TC59LM836DKB-33 [TOSHIBA]

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2; MOS数字集成电路硅单片288Mbits网络FCRAM2
TC59LM836DKB-33
型号: TC59LM836DKB-33
厂家: TOSHIBA    TOSHIBA
描述:

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
MOS数字集成电路硅单片288Mbits网络FCRAM2

存储 内存集成电路 动态存储器 双倍数据速率
文件: 总65页 (文件大小:832K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59LM836DKB-30,-33,-40  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
288Mbits Network FCRAM2  
2,097,152-WORDS × 4 BANKS × 36-BITS  
DESCRIPTION  
Network FCRAMTM is Double Data Rate Fast Cycle Random Access Memory. TC59LM836DKB is Network  
FCRAMTM containing 301,989,888 memory cells. TC59LM836DKB is organized as 2,097,152-words × 4 banks × 36  
bits. TC59LM836DKB feature a fully synchronous operation referenced to clock edge whereby all operations are  
synchronized at a clock input which enables high performance and simple user interface coexistence.  
TC59LM836DKB can operate fast core cycle compared with regular DDR SDRAM.  
TC59LM836DKB is suitable for Network and other applications where large memory density and low power  
consumption are required. The Output Driver for Network FCRAMTM is capable of high quality fast data transfer  
under light loading condition.  
FEATURES  
TC59LM836DKB  
PARAMETER  
-30  
-33  
-40  
CL = 4  
CL = 5  
CL = 6  
4.0 ns  
3.5 ns  
3.0 ns  
20.0 ns  
20.0 ns  
380 mA  
100 mA  
15 mA  
4.5 ns  
5.0 ns  
4.5 ns  
4.0 ns  
25 ns  
t
Clock Cycle Time (min)  
3.75 ns  
3.33 ns  
22.5 ns  
22.5 ns  
360 mA  
95 mA  
15 mA  
CK  
t
t
I
Random Read/Write Cycle Time (min)  
Random Access Time (max)  
RC  
25 ns  
RAC  
DD1S  
DD2P  
DD6  
Operating Current (single bank) (max)  
Power Down Current (max)  
340 mA  
90 mA  
15 mA  
l
l
Self-Refresh Current (max)  
Fully Synchronous Operation  
Double Data Rate (DDR)  
Data input/output are synchronized with both edges of DS / QS.  
Differential Clock (CLK and CLK ) inputs  
CS , FN and all address input signals are sampled on the positive edge of CLK.  
Output data (DQs and QS) is aligned to the crossings of CLK and CLK .  
Fast clock cycle time of 3.0 ns minimum  
Clock: 333 MHz maximum  
Data: 666 Mbps/pin maximum  
Quad Independent Banks operation  
Fast cycle and Short Latency  
Selectable Data Strobe  
Distributed Auto-Refresh cycle in 3.9 µs  
Self-Refresh  
Power Down Mode  
Variable Write Length Control  
Write Latency = CAS Latency-1  
Programable CAS Latency and Burst Length  
CAS Latency = 4, 5, 6  
Burst Length = 2, 4  
Organization: 2,097,152 words × 4 banks × 36 bits  
Power Supply Voltage  
V
DD  
V
:
2.5 V ± 0.125V  
: 1.4 V ~ 1.9 V  
DDQ  
Low voltage CMOS I/O covered with SSTL_18 (Half strength driver) and HSTL.  
JTAG boundary scan  
Package: 144Ball BGA, 1mm × 0.8mm Ball pitch (P-TFBGA144-1119-0.80BZ)  
Notice: FCRAM is trademark of Fujitsu limited, Japan.  
Rev 1.3  
2005-03-07 1/65  
TC59LM836DKB-30,-33,-40  
PIN NAMES  
PIN  
NAME  
A0~A13  
BA0, BA1  
DQ0~DQ35  
CS  
Address Input  
Bank Address  
Data Input/Output  
Chip Select  
FN  
Function Control  
Power Down Control  
Clock Input  
PD  
CLK, CLK  
LDS, UDS  
LQS, UQS  
Write Data Strobe  
Read Data Strobe  
Power (+2.5 V)  
Ground  
V
V
DD  
SS  
Power (+1.5V / +1.8 V)  
(for DQ buffer)  
Ground  
V
DDQ  
V
V
SSQ  
REF  
(for DQ buffer)  
Reference Voltage  
Not Connected  
NC  
TMS, TDI, TCK, TDO Boundary Scan Test Access Ports  
Rev 1.3  
2005-03-07 2/65  
TC59LM836DKB-30,-33,-40  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 0.8mm  
1
2
3
4
5
6
7
8
9
10  
11  
12  
0.8mm  
Index  
A
V
V
V
V
V
V
V
V
DD  
DD  
SS  
SS  
DD  
DD  
SS  
SS  
V
Q
DQ16 DQ17  
DQ14 DQ15  
DQ12 DQ13  
DQ10 DQ11  
LDS DQ9  
V
Q
V
Q
DQ0 DQ1  
DQ2 DQ3  
DQ4 DQ5  
DQ6 DQ7  
DQ8 LQS  
V
Q
DD  
DD  
DD  
DD  
B
C
D
E
F
V
V
Q
SS  
V
V
Q
SS  
V
V
Q
SS  
V
V
Q
Q
SS  
Q
DD  
Q
DD  
Q
DD  
DD  
V
Q
V
Q
V
Q
V
Q
SS  
SS  
SS  
SS  
DD  
V
Q
Q
V
Q
Q
V
Q
Q
V
Q
DD  
DD  
DD  
V
V
CLK  
CLK  
A11  
A8  
V
V
FN  
NC  
V
SS  
Q
A13  
CS  
BA1  
A0  
SS  
REF  
SS  
SS  
G
H
J
V
PD  
A12  
A9  
V
V
V
SS  
SS  
SS  
SS  
V
V
V
BA0  
A10  
V
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
K
A2  
A7  
A5  
A6  
A4  
A1  
A3  
L
M
N
P
R
T
DD  
DD  
DD  
DD  
V
Q
DD  
V
Q
DD  
V
Q
DD  
V
Q
DD  
NC  
V
V
Q
SS  
UDS DQ26  
DQ25 DQ24  
DQ23 DQ22  
DQ21 DQ20  
DQ19 DQ18  
V
V
Q
SS  
V
V
Q
SS  
DQ27 UQS  
DQ29 DQ28  
DQ31 DQ30  
DQ33 DQ32  
DQ35 DQ34  
V
V
Q
Q
SS  
Q
DD  
Q
DD  
Q
DD  
DD  
V
V
Q
V
V
Q
V
V
Q
V
V
Q
SS  
SS  
SS  
SS  
DD  
Q
DD  
Q
DD  
Q
DD  
Q
V
Q
SS  
V
Q
SS  
V
Q
SS  
V
SS  
Q
U
V
TMS TCK  
V
V
V
V
SS  
TDO  
TDI  
SS  
DD  
DD  
: Depopulated ball  
Rev 1.3  
2005-03-07 3/65  
TC59LM836DKB-30,-33,-40  
BLOCK DIAGRAM  
CLK  
CLK  
PD  
DLL  
CLOCK  
BUFFER  
To each block  
CS  
FN  
CONTROL  
SIGNAL  
COMMAND  
DECODER  
BANK #3  
BANK #2  
GENERATOR  
BANK #1  
BANK #0  
MODE  
REGISTER  
MEMORY  
A0~A13  
CELL ARRAY  
ADDRESS  
BUFFER  
UPPER ADDRESS  
LATCH  
BA0, BA1  
LOWER ADDRESS  
LATCH  
COLUMN DECODER  
READ  
DATA  
WRITE  
DATA  
WRITE ADDRESS  
REFRESH  
COUNTER  
LATCH/  
ADDRESS  
BUFFER  
BUFFER  
COMPARATOR  
BURST  
COUNTER  
LDS  
LQS  
UDS  
UQS  
DQ BUFFER  
DQ0~DQ17  
DQ18~DQ35  
Note: The TC59LM836DKB configuration is 4 Bank of 16384 × 128 × 36 of cell array with the DQ pins numbered DQ0~DQ35.  
Rev 1.3  
2005-03-07 4/65  
TC59LM836DKB-30,-33,-40  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Power Supply Voltage  
RATING  
UNIT  
NOTES  
V
V
V
V
V
0.3~ 3.3  
V
V
DD  
Power Supply Voltage (for DQ buffer)  
Input Voltage  
0.3~V + 0.3  
DD  
DDQ  
IN  
0.3~V + 0.3  
V
DD  
Output and DQ pin Voltage  
Input Reference Voltage  
Operating Temperature (case)  
Storage Temperature  
0.3~V  
+ 0.3  
DDQ  
V
OUT  
REF  
opr  
0.3~V + 0.3  
V
DD  
T
T
T
0~85  
55~150  
260  
°C  
°C  
°C  
W
mA  
stg  
Soldering Temperature (10 s)  
Power Dissipation  
solder  
P
2.5  
D
I
Short Circuit Output Current  
±50  
OUT  
Caution: Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device.  
The device is not meant to be operated under conditions outside the limits described in the operational section of this  
specification.  
Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may affect device reliability.  
RECOMMENDED DC, AC OPERATING CONDITIONS (Notes: 1)(T  
= 0~85°C)  
CASE  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
MAX  
UNIT  
NOTES  
V
V
V
V
V
V
2.375  
1.4  
2.5  
2.625  
1.9  
V
V
DD  
Power Supply Voltage (for DQ buffer)  
Reference Voltage  
DDQ  
REF  
V
/2 × 95%  
+ 0.125  
V
/2  
DDQ  
V
/2 × 105%  
DDQ  
V
V
V
V
2
5
DDQ  
(DC)  
Input DC High Voltage  
V
V
+ 0.2  
DDQ  
IH  
IL  
REF  
(DC)  
(DC)  
Input DC Low Voltage  
0.1  
0.1  
V
0.125  
5
REF  
Differential Clock DC Input Voltage  
V
V
V
+ 0.1  
+ 0.2  
10  
ICK  
DDQ  
DDQ  
DDQ  
Differential Input Voltage.  
CLK and CLK inputs (DC)  
V
(DC)  
0.4  
V
7, 10  
ID  
V
V
(AC)  
Input AC High Voltage  
Input AC Low Voltage  
V
+ 0.2  
REF  
+ 0.2  
0.2  
V
V
3, 6  
4, 6  
IH  
IL  
(AC)  
(AC)  
(AC)  
0.1  
V
REF  
Differential Input Voltage.  
V
0.55  
V
+ 0.2  
V
7, 10  
ID  
X
DDQ  
CLK and CLK inputs (AC)  
V
V
Differential AC Input Cross Point Voltage  
Differential Clock AC Middle Level  
V
V
/2 0.125  
/2 0.125  
V
V
/2 + 0.125  
/2 + 0.125  
V
V
8, 10  
9, 10  
DDQ  
DDQ  
(AC)  
ISO  
DDQ  
DDQ  
Rev 1.3  
2005-03-07 5/65  
TC59LM836DKB-30,-33,-40  
NOTES:  
(1)  
All voltages referenced to V , V  
.
SS SSQ  
(2)  
V
is expected to track variations in V  
DC level of the transmitting device.  
REF  
Peak to peak AC noise on V  
DDQ  
may not exceed ±2% V  
(DC).  
REF  
REF  
(3)  
(4)  
Overshoot limit: V  
IH (max)  
= V  
+ 0.7 V with a pulse width 5 ns.  
DDQ  
= −0.7 V with a pulse width 5 ns.  
Undershoot limit: V  
IL (min)  
(5)  
V
IH  
V
IH  
V
ID  
(DC) and V (DC) are levels to maintain the current logic state.  
IL  
(6)  
(AC) and V (AC) are levels to change to the new logic state.  
IL  
(7)  
is differential voltage of CLK input level and CLK input level.  
(8)  
The value of V (AC) is expected to equal V /2 of the transmitting device.  
DDQ  
X
(9)  
V
ISO  
means {V  
(CLK) + V (CLK )} /2  
ICK  
ICK  
(10)  
Refer to the figure below.  
CLK  
V
V
V
V
V
V
(AC)  
ID  
x
x
x
x
x
CLK  
V
V
V
V
ICK  
ICK  
ICK  
ICK  
V
SS  
|V (AC)|  
ID  
0 V Differential  
V
ISO  
V
V
ISO (max)  
ISO (min)  
V
SS  
(11)  
In the case of external termination, VTT (termination voltage) should be gone in the range of V  
(DC)  
REF  
± 0.04 V.  
CAPACITANCE (V = 2.5V, V  
= 1.8 V, f = 1 MHz, Ta = 25°C)  
DD  
DDQ  
SYMBOL  
PARAMETER  
MIN  
MAX  
Delta  
UNIT  
C
C
C
C
Input pin Capacitance  
1.5  
1.5  
2.5  
3.0  
3.0  
3.5  
1.5  
0.25  
0.25  
0.5  
pF  
pF  
pF  
pF  
IN  
Clock pin (CLK, CLK ) Capacitance  
DQ, LDS, UDS, LQS, UQS Capacitance  
NC pin Capacitance  
INC  
I/O  
NC  
Note: These parameters are periodically sampled and not 100% tested.  
Rev 1.3  
2005-03-07 6/65  
TC59LM836DKB-30,-33,-40  
RECOMMENDED DC OPERATING CONDITIONS  
(V = 2.5 V ± 0.125 V, V  
= 1.4 V ~ 1.9 V, T  
= 0 ~ 85°C)  
DD  
DDQ  
CASE  
MAX  
-33  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
-30  
-40  
Operating Current  
One bank read or write operation ;  
= min; I = min, I = 0mA ;  
t
CK  
RC  
OUT  
I
I
I
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
380  
360  
110  
95  
340  
1, 2  
DD1S  
DD2N  
DD2P  
,
DDQ  
IN  
IL  
IH  
IN  
Address inputs change up to 2 times during minimum I  
Read data change twice per clock cycle  
,
RC  
Standby Current  
All banks: inactive state ;  
t
= min, CS = V , PD = V  
;
IH  
CK  
IH  
120  
100  
100  
1, 2  
0 V V V (AC) (max), V (AC) (min) V V ;  
DDQ  
IN  
IL  
IH  
IN  
Other input signals change one time during 4 × t  
,
CK  
DQ and DS inputs change twice per clock cycle  
Standby (power down) Current  
All banks: inactive state ;  
t
= min, PD = V (power down) ;  
IL  
CK  
CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V ;  
DDQ  
90  
1, 2  
IN  
IL  
IH  
IN  
Other input signals change one time during 4 × t  
,
CK  
DQ and DS inputs are floating (V  
/2)  
DDQ  
Write Operating Current (4Banks)  
4 Bank interleaved continuous burst write operation ;  
= min, I = min ;  
mA  
t
CK  
RC  
I
I
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
Address inputs change once per clock cycle,  
850  
850  
800  
800  
750  
750  
1, 2  
DD4W  
;
DDQ  
IN  
IL  
IH  
IN  
DQ and DS inputs change twice per clock cycle  
Read Operating Current (4Banks)  
4 Bank interleaved continuous burst read operation ;  
t
= min, I  
= min, I  
= 0mA ;  
OUT  
CK  
RC  
Burst Length = 4, CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V  
1, 2  
DD4R  
;
DDQ  
IN  
IL  
IH  
IN  
Address inputs change once per clock cycle,  
Read data change twice per clock cycle  
Burst Auto Refresh Current  
Refresh command at every I  
interval ;  
REFC  
t
= min; I  
= min ;  
REFC  
CK  
I
I
CAS Latency = 6, Free running QS mode ;  
0 V V V (AC) (max), V (AC) (min) V V ,  
DDQ  
380  
15  
360  
15  
340  
15  
1, 2, 3  
DD5B  
IN  
IL  
IH  
IN  
Address inputs change up to 2 times during minimum I  
DQ and DS inputs change twice per clock cycle  
,
REFC  
Self-Refresh Current  
PD = 0.2 V ;  
2
DD6  
Other input signals are floating (V  
/2),  
DDQ  
DQ and DS inputs are floating (V  
/2)  
DDQ  
Notes: 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of  
, t and I  
t
.
RC  
CK RC  
2. These parameters define the current between V  
and V  
.
SS  
DD  
3.  
I
is specified under burst refresh condition. Actual system should use distributed refresh that meet to t  
DD5B REFI  
specification.  
Rev 1.3  
2005-03-07 7/65  
TC59LM836DKB-30,-33,-40  
RECOMMENDED DC OPERATING CONDITIONS (continued)  
(V = 2.5 V ± 0.125 V, V  
= 1.4 V ~ 1.9 V, T  
= 0 ~ 85°C)  
DD  
DDQ  
CASE  
SYMBOL  
PARAMETER  
MIN  
MAX  
5
UNIT  
NOTES  
Input Leakage Current  
( 0 V V V , all other pins not under test = 0 V)  
I
I
5  
µA  
LI  
IN  
DDQ  
Output Leakage Current  
(Output disabled, 0 V V  
5  
5
µA  
µA  
LO  
V  
)
OUT  
DDQ  
I
I
V
Current  
REF  
5  
5
REF  
(DC)  
V
V
V
V
V
V
V
V
V
V
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
5.6  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
Normal  
Output Driver  
I
I
I
I
I
I
I
I
I
I
I
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
5.6  
9.8  
9.8  
2.8  
2.8  
4  
Output DC Current  
Strong  
mA  
1
Output Driver  
(V  
= 1.7V~1.9V)  
DDQ  
Weak  
Output Driver  
= V  
– 0.4V  
DDQ  
Normal  
Output Driver  
= 0.4V  
= V  
4
– 0.4V  
8  
Output DC Current  
DDQ  
Strong  
mA  
1
Output Driver  
(V  
= 1.4V~1.6V)  
DDQ  
= 0.4V  
8
OL  
Not defined  
Not defined  
Weak Output  
Driver  
Notes: 1. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.  
Rev 1.3  
2005-03-07 8/65  
TC59LM836DKB-30,-33,-40  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2)  
(V = 2.5 ± 0.125V, V  
= 1.4 1.9V, T  
= 0 85°C)  
DD  
DDQ  
CASE  
-30  
-33  
-40  
SYMBOL  
PARAMETER  
UNIT NOTES  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
Random Cycle Time  
20.0  
4.0  
22.5  
4.5  
25  
5.0  
4.5  
3
3
3
RC  
CK  
C
L
C
L
C
L
= 4  
= 5  
= 6  
5.0  
5.0  
7.5  
7.5  
7.5  
7.5  
Clock Cycle Time  
3.5  
3.75  
3.0  
5.0  
20.0  
3.33  
7.5  
22.5  
4.0  
7.5  
25  
3
t
t
t
t
t
Random Access Time  
Clock High Time  
3
RAC  
CH  
0.45 × t  
0.45 × t  
0.45 × t  
0.45 × t  
0.45 × t  
0.45 × t  
0.5  
3
3
CK  
CK  
CK  
Clock Low Time  
CL  
CK  
CK  
CK  
QS Access Time from CLK  
Data Output Skew from QS  
0.45  
0.45  
0.2  
0.45  
0.45  
0.25  
0.5  
0.3  
3, 8,10  
CKQS  
QSQ  
Data Output Skew from QS to  
All DQ  
t
t
t
0.3  
0.5  
0.5  
0.35  
0. 5  
0.5  
0.4  
0.6  
0.6  
QSQA  
AC  
Data Access Time from CLK  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
3, 8,10  
3, 8  
Data Output Hold Time from  
CLK  
OH  
CLK half period (minimum of  
min(t  
,
min(t  
,
min(t  
,
CH  
CH  
)
CH  
)
t
t
t
t
t
3
HP  
Actual t , t  
)
t
t
t
)
CL  
CH CL  
CL  
CL  
t
t
t
HP  
HP  
HP  
QS (read) Pulse Width  
4, 8  
4, 8  
QSP  
QSQV  
QHS  
DQSS  
t
t
t
QHS  
QHS  
QHS  
t
t
t
HP  
HP  
HP  
Data Output Valid Time from QS  
DQ, QS Hold Skew factor  
t
t
t
QHS  
QHS  
QHS  
0.055 ×  
+ 0.17  
0.055 ×  
+ 0.17  
0.055 ×  
+ 0.17  
t
t
t
CK  
CK  
CK  
ns  
DS (write) Low to High Setup  
Time  
0.8×t  
1.2×t  
0.8×t  
1.2×t  
0.8×t  
1.2×t  
CK  
3
CK  
CK  
CK  
CK  
CK  
t
t
t
t
DS (write) Preamble Pulse Width 0.4×t  
0.4×t  
0
0.4×t  
0
4
3
3
4
DSPRE  
DSPRES  
DSPREH  
DSP  
CK  
CK  
CK  
DS First Input Setup Time  
0
DS First Low Input Hold Time  
0.3×t  
0.3×t  
0.3×t  
CK  
CK  
CK  
DS High or Low Input Pulse Width 0.45×t  
0.55×t  
0.45×t  
0.55×t  
0.45×t  
0.55×t  
CK  
CK  
CK  
CK  
CK  
CK  
C
L
C
L
C
L
= 4  
= 5  
= 6  
0.75  
0.8  
1.0  
3, 4  
3, 4  
3, 4  
DS Input Falling  
Edge to Clock Setup  
Time  
t
0.75  
0.75  
0.8  
0.8  
1.0  
1.0  
DSS  
t
t
DS (write) Postamble Pulse Width 0.45 × t  
0.45 × t  
0.8  
0.45 × t  
1.0  
4
DSPST  
CK  
CK  
CK  
C
C
C
= 4  
= 5  
= 6  
0.75  
0.75  
0.75  
0.4 × t  
0.3  
3, 4  
3, 4  
3, 4  
L
L
L
DS (write) Postamble  
Hold Time  
0.8  
1.0  
DSPSTH  
0.8  
1.0  
t
t
t
UDS – LDS Skew  
0.4 × t  
0.4 × t  
0.35  
0.35  
0.4 × t  
0.4 × t  
0.4  
0.4 × t  
DSSK  
DS  
CK  
CK  
CK  
CK  
CK  
CK  
Data Input Setup Time from DS  
Data Input Hold Time from DS  
4, 11  
4, 11  
0.3  
0.4  
DH  
Command/Address Input Setup  
Time  
t
t
0.6  
0.6  
0.6  
0.6  
0.7  
0.7  
3
3
IS  
IH  
Command/Address Input Hold  
Time  
Rev 1.3  
2005-03-07 9/65  
TC59LM836DKB-30,-33,-40  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (continued)  
-30  
-33  
-40  
SYMBOL  
PARAMETER  
UNIT NOTES  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Data-out Low Impedance Time from  
CLK  
t
t
0.5  
0.5  
0.6  
3, 6, 8  
3, 7, 8  
LZ  
Data-out High Impedance Time from  
CLK  
0.5  
0.5  
0.6  
HZ  
t
t
t
Last output to PD High Hold Time  
Power Down Exit Time  
0
1
0
1
0
1
QPDH  
PDEX  
T
ns  
0.6  
0.1  
0.6  
0.1  
0.7  
0.1  
3
Input Transition Time  
PD Low Input Window for  
Self-Refresh Entry  
t
0.5 × t  
5
0.5 × t  
5
0.5 × t  
CK  
5
3
FPDL  
CK  
CK  
t
t
Auto-Refresh Average Interval  
Pause Time after Power-up  
0.4  
200  
5
3.9  
0.4  
200  
5
3.9  
0.4  
200  
5
3.9  
5
REFI  
µs  
PAUSE  
C
L
C
L
C
L
= 4  
= 5  
= 6  
Random Read/Write  
Cycle Time  
I
I
I
6
6
6
RC  
(applicable to same bank)  
7
7
7
RDA/WRA to LAL Command Input  
Delay (applicable to same bank)  
1
1
1
1
1
1
RCD  
RAS  
C
L
C
L
C
L
= 4  
= 5  
= 6  
4
5
6
4
5
6
4
5
6
LAL to RDA/WRA  
Command Input Delay  
(applicable to same bank)  
Random Bank Access Delay  
(applicable to other bank)  
I
I
I
2
2
2
RBD  
RWD  
WRD  
LAL following RDA to  
WRA Delay  
B
B
= 2  
= 4  
2
3
2
3
2
3
L
L
(applicable to other bank)  
LAL following WRA to RDA Delay  
(applicable to other bank)  
1
1
1
C
L
C
L
C
L
= 4  
= 5  
= 6  
7
7
7
7
7
7
7
7
7
cycle  
Mode Register Set Cycle  
Time  
I
RSC  
PD Low to Inactive State of Input  
Buffer  
I
I
2
2
2
PD  
PD High to Active State of Input  
Buffer  
1
1
1
PDA  
C
L
C
L
C
L
C
L
C
L
C
L
= 4  
= 5  
= 6  
= 4  
= 5  
= 6  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
19  
23  
25  
Power down mode valid  
from REF command  
I
I
PDV  
Auto-Refresh Cycle Time  
REFC  
REF Command to Clock Input  
Disable at Self-Refresh Entry  
I
I
I
I
I
REFC  
CKD  
REFC  
REFC  
DLL Lock-on Time  
200  
200  
200  
LOCK  
(applicable to RDA command)  
Rev 1.3  
2005-03-07 10/65  
TC59LM836DKB-30,-33,-40  
AC TEST CONDITIONS  
SYMBOL  
PARAMETER  
Input High Voltage (minimum)  
VALUE  
UNIT  
NOTES  
V
V
V
V
V
V
V
+ 0.2  
V
V
IH (min)  
IL (max)  
REF  
REF  
REF  
Input Low Voltage (maximum)  
Input Reference Voltage  
0.2  
/2  
V
V
DDQ  
Termination Voltage  
V
V
TT  
REF  
Input Signal Peak to Peak Swing  
Differential Clock Input Reference Level  
Input Differential Voltage  
0.8  
V
SWING  
Vr  
V
(AC)  
V
X
V
(AC)  
1.0  
V
ID  
SLEW  
Input Signal Minimum Slew Rate  
Output Timing Measurement Reference Voltage  
2.5  
V/ns  
V
V
V
/2  
9
OTR  
DDQ  
V
DDQ  
V
V
(AC)  
(AC)  
IH min  
REF  
V
TT  
25 Ω  
V
SWING  
Output  
V
IL max  
Measurement point  
V
SS  
T  
T  
(AC))/T  
AC Test Load  
SLEW = (V  
(AC) V  
IL max  
IH min  
NOTES:  
(1) Transition times are measured between V  
(DC) and V  
IL max  
(DC).  
IH min  
Transition (rise and fall) of input signals have a fixed slope.  
(2) If the result of nominal calculation with regard to t  
rounded up to the nearest decimal place.  
contains more than one decimal place, the result is  
CK  
(i.e., t  
DQSS  
= 0.8 × t , t = 3.3 ns, 0.8 × 3.3 ns = 2.64 ns is rounded up to 2.7 ns.)  
CK CK  
(3) These parameters are measured from the differential clock (CLK and CLK ) AC cross point.  
(4) These parameters are measured from signal transition point of DS crossing V level.  
REF  
(5) The t  
The t  
applies to equally distributed refresh method.  
applies to both burst refresh method and distributed refresh method.  
REFI (max)  
REFI (min)  
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns  
always. In other words, the number of Auto-Refresh cycles which can be performed within 3.2 µs (8 × 400 ns)  
is to 8 times in the maximum.  
(6) Low Impedance State is specified at V /2 ± 0.1 V from steady state.  
DDQ  
(7) High Impedance State is specified where output buffer is no longer driven.  
(8) These parameters depend on the clock jitter. These parameters are measured at stable clock.  
(9) Output timing is measured by using Normal driver strength at V  
= 1.7 V 1.9 V.  
DDQ  
= 1.4 V~1.6 V.  
Output timing is measured by using Strong driver strength at V  
DDQ  
(10) These parameters are measured at t  
CK  
= minimum 6.0ns. When t is longer than 6.0ns, these parameters  
CK  
are specified as below for all speed version.  
(MIN/MAX) = −0.6ns / 0.6ns, t (MIN/MAX) = −0.65ns / 0.65ns  
t
CKQS  
AC  
(11) These parameters are measured at V  
specified as below for all speed version.  
= 1.7 V1.9 V. Both t  
DS  
and t  
DH  
at V  
= 1.4 V1.6 V are  
DDQ  
DDQ  
t
DS  
(MIN) = 0.4 ns , t (MIN) = 0.4 ns  
DH  
Rev 1.3  
2005-03-07 11/65  
TC59LM836DKB-30,-33,-40  
POWER UP SEQUENCE  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
As for PD , being maintained by the low state (0.2 V) is desirable before a power-supply injection.  
Apply V  
Apply V  
before or at the same time as V  
.
DD  
DDQ  
before or at the same time as V  
.
DDQ  
REF  
Start clock (CLK, CLK ) and maintain stable condition for 200 µs (min).  
After stable power and clock, apply DESL and take PD =H.  
Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note: 1)  
Issue MRS for set CAS latency (CL), Burst Type (BT), and Burst Length (BL). (Note: 1)  
Issue two or more Auto-Refresh commands (Note: 1).  
Ready for normal operation after 200 clocks from Extended Mode Register programming.  
NOTES:  
(1)  
Sequence 6, 7 and 8 can be issued in random order.  
L = Logic Low, H = Logic High  
(2)  
(3)  
DQ output is Hi-Z state during power upsequence.  
2.5V(TYP)  
V
DD  
1.5V or 1.8V(TYP)  
V
DDQ  
1/2 V  
(TYP)  
DDQ  
V
REF  
CLK  
CLK  
t
PDEX  
l
l
l
l
REFC  
RSC  
RSC  
REFC  
200us(min)  
PD  
l
= 200clock cycle(min)  
LOCK  
l
PDA  
Command  
DESLRDA MRS DESL RDA MRS  
DESL WRA REF DESL  
WRA REF DESL  
op-code  
EMRS  
op-code  
Address  
MRS  
DQ  
(Input)  
DS  
L/UQS  
(Uni-QS mode)  
Low  
L/UQS  
(Free Running mode)  
EMRS  
MRS  
Auto Refresh cycle  
Normal Operation  
Rev 1.3  
2005-03-07 12/65  
TC59LM836DKB-30,-33,-40  
TIMING DIAGRAMS  
Input Timing  
Command and Address  
t
CK  
t
t
t
CL  
CK  
CH  
CLK  
CLK  
t
t
t
t
t
t
t
t
t
t
t
t
IS  
IS  
IS  
IH  
IH  
IH  
IS  
IS  
IS  
IH  
IH  
IH  
CS  
FN  
1st  
1st  
2nd  
2nd  
LA  
A0~A13  
UA, BA  
BA0, BA1  
Data  
L/UDS  
t
t
t
t
DH  
DH  
DS  
DH  
DS  
DQn (input)  
DQm (input)  
t
t
t
DH  
t
DS  
DS  
Refer to the Command Truth Table.  
Timing of the CLK,  
CLK  
t
t
CL  
CH  
V
V
IH  
IH  
CLK  
(AC)  
(AC)  
V
V
IL  
IL  
CLK  
t
t
T
T
t
CK  
CLK  
CLK  
V
V
IH  
IL  
V
(AC)  
ID  
V
V
V
X
X
X
Rev 1.3  
2005-03-07 13/65  
TC59LM836DKB-30,-33,-40  
Read Timing (Burst Length = 4)  
Unidirectional DS/QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
addresses)  
DESL  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
QSP  
QSP  
CAS latency = 4  
CKQS  
LQS  
Low  
Low  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Hi-Z  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
Low  
Low  
Hi-Z  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
t
AC  
t
t
CKQS  
CKQS  
t
t
QSP  
QSP  
CAS latency = 5  
CKQS  
LQS  
Low  
Low  
Hi-Z  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
Low  
Low  
Hi-Z  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
AC  
Rev 1.3  
2005-03-07 14/65  
TC59LM836DKB-30,-33,-40  
Read Timing (Burst Length = 4)  
Unidirectional DS/QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
addresses)  
DESL  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
QSP  
QSP  
CAS latency = 6  
CKQS  
LQS  
Low  
Low  
Hi-Z  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
Low  
Low  
Hi-Z  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
AC  
Note: DQ0 to DQ35 are aligned with QS.  
The correspondence of LQS, UQS to DQ.  
LQS  
UQS  
DQ0~DQ17  
DQ18~DQ35  
Rev 1.3  
2005-03-07 15/65  
TC59LM836DKB-30,-33,-40  
Read Timing (Burst Length = 4)  
Unidirectional DS/Free Running QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
DESL  
addresses)  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
QSP  
QSP  
CAS latency = 4  
CKQS  
LQS  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Hi-Z  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Hi-Z  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
AC  
t
t
CKQS  
CKQS  
t
t
t
QSP  
QSP  
CAS latency = 5  
CKQS  
LQS  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Hi-Z  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Hi-Z  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
AC  
Rev 1.3  
2005-03-07 16/65  
TC59LM836DKB-30,-33,-40  
Read Timing (Burst Length = 4)  
Unidirectional DS/Free Running QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
DESL  
addresses)  
DS  
(Input)  
t
t
CKQS  
CKQS  
t
t
t
QSP  
QSP  
CAS latency = 6  
CKQS  
LQS  
(output)  
t
t
QSQA  
QSQA  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
Q2  
LDQ  
Hi-Z  
Q0  
Q1  
t
Q3  
(output)  
t
t
AC  
AC  
AC  
t
OH  
t
t
QSQA  
QSQA  
t
CKQS  
t
t
t
QSP QSP  
CKQS  
UQS  
(output)  
t
QSQ  
t
t
QSQA  
Q1  
QSQA  
t
t
HZ  
QSQV  
UDQ  
Hi-Z  
Q0  
Q2  
t
Q3  
(output)  
t
LZ  
t
AC  
AC  
t
OH  
t
AC  
Note: DQ0 to DQ35 are aligned with QS.  
The correspondence of LQS, UQS to DQ.  
LQS  
UQS  
DQ0~DQ17  
DQ18~DQ35  
Rev 1.3  
2005-03-07 17/65  
TC59LM836DKB-30,-33,-40  
Write Timing (Burst Length = 4)  
Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after WRA)  
Input  
(control &  
addresses)  
DESL  
t
t
DSPSTH  
DQSS  
t
t
DSS  
DSPRES  
t
t
t
t
t
DSP DSP DSP DSPST  
DSPREH  
CAS latency = 4  
L/UDS  
(input)  
t
Preamble  
Postamble  
DSS  
t
DSPRE  
t
t
t
t
DS  
DS  
DS  
t
t
DH  
DH  
DH  
DQ  
D0  
D1  
D2  
D3  
(input)  
t
DQSS  
t
DSS  
t
t
DSPSTH  
DSS  
t
DSPRES  
t
t
t t  
DSP DSP DSPST  
CAS latency = 5  
DSP  
t
DSPREH  
L/UDS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
t
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
D3  
D0  
D1  
D2  
(input)  
t
t
DQSS  
DQSS  
t
DSS  
t
t
DSPSTH  
DSS  
t
DSPRES  
t
t
t
t
t
DSP DSP DSP DSPST  
CAS latency = 6  
t
DSPREH  
L/UDS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
D3  
D0  
D1  
D2  
(input)  
t
t
DQSS  
DQSS  
L/UQS  
Low  
(Uni-QS)  
L/UQS  
(Free Runninig)  
Note: DQ0 to DQ35 are sampled at both edges of DS.  
The correspondence of LDS, UDS to DQ.  
LDS  
UDS  
DQ0~DQ17  
DQ18~DQ35  
Rev 1.3  
2005-03-07 18/65  
TC59LM836DKB-30,-33,-40  
t
, t  
, I  
Timing  
REFI PAUSE XXXX  
CLK  
CLK  
t
, t  
, I  
REFI PAUSE XXXX  
t
t
t
t
IS IH  
IS IH  
Input  
(control &  
addresses)  
Command  
Command  
Note: “I  
” means “I ”, “I  
”, “I  
”, etc.  
RAS  
XXXX  
RC  
RCD  
Rev 1.3  
2005-03-07 19/65  
TC59LM836DKB-30,-33,-40  
FUNCTION TRUTH TABLE (Notes: 1, 2, 3)  
Command Truth Table (Notes: 4)  
The First Command  
SYMBOL  
FUNCTION  
Device Deselect  
CS  
FN  
BA1~BA0  
A13~A10  
A9~A8  
A7  
A6~A0  
DESL  
RDA  
H
L
L
×
H
L
×
×
×
×
×
Read with Auto-close  
Write with Auto-close  
BA  
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
WRA  
The Second Command (The next clock of RDA or WRA command)  
BA1~  
BA0  
A13~  
A12  
A11~  
A10  
SYMBOL  
FUNCTION  
CS  
FN  
A9  
A8  
A7  
A6~A0  
LAL  
REF  
MRS  
Lower Address Latch  
Auto-Refresh  
H
L
L
×
×
×
×
×
V
×
L
×
×
L
×
×
L
×
×
L
×
×
LA  
×
Mode Register Set  
V
V
V
Notes: 1. L = Logic Low, H = Logic High, × = either L or H, V = Valid (specified value), BA = Bank Address, UA = Upper Address,  
LA = Lower Address  
2. All commands are assumed to issue at a valid state.  
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where  
CLK goes to High.  
4. Operation mode is decided by the combination of 1st command and 2nd command. Refer to “STATE DIAGRAM” and  
the command table below.  
Read Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0  
A13~A10  
A9~A8  
A7  
A6~A0  
NOTES  
RDA (1st)  
LAL (2nd)  
L
H
BA  
UA  
UA  
UA  
UA  
LA  
H
×
×
×
×
×
Write Command Table  
COMMAND(SYMBOL)  
CS  
FN  
BA1~BA0  
A13  
A12  
A11  
A10  
A9~A8  
A7  
A6~A0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
LA  
H
×
×
VW0  
VW1  
×
×
×
×
Notes: 5. A13~ A12 are used for Variable Write Length (VW) control at Write Operation.  
VW Truth Table  
Burst Length  
Function  
Write All Words  
VW0  
VW1  
L
H
L
×
×
BL=2  
Write First One Word  
Reserved  
L
Write All Words  
H
L
L
BL=4  
Write First Two Words  
Write First One Word  
H
H
H
Rev 1.3  
2005-03-07 20/65  
TC59LM836DKB-30,-33,-40  
FUNCTION TRUTH TABLE (continued)  
Mode Register Set Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA1~BA0  
A13~A9  
A8  
A7  
A6~A0  
NOTES  
6
RDA (1st)  
L
L
H
×
×
×
×
×
MRS (2nd)  
×
V
V
V
V
V
Notes: 6. Refer to “MODE REGISTER TABLE”.  
Auto-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
H
n
H
H
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
L
L
L
×
×
×
×
×
×
×
×
×
×
Auto-Refresh  
H
×
Self-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
H
n
H
L
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
L
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
Self-Refresh Entry  
Self-Refresh Continue  
Self-Refresh Exit  
H
7, 8  
9
Self-Refresh  
Self-Refresh  
L
L
×
SELFX  
L
H
H
Power Down Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA1~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
n
L
Power Down Entry  
Power Down Continue  
Power Down Exit  
PDEN  
Standby  
H
L
L
H
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
8
9
Power Down  
Power Down  
L
PDEX  
H
H
Notes:  
7. PD has to be brought to Low within t  
from REF command.  
FPDL  
8. PD should be brought to Low after DQ’s state turned high impedance.  
9. When PD is brought to High from Low, this function is executed asynchronously.  
Rev 1.3  
2005-03-07 21/65  
TC59LM836DKB-30,-33,-40  
FUNCTION TRUTH TABLE (continued)  
PD  
CURRENT STATE  
CS FN  
ADDRESS COMMAND  
ACTION  
NOTES  
n 1  
n
H
H
H
H
H
L
H
H
H
L
H
L
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
L
×
×
×
×
DESL  
RDA  
WRA  
PDEN  
NOP  
BA, UA  
Row activate for Read  
Row activate for Write  
Power Down Entry  
Illegal  
L
BA, UA  
Idle  
H
L
×
10  
L
×
×
×
×
Refer to Power Down State  
Begin Read  
H
H
H
H
L
H
H
L
H
L
LA  
LAL  
Op-code  
MRS/EMRS Access to Mode Register  
PDEN Illegal  
MRS/EMRS Illegal  
Row Active for Read  
Row Active for Write  
H
L
×
L
×
×
×
×
Invalid  
H
H
H
H
L
H
H
L
H
L
LA  
LAL  
Begin Write  
Auto-Refresh  
Illegal  
×
REF  
PDEN  
H
L
×
L
×
REF (self) Self-Refresh Entry  
×
×
×
DESL  
RDA  
WRA  
PDEN  
Invalid  
H
H
H
H
H
L
H
H
H
L
H
L
×
Continue Burst Read to End  
BA, UA  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
11  
11  
L
BA, UA  
Read  
H
L
×
×
×
L
×
×
Data Write&Continue Burst Write to  
End  
H
H
H
×
×
DESL  
H
H
H
H
L
H
H
L
L
L
H
L
×
H
L
L
H
L
×
H
L
L
H
L
×
×
×
H
L
×
×
×
×
H
L
×
×
×
×
H
L
×
×
×
×
×
BA, UA  
RDA  
WRA  
PDEN  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
11  
11  
BA, UA  
Write  
×
L
×
×
×
H
H
H
H
H
L
H
H
H
L
×
DESL  
RDA  
WRA  
PDEN  
NOP Idle after I  
Illegal  
REFC  
BA, UA  
BA, UA  
Illegal  
Auto-Refreshing  
×
Self-Refresh Entry  
Illegal  
12  
L
×
×
×
Refer to Self-Refreshing State  
H
H
H
H
H
L
H
H
H
L
×
DESL  
RDA  
WRA  
PDEN  
NOP Idle after I  
Illegal  
RSC  
BA, UA  
BA, UA  
Illegal  
Mode Register  
Accessing  
×
×
×
×
×
Illegal  
L
Illegal  
×
Invalid  
H
L
×
Invalid  
L
Maintain Power Down Mode  
Power Down  
Exit Power Down Mode Idle after  
L
H
H
×
×
PDEX  
t
PDEX  
L
H
L
L
L
H
×
L
×
×
×
×
×
×
×
×
×
×
×
Illegal  
Invalid  
L
×
Maintain Self-Refresh  
Exit Self-Refresh Idle after I  
Illegal  
Self-Refreshing  
H
H
H
L
SELFX  
REFC  
Notes: 10. Illegal if any bank is not idle.  
11. Illegal to bank in specified states; Function may be legal in the bank inidicated by Bank Address (BA).  
12. Illegal if t is not satisfied.  
FPDL  
Rev 1.3  
2005-03-07 22/65  
TC59LM836DKB-30,-33,-40  
MODE REGISTER TABLE  
Regular Mode Register (Notes: 1)  
*1  
*1  
*3  
ADDRESS  
Register  
BA1  
BA0  
A13~A8  
0
A7  
A6~A4  
CL  
A3  
BT  
A2~A0  
BL  
0
0
TE  
A7  
TEST MODE (TE)  
A3  
BURST TYPE (BT)  
0
1
Regular (default)  
Test Mode Entry  
0
1
Sequential  
Interleave  
A6  
A5  
A4  
CAS LATENCY (CL)  
A2  
A1  
A0  
BURST LENGTH (BL)  
*2  
*2  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
×
0
1
0
1
0
1
Reserved  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
*2  
Reserved  
2
4
*2  
Reserved  
4
5
6
*2  
Reserved  
*2  
Reserved  
Extended Mode Register (Notes: 4)  
*4  
*4  
*5  
ADDRESS  
Register  
BA1  
BA0  
A13~A7  
0
A6~A5  
SS  
A4~A3  
A2~A1  
A0  
0
1
DIC (QS)  
DIC (DQ)  
DS  
QS  
DQ  
OUTPUT DRIVE IMPEDANCE CONTROL  
(DIC)  
A6 A5  
STROBE SELECT  
A4 A3 A2 A1  
*2  
0
0
1
1
0
1
0
1
Reserved  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Reserved  
*2  
Reserved  
Unidirectional DS/QS  
Unidirectional DS/Free Running QS  
A0  
DLL SWITCH (DS)  
0
1
DLL Enable  
DLL Disable  
Notes: 1. Regular Mode Register is chosen using the combination of BA0 = 0 and BA1 = 0.  
2. “Reserved” places in Regular Mode Register should not be set.  
3. A7 in Regular Mode Register must be set to “0” (low state).  
Because Test Mode is specific mode for supplier.  
4. Extended Mode Register is chosen using the combination of BA0 = 1 and BA1 = 0.  
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.  
Rev 1.3  
2005-03-07 23/65  
TC59LM836DKB-30,-33,-40  
STATE DIAGRAM  
SELF-  
REFRESH  
POWER  
DOWN  
SELFX  
PDEX  
( PD = H)  
( PD = H)  
PD = L  
PDEN  
( PD = L)  
STANDBY  
(IDLE)  
PD = H  
AUTO-  
MODE  
REFRESH  
REGISTER  
WRA  
RDA  
REF  
MRS  
ACTIVE  
(RESTORE)  
ACTIVE  
LAL  
LAL  
WRITE  
(BUFFER)  
READ  
Command input  
Automatic return  
The second command at Active state  
must be issued 1 clock after RDA or  
WRA command input.  
Rev 1.3  
2005-03-07 24/65  
TC59LM836DKB-30,-33,-40  
TIMING DIAGRAMS  
SINGLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I = 5 cycles  
RC  
RC  
RC  
Command  
RDA LAL  
=1 cycle  
DESL  
RDA LAL  
DESL  
= 4 cycles  
RDA LAL  
DESL  
RDA  
I
I
= 4 cycles  
I
=1 cycle  
I
I
=1 cycle  
I
= 4 cycles  
RAS  
RCD  
RAS  
RCD  
UA  
RAS  
RCD  
UA  
Address  
UA  
#0  
LA  
LA  
LA  
UA  
#0  
Bank Add.  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 4  
CL = 4  
CL = 4  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
(output)  
Rev 1.3  
2005-03-07 25/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
RDA LAL  
DESL  
= 5 cycles  
RDA LAL  
DESL  
RDA LAL  
DESL  
I
=1 cycle  
I
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
RCD  
RAS  
RCD  
UA  
RAS  
RCD  
Address  
UA  
LA  
LA  
UA  
LA  
Bank Add.  
#0  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 5  
CL = 5  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Rev 1.3  
2005-03-07 26/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK READ TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
I
11  
12  
13  
14  
15  
CLK  
CLK  
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
RDA LAL  
=1 cycle  
DESL  
RDA LAL  
DESL  
RDA LAL  
I
I
= 6 cycles  
I
=1 cycle  
I
= 6 cycles  
I
=1 cycle  
RCD  
RAS  
RCD  
UA  
RAS  
RCD  
UA  
Address  
UA  
#0  
LA  
LA  
LA  
Bank Add.  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 6  
CL = 6  
DQ  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1  
Q0 Q1  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2  
Rev 1.3  
2005-03-07 27/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I = 5 cycles  
RC  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
I
=1 cycle  
I
= 4 cycles  
RAS  
RCD  
RAS  
RCD  
RAS  
RCD  
Address  
UA  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
WL = 3  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Rev 1.3  
2005-03-07 28/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
WRA LAL  
=1 cycle  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
I
I
= 5 cycles  
I
=1 cycle  
I
= 5 cycles  
I
=1 cycle  
RCD  
RAS  
RCD  
UA  
RAS  
RCD  
UA  
Address  
UA  
#0  
LA  
LA  
LA  
Bank Add.  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 4  
WL = 4  
DQ  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Rev 1.3  
2005-03-07 29/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
I
=1 cycle  
I
= 6 cycles  
I
=1 cycle  
I
= 6 cycles  
I
=1 cycle  
RCD  
RAS  
RCD  
RAS  
RCD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
Bank Add.  
#0  
#0  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
WL = 5  
WL = 5  
DQ  
(input)  
D0 D1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
D0 D1  
D0 D1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
D0 D1 D2 D3  
D0 D1 D2 D3  
(input)  
Rev 1.3  
2005-03-07 30/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK READ-WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
RC  
I
= 5 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Q0  
Rev 1.3  
2005-03-07 31/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK READ-WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
CL = 5  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
CL = 5  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Rev 1.3  
2005-03-07 32/65  
TC59LM836DKB-30,-33,-40  
SINGLE BANK READ-WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
I
= 7 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
Low  
CL = 6  
WL = 5  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
CL = 6  
Hi-Z  
DQ  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
DQ  
Q0 Q1  
D0 D1  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
CL = 6  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Read data  
D0 D1 D2 D3  
Write data  
Rev 1.3  
2005-03-07 33/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cyclesI  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 4  
CL = 4  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
Hi-Z  
DQ  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
(output)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 34/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
LAL  
LA  
Command  
Address  
RDA LAL RDA LAL  
DESL  
RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
(output)  
BL = 4  
DS  
(input)  
QS  
Low  
Hi-Z  
(output)  
CL = 5  
CL = 5  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Note: l  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2  
(output)  
to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 35/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK READ TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL  
DESL  
RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 7 cycles  
RC  
I
(Bank"b") = 7 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 6  
CL = 6  
DQ  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2  
(output)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
(output)  
BL = 4  
DS  
(input)  
QS  
(output)  
CL = 6  
CL = 6  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2  
Note: l to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 36/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
(input)  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 3  
WL = 3  
DQ  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
(input)  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 37/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL  
DESL  
WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 4  
WL = 4  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 4  
WL = 4  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 38/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK WRITE TIMING (CL = 6)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
= 2 cycles I  
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL  
WRA LAL WRA LAL WRA LAL WRA LAL WRA  
DESL  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 7 cycles  
RC  
I
(Bank"b") = 7 cycles  
RC  
Unidirectional DS/QS mode  
BL = 2  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
(input)  
BL = 4  
DS  
(input)  
QS  
Low  
(output)  
WL = 5  
WL = 5  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1  
Unidirectional DS/Free Running QS mode  
BL = 2  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
(input)  
BL = 4  
DS  
(input)  
QS  
(output)  
WL = 5  
WL = 5  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1  
Note: l  
to the same bank must be satisfied.  
RC  
Rev 1.3  
2005-03-07 39/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK READ-WRITE TIMING (BL = 2)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA  
Command  
I
= 1 cycle  
I
= 2 cycles  
I
= 1 cycle  
I
= 2 cycles  
RWD  
WRD  
RWD  
WRD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
Unidirectional DS/QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 4  
WL = 3  
WL = 4  
WL = 5  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 5  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 5  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 6  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
DQ  
Unidirectional DS/Free Running QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
Hi-Z  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
Da0 Da1  
DQ  
CL = 5  
DS  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
to the same bank must be satisfied.  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
DQ  
Note: l  
RC  
Rev 1.3  
2005-03-07 40/65  
TC59LM836DKB-30,-33,-40  
MULTIPLE BANK READ-WRITE TIMING (BL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
DESL  
= 3 cycles  
DESL  
= 3 cycles  
Command  
WRA LAL RDA LAL  
WRA LAL RDA LAL  
WRA LAL RDA LAL  
I
= 1 cycle  
I
I
= 1 cycle  
I
I
= 1 cycle  
WRD  
RWD  
WRD  
RWD  
WRD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
Unidirectional DS/QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 4  
WL = 3  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
DQ  
CL = 5  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 5  
WL = 4  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
DQ  
CL = 6  
DS  
(input)  
QS  
(output)  
Low  
Hi-Z  
CL = 6  
WL = 5  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1  
DQ  
Unidirectional DS/Free Running QS mode  
CL = 4  
DS  
(input)  
QS  
(output)  
CL = 4  
WL = 3  
Hi-Z  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
DQ  
CL = 5  
DS  
(input)  
QS  
(output)  
CL = 5  
WL = 4  
Hi-Z  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
CL = 6  
DS  
(input)  
QS  
(output)  
CL = 6  
WL = 5  
Hi-Z  
to the same bank must be satisfied.  
DQ  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1  
Note: l  
RC  
Rev 1.3  
2005-03-07 41/65  
TC59LM836DKB-30,-33,-40  
WRITE with VARIABLE WRITE LENGTH (VW) CONTROL (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
BL = 2, SEQUENTIAL MODE  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
VW=All  
LA=#1  
VW=1  
Address  
UA  
UA  
VW0 = Low  
VW1 = don't care  
VW0 = High  
VW1 = don't care  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DS  
(input)  
DQ  
D0 D1  
D0  
(input)  
Lower Address #3 #2  
#1 (#0)  
Last one data is masked.  
BL = 4, SEQUENTIAL MODE  
Command  
Address  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
LA=#1  
LA=#2  
UA  
UA  
UA  
VW=All  
VW=1  
VW=2  
VW0 = High  
VW1 = Low  
VW0 = High  
VW1 = High  
VW0 = Low  
VW1 = High  
Bank  
"a"  
Bank  
"a"  
Bank  
"a"  
Bank Add.  
DS  
(input)  
DQ  
D0 D1 D2 D3  
D0  
D0 D1  
(input)  
Lower Address #3 #0 #1 #2  
#1(#2)(#3)(#0)  
Last three data are masked.  
#2 #3 (#0)(#1)  
Last two data are masked.  
Note: DS input must be continued till end of burst count even if some of laster data is masked.  
Rev 1.3  
2005-03-07 42/65  
TC59LM836DKB-30,-33,-40  
POWER DOWN TIMING (CL = 4, BL = 4)  
Read cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-2  
n-1  
n
n+1  
n+2  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
I
= 2 cycle  
PD  
IS  
t
IH  
PD  
t
t
PDEX  
QPDH  
l
, t  
RC(min) REFI(max)  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
CL = 4  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
(output)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
CL = 4  
DQ  
(output)  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
Power Down Entry  
Note: PD must be kept "High" level until end of Burst data output.  
Power Down Exit  
cycles later.  
PD should be brought to "High" within t  
(max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
PDA  
Rev 1.3  
2005-03-07 43/65  
TC59LM836DKB-30,-33,-40  
POWER DOWN TIMING (CL = 4, BL = 4)  
Write cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-2  
n-1  
n
n+1  
n+2  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
WRA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
I
= 2 cycle  
PD  
IS  
t
IH  
PD  
WL = 3  
2 clock cycles  
t
PDEX  
l
, t  
RC(min) REFI(max)  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
WL = 3  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
WL = 3  
DQ  
(input)  
D0 D1 D2 D3  
Note: PD must be kept "High" level until WL+2 clock cycles from LAL command.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" and a stable clock signal must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
cycles later.  
PDA  
Rev 1.3  
2005-03-07 44/65  
TC59LM836DKB-30,-33,-40  
MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
Bank Add.  
CL + BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
(output)  
Low  
DQ  
Q0 Q1  
(output)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
Q0 Q1  
(output)  
Note: Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2 clock cycles.  
Rev 1.3  
2005-03-07 45/65  
TC59LM836DKB-30,-33,-40  
MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
Address  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
Bank Add.  
WL+BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Note: Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2 clock cycles.  
Rev 1.3  
2005-03-07 46/65  
TC59LM836DKB-30,-33,-40  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
Bank Add.  
CL + BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
DQ  
(output)  
Q0 Q1  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
Q0 Q1  
(output)  
Note: Minimum delay from LAL following RDA to RDA of EMRS operation is CL+BL/2 clock cycles.  
When DQ strobe mode is changed by EMRS, QS output is invalid for l period.  
RSC  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Rev 1.3  
2005-03-07 47/65  
TC59LM836DKB-30,-33,-40  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 7 cycles  
RSC  
RDA  
or  
Command  
Address  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
Bank Add.  
WL+BL/2  
Unidirectional DS/QS mode  
DS  
(input)  
QS  
Low  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Unidirectional DS/Free Running QS mode  
DS  
(input)  
QS  
(output)  
DQ  
D0 D1 D2 D3  
(input)  
Note: When DQ strobe mode is changed by EMRS, QS output is invalid for l  
period.  
RSC  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2 clock cycles.  
Rev 1.3  
2005-03-07 48/65  
TC59LM836DKB-30,-33,-40  
AUTO-REFRESH TIMING (CL = 4, BL = 4)  
Unidirectional DS/QS mode  
0
1
2
3
4
5
6
7
n 1  
n
n + 1  
n + 2  
CLK  
CLK  
I
= 5 cycles  
I
= 19 cycles  
REFC  
RC  
RDA LAL or  
or MRS or  
WRA REF  
Command  
RDA  
LAL  
DESL  
WRA  
REF  
DESL  
Bank,  
UA  
Bank,Address  
LA  
I
= 1 cycle  
I
= 4 cycles  
I = 1 cycle  
RCD  
RCD  
RAS  
QS  
(output)  
Low  
Hi-Z  
Low  
Hi-Z  
CL = 4  
DQ  
Q0 Q1 Q2 Q3  
(output)  
Unidirectional DS/Free Running QS mode  
CLK  
CLK  
I
= 5 cycles  
I
= 19 cycles  
REFC  
RC  
RDA LAL or  
or MRS or  
WRA REF  
Command  
RDA  
LAL  
LA  
DESL  
WRA  
REF  
DESL  
Bank,  
UA  
Bank,Address  
I
= 1 cycle  
I
= 4 cycles  
I = 1 cycle  
RCD  
RCD  
RAS  
QS  
(output)  
CL = 4  
DQ  
(output)  
Hi-Z  
Hi-Z  
Q0 Q1 Q2 Q3  
Note: In case of CL = 4, I  
must be meet 19 clock cycles.  
REFC  
When the Auto-Refresh operation is performed, the synthetic average interval of Auto-Refresh  
command specified by t must be satisfied.  
REFI  
t
is average interval time in 8 Refresh cycles that is sampled randomly.  
REFI  
t
t
t
t
t
8
1
2
3
7
CLK  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
8 Refresh cycle  
Total time of 8 Refresh cycle  
8
t + t + t + t + t + t + t + t  
1 2 3 4 5 6 7 8  
t
=
=
REFI  
8
t
is specified to avoid partly concentrated current of Refresh operation that is activated larger area  
REFI  
than Read / Write operation.  
Rev 1.3  
2005-03-07 49/65  
TC59LM836DKB-30,-33,-40  
SELF-REFRESH ENTRY TIMING  
Unidirectional DS/QS mode  
0
1
2
3
4
5
m 1  
m
m + 1  
CLK  
CLK  
I
= 1 cycle  
I
REFC  
RCD  
Command  
PD  
WRA  
REF  
DESL  
t
t
FPDL (min) FPDL (max)  
Auto Refresh  
Self Refresh Entry  
*2  
I
PDV  
t
QPDH  
I
CKD  
QS  
Hi-Z  
(output)  
Low  
DQ  
Hi-Z  
Qx  
Notes: 1.  
(output)  
is don’t care.  
2. PD must be brought to "Low" within the timing between t  
(min) and t (max) to Self  
FPDL FPDL  
Refresh mode. When PD is brought to "Low" after l  
, TC59LM836DKB perform Auto Refresh  
PDV  
and enter Power down mode. In case of PD fall between t  
(max) and l  
FPDL  
, TC59LM836DKB  
PDV  
will either entry Self-Refresh mode or Power down mode after Auto-Refresh operation.  
3. It is desirable that clock input is continued at least l  
brought to “Low” for Self-Refresh Entry.  
from REF command even though PD is  
CKD  
4. In case of Self-Refresh entry after Write Operation, the delay time from the LAL command  
following WRA to the REF command is Write latency (WL)+2 clock cycles minimum.  
SELF-REFRESH EXIT TIMING  
Unidirectional DS/QS mode  
0
1
2
m 1  
m
m + 1 m + 2  
n 1  
n
n + 1  
p 1  
p
CLK  
CLK  
*2  
*5  
Command (1st)  
Command (2nd)  
I
I
*5  
*6  
REFC  
REFC  
*3  
*4  
*4  
*6  
Command  
PD  
DESL  
WRA  
REF  
DESL  
RDA  
LAL  
I
= 1 cycle  
I
= 1 cycle  
RCD  
RCD  
t
PDEX  
I
LOCK  
QS  
Hi-Z  
Hi-Z  
Low  
(output)  
DQ  
(output)  
Self-Refresh Exit  
Notes: 1. is don’t care.  
2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode.  
3. DESL command must be asserted during I after PD is brought to “High”.  
REFC  
4. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any  
other operation.  
5. Any command (except Read command) can be issued after I  
.
REFC  
6. Read command (RDA + LAL) can be issued after I  
.
LOCK  
Rev 1.3  
2005-03-07 50/65  
TC59LM836DKB-30,-33,-40  
SELF-REFRESH ENTRY TIMING  
Unidirectional DS/Free Running QS mode  
0
1
2
3
4
5
m 1  
m
m + 1  
CLK  
CLK  
I
= 1 cycle  
I
REFC  
RCD  
Command  
PD  
WRA  
REF  
DESL  
t
t
FPDL (min) FPDL (max)  
Auto Refresh  
Self Refresh Entry  
*2  
I
PDV  
t
QPDH  
I
CKD  
QS  
Hi-Z  
Hi-Z  
(output)  
DQ  
(output)  
Qx  
Notes: 1.  
is don’t care.  
2. PD must be brought to "Low" within the timing between t  
(min) and t (max) to Self  
FPDL FPDL  
Refresh mode. When PD is brought to "Low" after l  
, TC59LM836DKB perform Auto Refresh  
PDV  
and enter Power down mode. In case of PD fall between t  
(max) and l  
FPDL  
, TC59LM836DKB  
PDV  
will either entry Self-Refresh mode or Power down mode after Auto-Refresh operation.  
3. It is desirable that clock input is continued at least l  
brought to “Low” for Self-Refresh Entry.  
from REF command even though PD is  
CKD  
SELF-REFRESH EXIT TIMING  
Unidirectional DS/Free Running QS mode  
0
1
2
m 1  
m
m + 1 m + 2  
n 1  
n
n + 1  
p 1  
p
CLK  
CLK  
*2  
*5  
Command (1st)  
Command (2nd)  
I
I
REFC  
*5  
*6  
REFC  
*3  
*4  
*4  
*6  
Command  
PD  
DESL  
WRA  
REF  
DESL  
RDA  
LAL  
I
= 1 cycle  
I
= 1 cycle  
RCD  
RCD  
t
PDEX  
I
LOCK  
QS  
(output)  
DQ  
Hi-Z  
(output)  
Self-Refresh Exit  
Notes: 1. is don’t care.  
2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode.  
3. DESL command must be asserted during I after PD is brought to “High”.  
REFC  
4. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any  
other operation.  
5. Any command (except Read command) can be issued after I  
.
REFC  
6. Read command (RDA + LAL) can be issued after I  
.
LOCK  
7. QS output is invalid until DLL lock from Self-Refresh exit.  
Rev 1.3  
2005-03-07 51/65  
TC59LM836DKB-30,-33,-40  
FUNCTIONAL DESCRIPTION  
TM  
Network FCRAM  
The FCRAMTM is an acronym of Fast Cycle Random Access Memory.  
The Network FCRAMTM is competent to perform fast random core access, low latency and high-speed data  
transfer.  
PIN FUNCTIONS  
CLOCK INPUTS: CLK & CLK  
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input.  
The CS , FN and all address input signals are sampled on the crossing of the positive edge of CLK and the  
negative edge of CLK . The QS and DQ output data are aligned to the crossing point of CLK and CLK . The  
timing reference point for the differential clock is when the CLK and CLK signals cross during a transition.  
POWER DOWN: PD  
The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a  
Clock Suspend function like a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into  
low state if any Read or Write operation is being performed.  
CS  
CHIP SELECT & FUNCTION CONTROL:  
& FN  
The CS and FN inputs are a control signal for forming the operation commands on FCRAMTM. Each  
operation mode is decided by the combination of the two consecutive operation commands using the CS and  
FN inputs.  
BANK ADDRESSES: BA0 & BA1  
The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected  
the bank to be used for the operation. BA0 and BA1 also define which mode register is loaded during the Mode  
Register Set command (MRS or EMRS).  
BA0  
BA1  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
0
1
0
1
0
0
1
1
ADDRESS INPUTS: A0~A13  
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The  
Upper Addresses with Bank addresses are latched at the RDA or WRA command and the Lower Addresses are  
latched at the LAL command. The A0 to A13 inputs are also used for setting the data in the Regular or  
Extended Mode Register set cycle.  
I/O Organization  
36 bits  
UPPER ADDRESS  
A0~A13  
LOWER ADDRESS  
A0~A6  
Rev 1.3  
2005-03-07 52/65  
TC59LM836DKB-30,-33,-40  
DATA INPUT/OUTPUT: DQ0~DQ35  
The input data of DQ0 to DQ35 are taken in synchronizing with the both edges of DS input signal. The output  
data of DQ0 to DQ35 are outputted synchronizing with the both edges of QS output signal.  
DATA STROBE: LDS, UDS, LQS, UQS  
Method of data strobe is chosen by Extended mode register. LDS and LQS are for DQ0 to DQ17. UDS and  
UQS are for DQ18 to DQ35.  
(1) Unidirectional DS / QS mode  
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write  
operation. Both edges of QS are used for trigger signal of all DQs at Read operation. During Write,  
Auto-Refresh and NOP cycle, QS assert always “Low” level. QS is Hi-Z in Self-Refresh mode.  
(2) Unidirectional DS / Free running QS mode  
DS is input signal and QS is output signal. Both edge of DS are used to sample all DQs at Write operation.  
Both edges of QS are used for trigger signal of all DQs at Read operation. QS assert always toggle signal  
except Self-Refresh mode. This strobe type is easy to use for pin to pin connect application.  
POWER SUPPLY: V , V  
, V , V  
SS SSQ  
DD DDQ  
V
and V are power supply pins for memory core and peripheral circuits.  
DD  
SS  
and V  
V
DDQ  
are power supply pins for the output buffer.  
SSQ  
REFERENCE VOLTAGE: V  
REF  
V
REF  
is reference voltage for all input signals.  
Rev 1.3  
2005-03-07 53/65  
TC59LM836DKB-30,-33,-40  
COMMAND FUNCTIONS and OPERATIONS  
TC59LM836DKB are introduced the two consecutive command input method. Therefore, except for Power Down  
mode, each operation mode decided by the combination of the first command and the second command from  
stand-by states of the bank to be accessed.  
Read Operation (1st command + 2nd command = RDA + LAL)  
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank  
designated by Bank Address in a read mode. When the LAL command with Lower Addresses is issued at the  
next clock of the RDA command, the data is read out sequentially synchronizing with the both edges of QS  
output signal (Burst Read Operation). The initial valid read data appears after CAS latency from the issuing  
of the LAL command. The valid data is outputted for a burst length. The CAS latency, the burst length of read  
data and the burst type must be set in the Mode Register beforehand. The read operated bank goes back  
automatically to the idle state after l  
.
RC  
Write Operation (1st command + 2nd command = WRA + LAL)  
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank  
designated by Bank Address in a write mode. When the LAL command with Lower Addresses is issued at the  
next clock of the WRA command, the input data is latched sequentially synchronizing with the both edges of DS  
input signal (Burst Write Operation). The data and DS inputs have to be asserted in keeping with clock input  
after CAS latency-1 from the issuing of the LAL command. The DS has to be provided for a burst length. The  
CAS latency and the burst type must be set in the Mode Register beforehand. The write operated bank goes  
back automatically to the idle state after l . Write Burst Length is controlled by VW0 and VW1 inputs with  
RC  
LAL command. See VW truth table.  
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)  
TC59LM836DKB are required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with  
the REF command following to the WRA command. The Auto-Refresh mode can be effective only when all banks  
are in the idle state. In a point to notice, the write mode started with the WRA command is canceled by the REF  
command having gone into the next clock of the WRA command instead of the LAL command. The minimum  
period between the Auto-Refresh command and the next command is specified by l . However, about a  
REFC  
synthetic average interval of Auto-Refresh command, it must be careful. In case of equally distributed refresh,  
Auto-Refresh command has to be issued within once for every 3.9 µs by the maximum. In case of burst refresh  
or random distributed refresh, the average interval of eight consecutive Auto-Refresh commands has to be more  
than 400 ns always. In other words, the number of Auto-Refresh cycles that can be performed within 3.2 µs (8 ×  
400 ns) is to 8 times in the maximum.  
Self-Refresh Operation (1st command + 2nd command = WRA + REF with  
In case of Self-Refresh operation, refresh operation can be performed automatically by using an internal timer.  
= “L”)  
PD  
When all banks are in the idle state and all outputs are in Hi-Z states, the TC59LM836DKB become  
Self-Refresh mode by issuing the Self-Refresh command. PD has to be brought to “Low” within t  
FPDL  
from the  
REF command following to the WRA command for a Self-Refresh mode entry. In order to satisfy the refresh  
period, the Self-Refresh entry command should be asserted within 3.9 µs after the latest Auto-Refresh command.  
Once the device enters Self-Refresh mode, the DESL command must be continued for l  
it is desirable that clock input is kept in l  
CKD  
period. In addition,  
REFC  
period. The device is in Self-Refresh mode as long as PD held  
“Low”. During Self-Refresh mode, all input and output buffers are disabled except for PD , therefore the power  
dissipation lowers. Regarding a Self-Refresh mode exit, PD has to be changed over from “Low” to “High” along  
with the DESL command, and the DESL command has to be continuously issued in the number of clocks  
specified by l  
. The Self-Refresh exit function is asynchronous operation. It is required that one  
REFC  
Auto-Refresh command is issued to avoid the violation of the refresh period just after l  
exit.  
from Self-Refresh  
REFC  
Power Down Mode (  
= “L”)  
PD  
When all banks are in the idle state and DQ outputs are in Hi-Z states, the TC59LM836DKB become Power  
Down Mode by asserting PD is “Low”. When the device enters the Power Down Mode, all input and output  
buffers are disabled after specified time except for PD , CLK, CLK and QS. Therefore, the power dissipation  
lowers. To exit the Power Down Mode, PD has to be brought to “High” and the DESL command has to be  
issued for lPDA cycle after PD goes high. The Power Down exit function is asynchronous operation.  
Rev 1.3  
2005-03-07 54/65  
TC59LM836DKB-30,-33,-40  
Mode Register Set (1st command + 2nd command = RDA + MRS)  
When all banks are in the idle state, issuing the MRS command following to the RDA command can program  
the Mode Register. In a point to notice, the read mode started with the RDA command is canceled by the MRS  
command having gone into the next clock of the RDA command instead of the LAL command. The data to be set  
in the Mode Register is transferred using A0 to A13, BA0 and BA1 address inputs. The TC59LM836DKB have  
two mode registers. These are Regular and Extended Mode Register. The Regular or Extended Mode Register is  
chosen by BA0 and BA1 in the MRS command. The Regular Mode Register designates the operation mode for a  
read or write cycle. The Regular Mode Register has four function fields.  
The four fields are as follows:  
(R-1) Burst Length field to set the length of burst data  
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle  
(R-3)CAS Latency field to set the access time in clock cycle  
(R-4) Test Mode field to use for supplier only.  
The Extended Mode Register has three function fields.  
The three fields are as follows:  
(E-1) DLL Switch field to choose either DLL enable or DLL disable  
(E-2) Output Driver Impedance Control field.  
(E-3) Data Strobe Select  
Once those fields in the Mode Register are set up, the register contents are maintained until the Mode  
Register is set up again by another MRS command or power supply is lost. The initial value of the Regular or  
Extended Mode Register after power-up is undefined, therefore the Mode Register Set command must be issued  
before proper operation.  
Regular Mode Register/Extended Mode Register change bits (BA0, BA1)  
These bits are used to choose either Regular MRS or Extended MRS  
BA1  
BA0  
Mode Register Set  
0
0
1
0
1
×
Regular MRS  
Extended MRS  
Reserved  
Regular Mode Register Fields  
(R-1) Burst Length field (A2 to A0)  
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst  
Length to be 2 or 4 words.  
A2  
A1  
A0  
BURST LENGTH  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
2 words  
4 words  
Reserved  
Reserved  
(R-2) Burst Type field (A3)  
The Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is “0”,  
Sequential mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both burst types  
support burst length of 2 and 4 words.  
A3  
BURST TYPE  
0
1
Sequential  
Interleave  
Rev 1.3  
2005-03-07 55/65  
TC59LM836DKB-30,-33,-40  
Addressing sequence of Sequential mode (A3)  
A column access is started from the inputted lower address and is performed by incrementing the lower  
address input to the device  
CAS Latency = 4 (Free Running QS mode)  
CLK  
CLK  
Command  
RDA  
LAL  
QS  
Data Data Data Data  
DQ  
0
1
2
3
Addressing sequence for Sequential mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
n
2 words (address bits is LA0)  
not carried from LA0~LA1  
n + 1  
n + 2  
n + 3  
4 words (address bits is LA1, LA0)  
not carried from LA1~LA2  
Addressing sequence of Interleave mode  
A column access is started from the inputted lower address and is performed by interleaving the address  
bits in the sequence shown as the following.  
Addressing sequence for Interleave mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
2 words  
4 words  
(R-3) CAS Latency field (A6 to A4)  
This field specifies the number of clock cycles from the assertion of the LAL command following the  
RDA command to the first data read. The minimum value of CAS Latency depends on the frequency  
of CLK. In a write mode, the place of clock that should input write data is CAS Latency cycles 1.  
A6  
A5  
A4  
CAS LATENCY  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
4
5
6
Reserved  
(R-4) Test Mode field (A7)  
This bit is used to enter Test Mode for supplier only and must be set to “0” for normal operation.  
(R-5) Reserved field in the Regular Mode Register  
Reserved bits (A8 to A13)  
These bits are reserved for future operations. They must be set to “0” for normal operation.  
Rev 1.3  
2005-03-07 56/65  
TC59LM836DKB-30,-33,-40  
Extended Mode Register fields  
(E-1) DLL Switch field (A0)  
This bit is used to enable DLL. When the A0 bit is set “0”, DLL is enabled. This bit must be set to “0”  
for normal operation.  
(E-2) Output Driver Impedance Control field (A1 to A4)  
This field is used to choose Output Driver Strength. Three types of Driver Strength are supported.  
QS and DQ Driver Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3  
specified the QS Driver Strength.  
QS  
DQ  
OUTPUT DRIVER IMPEDANCE CONTROL  
A4  
A3  
A2  
A1  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Reserved  
(E-3) Strobe Select (A6 / A5)  
Two types of data strobe are supported. This field is used to choose the type of data strobe.  
(1) Unidirectional DS/QS mode  
Data strobe is separated DS for write strobe and QS for read strobe.  
DS is used to sample write data at write operation. QS is aligned with read data at Read  
operation.  
(2) Unidirectional DS/Free running QS mode  
Data strobe is separated DS for write strobe and QS for read strobe.  
DS is used to sample write data at write operation. QS is aligned with read data and always  
clocking.  
A6  
A5  
STROBE SELECT  
0
0
1
1
0
1
0
1
Reserved  
Reserved  
Unidirectional DS/QS mode  
Unidirectional DS/Free running QS mode  
(E-4) Reserved field (A7 to A13)  
These bits are reserved for future operations and must be set to “0” for normal operation.  
Rev 1.3  
2005-03-07 57/65  
TC59LM836DKB-30,-33,-40  
BOUNDARY SCAN TEST ACCESS PORT OPERATIONS  
The TC59LM836DKB has a serial boundary scan test access port (TAP) which is compatible with IEEE Standard  
1149.1 – 1990, but which does not implement all the functions required for 1149.1 – 1990. TCK must be tied to VSS  
or VDD to disable the TAP when TAP operation is not required.  
Test Access Port Signals  
SYMBOL  
DESCRIPTION  
All Test Access Port inputs are sampled on the rising edge of TCK. To disable  
TCK  
Test Clock Input  
the TAP, TCK must be tied to V or V  
.
SS  
DD  
The signal presented at TMS is sampled on the rising edge of TCK. This input  
is internally pulled up so as to recognize a floating input as a logical High  
(Test-Logic-Reset).  
TMS  
Test Mode Select Input  
Values presented at TDI are clocked into the selected register on the rising  
edge of TCK. This input is internally pulled up. This enables detection of when  
the TDI input to the board is open-circuit.  
TDI  
Test Data Input  
TDO is the serial output for test instructions and data from the test logic. This  
output is controlled by the falling edge of TCK.  
TDO  
Test Data Output  
Test Access Port Registers  
REGISTER  
SYMBOL  
IR [ 2 : 0 ]  
LENGTH (bits)  
3
DESCRIPTION  
The Instruction register controls five states (EXTEST,  
Sample-Z, Sample, Bypass, ID code).  
Instruction Register  
Test Data Register  
The register includes information on revision number,  
organization and TOSHIBA ID number.  
ID Register  
IDR [ 31 : 0 ]  
BR  
32  
1
Bypass Register  
The register connects TDI and TDO.  
The Boundary Scan register is comprised of boundary scan  
cells at each input and I/O pin. The BSCs are serially  
connected between TDI and TDO.  
Boundary Scan Register  
BSR [ 62 : 0 ]  
63  
TAP Controller Instruction Set  
IR2  
IR1  
IR0  
INSTRUCTION  
DESCRIPTION  
Moves the Preloaded data on to the output pins. Samples the inputs  
connected to the BSCs.  
0
0
0
EXTEST  
0
0
0
0
1
1
1
0
1
ID CODE  
SAMPLE – Z  
RESERVED  
Access ID code.  
Tristates the RAM outputs and samples the inputs connected to the BSCs.  
This instruction is reserved for future use.  
Samples the inputs connected to the BSCs. Load the sampled data at I/Os  
to the parallel output of the BSCs. Does not affect RAM operation.  
1
0
0
SAMPLE  
1
1
1
0
1
1
1
0
1
RESERVED  
RESERVED  
BYPASS  
This instruction is reserved for future use.  
This instruction is reserved for future use.  
Bypasses TDI and TDO using the Bypass register.  
Note: The first bit to be scanned into TDI is taken to be the least significant bit (IR0).  
Rev 1.3  
2005-03-07 58/65  
TC59LM836DKB-30,-33,-40  
ID Register  
BIT # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
0
8
1
7
0
6
0
5
1
4
1
3
0
2
0
1
0
0
1
Value  
0
0
0
1
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
Fi  
xe  
d
Content  
Memory Type  
TOSHIBA ID number  
Boundary Scan Order  
BIT  
BALL LAYOUT BALL NAME  
BIT  
BALL LAYOUT BALL NAME  
0
U10  
U11  
T10  
T11  
R10  
R11  
P10  
P11  
N10  
N11  
M3  
DQ35  
DQ34  
DQ33  
DQ32  
DQ31  
DQ30  
DQ29  
DQ28  
DQ27  
UQS  
A4  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
B10  
B3  
B2  
C3  
C2  
D3  
DQ0  
DQ17  
DQ16  
DQ15  
DQ14  
DQ13  
1
2
3
4
5
6
7
D2  
E3  
E2  
F3  
F2  
G3  
H3  
H2  
J2  
DQ12  
DQ11  
DQ10  
DQ9  
LDS  
/CLK  
CLK  
/PD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
M11  
L10  
L11  
K10  
K11  
J10  
J11  
A3  
A2  
A1  
A0  
A10  
A12  
BA1  
BA0  
A13  
J3  
A11  
K2  
K3  
L2  
A9  
G10  
G11  
H10  
F11  
F10  
E11  
E10  
D11  
D10  
C11  
C10  
B11  
A8  
FN  
A7  
/CS  
L3  
A6  
LQS  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
M2  
N2  
N3  
P2  
P3  
R2  
A5  
UDS  
DQ26  
DQ25  
DQ24  
DQ23  
R3  
T2  
T3  
U2  
U3  
DQ22  
DQ21  
DQ20  
DQ19  
DQ18  
Rev 1.3  
2005-03-07 59/65  
TC59LM836DKB-30,-33,-40  
TAP CONTROLLER STATE DIAGRAM  
TMS = 1  
TMS = 0  
Test – Logic - Reset  
TMS = 0  
TMS = 1  
TMS = 1  
TMS = 1  
Run – Test / Idle  
Select – DR - Scan  
TMS = 0  
Select – IR - Scan  
TMS = 0  
TMS = 1  
Capture - DR  
TMS = 0  
Capture - IR  
TMS = 1  
TMS = 0  
TMS = 0  
TMS = 1  
TMS = 0  
TMS = 1  
Shift - DR  
TMS = 1  
Shift - IR  
TMS = 1  
Exit1 - IR  
TMS = 0  
Pause - IR  
TMS = 1  
Exit1 - DR  
TMS = 0  
TMS = 0  
Pause - DR  
TMS = 1  
TMS = 0  
TMS = 0  
Exit2 - DR  
TMS = 1  
Exit2 - IR  
TMS = 0  
TMS = 1  
Update - IR  
Update - DR  
TMS = 0  
TMS = 1  
TMS = 1  
TMS = 0  
Notes:  
1. To enter the Test-Logic-Reset state in order to initialize the device, keep TMS High for at least five rising edges of the TCK.  
2. The TDO output buffer is active only during shift operations (the Shift-DR and Shift-IR states) and is inactive (High-Z) during  
other states.  
Rev 1.3  
2005-03-07 60/65  
TC59LM836DKB-30,-33,-40  
TAP DC OPERATING CHARACTERISTICS  
SYMBOL  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
10  
UNIT  
Output Leakage Current  
(TDO pin)  
Output Deselected  
I
I
10  
µA  
LO  
V
=0 to V  
DD  
OUT  
V
= 1.7V to V  
20  
10  
10  
µA  
µA  
IN  
DD  
Input Leakage Current  
(TCK, TMS, TDI pins)  
I
V
= 0 to 0.7V  
100  
IN  
Input High Voltage  
V
V
V
+0.4  
V +0.2  
DD  
V
V
IH  
IL  
REF  
(TCK, TMS, TDI pins)  
Input Low Voltage  
0.1  
V
0.4  
REF  
(TCK, TMS, TDI pins)  
V
V
Output High Voltage (TDO pin)  
Output Low Voltage (TDO pin)  
I
= 2 mA  
1.5  
V
DD  
V
V
OH  
OL  
OH  
I
= 2 mA  
0.45  
OL  
AC CHARACTERISTICS ( V  
= 2.5V ± 0.125V, V  
= 1.4V ~ 1.9V, T = 0 ~ 85°C )  
CASE  
DD  
DDQ  
TC59LM836DKB  
SYMBOL  
PARAMETER  
UNIT  
MIN  
50  
20  
20  
10  
10  
10  
10  
10  
10  
0
MAX  
20  
5
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK Cycle Time  
THTH  
TCK High Pulse Width  
THTL  
TLTH  
MVTH  
THMX  
CS  
TCK Low Pulse Width  
TMS Setup Time to TCK  
TMS Hold Time to TCK  
Capture Setup time to TCK  
Capture Hold time to TCK  
TDI Setup Time to TCK  
ns  
CH  
DVTH  
THDX  
TLQV  
TLQX  
TLQLZ  
TLQHZ  
TDI Hold Time to TCK  
Output Valid Time from TCK Low  
Output Hold Time from TCK Low  
Output Low-Z Time from TCK Low  
Output High-Z Time from TCK Low  
5
Rev 1.3  
2005-03-07 61/65  
TC59LM836DKB-30,-33,-40  
TAP AC TEST CONDITIONS  
CONDITION  
PARAMETER  
Input Pulse Level  
Z = 50 Ω  
TDO  
1.8V / 0.0V  
2ns  
R = 50 Ω  
L
Input Pulse Rise and Fall Time  
Input Timing Measurement Reference Level  
Output Timing Measurement Reference Level  
V = 0.9V  
L
0.9V  
Output Load  
0.9V  
TAP TIMING DIAGRAMS  
t
t
t
TLTH  
THTH  
THTL  
TCK  
t
t
t
MVTH THMX  
TMS  
TDI  
t
DVTH THDX  
t
t
CS CH  
Capture  
Data  
t
TLQV  
t
t
t
TLQHZ  
TLQLZ  
TLQX  
TDO  
Rev 1.3  
2005-03-07 62/65  
TC59LM836DKB-30,-33,-40  
PACKAGE DIMENSIONS  
P-TFBGA144-1119-0.80BZ  
18.5  
0.2 S  
0.05  
0.5  
0.08 SAB  
0.75  
A
0.5  
1.0  
Weight: 0.30g (typ.)  
Rev 1.3  
2005-03-07 63/65  
TC59LM836DKB-30,-33,-40  
REVISION HISTORY  
Rev.1.0 (Feb. 26 ’2004)  
Rev.1.1 (May. 25 ‘2004)  
I  
spec changed from 10mA to 15mA (page 1, 7)  
DD6  
V  
in AC Test conditions changed from 0.7 V to 0.8 V (page 11)  
SWING  
Corrected typo (page 54)  
Rev.1.2 (Aug. 27 ‘2004)  
Some notes in the page 8 moved to page 7 (page 7, 8).  
Note 2 changed as below (page 7).  
Before: These parameters depend on the output loading. The specified values are obtained with the  
output open  
After: These parameters define the current between V  
and V .  
SS  
DD  
Corrected TYPO (page 9, 14~18, 61, 62).  
t  
CK,MAX  
for “-30” changed from 7.5 ns to 5.0 ns (page 9)  
Package drawing minor change (page 63).  
Package weight (0.30g) added (page 63)  
Rev.1.3 (Mar.7 ‘2005)  
Corrected figure of lPDA based AC timing spec table (page 12, 43, 44, 50, 51).  
Rev 1.3  
2005-03-07 64/65  
TC59LM836DKB-30,-33,-40  
RESTRICTIONS ON PRODUCT USE  
030619EBA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
Rev 1.3  
2005-03-07 65/65  

相关型号:

TC59LM836DKB-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC 288Mbits Network FCRAM2
TOSHIBA

TC59LM836DKG-30

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM836DKG-33

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM836DKG-40

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMB-45

IC 64M X 8 DDR DRAM, 22 ns, PBGA60, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-60, Dynamic RAM
TOSHIBA

TC59LM906AMG

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-37

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-45

IC 64M X 8 DDR DRAM, 0.6 ns, PBGA64, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-64, Dynamic RAM
TOSHIBA

TC59LM906AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM913AMB-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM913AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM914AMG

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA