
3
IH  
Rev 1.2  
2005-11-08 8/55  
TC59LM818DMGI-37  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (continued)  
MIN  
MAX  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
3,6,8  
t
t
Data-out Low Impedance Time from CLK  
0.65  
LZ  
Data-out High Impedance Time from CLK  
0.65  
3,7,8  
HZ  
ns  
t
t
t
t
t
Last output to PD High Hold Time  
Power Down Exit Time  
0
0.7  
0.1  
0.4  
200  
5
QPDH  
PDEX  
T
3
5
Input Transition Time  
1
Auto-Refresh Average Interval  
Pause Time after Power-up  
1.95  
REFI  
PAUSE  
µs  
C
L
C
L
C
L
= 4  
= 5  
= 6  
Random Read/Write Cycle  
Time  
(applicable to same bank)  
I
6
RC  
7
RDA/WRA to LAL Command Input Delay  
(applicable to same bank)  
I
I
1
1
RCD  
RAS  
C
L
C
L
C
L
= 4  
= 5  
= 6  
4
5
6
LAL to RDA/WRA Command  
Input Delay  
(applicable to same bank)  
Random Bank Access Delay  
(applicable to other bank)  
I
I
I
2
RBD  
RWD  
WRD  
B
= 2  
= 4  
2
3
LAL following RDA to WRA  
Delay  
(applicable to other bank)  
L
L
B
LAL following WRA to RDA Delay  
(applicable to other bank)  
1
cycle  
C
= 4  
= 5  
= 6  
7
2
L
L
L
I
Mode Register Set Cycle Time  
C
C
7
RSC  
7
I
I
PD Low to Inactive State of Input Buffer  
PD High to Active State of Input Buffer  
1
PD  
PDA  
C
L
C
L
C
L
C
L
C
L
C
L
= 4  
= 5  
= 6  
= 4  
= 5  
= 6  
19  
23  
25  
19  
23  
25  
Power down mode valid from  
REF command  
I
PDV  
I
I
Auto-Refresh Cycle Time  
REFC  
LOCK  
DLL Lock-on Time  
(applicable to RDA command)  
200  
Rev 1.2  
2005-11-08 9/55  
TC59LM818DMGI-37  
AC TEST CONDITIONS  
SYMBOL  
PARAMETER  
Input High Voltage (minimum)  
VALUE  
UNIT  
NOTES  
V
V
V
V
V
V
V
+ 0.2  
V
V
IH (min)  
IL (max)  
REF  
REF  
REF  
Input Low Voltage (maximum)  
Input Reference Voltage  
0.2  
/2  
V
V
DDQ  
Termination Voltage  
V
V
TT  
REF  
Input Signal Peak to Peak Swing  
Differential Clock Input Reference Level  
Input Differential Voltage  
0.8  
V
SWING  
Vr  
V
(AC)  
V
X
V
(AC)  
1.0  
V
ID  
SLEW  
Input Signal Minimum Slew Rate  
Output Timing Measurement Reference Voltage  
2.5  
V/ns  
V
V
V
/2  
9
OTR  
DDQ  
V
DDQ  
V
V
(AC)  
(AC)  
IH min  
REF  
V
TT  
25 Ω  
V
SWING  
Output  
V
IL max  
Measurement point  
V
SS  
T  
T  
(AC))/T  
AC Test Load  
SLEW = (V  
(AC) V  
IL max  
IH min  
Note:  
(1) Transition times are measured between V  
(DC) and V  
IL max  
(DC).  
IH min  
Transition (rise and fall) of input signals have a fixed slope.  
(2) If the result of nominal calculation with regard to t  
rounded up to the nearest decimal place.  
contains more than one decimal place, the result is  
CK  
(i.e., t  
DSP(min)  
= 0.45 × t , t = 3.75 ns, 0.45 × 3.75 ns = 1.6875 ns is rounded up to 1.7 ns.)  
CK CK  
(3) These parameters are measured from the differential clock (CLK and CLK ) AC cross point.  
(4) These parameters are measured from signal transition point of DS crossing V  
REF  
level.  
(5) The t  
The t  
applies to equally distributed refresh method.  
applies to both burst refresh method and distributed refresh method.  
REFI (max)  
REFI (min)  
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns  
always. In other words, the number of Auto-Refresh cycles which can be performed within 3.2 µs (8 × 400 ns)  
is to 8 times in the maximum.  
(6) Low Impedance State is specified at V /2 ± 0.1 V from steady state.  
DDQ  
(7) High Impedance State is specified where output buffer is no longer driven.  
(8) These parameters depend on the clock jitter. These parameters are measured at stable clock.  
(9) Output timing is measured by using Normal driver strength at VDDQ = 1.7 1.9V.  
Rev 1.2  
2005-11-08 10/55  
TC59LM818DMGI-37  
POWER UP SEQUENCE  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
As for PD , being maintained by the low state (0.2 V) is desirable before a power-supply injection.  
Apply V  
Apply V  
before or at the same time as V  
.
DD  
DDQ  
before or at the same time as V  
.
DDQ  
REF  
Start clock (CLK, CLK ) and maintain stable condition for 200 µs (min).  
After stable power and clock, apply DESL and take PD =H.  
Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note: 1)  
Issue MRS for set CAS latency (CL), Burst Type (BT), and Burst Length (BL). (Note: 1)  
Issue two or more Auto-Refresh commands (Note: 1).  
Ready for normal operation after 200 clocks from Extended Mode Register programming.  
Notes:  
(1)  
Sequence 6, 7 and 8 can be issued in random order.  
L = Logic Low, H = Logic High  
(2)  
(3)  
DQ output is Hi-Z state during power upsequence.  
2.5V(TYP)  
1.8V(TYP)  
V
DD  
V
DDQ  
1/2 V  
(TYP)  
DDQ  
V
REF  
CLK  
CLK  
t
PDEX  
l
l
l
l
REFC  
RSC  
RSC  
REFC  
200us(min)  
PD  
l
= 200clock cycle(min)  
LOCK  
l
PDA  
Command  
DESLRDA MRS DESL RDA MRS  
DESL WRA REF DESL  
WRA REF DESL  
op-code  
EMRS  
op-code  
Address  
MRS  
DQ  
(Input)  
DS  
QS  
Low  
(Uni-QS mode)  
QS  
(Free Running mode)  
EMRS  
MRS  
Auto Refresh cycle  
Normal Operation  
Rev 1.2  
2005-11-08 11/55  
TC59LM818DMGI-37  
TIMING DIAGRAMS  
Input Timing  
Command and Address  
t
CK  
t
t
t
CL  
CK  
CH  
CLK  
CLK  
t
t
t
t
t
t
t
t
t
t
t
t
IS  
IS  
IS  
IH  
IH  
IH  
IS  
IS  
IS  
IH  
IH  
IH  
CS  
FN  
1st  
1st  
2nd  
2nd  
LA  
A0~A14  
UA, BA  
BA0, BA1  
Data  
DS  
t
t
t
t
DH  
DH  
DS  
DH  
DS  
DQn (input)  
DQm (input)  
t
t
t
DH  
t
DS  
DS  
Refer to the Command Truth Table.  
Timing of the CLK,  
CLK  
t
t
CL  
CH  
V
V
IH  
IH  
CLK  
(AC)  
(AC)  
V
V
IL  
IL  
CLK  
t
t
T
T
t
CK  
CLK  
CLK  
V
V
IH  
IL  
V
(AC)  
ID  
V
V
V
X
X
X
Rev 1.2  
2005-11-08 12/55  
TC59LM818DMGI-37  
Read Timing (Burst Length = 4)  
Unidirectional DS/QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
DESL  
addresses)  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
CKQS QSP QSP  
CAS latency = 4  
QS  
Low  
Low  
(output)  
t
t
t
QSQ  
QSQV  
LZ  
t
t
t
t
HZ  
QSQ QSQ QSQV  
DQ  
Hi-Z  
Q0  
Q1  
Q2  
Q3  
(output)  
t
t
t
OH  
t
AC  
AC  
AC  
t
t
CKQS  
CKQS  
t
t
t
CKQS  
QSP QSP  
CAS latency = 5  
QS  
Low  
Low  
Hi-Z  
(output)  
t
t
QSQV  
t
LZ  
QSQ  
t
t
t
t
HZ  
QSQ QSQ QSQV  
DQ  
Q0  
Q1  
Q2  
Q3  
(output)  
t
t
t
OH  
AC  
t
AC  
AC  
t
t
CKQS  
CKQS  
t
t
t
CKQS QSP QSP  
CAS latency = 6  
QS  
(output)  
Low  
Hi-Z  
Low  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ QS  
QSQV  
Q2  
DQ  
Q0  
Q1  
Q3  
AC  
(output)  
t
t
t
t
OH  
AC  
AC  
Note: DQ0 to DQ17 are aligned with QS.  
Rev 1.2  
2005-11-08 13/55  
TC59LM818DMGI-37  
Read Timing (Burst Length = 4)  
Unidirectional DS/Free Running QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
DESL  
addresses)  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
QSP QSP  
CKQS  
CAS latency = 4  
QS  
(output)  
t
t
t
LZ  
QSQV  
QSQ  
Q3  
t
t
t
t
QSQ  
Q0  
t
QSQV  
HZ  
QSQ  
DQ  
(output)  
Hi-Z  
Q1  
Q2  
t
t
AC  
t
AC  
AC  
OH  
t
t
CKQS  
CKQS  
t
t
t
QSP QSP  
CKQS  
CAS latency = 5  
QS  
(output)  
t
t
t
QSQ  
LZ  
QSQV  
t
t
HZ  
t
t
QSQV  
QSQ QSQ  
DQ  
(output)  
Hi-Z  
Q0  
Q1  
Q2  
Q3  
t
t
t
AC  
AC  
AC  
t
OH  
t
t
CKQS  
CKQS  
t
t
t
QSP QSP  
CKQS  
CAS latency = 6  
QS  
(output)  
t
t
t
QSQV  
QSQ  
LZ  
t
t
HZ  
t
t
QSQV  
QSQ QSQ  
DQ  
(output)  
Hi-Z  
Q0  
Q1  
Q2  
Q3  
t
t
t
AC  
AC  
AC  
t
OH  
Note: DQ0 to DQ17 are aligned with QS.  
QS is always asserted in Free Running QS mode.  
Rev 1.2  
2005-11-08 14/55  
TC59LM818DMGI-37  
Write Timing (Burst Length = 4)  
Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after WRA)  
Input  
(control &  
DESL  
addresses)  
t
DSPSTH  
t
DQSS  
t
DSS  
t
DSPRES  
t
t
t
t
DSP DSP DSP DSPST  
t
DSPREH  
CAS latency = 4  
DS  
(input)  
t
Preamble  
Postamble  
DSS  
t
DSPRE  
t
t
DS  
t
DS  
DS  
t
t
DH  
t
DH  
DH  
DQ  
D0  
D1  
D2  
D3  
(input)  
t
DQSS  
t
DSS  
t
t
DSPSTH  
DSS  
t
DSPRES  
t
t
t t  
DSP DSP DSPST  
CAS latency = 5  
DSP  
t
DSPREH  
DS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
t
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
D3  
D0  
D1  
D2  
(input)  
t
t
DQSS  
DQSS  
t
DSS  
t
t
DSPSTH  
DSS  
t
DSPRES  
t
t
t
t
t
DSP DSP DSP DSPST  
CAS latency = 6  
t
DSPREH  
DS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
D3  
D0  
D1  
D2  
(input)  
t
t
DQSS  
DQSS  
QS  
(Uni-QS)  
Low  
QS  
(Free Runninig)  
Note: DQ0 to DQ17 are sampled at both edges of DS.  
Rev 1.2  
2005-11-08 15/55  
TC59LM818DMGI-37  
t
, t  
, I  
Timing  
REFI PAUSE XXXX  
CLK  
CLK  
t
, t  
,
REFI PAUSE  
t
t
t
t
IS IH  
IS IH  
Input  
(control &  
addresses)  
Command  
Command  
Note: “I  
” means “I ”, “I  
”, “I  
”, etc.  
RAS  
XXXX  
RC  
RCD  
Rev 1.2  
2005-11-08 16/55  
TC59LM818DMGI-37  
FUNCTION TRUTH TABLE (Notes: 1, 2, 3)  
Command Truth Table (Notes: 4)  
The First Command  
SYMBOL  
FUNCTION  
Device Deselect  
CS  
FN  
BA1~BA0  
A14~A9  
A8  
A7  
A6~A0  
DESL  
RDA  
H
L
L
×
H
L
×
×
×
×
×
Read with Auto-close  
Write with Auto-close  
BA  
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
WRA  
The Second Command (The next clock of RDA or WRA command)  
BA1~  
BA0  
A14~  
A13  
A12~  
A11  
SYMBOL  
FUNCTION  
CS  
FN  
A10~A9  
A8  
A7  
A6~A0  
LAL  
REF  
MRS  
Lower Address Latch  
Auto-Refresh  
H
L
L
×
×
×
×
×
V
×
L
×
×
L
×
×
L
×
×
L
×
×
LA  
×
Mode Register Set  
V
V
V
Notes: 1. L = Logic Low, H = Logic High, × = either L or H, V = Valid (specified value), BA = Bank Address, UA = Upper Address,  
LA = Lower Address  
2. All commands are assumed to issue at a valid state.  
3. All inputs for command (excluding PDEX) are latched on the crossing point of differential clock input where CLK goes to  
High.  
4. Operation mode is decided by the combination of 1st command and 2nd command. Refer to “STATE DIAGRAM” and  
the command table below.  
Read Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0  
A14~A9  
A8  
A7  
A6~A0  
NOTES  
RDA (1st)  
LAL (2nd)  
L
H
BA  
UA  
UA  
UA  
UA  
LA  
H
×
×
×
×
×
Write Command Table  
BA1~  
BA0  
A10~  
A9  
COMMAND(SYMBOL)  
CS  
FN  
A14  
A13  
A12  
A11  
A8  
A7  
A6~A0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
LA  
H
×
×
VW0  
VW1  
×
×
×
×
×
Notes: 5. A14~ A13 are used for Variable Write Length (VW) control at Write Operation.  
VW Truth Table  
Burst Length  
Function  
Write All Words  
VW0  
VW1  
L
H
L
×
×
BL=2  
Write First One Word  
Reserved  
L
Write All Words  
H
L
L
BL=4  
Write First Two Words  
Write First One Word  
H
H
H
Rev 1.2  
2005-11-08 17/55  
TC59LM818DMGI-37  
FUNCTION TRUTH TABLE (continued)  
Mode Register Set Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0  
A14~A9  
A8  
A7  
A6~A0  
NOTES  
6
RDA (1st)  
L
L
H
×
×
×
×
×
MRS (2nd)  
×
V
L
L
V
V
Notes: 6. Refer to “MODE REGISTER TABLE”.  
Auto-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A14~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
H
n
H
H
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
L
L
L
×
×
×
×
×
×
×
×
×
×
Auto-Refresh  
H
×
Power Down Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A14~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
n
L
Power Down Entry  
Power Down Continue  
Power Down Exit  
PDEN  
Standby  
H
L
L
H
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
7
8
Power Down  
Power Down  
L
PDEX  
H
H
Notes: 7. PD should be brought to Low after DQ’s state turned high impedance.  
8. When PD is brought to High from Low, this function is executed asynchronously.  
Rev 1.2  
2005-11-08 18/55  
TC59LM818DMGI-37  
FUNCTION TRUTH TABLE (continued)  
PD  
CURRENT STATE  
CS FN  
ADDRESS COMMAND  
ACTION  
NOTES  
n 1  
H
H
H
H
H
L
n
H
H
H
L
H
L
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
L
×
×
×
×
DESL  
RDA  
WRA  
PDEN  
NOP  
BA, UA  
Row activate for Read  
Row activate for Write  
Power Down Entry  
Illegal  
L
BA, UA  
Idle  
H
L
×
10  
L
×
×
×
×
Refer to Power Down State  
Begin Read  
H
H
H
H
L
H
H
L
H
L
LA  
LAL  
Op-code  
MRS/EMRS Access to Mode Register  
PDEN Illegal  
MRS/EMRS Illegal  
Row Active for Read  
Row Active for Write  
H
L
×
L
×
×
×
×
LAL  
REF  
PDEN  
REF  
Invalid  
H
H
H
H
L
H
H
L
H
L
LA  
Begin Write  
×
Auto-Refresh  
H
L
×
Illegal  
L
×
Illegal  
×
×
×
Invalid  
H
H
H
H
H
L
H
H
H
L
H
L
×
DESL  
RDA  
WRA  
PDEN  
Continue Burst Read to End  
BA, UA  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
11  
11  
L
BA, UA  
Read  
H
L
×
×
×
L
×
×
Data Write&Continue Burst Write to  
End  
H
H
H
×
×
DESL  
H
H
H
H
L
H
H
L
L
L
H
L
×
H
L
L
H
L
×
H
L
L
H
L
×
×
×
H
L
×
×
×
×
H
L
×
×
×
×
H
L
×
×
×
×
×
BA, UA  
RDA  
WRA  
PDEN  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
11  
11  
BA, UA  
Write  
×
L
×
×
×
H
H
H
H
H
L
H
H
H
L
×
DESL  
RDA  
WRA  
PDEN  
NOP Idle after I  
Illegal  
REFC  
BA, UA  
BA, UA  
Illegal  
Auto-Refreshing  
×
Illegal  
L
×
Illegal  
×
×
Illegal  
H
H
H
H
H
L
H
H
H
L
×
DESL  
RDA  
WRA  
PDEN  
NOP Idle after I  
Illegal  
RSC  
BA, UA  
BA, UA  
Illegal  
Mode Register  
Accessing  
×
×
×
×
×
Illegal  
L
Illegal  
×
Invalid  
H
L
×
Invalid  
L
Maintain Power Down Mode  
Power Down  
Exit Power Down Mode Idle after  
L
L
H
H
H
L
×
×
×
×
PDEX  
t
PDEX  
Illegal  
Notes: 10. Illegal if any bank is not idle.  
11. Illegal to bank in specified states; Function may be legal in the bank inidicated by Bank Address (BA).  
Rev 1.2  
2005-11-08 19/55  
TC59LM818DMGI-37  
MODE REGISTER TABLE  
Regular Mode Register (Notes: 1)  
*1  
*1  
*3  
ADDRESS  
Register  
BA1  
BA0  
A14~A8  
0
A7  
A6~A4  
CL  
A3  
BT  
A2~A0  
BL  
0
0
TE  
A7  
TEST MODE (TE)  
A3  
BURST TYPE (BT)  
0
1
Regular (default)  
Test Mode Entry  
0
1
Sequential  
Interleave  
A6  
A5  
A4  
CAS LATENCY (CL)  
A2  
A1  
A0  
BURST LENGTH (BL)  
*2  
*2  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
×
0
1
0
1
0
1
Reserved  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
*2  
Reserved  
2
4
*2  
Reserved  
4
5
6
*2  
Reserved  
*2  
Reserved  
Extended Mode Register (Notes: 4)  
*4  
*4  
*5  
ADDRESS  
Register  
BA1  
BA0  
A14~A7  
0
A6~A5  
SS  
A4~A3  
A2~A1  
A0  
0
1
DIC (QS)  
DIC (DQ)  
DS  
QS  
DQ  
OUTPUT DRIVE IMPEDANCE CONTROL  
(DIC)  
A6 A5  
STROBE SELECT  
A4 A3 A2 A1  
*2  
0
0
1
1
0
Reserved  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Reserved  
*2  
1
0
1
Reserved  
Unidirectional DS/QS  
Unidirectional DS/Free Running QS  
A0  
DLL SWITCH (DS)  
0
1
DLL Enable  
DLL Disable  
Notes: 1. Regular Mode Register is chosen using the combination of BA0 = 0 and BA1 = 0.  
2. “Reserved” places in Regular Mode Register should not be set.  
3. A7 in Regular Mode Register must be set to “0” (low state).  
Because Test Mode is specific mode for supplier.  
4. Extended Mode Register is chosen using the combination of BA0 = 1 and BA1 = 0.  
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.  
Rev 1.2  
2005-11-08 20/55  
TC59LM818DMGI-37  
STATE DIAGRAM  
POWER  
DOWN  
PDEX  
( PD = H)  
PDEN  
( PD = L)  
STANDBY  
(IDLE)  
PD = H  
AUTO-  
REFRESH  
MODE  
REGISTER  
WRA  
RDA  
REF  
MRS  
ACTIVE  
(RESTORE)  
ACTIVE  
LAL  
LAL  
WRITE  
(BUFFER)  
READ  
Command input  
Automatic return  
The second command at Active state  
must be issued 1 clock after RDA or  
WRA command input.  
Rev 1.2  
2005-11-08 21/55  
TC59LM818DMGI-37  
TIMING DIAGRAMS  
SINGLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
RC  
I
= 5 cycles  
RC  
RC  
Command  
RDA LAL  
=1 cycle  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA  
I
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RAS  
RCD  
RAS  
RCD  
RAS  
RCD  
Address  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 4  
CL = 4  
CL = 4  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
(output)  
Rev 1.2  
2005-11-08 22/55  
TC59LM818DMGI-37  
SINGLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
RCD  
UA  
RAS  
RCD  
RAS  
RCD  
UA  
Address  
LA  
UA  
#0  
LA  
LA  
Bank Add.  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 5  
CL = 5  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Rev 1.2  
2005-11-08 23/55  
TC59LM818DMGI-37  
SINGLE BANK READ TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
RDA LAL  
DESL  
= 6 cycles  
RDA LAL  
DESL  
RDA LAL  
I
=1 cycle  
I
I
=1 cycle  
I
= 6 cycles  
I
=1 cycle  
RCD  
UA  
RAS  
RCD  
RAS  
RCD  
UA  
Address  
LA  
UA  
#0  
LA  
LA  
Bank Add.  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 6  
CL = 6  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2  
Rev 1.2  
2005-11-08 24/55  
TC59LM818DMGI-37  
SINGLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
RC  
I
= 5 cycles  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RAS  
RCD  
UA  
RAS  
RCD  
RAS  
RCD  
Address  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Rev 1.2  
2005-11-08 25/55  
TC59LM818DMGI-37  
SINGLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
RCD  
UA  
RAS  
RCD  
UA  
RAS  
RCD  
UA  
Address  
LA  
LA  
LA  
Bank Add.  
#0  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
WL = 4  
WL = 4  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
Rev 1.2  
2005-11-08 26/55  
TC59LM818DMGI-37  
SINGLE BANK WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
I
=1 cycle  
I
= 6 cycles  
I
=1 cycle  
I
= 6 cycles  
I =1 cycle  
RCD  
RCD  
UA  
RAS  
RCD  
RAS  
Address  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 5  
WL = 5  
DQ  
(input)  
D0 D1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
(input)  
D0 D1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Rev 1.2  
2005-11-08 27/55  
TC59LM818DMGI-37  
SINGLE BANK READ-WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
RC  
I
= 5 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Q0  
Rev 1.2  
2005-11-08 28/55  
TC59LM818DMGI-37  
SINGLE BANK READ-WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
CL = 5  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
CL = 5  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Rev 1.2  
2005-11-08 29/55  
TC59LM818DMGI-37  
SINGLE BANK READ-WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
I
11  
12  
13  
14  
15  
CLK  
CLK  
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 6  
WL = 5  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
CL = 6  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Rev 1.2  
2005-11-08 30/55  
TC59LM818DMGI-37  
MULTIPLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cyclesI  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 4  
CL = 4  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
Hi-Z  
DQ  
(output)  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
(output)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 31/55  
TC59LM818DMGI-37  
MULTIPLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL  
DESL  
RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 5  
CL = 5  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2  
(output)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 32/55  
TC59LM818DMGI-37  
MULTIPLE BANK READ TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL  
DESL  
RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 7 cycles  
RC  
I
(Bank"b") = 7 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 6  
CL = 6  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2  
Rev 1.2  
2005-11-08 33/55  
TC59LM818DMGI-37  
MULTIPLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
(Bank"b") = 5 cycles  
RC  
I
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 3  
WL = 3  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
(input)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 34/55  
TC59LM818DMGI-37  
MULTIPLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
LAL  
LA  
Command  
Address  
WRA LAL WRA LAL  
DESL  
WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1  
(input)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 35/55  
TC59LM818DMGI-37  
MULTIPLE BANK WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL  
DESL  
WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 7 cycles  
RC  
I
(Bank"b") = 7 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 36/55  
TC59LM818DMGI-37  
MULTIPLE BANK READ-WRITE TIMING (BL = 2)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
Command  
WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA  
I
= 1 cycle  
I
= 2 cycles  
I
= 1 cycle  
I
= 2 cycles  
WRD  
RWD  
WRD  
RWD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
Unidirectional DS/QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
DQ  
Low  
Hi-Z  
CL = 4  
WL = 3  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
CL = 5  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 5  
WL = 4  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 6  
WL = 5  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
DQ  
Unidirectional DS/Free Running QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
DS  
CL = 5  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
DQ  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 37/55  
TC59LM818DMGI-37  
MULTIPLE BANK READ-WRITE TIMING (BL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
DESL  
DESL  
WRA LAL RDA LAL  
WRA LAL RDA  
LAL  
LA  
WRA LAL RDA LAL  
Command  
I
= 1 cycle  
I
= 3 cycles  
I
= 1 cycle  
I
= 3 cycles  
I = 1 cycle  
WRD  
WRD  
RWD  
WRD  
RWD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
Unidirectional DS/QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
Low  
CL = 4  
WL = 3  
WL = 4  
WL = 5  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
CL = 5  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 5  
Qd0 Qd1 Qd2Qd3  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 6  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1  
DQ  
Unidirectional DS/Free Running QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
CL = 5  
DS  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2Qd3  
CL = 6  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0Qd1  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.2  
2005-11-08 38/55  
TC59LM818DMGI-37  
WRITE with VARIABLE WRITE LENGTH (VW) CONTROL (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
BL = 2, SEQUENTIAL MODE  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
VW=All  
LA=#1  
VW=1  
Address  
UA  
UA  
VW0 = Low  
VW1 = don't care  
VW0 = High  
VW1 = don't care  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DS  
(input)  
DQ  
D0 D1  
D0  
(input)  
Lower Address #3 #2  
#1 (#0)  
Last one data is masked.  
BL = 4, SEQUENTIAL MODE  
Command  
Address  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
LA=#1  
LA=#2  
UA  
UA  
UA  
VW=All  
VW=1  
VW=2  
VW0 = High  
VW1 = Low  
VW0 = High  
VW1 = High  
VW0 = Low  
VW1 = High  
Bank  
"a"  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DS  
(input)  
DQ  
D0 D1 D2 D3  
D0  
D0 D1  
(input)  
Lower Address #3 #0 #1 #2  
#1(#2)(#3)(#0)  
Last three data are masked.  
Note: DS input must be continued till end of burst count even if some of laster data is masked.  
#2 #3 (#0)(#1)  
Last two data are masked.  
Rev 1.2  
2005-11-08 39/55  
TC59LM818DMGI-37  
POWER DOWN TIMING (CL = 4, BL = 4)  
Read cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-2  
n-1  
n
n+1  
n+2  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
I
= 2 cycle  
PD  
IS  
t
IH  
PD  
t
t
PDEX  
QPDH  
l
, t  
RC(min) REFI(max)  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
(output)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
CL = 4  
DQ  
(output)  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
Power Down Entry  
Power Down Exit  
Note: PD must be kept "High" level until end of Burst data output.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
cycles later.  
PDA  
Rev 1.2  
2005-11-08 40/55  
TC59LM818DMGI-37  
POWER DOWN TIMING (CL = 4, BL = 4)  
Write cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-2  
n-1  
n
n+1  
n+2  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
I
= 2 cycle  
PD  
IS  
t
IH  
PD  
t
t
QPDH  
PDEX  
l
, t  
RC(min) REFI(max)  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
WL = 3  
DQ  
(input)  
D0 D1 D2 D3  
Note: PD must be kept "High" level until WL+2 clock cycles from LAL command.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
cycles later.  
PDA  
Rev 1.2  
2005-11-08 41/55  
TC59LM818DMGI-37  
MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
A14~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
BA0, BA1  
CL + BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
(output)  
Low  
DQ  
Q0 Q1  
(output)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
Q0 Q1  
(output)  
Note: Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2.  
Rev 1.2  
2005-11-08 42/55  
TC59LM818DMGI-37  
MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
A14~A0  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
BA0, BA1  
WL+BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Note: Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.  
Rev 1.2  
2005-11-08 43/55  
TC59LM818DMGI-37  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
A14~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
BA0, BA1  
CL + BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
(output)  
Low  
DQ  
Q0 Q1  
(output)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
Q0 Q1  
(output)  
Note: Minimum delay from LAL following RDA to RDA of EMRS operation is CL+BL/2.  
When DQ strobe mode is changed by EMRS, QS output is invalid for l period.  
RSC  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Rev 1.2  
2005-11-08 44/55  
TC59LM818DMGI-37  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
A14~A0  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
BA0, BA1  
WL+BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
(input)  
D0 D1 D2 D3  
Note: When DQ strobe mode is changed by EMRS, QS output is invalid for l  
period.  
RSC  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.  
Rev 1.2  
2005-11-08 45/55  
TC59LM818DMGI-37  
AUTO-REFRESH TIMING (CL = 4, BL = 4)  
Unidirectional DS/QS mode  
0
1
2
3
4
5
6
7
n 1  
n
n + 1  
n + 2  
CLK  
CLK  
I
= 5 cycles  
I
= 19 cycles  
RC  
REFC  
RDA LAL or  
WRA  
Command  
RDA  
LAL  
DESL  
WRA  
REF  
DESL  
or  
MRS or  
REF  
Bank,  
UA  
Bank, Address  
LA  
I
= 1 cycle  
I
= 4 cycles  
I = 1 cycle  
RCD  
RCD  
RAS  
QS  
Low  
Hi-Z  
Low  
Hi-Z  
(output)  
CL = 4  
DQ  
(output)  
Q0 Q1 Q2 Q3  
Unidirectional DS/Free Running QS mode  
CLK  
CLK  
I
= 5 cycles  
I
= 19 cycles  
REFC  
RC  
RDA LAL or  
WRA  
Command  
RDA  
LAL  
DESL  
WRA  
REF  
DESL  
or  
MRS or  
REF  
Bank,  
UA  
Bank, Address  
LA  
I
= 1 cycle  
I
= 4 cycles  
I = 1 cycle  
RCD  
RCD  
RAS  
QS  
(output)  
CL = 4  
DQ  
(output)  
Hi-Z  
Note: In case of CL = 4, I  
Hi-Z  
Q0 Q1 Q2 Q3  
must be meet 19 clock cycles.  
REFC  
When the Auto-Refresh operation is performed, the synthetic average interval of Auto-Refresh command  
specified by t  
REFI  
must be satisfied.  
REFI  
t
is average interval time in 8 Refresh cycles that is sampled randomly.  
t
t
t
t
t
8
1
2
3
7
CLK  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
8 Refresh cycle  
Total time of 8 Refresh cycle  
8
t + t + t + t + t + t + t + t  
1 2 3 4 5 6 7 8  
t
=
=
REFI  
8
t
is specified to avoid partly concentrated current of Refresh operation that is activated larger area  
REFI  
than Read / Write operation.  
Rev 1.2  
2005-11-08 46/55  
TC59LM818DMGI-37  
FUNCTIONAL DESCRIPTION  
TM  
Network FCRAM  
The FCRAMTM is an acronym of Fast Cycle Random Access Memory.  
The Network FCRAMTM is competent to perform fast random core access, low latency and high-speed data  
transfer.  
PIN FUNCTIONS  
CLOCK INPUTS: CLK & 
CLK  
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input. The  
CS , FN and all address input signals are sampled on the crossing of the positive edge of CLK and the negative  
edge of CLK . The QS and DQ output data are aligned to the crossing point of CLK and CLK . The timing  
reference point for the differential clock is when the CLK and CLK signals cross during a transition.  
POWER DOWN: PD  
The PD input controls the entry to the Power Down modes. The PD input does not have a Clock Suspend  
function like a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into low state if any Read  
or Write operation is being performed.  
CS  
CHIP SELECT & FUNCTION CONTROL:  
& FN  
The CS and FN inputs are a control signal for forming the operation commands on FCRAMTM. Each operation  
mode is decided by the combination of the two consecutive operation commands using the CS and FN inputs.  
BANK ADDRESSES: BA0 & BA1  
The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the  
bank to be used for the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register  
Set command (MRS or EMRS).  
BA0  
BA1  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
0
1
0
1
0
0
1
1
ADDRESS INPUTS: A0~A14  
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The Upper  
Addresses with Bank addresses are latched at the RDA or WRA command and the Lower Addresses are latched at  
the LAL command. The A0 to A14 inputs are also used for setting the data in the Regular or Extended Mode  
Register set cycle.  
I/O Organization  
18 bits  
UPPER ADDRESS  
A0~A14  
LOWER ADDRESS  
A0~A6  
Rev 1.2  
2005-11-08 47/55  
TC59LM818DMGI-37  
DATA INPUT/OUTPUT: DQ0~DQ17  
The input data of DQ0 to DQ17 are taken in synchronizing with the both edges of DS input signal. The output  
data of DQ0 to DQ17 are outputted synchronizing with the both edges of QS output signal.  
DATA STROBE: DS, QS  
Method of data strobe is chosen by Extended mode register.  
(1) Unidirectional DS / QS mode  
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation.  
Both edges of QS are used for trigger signal of all DQs at Read operation. During Write, Auto-Refresh and  
NOP cycle, QS assert always “Low” level.  
(2) Unidirectional DS / Free running QS mode  
DS is input signal and QS is output signal. Both edge of DS are used to sample all DQs at Write operation.  
Both edges of QS are used for trigger signal of all DQs at Read operation. QS assert always toggle signal.  
This strobe type is easy to use for pin to pin connect application.  
POWER SUPPLY: V , V  
, V , V  
SS SSQ  
DD DDQ  
V
and V are power supply pins for memory core and peripheral circuits.  
DD  
SS  
and V  
V
DDQ  
are power supply pins for the output buffer.  
SSQ  
REFERENCE VOLTAGE: V  
REF  
V
REF  
is reference voltage for all input signals.  
Rev 1.2  
2005-11-08 48/55  
TC59LM818DMGI-37  
COMMAND FUNCTIONS and OPERATIONS  
TC59LM818DMBI are introduced the two consecutive command input method. Therefore, except for Power Down  
mode, each operation mode decided by the combination of the first command and the second command from  
stand-by states of the bank to be accessed.  
Read Operation (1st command + 2nd command = RDA + LAL)  
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated  
by Bank Address in a read mode. When the LAL command with Lower Addresses is issued at the next clock of the  
RDA command, the data is read out sequentially synchronizing with the both edges of QS output signal (Burst  
Read Operation). The initial valid read data appears after CAS latency from the issuing of the LAL command.  
The valid data is outputted for a burst length. The CAS latency, the burst length of read data and the burst type  
must be set in the Mode Register beforehand. The read operated bank goes back automatically to the idle state  
after l  
.
RC  
Write Operation (1st command + 2nd command = WRA + LAL)  
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated  
by Bank Address in a write mode. When the LAL command with Lower Addresses is issued at the next clock of the  
WRA command, the input data is latched sequentially synchronizing with the both edges of DS input signal (Burst  
Write Operation). The data and DS inputs have to be asserted in keeping with clock input after CAS latency-1  
from the issuing of the LAL command. The DS has to be provided for a burst length. The CAS latency and the  
burst type must be set in the Mode Register beforehand. The write operated bank goes back automatically to the  
idle state after l . Write Burst Length is controlled by VW0 and VW1 inputs with LAL command. See VW truth  
RC  
table.  
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)  
TC59LM818DMBI are required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with the  
REF command following to the WRA command. In a point to notice, the write mode started with the WRA  
command is canceled by the REF command having gone into the next clock of the WRA command instead of the  
LAL command. The minimum period between the Auto-Refresh command and the next command is specified by  
l
. However, about a synthetic average interval of Auto-Refresh command, it must be careful. In case of equally  
REFC  
distributed refresh, Auto-Refresh command has to be issued within once for every 1.95 µs by the maximum. In case  
of burst refresh or random distributed refresh, the average interval of eight consecutive Auto-Refresh commands  
has to be more than 400 ns always. In other words, the number of Auto-Refresh cycles that can be performed within  
3.2 µs (8 × 400 ns) is to 8 times in the maximum.  
Power Down Mode ( PD = “L”)  
When all banks are in the idle state and DQ outputs are in Hi-Z states, the TC59LM818DMBI become Power  
Down Mode by asserting PD is “Low”. When the device enters the Power Down Mode, all input and output buffers  
are disabled after specified time except for PD , CLK, CLK and QS. Therefore, the power dissipation lowers. To  
exit the Power Down Mode, PD has to be brought to “High” and the DESL command has to be issued for lPDA  
cycle after PD goes high. The Power Down exit function is asynchronous operation.  
Rev 1.2  
2005-11-08 49/55  
TC59LM818DMGI-37  
Mode Register Set (1st command + 2nd command = RDA + MRS)  
When all banks are in the idle state, issuing the MRS command following to the RDA command can program the  
Mode Register. In a point to notice, the read mode started with the RDA command is canceled by the MRS  
command having gone into the next clock of the RDA command instead of the LAL command. The data to be set in  
the Mode Register is transferred using A0 to A14, BA0 and BA1 address inputs. The TC59LM818DMBI have two  
mode registers. These are Regular and Extended Mode Register. The Regular or Extended Mode Register is chosen  
by BA0 and BA1 in the MRS command. The Regular Mode Register designates the operation mode for a read or  
write cycle. The Regular Mode Register has four function fields.  
The four fields are as follows:  
(R-1) Burst Length field to set the length of burst data  
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle  
(R-3) CAS Latency field to set the access time in clock cycle  
(R-4) Test Mode field to use for supplier only.  
The Extended Mode Register has three function fields.  
The three fields are as follows:  
(E-1) DLL Switch field to choose either DLL enable or DLL disable  
(E-2) Output Driver Impedance Control field.  
(E-3) Data Strobe Select  
Once those fields in the Mode Register are set up, the register contents are maintained until the Mode Register is  
set up again by another MRS command or power supply is lost. The initial value of the Regular or Extended Mode  
Register after power-up is undefined, therefore the Mode Register Set command must be issued before proper  
operation.  
Regular Mode Register/Extended Mode Register change bits (BA0, BA1)  
These bits are used to choose either Regular MRS or Extended MRS  
BA1  
BA0  
Mode Register Set  
0
0
1
0
1
×
Regular MRS  
Extended MRS  
Reserved  
Regular Mode Register Fields  
(R-1) Burst Length field (A2 to A0)  
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length  
to be 2 or 4 words.  
A2  
A1  
A0  
BURST LENGTH  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
2 words  
4 words  
Reserved  
Reserved  
(R-2) Burst Type field (A3)  
The Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is “0”, Sequential  
mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both burst types support burst  
length of 2 and 4 words.  
A3  
BURST TYPE  
0
1
Sequential  
Interleave  
Rev 1.2  
2005-11-08 50/55  
TC59LM818DMGI-37  
Addressing sequence of Sequential mode (A3)  
A column access is started from the inputted lower address and is performed by incrementing the lower  
address input to the device.  
CAS Latency = 4 (Free Running QS mode)  
CLK  
CLK  
Command  
RDA  
LAL  
QS  
Data Data Data Data  
DQ  
0
1
2
3
Addressing sequence for Sequential mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
N
2 words (address bits is LA0)  
not carried from LA0~LA1  
n + 1  
n + 2  
n + 3  
4 words (address bits is LA1, LA0)  
not carried from LA1~LA2  
Addressing sequence of Interleave mode  
A column access is started from the inputted lower address and is performed by interleaving the address bits  
in the sequence shown as the following.  
Addressing sequence for Interleave mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
2 words  
4 words  
(R-3) CAS Latency field (A6 to A4)  
This field specifies the number of clock cycles from the assertion of the LAL command following the RDA  
command to the first data read. The minimum value of CAS Latency depends on the frequency of CLK.  
In a write mode, the place of clock that should input write data is CAS Latency cycles 1.  
A6  
A5  
A4  
CAS LATENCY  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
4
5
6
Reserved  
(R-4) Test Mode field (A7)  
This bit is used to enter Test Mode for supplier only and must be set to “0” for normal operation.  
(R-5) Reserved field in the Regular Mode Register  
Reserved bits (A8 to A14)  
These bits are reserved for future operations. They must be set to “0” for normal operation.  
Rev 1.2  
2005-11-08 51/55  
TC59LM818DMGI-37  
Extended Mode Register fields  
(E-1) DLL Switch field (A0)  
This bit is used to enable DLL. When the A0 bit is set “0”, DLL is enabled. This bit must be set to “0” for  
normal operation.  
(E-2) Output Driver Impedance Control field (A1 to A4)  
This field is used to choose Output Driver Strength. Three types of Driver Strength are supported.  
QS and DQ Driver Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3  
specified the QS Driver Strength.  
QS  
DQ  
OUTPUT DRIVER IMPEDANCE CONTROL  
A4  
A3  
A2  
A1  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Reserved  
(E-3) Strobe Select (A6 / A5)  
Two types of data strobe are supported. This field is used to choose the type of data strobe.  
Unidirectional DS/QS mode  
(1)  
(2)  
Data strobe is separated DS for write strobe and QS for read strobe.  
DS is used to sample write data at write operation. QS is aligned with read data at Read operation.  
Unidirectional DS/Free running QS mode  
Data strobe is separated DS for write strobe and QS for read strobe.  
DS is used to sample write data at write operation. QS is aligned with read data and always  
clocking.  
A6  
A5  
STROBE SELECT  
0
0
1
1
0
1
0
1
Reserved  
Reserved  
Unidirectional DS/QS mode  
Unidirectional DS/Free running QS mode  
(E-4) Reserved field (A7 to A14)  
These bits are reserved for future operations and must be set to “0” for normal operation.  
Rev 1.2  
2005-11-08 52/55  
TC59LM818DMGI-37  
PACKAGE DIMENSIONS  
P-BGA60-0917-1.00AZ  
16.5  
0
12.518  
-0.15  
0.2 S  
0.05  
0.5  
0.08 SAB  
1.25  
A
1.0  
Weight: 0.15g (typ.)  
Rev 1.2  
2005-11-08 53/55  
TC59LM818DMGI-37  
REVISION HISTORY  
Rev.1.2 ( Nov.8th ’2005 )  
1st edition released. Difference between lead product( P/N: TC59LM818DMBI37 ) and this lead-free product  
is only part number and comment for “lead-free” on page 1.  
Rev 1.2  
2005-11-08 54/55  
TC59LM818DMGI-37  
RESTRICTIONS ON PRODUCT USE  
030619EBA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
Rev 1.2  
2005-11-08 55/55  

相关型号:

TC59LM818DMGI-40

IC,DRAM,FCRAM(DDR),4X4MX18,CMOS,BGA,60PIN,PLASTIC
TOSHIBA

TC59LM836DKB-30

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM836DKB-33

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM836DKB-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM836DKG-30

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM836DKG-33

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM836DKG-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMB-45

IC 64M X 8 DDR DRAM, 22 ns, PBGA60, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-60, Dynamic RAM
TOSHIBA

TC59LM906AMG

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-37

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-45

IC 64M X 8 DDR DRAM, 0.6 ns, PBGA64, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-64, Dynamic RAM
TOSHIBA

TC59LM906AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA