TC59LM906AMB-45 [TOSHIBA]

IC 64M X 8 DDR DRAM, 22 ns, PBGA60, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-60, Dynamic RAM;
TC59LM906AMB-45
型号: TC59LM906AMB-45
厂家: TOSHIBA    TOSHIBA
描述:

IC 64M X 8 DDR DRAM, 22 ns, PBGA60, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-60, Dynamic RAM

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总57页 (文件大小:710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59LM914/06AMB-37,-45,-50  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
TM  
4,194,304-WORDS × 8 BANKS × 16-BITS Network FCRAM  
8,388,608-WORDS × 8 BANKS × 8-BITS Network FCRAM  
TM  
DESCRIPTION  
Network FCRAMTM is Double Data Rate Fast Cycle Random Access Memory. TC59LM914/06AMB is Network  
FCRAMTM containing 536,870,912 memory cells. TC59LM914AMB is organized as 4,194,304-words × 8 banks × 16  
bits, TC59LM906AMB is organized as 8,388,608-words × 8 banks × 8 bits. TC59LM914/06AMB feature a fully  
synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which  
enables high performance and simple user interface coexistence. TC59LM914/06AMB can operate fast core cycle  
compared with regular DDR SDRAM.  
TC59LM914/06AMB is suitable for Network, Server and other applications where large memory density and low  
power consumption are required. The Output Driver for Network FCRAMTM is capable of high quality fast data  
transfer under light loading condition.  
FEATURES  
TC59LM914/06  
PARAMETER  
-37  
-45  
5.5 ns  
5.0 ns  
4.5 ns  
25 ns  
22.0 ns  
TBD  
-50  
6.0 ns  
5.5 ns  
5.0 ns  
27.5 ns  
24.0 ns  
TBD  
CL = 3  
CL = 4  
CL = 5  
5.5 ns  
4.5 ns  
3.75 ns  
22.5 ns  
22.0 ns  
TBD  
t
Clock Cycle Time (min)  
CK  
t
t
I
l
l
Random Read/Write Cycle Time (min)  
Random Access Time (max)  
Operating Current (single bank) (max)  
Power Down Current (max)  
RC  
RAC  
DD1S  
DD2P  
DD6  
TBD  
TBD  
TBD  
Self-Refresh Current (max)  
TBD  
TBD  
TBD  
Fully Synchronous Operation  
Double Data Rate (DDR)  
Data input/output are synchronized with both edges of DQS.  
Differential Clock (CLK and CLK ) inputs  
CS , FN and all address input signals are sampled on the positive edge of CLK.  
Output data (DQs and DQS) is aligned to the crossings of CLK and CLK .  
Fast clock cycle time of 3.75 ns minimum  
Clock: 266 MHz maximum  
Data: 533 Mbps/pin maximum  
Fast cycle and Short Latency  
Differential Data Strobe DQS : TC59LM906AMB  
Distributed Auto-Refresh cycle in 3.9 µs  
Self-Refresh  
Power Down Mode  
Variable Write Length Control  
Write Latency = CAS Latency-1  
Programable CAS Latency and Burst Length  
CAS Latency = 3, 4, 5  
Burst Length = 2, 4  
Organization: TC59LM914AMB : 4,194,304 words × 8 banks × 16 bits  
TC59LM906AMB : 8,388,608 words × 8 banks × 8 bits  
Power Supply Voltage  
V
DD  
V
:
2.5 V ± 0.15V  
: 1.4 V ~ 1.9 V  
DDQ  
Low voltage CMOS I/O covered with SSTL-18 (Half strength driver) and HSTL.  
Package: 60Ball BGA, 1mm × 1mm Ball pitch  
Notice : FCRAM is trademark of Fujitsu Limited, Japan.  
2003-08-04 1/57  
TC59LM914/06AMB-37,-45,-50  
TC59LM906AMB  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 1.0mm  
PIN  
NAME  
Address Input  
x8  
A0~A13  
BA0~BA2  
DQ0~DQ7  
CS  
1
2
3
4
5
6
Bank Address  
Index  
Data Input/Output  
Chip Select  
A
B
V
DQ7  
DQ0  
V
DD  
SS  
FN  
Function Control  
Power Down Control  
Clock Input  
NC  
DQ6  
NC  
V
Q
V
Q
DD  
NC  
DQ1  
NC  
SS  
PD  
CLK, CLK  
DQS / DQS  
V
Q
V
Q
C
D
DD  
SS  
Write/Read Data Strobe  
Power (+2.5 V)  
Ground  
DQ5  
DQ2  
V
V
DD  
SS  
NC  
V
Q
V
Q
DD  
NC  
E
F
SS  
Power (+1.5V / +1.8 V)  
(for I/O buffer)  
V
DDQ  
DQ4  
NC  
V
Q
Q
V
Q
DQ3  
NC  
DD  
SS  
Ground  
(for I/O buffer)  
V
V
SSQ  
REF  
V
V
Q
G
H
J
SS  
DD  
Reference Voltage  
Not Connected  
NC  
DQS  
NC  
DQS  
NC  
VREF  
CLK  
A12  
A11  
A8  
V
SS  
V
DD  
BA2  
A13  
NC  
CLK  
PD  
A9  
FN  
K
L
CS  
BA1  
A0  
BA0  
A10  
A1  
M
N
A7  
A5  
A6  
A2  
A3  
P
R
V
SS  
A4  
V
DD  
2003-08-04 2/57  
TC59LM914/06AMB-37,-45,-50  
TC59LM914AMB  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
ball pitch=1.0 x 1.0mm  
PIN  
NAME  
Address Input  
X16  
A0~A13  
BA0~BA2  
DQ0~DQ15  
CS  
1
2
3
4
5
6
Bank Address  
Index  
Data Input/Output  
Chip Select  
A
B
V
SS  
DQ15  
DQ0  
V
DD  
FN  
Function Control  
Power Down Control  
Clock Input  
DQ14  
DQ13  
V
V
Q
Q
V
Q
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
NC  
SS  
DD  
PD  
CLK, CLK  
UDQS / LDQS  
V
SS  
Q
C
D
DD  
Write/Read Data Strobe  
Power (+2.5 V)  
Ground  
DQ12 DQ11  
DQ4  
V
DD  
SS  
V
DQ10  
DQ9  
DQ8  
NC  
V
V
Q
Q
V
Q
E
F
SS  
DD  
Power (+1.5V / +1.8 V)  
(for I/O buffer)  
V
DDQ  
V
SS  
Q
DD  
Ground  
(for I/O buffer)  
V
V
SSQ  
V
Q
V
Q
G
H
J
SS  
DD  
Reference Voltage  
Not Connected  
REF  
UDQS  
LDQS  
NC  
VREF  
CLK  
A12  
A11  
A8  
V
SS  
V
DD  
BA2  
A13  
NC  
CLK  
PD  
A9  
FN  
K
L
CS  
BA1  
A0  
BA0  
A10  
A1  
M
N
A7  
A5  
A6  
A2  
A3  
P
R
V
SS  
A4  
V
DD  
2003-08-04 3/57  
TC59LM914/06AMB-37,-45,-50  
BLOCK DIAGRAM  
CLK  
CLK  
PD  
DLL  
CLOCK  
BUFFER  
To each block  
BANK #7  
BANK #6  
BANK #5  
BANK #4  
BANK #3  
BANK #2  
BANK #1  
CS  
FN  
CONTROL  
SIGNAL  
GENERATOR  
COMMAND  
DECODER  
BANK #0  
MODE  
REGISTER  
MEMORY  
CELL ARRAY  
A0~A13  
ADDRESS  
BUFFER  
UPPER ADDRESS  
LATCH  
BA0~BA2  
LOWER ADDRESS  
LATCH  
COLUMN DECODER  
READ  
DATA  
BUFFER  
WRITE  
DATA  
BUFFER  
WRITE ADDRESS  
REFRESH  
COUNTER  
LATCH/  
ADDRESS  
COMPARATOR  
BURST  
COUNTER  
DQS  
DQS  
DQ BUFFER  
DQ0~DQn  
Note: The TC59LM906AMB configuration is 8 Bank of 16384 × 512 × 8 of cell array with the DQ pins numbered DQ0~DQ7.  
The TC59LM914AMB configuration is 8 Bank of 16384 × 256 × 16 of cell array with the DQ pins numbered DQ0~DQ15.  
TC59LM906AMB has DQS pin for Differential Data Strobe.  
TC59LM914AMB has UDQS and LDQS.  
2003-08-04 4/57  
TC59LM914/06AMB-37,-45,-50  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Power Supply Voltage  
RATING  
UNIT  
NOTES  
V
V
V
V
V
0.3~ 3.3  
V
V
DD  
Power Supply Voltage (for I/O buffer)  
Input Voltage  
0.3~V + 0.3  
DD  
DDQ  
IN  
0.3~V + 0.3  
DD  
V
Output and I/O pin Voltage  
Input Reference Voltage  
Operating Temperature (Ambient)  
Storage Temperature  
0.3~V  
DDQ  
+ 0.3  
V
OUT  
REF  
opr  
0.3~V + 0.3  
V
DD  
T
T
T
0~70  
55~150  
260  
°C  
°C  
°C  
W
mA  
stg  
Soldering Temperature (10 s)  
Power Dissipation  
solder  
P
D
2
I
Short Circuit Output Current  
±50  
OUT  
Caution: Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent damage to the device.  
The device is not meant to be operated under conditions outside the limits described in the operational section of this  
specification.  
Exposure to “ABSOLUTE MAXIMUM RATINGS” conditions for extended periods may affect device reliability.  
RECOMMENDED DC, AC OPERATING CONDITIONS (Notes: 1) (T  
= 0~85°C)  
CASE  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
MAX  
UNIT  
NOTES  
V
V
V
V
V
V
2.375  
1.4  
2.5  
2.625  
1.9  
V
V
DD  
Power Supply Voltage (for I/O buffer)  
Input Reference Voltage  
DDQ  
REF  
V
/2 × 95%  
+ 0.125  
V
/2  
V
/2 × 105%  
V
V
V
V
2
5
DDQ  
DDQ  
DDQ  
(DC)  
Input DC High Voltage  
V
V
+ 0.2  
IH  
IL  
REF  
DDQ  
(DC)  
(DC)  
Input DC Low Voltage  
0.1  
0.1  
V
0.125  
5
REF  
Differential Clock DC Input Voltage  
V
V
V
+ 0.1  
+ 0.2  
10  
ICK  
DDQ  
DDQ  
DDQ  
Input Differential Voltage.  
CLK and CLK inputs (DC)  
V
(DC)  
0.4  
V
7, 10  
ID  
V
V
(AC)  
Input AC High Voltage  
Input AC Low Voltage  
V
+ 0.2  
+ 0.2  
0.2  
V
V
3, 6  
4, 6  
IH  
REF  
(AC)  
(AC)  
(AC)  
0.1  
V
REF  
IL  
Input Differential Voltage.  
CLK and CLK inputs (AC)  
V
0.55  
V
+ 0.2  
V
7, 10  
ID  
X
DDQ  
V
V
Differential AC Input Cross Point Voltage  
Differential Clock AC Middle Level  
V
V
/2 0.125  
/2 0.125  
V
V
/2 + 0.125  
/2 + 0.125  
V
V
8, 10  
9, 10  
DDQ  
DDQ  
(AC)  
ISO  
DDQ  
DDQ  
2003-08-04 5/57  
TC59LM914/06AMB-37,-45,-50  
Note:  
(1) All voltages referenced to V , V  
.
SS SSQ  
(2) V  
is expected to track variations in V  
DC level of the transmitting device.  
REF  
DDQ  
Peak to peak AC noise on V  
may not exceed ±2% V  
(DC).  
REF  
REF  
(3) Overshoot limit: V  
= V  
+ 0.7 V with a pulse width 5 ns.  
IH (max)  
DDQ  
(4) Undershoot limit: V  
= −0.7 V with a pulse width 5 ns.  
IL (min)  
(5) V (DC) and V (DC) are levels to maintain the current logic state.  
IH  
IL  
(6) V (AC) and V (AC) are levels to change to the new logic state.  
IH  
IL  
(7) V is magnitude of the difference between CLK input level and CLK input level.  
ID  
(8) The value of V (AC) is expected to equal V  
/2 of the transmitting device.  
DDQ  
X
(9) V  
means {V  
(CLK) + V  
(CLK )} /2  
ISO  
ICK  
ICK  
(10) Refer to the figure below.  
CLK  
V
x
V
x
V
x
V
x
V
x
V (AC)  
ID  
CLK  
V
ICK  
V
ICK  
V
ICK  
V
ICK  
V
SS  
|V (AC)|  
ID  
0 V Differential  
V
ISO  
V
V
ISO (max)  
ISO (min)  
V
SS  
(11) In the case of external termination, VTT (termination voltage) should be gone in the range of V  
0.04 V.  
(DC) ±  
REF  
CAPACITANCE (V = 2.5V, V  
= 1.8 V, f = 1 MHz, Ta = 25°C)  
DD  
DDQ  
SYMBOL  
PARAMETER  
MIN  
MAX  
Delta  
UNIT  
C
C
C
C
Input pin Capacitance  
1.5  
1.5  
2.5  
2.5  
2.5  
4
0.25  
0.25  
0.5  
pF  
pF  
pF  
pF  
IN  
Clock pin (CLK, CLK ) Capacitance  
DQ, DQS, UDQS, LDQS, DQS Capacitance  
NC pin Capacitance  
INC  
I/O  
NC  
4
Note: These parameters are periodically sampled and not 100% tested.  
2003-08-04 6/57  
TC59LM914/06AMB-37,-45,-50  
RECOMMENDED DC OPERATING CONDITIONS  
(V =2.5V ± 0.125V, V  
=1.8V ± 0.1V, T  
= 0~85°C)  
DD  
DDQ  
CASE  
MAX  
-45  
SYMBOL  
PARAMETER  
UNIT  
NOTES  
1, 2  
-37  
-50  
Operating Current  
= min; I = min,  
t
CK  
RC  
Read/Write command cycling,  
0 V V V (AC) (max), V (AC) (min) V V  
I
TBD  
TBD  
TBD  
DD1S  
,
,
IN IL IH IN  
DDQ  
1 bank operation, Burst length = 4,  
Address change up to 2 times during minimum I  
Standby Current  
.
RC  
t
= min, CS = V , PD = V ,  
IH IH  
CK  
I
I
0 V V V (AC) (max), V (AC) (min) V V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1
1
1
DD2N  
IN IL IH IN  
DDQ  
All banks: inactive state,  
Other input signals are changed one time during 4 × t  
.
CK  
mA  
Standby (power down) Current  
t
= min, CS = V , PD = V (power down),  
CK  
IH  
IL  
DD2P  
0 V V V  
,
IN  
DDQ  
All banks: inactive state  
Auto-Refresh Current  
t
= min; I  
= min, t  
= min,  
CK  
REFC REFI  
I
I
Auto-Refresh command cycling,  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
DD5  
0 V V V (AC) (max), V (AC) (min) V V  
DDQ  
,
IN  
IL  
IH  
IN  
Address change up to 2 times during minimum I  
.
REFC  
Self-Refresh Current  
Self-Refresh mode  
DD6  
PD = 0.2 V, 0 V V V  
IN  
DDQ  
SYMBOL  
LI  
PARAMETER  
MIN  
MAX  
5
UNIT  
NOTES  
Input Leakage Current  
I
I
5  
µA  
( 0 V V V  
, all other pins not under test = 0 V)  
IN  
DDQ  
Output Leakage Current  
5  
5  
5
5
µA  
µA  
LO  
(Output disabled, 0 V V  
V  
)
DDQ  
OUT  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
V
REF  
Current  
REF  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
(DC)  
V
V
V
V
V
V
V
V
V
V
V
V
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
= 1.420 V  
= 0.280 V  
5.6  
5.6  
9.8  
9.8  
2.8  
2.8  
13.4  
13.4  
4  
3
3
3
3
3
3
3
3
3
3
3
3
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
OH  
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Output DC Current  
(V = 1.7V~1.9V)  
mA  
DDQ  
Full Strength Output Driver  
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
= V  
DDQ  
– 0.4V  
= 0.4V  
4
= V  
– 0.4V  
8  
DDQ  
= 0.4V  
8
OL  
Output DC Current  
(V = 1.4V~1.6V)  
mA  
DDQ  
Not defined  
Not defined  
V
V
= V  
DDQ  
– 0.4V  
10  
10  
3
3
OH  
Full Strength Output Driver  
= 0.4V  
OL  
Notes: 1. These parameters depend on the cycle rate and these values are measured at a cycle rate with the minimum values of  
, t and I  
t
.
RC  
CK RC  
2. These parameters depend on the output loading. The specified values are obtained with the output open.  
3. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Register.  
4. In case of Full Strength Output Driver, OCD calibration (Off chip Driver impedance adjustment) can be used. The  
specification of Full Strength Output Driver defines the default value after power-up.  
2003-08-04 7/57  
TC59LM914/06AMB-37,-45,-50  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2)  
(V =2.5V±0.125V, V  
=1.8V±0.1V, T  
=0~85°C)  
CASE  
DD  
DDQ  
-37  
-45  
-50  
SYMBOL  
PARAMETER  
UNIT NOTES  
MIN  
MAX  
MIN  
25  
MAX  
MIN  
27.5  
6.0  
MAX  
t
t
Random Cycle Time  
22.5  
5.5  
3
3
RC  
C
L
C
L
C
L
= 3  
= 4  
= 5  
8.5  
5.5  
8.5  
8.5  
Clock Cycle Time  
4.5  
8.5  
5.0  
8.5  
5.5  
8.5  
3
CK  
3.75  
8.5  
4.5  
8.5  
22.0  
5.0  
8.5  
24  
3
3
t
t
t
t
t
t
t
Random Access Time  
Clock High Time  
22.0  
RAC  
0.45 × t  
0.45 × t  
0.45 × t  
0.45 × t  
0.5  
0.45 × t  
0.45 × t  
0.6  
3
CH  
CK  
CK  
CK  
Clock Low Time  
3
CL  
CK  
CK  
CK  
DQS Access Time from CLK  
Data Output Skew from DQS  
Data Access Time from CLK  
Data Output Hold Time from CLK  
0.45  
0.45  
0.25  
0.5  
0.5  
0.5  
0.3  
0.6  
0.6  
0.6  
0.35  
0.65  
0.65  
3, 8  
4
CKQS  
QSQ  
AC  
0.5  
0.5  
0.6  
0.65  
0.65  
3, 8  
3, 8  
0.6  
OH  
DQS (read) Preamble Pulse  
Width  
t
0.9 × t  
CK  
1.1 × t  
0.9 × t  
1.1 × t  
0.9 × t  
CK  
1.1 × t  
CK  
3, 8  
QSPRE  
CK  
CK  
CK  
CLK half period (minimum of  
min(t  
,
min(t  
,
min(t  
,
CH  
CH  
CH  
t
t
t
3
HP  
Actual t  
,
t )  
CL  
t
)
t
)
t
)
CH  
CL  
CL  
CL  
DQS (read) Pulse Width  
t
t
t  
t
t
t  
t
t
t  
4, 8  
4, 8  
QSP  
QSQV  
HP QHS  
HP QHS  
HP QHS  
Data Output Valid Time from  
DQS  
t  
t  
t  
HP QHS  
HP QHS  
HP QHS  
0.055 ×  
+0.17  
0.055 ×  
+0.17  
0.055 ×  
t +0.17  
CK  
t
t
t
DQ Hold Skew factor  
QHS  
t
t
CK  
CK  
DQS (write) Low to High Setup  
Time  
0.75 × t  
CK  
1.25 × t  
0.75 × t  
CK  
1.25 × t  
0.75 × t  
CK  
1.25 × t  
3
DQSS  
DSPRE  
CK  
CK  
CK  
DQS (write) Preamble Pulse  
Width  
0.25 ×  
0.25 ×  
0.25 ×  
ns  
4
t
t
t
CK  
CK  
CK  
t
t
DQS First Input Setup Time  
0
0
0
3
3
DSPRES  
DQS First Low Input Hold Time  
0.25 × t  
0.35 × t  
0.25 × t  
0.35 × t  
0.25 × t  
0.35 × t  
DSPREH  
CK  
CK  
CK  
DQS High or Low Input Pulse  
Width  
t
0.65 × t  
0.65 × t  
0.65 × t  
4
DSP  
CK  
CK  
CK  
CK  
CK  
CK  
C
L
C
L
C
L
= 3  
= 4  
= 5  
0.75  
0.75  
0.75  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
3, 4  
3, 4  
3, 4  
DQS Input Falling  
Edge to Clock Setup  
Time  
t
DSS  
DQS Input Falling Edge Hold Time  
from CLK  
t
t
0.55  
0.65  
0.75  
3, 4  
4
DSH  
DQS (write) Postamble Pulse  
Width  
0.4 × t  
0.4 × t  
0.4 × t  
DSPST  
CK  
CK  
CK  
C
L
C
L
C
L
= 3  
= 4  
= 5  
0.75  
0.75  
0.75  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
3, 4  
3, 4  
3, 4  
DQS (write)  
t
DSPSTH  
Postamble Hold Time  
t
t
t
UDQS – LDQS Skew (×16)  
0.5× t  
CK  
0.5× t  
0.5× t  
0.4  
0.5× t  
0.5× t  
CK  
0.5× t  
DSSK  
CK  
CK  
CK  
CK  
Data Input Setup Time from DQS  
Data Input Hold Time from DQS  
0.35  
0.35  
0.45  
0.45  
4
4
DS  
0.4  
DH  
Command/Address Input Setup  
Time  
t
0.5  
0.5  
0.6  
0.6  
0.7  
0.7  
3
3
IS  
IH  
Command/Address Input Hold  
Time  
t
2003-08-04 8/57  
TC59LM914/06AMB-37,-45,-50  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 1, 2) (continued)  
-37  
-45  
-50  
SYMBOL  
PARAMETER  
UNIT NOTES  
MAX  
MIN  
MAX  
MIN  
MIN  
MAX  
Data-out Low Impedance Time  
from CLK  
t
t
t
t
t
0.5  
0.6  
0.65  
3,6,8  
3,7,8  
3,6,8  
3,7,8  
LZ  
Data-out High Impedance Time  
from CLK  
0.5  
0.5  
0
0.5  
0.6  
0.6  
0
0.6  
0.65  
0.65  
0
0.65  
HZ  
DQS-out Low Impedance Time  
from CLK  
QSLZ  
QSHZ  
QPDH  
DQS-out High Impedance Time  
from CLK  
0.5  
0.6  
0.65  
Last output to PD High Hold  
Time  
ns  
t
t
Power Down Exit Time  
Input Transition Time  
0.6  
0.1  
0.7  
0.1  
0.8  
0.1  
3
PDEX  
1
1
1
T
PD Low Input Window for  
Self-Refresh Entry  
t
0.5 × t  
5
0.5 × t  
5
0.5 × t  
CK  
5
3
FPDL  
CK  
CK  
t
t
Auto-Refresh Average Interval  
Pause Time after Power-up  
0.4  
200  
5
3.9  
0.4  
200  
5
3.9  
0.4  
200  
5
3.9  
5
REFI  
µs  
PAUSE  
C
L
C
L
C
L
= 3  
= 4  
= 5  
Random Read/Write  
Cycle Time  
I
5
5
5
RC  
(applicable to same  
bank)  
6
6
6
RDA/WRA to LAL Command Input  
Delay  
I
I
1
1
1
1
1
1
RCD  
RAS  
(applicable to same bank)  
C
L
C
L
C
L
= 3  
= 4  
= 5  
4
4
5
4
4
5
4
4
5
LAL to RDA/WRA  
Command Input Delay  
(applicable to same  
bank)  
Random Bank Access Delay  
(applicable to other bank)  
I
I
I
2
2
2
RBD  
RWD  
WRD  
LAL following RDA to  
B
= 2  
= 4  
2
3
2
3
2
3
L
L
WRA Delay  
(applicable to other  
bank)  
B
LAL following WRA to RDA Delay  
(applicable to other bank)  
1
1
1
C
L
C
L
C
L
= 3  
= 4  
= 5  
5
5
6
5
5
6
5
5
6
cycle  
Mode Register Set  
Cycle Time  
I
RSC  
PD Low to Inactive State of Input  
Buffer  
I
I
1
1
1
1
1
1
PD  
PD High to Active State of Input  
Buffer  
PDA  
C
L
C
L
C
L
C
L
C
L
C
L
= 3  
= 4  
= 5  
= 3  
= 4  
= 5  
15  
18  
22  
15  
18  
22  
15  
18  
22  
15  
18  
22  
15  
18  
22  
15  
18  
22  
Power down mode valid  
from REF command  
I
PDV  
Auto-Refresh Cycle  
Time  
I
REFC  
REF Command to Clock Input  
Disable at Self-Refresh Entry  
I
I
I
I
I
CKD  
REFC  
REFC  
REFC  
DLL Lock-on Time (applicable to  
RDA command)  
200  
200  
200  
LOCK  
2003-08-04 9/57  
TC59LM914/06AMB-37,-45,-50  
AC TEST CONDITIONS  
SYMBOL  
PARAMETER  
Input High Voltage (minimum)  
VALUE  
UNIT  
NOTES  
V
V
V
V
V
V
V
+ 0.2  
V
V
IH (min)  
IL (max)  
REF  
REF  
REF  
Input Low Voltage (maximum)  
Input Reference Voltage  
0.2  
/2  
V
V
DDQ  
Termination Voltage  
V
V
TT  
REF  
0.7  
(AC)  
Input Signal Peak to Peak Swing  
Differential Clock Input Reference Level  
Input Differential Voltage  
V
SWING  
Vr  
V
X
V
V
ID  
(AC)  
1.0  
2.5  
V
SLEW  
Input Signal Minimum Slew Rate  
Output Timing Measurement Reference Voltage  
V/ns  
V
V
OTR  
V
/2  
9
DDQ  
V
TT  
V
DDQ  
50 Ω  
V
V
(AC)  
(AC)  
IH min  
Z = 50 Ω  
25 Ω  
V
SWING  
REF  
Output  
V
IL max  
Z = 50 Ω  
50 Ω  
V
SS  
V
TT  
T  
T  
(AC))/T  
AC Test Load  
SLEW = (V  
(AC) V  
IL max  
IH min  
Note:  
(1)  
Transition times are measured between V  
(DC) and V  
(DC).  
IH min  
IL max  
Transition (rise and fall) of input signals have a fixed slope.  
(2)  
If the result of nominal calculation with regard to t contains more than one decimal place, the result is  
CK  
rounded up to the nearest decimal place.  
(i.e., t  
= 0.75 × t , t  
= 5 ns, 0.75 × 5 ns = 3.75 ns is rounded up to 3.8 ns.)  
DQSS  
CK CK  
(3)  
(4)  
There parameters are measured from the differential clock (CLK and CLK ) AC cross point.  
These parameters are measured from signal transition point of DQS crossing V level.  
REF  
In case of DQS enable mode, these parameters are measured from the crossing point of DQS and DQS .  
(5)  
The t  
The t  
applies to equally distributed refresh method.  
applies to both burst refresh method and distributed refresh method.  
REFI (max)  
REFI (min)  
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400 ns  
always. In other words, the number of Auto-Refresh cycles which can be performed within 3.2 µs (8 × 400 ns)  
is to 8 times in the maximum.  
(6)  
(7)  
(8)  
(9)  
Low Impedance State is specified at V  
/2 ± 0.2 V from steady state.  
DDQ  
High Impedance State is specified where output buffer is no longer driven.  
These parameters depend on the clock jitter. These parameters are measured at stable clock.  
Output timing is measured by using Normal driver strength.  
2003-08-04 10/57  
TC59LM914/06AMB-37,-45,-50  
POWER UP SEQUENCE  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
As for PD , being maintained by the low state (0.2 V) is desirable before a power-supply injection.  
Apply V  
Apply V  
before or at the same time as V  
.
DD  
DDQ  
before or at the same time as V  
.
DDQ  
REF  
Start clock (CLK, CLK ) and maintain stable condition for 200 µs (min).  
After stable power and clock, apply DESL and take PD =H.  
Issue EMRS to enable DLL and to define driver strength with OCD calibration mode exit command  
(A7A9=0). (Note: 1, 2)  
(7)  
(8)  
Issue MRS for set CAS latency (CL), Burst Type (BT), and Burst Length (BL). (Note: 1)  
Issue two or more Auto-Refresh commands (Note: 1).  
(9)  
Ready for normal operation after 200 clocks from Extended Mode Register programming.  
If OCD calibration (Off Chip Driver impedance adjustment) is used, execute OCD calibration sequence.  
(10)  
Notes:  
(1)  
Sequence 6, 7 and 8 can be issued in random order.  
Set DQS mode for TC59LM906AMB.  
L = Logic Low, H = Logic High  
(2)  
(3)  
2.5V(TYP)  
1.8V(TYP)  
V
DD  
V
DDQ  
0.9V(TYP)  
V
REF  
CLK  
CLK  
t
PDEX  
l
l
l
l
l
REFC  
200us(min)  
PDA  
RSC  
RSC  
REFC  
PD  
Command  
Address  
DQ  
200clock cycle(min)  
DESL RDA MRS DESL RDA MRS  
DESL WRA REF DESL  
WRA REF DESL  
op-code  
EMRS  
op-code  
MRS  
Hi-Z  
Hi-Z  
DQS  
DQS  
Normal Operation  
EMRS  
MRS  
Auto Refresh cycle  
2003-08-04 11/57  
TC59LM914/06AMB-37,-45,-50  
TIMING DIAGRAMS  
Input Timing  
Command and Address  
t
t
t
CL  
CK  
CH  
t
CK  
CLK  
CLK  
t
t
t
t
t
t
t
t
IS  
IH  
IS  
IH  
CS  
FN  
1st  
1st  
2nd  
IS  
IH  
IS  
IH  
2nd  
LA  
t
IS  
t
IH  
t
IS  
t
IH  
A0~A13  
BA0~BA2  
UA, BA  
Data  
TC59LM906AMB DQS enable mode  
DQS  
DQS  
t
t
t
t
DS DH  
DS DH  
DQ (input)  
Data  
TC59LM906AMB DQS disable mode  
TC59LM914AMB  
DQS  
t
t
t
t
DS DH  
DS DH  
DQ (input)  
Refer to the Command Truth Table.  
Timing of the CLK, CLK  
t
t
CL  
CH  
V
V
IH  
IH  
CLK  
CLK  
(AC)  
(AC)  
V
IL  
IL  
V
t
T
t
T
t
CK  
CLK  
CLK  
V
V
IH  
V
ID  
(AC)  
IL  
V
X
V
X
V
X
2003-08-04 12/57  
TC59LM914/06AMB-37,-45,-50  
Read Timing (Burst Length = 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after RDA)  
Input  
(control &  
DESL  
addresses)  
t
t
t
CKQS  
CKQS  
t
QSLZ  
t
t
t
QSHZ  
CKQS  
QSP QSP  
CAS latency = 3  
t
QSPRE  
DQS/ DQS  
(output)  
Hi-Z  
Preamble  
Postamble  
t
t
LZ  
t
QSQV  
QSQ  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
DQ  
(output)  
Hi-Z  
Q0  
Q1  
Q2  
Q3  
t
t
t
AC  
AC  
AC  
t
OH  
t
CKQS  
t
CKQS  
t
QSLZ  
t
CKQS  
t
CAS latency = 4  
t
t
QSHZ  
QSP QSP  
t
QSPRE  
DQS/ DQS  
(output)  
Hi-Z  
Hi-Z  
Preamble  
Postamble  
t
t
t
QSQ  
LZ  
QSQV  
t
t
t
t
HZ  
QSQ  
QSQ  
QSQV  
DQ  
(output)  
Q0  
Q1  
Q2  
Q3  
t
t
t
AC  
AC  
AC  
t
OH  
t
CKQS  
t
CKQS  
t
QSLZ  
t
CKQS  
t
t
t
t
CAS latency = 5  
QSP QSP  
QSHZ  
t
QSPRE  
DQS/ DQS  
(output)  
Hi-Z  
Hi-Z  
Preamble  
Postamble  
t
LZ  
t
t
QSQV  
QSQ  
t
t
t
QSQ  
QS  
QSQV  
HZ  
DQ  
(output)  
Q0  
Q1  
Q2  
Q3  
t
t
t
AC  
AC  
AC  
t
OH  
Note: TC59LM914AMB doesn’t have DQS .  
The correspondence of LDQS, UDQS to DQ. (TC59LM914AMB)  
LDQS  
UDQS  
DQ0DQ7  
DQ8DQ15  
The condition of DQS is changed from Hi-Z to “Low” at Premble and the condition of DQS is changed from  
“Low” to Hi-Z at Postamble.  
DQS is Hi-Z in DQS disable mode.  
DQS mode is chosen by EMRS. (TC59LM906AMB)  
When DQS is enable, the condtion of DQS is changed from Hi-Z to “High” at Premble and the condition  
of DQS is changed from “High” to Hi-Z at Postamble.  
2003-08-04 13/57  
TC59LM914/06AMB-37,-45,-50  
Write Timing (Burst Length = 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
IS IH  
LAL (after WRA)  
Input  
(control &  
DESL  
addresses)  
t
DSPSTH  
t
DQSS  
t
DSS  
t
DSPRES  
t
t
t
t
DSP DSP DSP DSPST  
t
DSPREH  
CAS latency = 3  
DQS/ DQS  
(input)  
t
DSS  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
t
DS  
DS  
t
t
DH  
t
DH  
DH  
DQ  
(input)  
D0  
D1  
D2  
D3  
t
DQSS  
t
t
DSS  
t
DSPRES  
t
DSPSTH  
DSS  
t
t
t t t  
DSP DSP DSPST  
DSPREH  
CAS latency = 4  
DSP  
DQS/ DQS  
(input)  
Preamble  
DSPRE  
Postamble  
t
t
t
DS  
t
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
(input)  
D3  
D0  
D1  
D2  
t
t
DQSS  
DQSS  
t
DSS  
t
DSPRES  
t
DSS  
t
DSPSTH  
t
t
t
t
t
DSPREH  
DSP DSP DSP DSPST  
CAS latency = 5  
DQS/ DQS  
(input)  
Preamble  
Postamble  
t
DSPRE  
t
t
DS  
t
DS  
DS  
t
t
t
DH  
DH  
DH  
DQ  
(input)  
D3  
D0  
D1  
D2  
t
t
DQSS  
DQSS  
Note: TC59LM914AMB doesn’t have DQS .  
The correspondence of LDQS, UDQS to DQ. (TC59LM914AMB)  
LDQS  
UDQS  
DQ0DQ7  
DQ8DQ15  
DQS is ignored in DQS disable mode.  
DQS mode is chosen by EMRS. (TC59LM906AMB)  
2003-08-04 14/57  
TC59LM914/06AMB-37,-45,-50  
t
, t  
, Ixxxx Timing  
REFI PAUSE  
CLK  
CLK  
t
, t  
, I  
REFI PAUSE XXXX  
t
t
t
t
IS IH  
IS IH  
Input  
(control &  
addresses)  
Command  
Command  
Note: “I  
XXXX  
” means “I ”, “I  
”, “I  
”, etc.  
RAS  
RC RCD  
2003-08-04 15/57  
TC59LM914/06AMB-37,-45,-50  
Write Timing (x16 device) (Burst Length =4)  
CLK  
CLK  
Input  
WRA  
LAL  
(control &  
(DESL)  
addresses)  
t
t
t
t
DSSK DSSK DSSK DSSK  
CAS latency = 3  
LDQS  
Preamble  
t
Postamble  
t
DS  
t
t
t
DS  
DS  
DS  
t
t
DH  
t
DH  
DH  
DH  
DQ0~DQ7  
UDQS  
D0  
D1  
D2  
D3  
Preamble  
Postamble  
DH  
t
t
t
DS  
t
DS  
DS  
DS  
t
t
t
t
DH  
DH  
DH  
D0  
D1  
D3  
DQ8~DQ15  
t
t
t
t
DSSK DSSK DSSK DSSK  
CAS latency = 4  
LDQS  
Preamble  
t
Postamble  
t
t
t
DS  
t
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
DH  
DQ0~DQ7  
UDQS  
D0  
D1  
D2  
D3  
Preamble  
t
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
t
DH  
t
DH  
DH  
DH  
D0  
D1  
D2  
D3  
DQ8~DQ15  
t
t
t
t
DSSK DSSK DSSK DSSK  
CAS latency = 5  
LDQS  
Preamble  
t
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
t
t
DH  
DH  
DH  
DH  
DQ0~DQ7  
UDQS  
D0  
D1  
D2  
D3  
Preamble  
t
Postamble  
t
t
t
t
DS  
DS  
DS  
DS  
t
DH  
t
t
DH  
DH  
DH  
D0  
D1  
D2  
D3  
DQ8~DQ15  
2003-08-04 16/57  
TC59LM914/06AMB-37,-45,-50  
FUNCTION TRUTH TABLE (Notes: 1, 2, 3)  
Command Truth Table (Notes: 4)  
The First Command  
SYMBOL  
FUNCTION  
Device Deselect  
CS  
FN  
BA2~BA0  
A13~A9  
A8  
A7  
A6~A0  
DESL  
RDA  
H
L
L
×
H
L
×
×
×
×
×
Read with Auto-close  
Write with Auto-close  
BA  
BA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
UA  
WRA  
The Second Command (The next clock of RDA or WRA command)  
BA1~  
BA0  
A12~ A10~A  
SYMBOL  
FUNCTION  
CS  
FN  
BA2  
A13  
A8  
A7  
A6~A0  
A11  
9
LAL  
LAL  
Lower Address Latch (x16)  
Lower Address Latch (x8)  
Auto-Refresh  
H
H
L
×
×
×
×
×
×
×
V
×
×
×
L
V
V
×
V
×
×
L
×
×
×
L
×
LA  
×
LA  
LA  
×
LA  
LA  
×
REF  
MRS  
Mode Register Set  
L
L
L
V
V
Notes: 1. L = Logic Low, H = Logic High, × = either L or H, V = Valid (specified value), BA = Bank Address, UA = Upper Address,  
LA = Lower Address  
2. All commands are assumed to issue at a valid state.  
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where  
CLK goes to High.  
4. Operation mode is decided by the combination of 1st command and 2nd command. Refer to “STATE DIAGRAM” and  
the command table below.  
Read Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA2~BA0  
A13~A9  
A8  
A7  
A6~A0  
NOTES  
5
RDA (1st)  
LAL (2nd)  
L
H
BA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
H
×
×
×
Note 5 : For x16 device, A8 is “X” (either L or H).  
Write Command Table  
TC59LM914AMB  
BA1~  
A10~  
A9  
COMMAND (SYMBOL)  
CS  
FN  
BA2  
BA  
A13  
UA  
A12  
UA  
A11  
UA  
A8  
A7  
A6~A0  
BA0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
UA  
UA  
UA  
LA  
UA  
LA  
H
×
×
LVW0 LVW1 UVW0 UVW1  
×
×
TC59LM906AMB  
BA1~  
BA0  
A10~  
A9  
COMMAND (SYMBOL)  
CS  
FN  
BA2  
A13  
A12  
A11  
A8  
A7  
A6~A0  
WRA (1st)  
LAL (2nd)  
L
L
BA  
BA  
UA  
UA  
UA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
H
×
×
VW0  
VW1  
×
×
×
Notes: 6. BA2 and A13~A11 are used for Variable Write Length (VW) control at Write Operation.  
2003-08-04 17/57  
TC59LM914/06AMB-37,-45,-50  
FUNCTION TRUTH TABLE (continued)  
VW Truth Table  
Burst Length  
Function  
Write All Words  
VW0  
VW1  
L
H
L
×
×
BL=2  
Write First One Word  
Reserved  
L
Write All Words  
H
L
L
BL=4  
Write First Two Words  
Write First One Word  
H
H
H
Note 7 : For x16 device, LVW0 and LVW1 control DQ0~DQ7.  
UVW0 and UVW1 control DQ8~DQ15.  
Mode Register Set Command Table  
COMMAND (SYMBOL)  
CS  
FN  
BA2~BA0  
A13~A9  
A8  
A7  
A6~A0  
NOTES  
8
RDA (1st)  
L
L
H
×
×
×
×
×
MRS (2nd)  
×
V
V
V
V
V
Notes: 8. Refer to “MODE REGISTER TABLE”.  
Auto-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA2~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
H
n
H
H
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
L
L
L
×
×
×
×
×
×
×
×
×
×
Auto-Refresh  
H
×
Self-Refresh Command Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA2~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
H
n
H
L
Active  
WRA (1st)  
REF (2nd)  
Standby  
Active  
L
L
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
Self-Refresh Entry  
Self-Refresh Continue  
Self-Refresh Exit  
H
9, 10  
11  
Self-Refresh  
Self-Refresh  
L
L
×
SELFX  
L
H
H
Power Down Table  
PD  
COMMAND CURRENT  
FUNCTION  
CS  
FN BA2~BA0 A13~A9 A8  
A7 A6~A0 NOTES  
(SYMBOL)  
STATE  
n 1  
n
L
Power Down Entry  
Power Down Continue  
Power Down Exit  
PDEN  
Standby  
H
L
L
H
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
10  
11  
Power Down  
Power Down  
L
PDEX  
H
H
Notes: 9. PD has to be brought to Low within t  
from REF command.  
FPDL  
10. PD should be brought to Low after DQ’s state turned high impedance.  
11. When PD is brought to High from Low, this function is executed asynchronously.  
2003-08-04 18/57  
TC59LM914/06AMB-37,-45,-50  
FUNCTION TRUTH TABLE (continued)  
PD  
CURRENT STATE  
CS  
FN  
ADDRESS COMMAND  
ACTION  
NOTES  
12  
n 1  
H
H
H
H
H
L
n
H
H
H
L
H
L
L
H
L
×
H
L
×
×
×
×
×
×
×
×
×
×
×
×
×
×
H
L
×
×
×
×
DESL  
RDA  
WRA  
PDEN  
NOP  
BA, UA  
BA, UA  
Row activate for Read  
Row activate for Write  
Power Down Entry  
Illegal  
Idle  
×
L
×
×
×
×
Refer to Power Down State  
H
H
H
H
L
H
H
H
H
L
H
H
H
H
H
L
H
H
L
L
×
H
L
H
L
LA  
LAL  
Begin Read  
Op-code  
MRS/EMRS Access to Mode Register  
PDEN Illegal  
MRS/EMRS Illegal  
Row Active for Read  
Row Active for Write  
×
×
×
×
Invalid  
H
H
L
L
×
H
L
H
L
×
LA  
LAL  
Begin Write  
Auto-Refresh  
Illegal  
×
REF  
PDEN  
×
×
REF (self) Self-Refresh Entry  
×
DESL  
RDA  
WRA  
PDEN  
Invalid  
H
H
H
L
L
×
H
L
L
H
L
×
Continue Burst Read to End  
BA, UA  
BA, UA  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
13  
13  
Read  
×
×
×
×
Data Write & Continue Burst Write to  
H
H
H
×
×
DESL  
End  
H
H
H
H
L
H
H
H
H
H
L
H
H
H
H
H
L
H
H
L
L
×
L
L
H
L
×
H
L
×
×
×
×
H
L
×
×
×
×
H
L
×
×
×
×
×
BA, UA  
BA, UA  
RDA  
WRA  
PDEN  
Illegal  
Illegal  
Illegal  
Illegal  
Invalid  
NOP Idle after I  
Illegal  
Illegal  
Self-Refresh Entry  
Illegal  
Refer to Self-Refreshing State  
NOP Idle after I  
Illegal  
Illegal  
13  
13  
Write  
×
×
×
H
H
H
L
L
×
H
L
L
H
L
×
×
DESL  
RDA  
WRA  
PDEN  
REFC  
BA, UA  
BA, UA  
Auto-Refreshing  
×
14  
×
×
H
H
H
L
L
×
H
L
L
H
L
×
×
DESL  
RDA  
WRA  
PDEN  
RSC  
BA, UA  
BA, UA  
Mode Register  
Accessing  
×
×
×
×
×
Illegal  
Illegal  
Invalid  
Invalid  
H
L
×
×
L
×
Maintain Power Down Mode  
Power Down  
Exit Power Down Mode Idle after  
L
H
H
×
×
PDEX  
t
PDEX  
L
H
L
L
L
H
×
L
×
×
×
×
×
×
×
×
×
×
×
Illegal  
Invalid  
L
H
H
×
Maintain Self-Refresh  
Exit Self-Refresh Idle after I  
Illegal  
Self-Refreshing  
H
L
SELFX  
REFC  
Notes: 12. Illegal if any bank is not idle.  
13. Illegal to bank in specified states; Function may be legal in the bank inidicated by Bank Address (BA).  
14. Illegal if t is not satisfied.  
FPDL  
2003-08-04 19/57  
TC59LM914/06AMB-37,-45,-50  
MODE REGISTER TABLE  
Regular Mode Register (Notes: 1)  
*1  
*1  
*3  
A7  
ADDRESS  
Register  
BA1  
0
BA0  
0
BA2, A13~A8  
0
A6~A4  
CL  
A3  
BT  
A2~A0  
BL  
TE  
A7  
TEST MODE (TE)  
A3  
BURST TYPE (BT)  
0
1
Regular (default)  
Test Mode Entry  
0
1
Sequential  
Interleave  
A6  
A5  
A4  
CAS LATENCY (CL)  
A2  
A1  
A0  
BURST LENGTH (BL)  
*2  
*2  
*2  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
×
0
1
0
1
0
1
Reserved  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
Reserved  
2
4
3
4
5
*2  
Reserved  
*2  
*2  
Reserved  
Reserved  
Extended Mode Register (Notes: 4)  
*4  
*4  
*6  
*7  
A10  
*5  
ADDRESS  
Register  
BA1  
0
BA0  
1
BA2, A13~A12 A11  
A9~A7  
OCD  
A6  
A5~A2  
A1  
DIC  
A0  
DS  
0
0
DQS  
DIC  
0
OUTPUT DRIVE IMPEDANCE  
CONTROL (DIC)  
A9 A8 A7 Driver Impedance Adjustment  
A6  
A1  
0
0
0
0
OCD  
exit  
Calibration  
mode  
0
Normal Output Driver  
0
0
1
Drive (1)  
Drive (0)  
0
1
1
1
0
1
Strong Output Driver  
Weak Output Driver  
0
1
1
1
0
1
0
0
1
Adjust mode  
Full Strength Output Driver  
OCD Calibration default  
A10  
DQS Enable  
A0  
DLL SWITCH (DS)  
0
1
Disable  
Enable  
0
1
DLL Enable  
DLL Disable  
Notes: 1. Regular Mode Register is chosen using the combination of BA0 = 0 and BA1 = 0.  
2. “Reserved” places in Regular Mode Register should not be set.  
3. A7 in Regular Mode Register must be set to “0” (low state).  
Because Test Mode is specific mode for supplier.  
4. Extended Mode Register is chosen using the combination of BA0 = 1 and BA1 = 0.  
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.  
6. A11 in Extended Mode Register must be set to “0”.  
7. TC59LM914AMB, A10 in Extended Mode Register is ignored. DQS is available only TC59LM906AMB.  
2003-08-04 20/57  
TC59LM914/06AMB-37,-45,-50  
STATE DIAGRAM  
SELF-  
REFRESH  
POWER  
DOWN  
SELFX  
( PD = H)  
PDEX  
( PD = H)  
PD = L  
PDEN  
( PD = L)  
STANDBY  
(IDLE)  
PD = H  
AUTO-  
REFRESH  
MODE  
REGISTER  
WRA  
RDA  
REF  
MRS  
ACTIVE  
(RESTORE)  
ACTIVE  
LAL  
LAL  
WRITE  
(BUFFER)  
READ  
Command input  
Automatic return  
The second command at Active state  
must be issued 1 clock after RDA or  
WRA command input.  
2003-08-04 21/57  
TC59LM914/06AMB-37,-45,-50  
TIMING DIAGRAMS  
SINGLE BANK READ TIMING (CL = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
Command  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
RAS  
RAS  
RAS  
Address  
UA  
#0  
UA  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 3  
CL = 3  
CL = 3  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 3  
CL = 3  
CL = 3  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 22/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
Command  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
RAS  
RAS  
RAS  
Address  
UA  
LA  
UA  
#0  
LA  
UA  
LA  
UA  
#0  
Bank Add.  
#0  
#0  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1  
Q0 Q1  
Q0  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 4  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Q0  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 23/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
RDA LAL  
DESL  
RDA LAL  
DESL  
RDA LAL  
DESL  
I =1 cycle  
RCD  
I
= 5 cycles  
I =1 cycle  
RCD  
I
= 5 cycles  
I =1 cycle  
RCD  
RAS  
RAS  
Address  
UA  
#0  
LA  
UA  
LA  
UA  
LA  
Bank Add.  
#0  
#0  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Hi-Z  
Q0 Q1  
Q0 Q1  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Q0 Q1 Q2 Q3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 24/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK WRITE TIMING (CL = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
RAS  
RAS  
RAS  
Address  
UA  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
#0  
BL = 2  
DQS/ DQS  
(input)  
WL = 2  
WL = 2  
WL = 2  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DQS/ DQS  
(input)  
WL = 2  
WL = 2  
WL = 2  
DQ  
(input)  
D0 D1 D2 D3  
Note : TC59LM914AMB doesn’t have DQS .  
D0 D1 D2 D3  
D0 D1 D2 D3  
2003-08-04 25/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5  
RC  
RC  
RC  
Command  
WRA LAL  
DESL  
= 4 cycles  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA  
I =1 cycle  
RCD  
I
I =1 cycle  
RCD  
I
= 4 cycles  
I =1 cycle  
RCD  
I
= 4 cycles  
RAS  
RAS  
RAS  
Address  
UA  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
Bank Add.  
#0  
BL = 2  
DQS/ DQS  
(input)  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1  
D0 D1  
D0 D1  
BL = 4  
DQS/ DQS  
(input)  
WL = 3  
WL = 3  
WL = 3  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 26/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
I =1 cycle  
RCD  
I
= 5 cycles  
I =1 cycle  
RCD  
I
= 5 cycles  
I =1 cycle  
RCD  
RAS  
RAS  
Address  
UA  
LA  
UA  
#0  
LA  
UA  
LA  
Bank Add.  
#0  
#0  
BL = 2  
DQS/ DQS  
(input)  
WL = 4  
WL = 4  
DQ  
(input)  
D0 D1  
D0 D1  
BL = 4  
DQS/ DQS  
(input)  
WL = 4  
WL = 4  
DQ  
(input)  
D0 D1 D2 D3  
D0 D1 D2 D3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 27/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK READ-WRITE TIMING (CL = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
Hi-Z  
DQS  
Hi-Z  
Hi-Z  
DQS  
DQ  
CL = 3  
CL = 3  
WL = 2  
Q0 Q1  
D0 D1  
Q0 Q1  
BL = 4  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQ  
CL = 3  
CL = 3  
WL = 2  
Hi-Z  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0 Q1 Q2 Q3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 28/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK READ-WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 5 cycles  
I
= 5 cycles  
I
= 5 cycles  
RC  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
WRA  
UA  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
#0  
BL = 2  
Hi-Z  
DQS  
Hi-Z  
Hi-Z  
DQS  
CL = 4  
WL = 3  
CL = 4  
DQ  
Q0 Q1  
D0 D1  
Q0  
BL = 4  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQ  
CL = 4  
WL = 3  
CL = 4  
Hi-Z  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Q0  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 29/57  
TC59LM914/06AMB-37,-45,-50  
SINGLE BANK READ-WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 6 cycles  
I
= 6 cycles  
RC  
RC  
Command  
Address  
RDA LAL  
DESL  
WRA LAL  
DESL  
RDA LAL  
DESL  
UA  
#0  
LA  
UA  
#0  
LA  
UA  
#0  
LA  
Bank Add.  
BL = 2  
Hi-Z  
DQS  
Hi-Z  
Hi-Z  
DQS  
CL = 5  
WL = 4  
Q0 Q1  
D0 D1  
DQ  
BL = 4  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQ  
WL = 4  
CL = 5  
Hi-Z  
Q0 Q1 Q2 Q3  
D0 D1 D2 D3  
Note : TC59LM914AMB doesn’t have DQS .  
2003-08-04 30/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK READ TIMING (CL = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
RBD  
= 2 cyclesI  
RBD  
= 2 cycles I = 2 cycles  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL RDA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 3  
CL = 3  
DQ  
Hi-Z  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
Qd0Qd1  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 3  
CL = 3  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2Qc3Qd0Qd1  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 31/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK READ TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
RBD  
= 2 cyclesI  
RBD  
= 2 cycles I = 2 cycles  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL DESL RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL  
RDA  
UA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 4  
CL = 4  
Hi-Z  
Hi-Z  
DQ  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
Qc0Qc1  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 4  
CL = 4  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3Qc0Qc1Qc2  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 32/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK READ TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles  
I
= 2 cycles I  
RBD  
= 2 cycles  
I
= 2 cycles  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
RDA LAL RDA LAL  
DESL  
RDA LAL RDA LAL RDA LAL RDA LAL RDA LAL  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
BL = 2  
Hi-Z  
DQS/ DQS  
(output)  
CL = 5  
CL = 5  
DQ  
Hi-Z  
Hi-Z  
Qa0Qa1  
Qb0Qb1  
Qa0Qa1  
Qb0Qb1  
(output)  
BL = 4  
DQS/ DQS  
(output)  
CL = 5  
CL = 5  
DQ  
(output)  
Hi-Z  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2Qb3  
Qa0Qa1Qa2Qa3Qb0Qb1Qb2  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 33/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK WRITE TIMING (CL = 3)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
RBD  
= 2 cycles I = 2 cycles  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
DQS/ DQS  
(input)  
WL = 2  
WL = 2  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
BL = 4  
DQS/ DQS  
(input)  
WL = 2  
WL = 2  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1Dd2Dd3  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 34/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK WRITE TIMING (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
= 2 cycles I  
RBD  
= 2 cycles I = 2 cycles  
RBD  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL DESL WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL WRA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a") = 5 cycles  
RC  
I
(Bank"b") = 5 cycles  
RC  
BL = 2  
DQS/ DQS  
(input)  
WL = 3  
WL = 3  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
Dd0Dd1  
BL = 4  
DQS/ DQS  
(input)  
WL = 3  
WL = 3  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1Dc2Dc3Dd0Dd1  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 35/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK WRITE TIMING (CL = 5)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
I
= 2 cycles I  
RBD  
= 2 cycles I  
RBD  
= 2 cycles I = 2 cycles  
RBD  
RBD  
RBD  
Command  
Address  
WRA LAL WRA LAL  
DESL  
WRA LAL WRA LAL WRA LAL WRA LAL WRA LAL  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank Add.  
I
(Bank"a") = 6 cycles  
RC  
I
(Bank"b") = 6 cycles  
RC  
BL = 2  
DQS/ DQS  
(input)  
WL = 4  
WL = 4  
DQ  
(input)  
Da0Da1  
Db0Db1  
Da0Da1  
Db0Db1  
Dc0Dc1  
BL = 4  
DQS DQS  
(input)  
WL = 4  
WL = 4  
DQ  
(input)  
Da0Da1Da2Da3Db0Db1Db2Db3  
Da0Da1Da2Da3Db0Db1Db2Db3Dc0Dc1  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 36/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK READ-WRITE TIMING (BL = 2)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
Command  
WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA LAL RDA LAL DESL WRA  
I
= 1 cycle  
I
= 2 cycles  
I
= 1 cycle  
I
= 2 cycles  
WRD  
RWD  
WRD  
RWD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
CL = 3  
Hi-Z  
Hi-Z  
DQS  
DQS  
CL = 3  
WL = 2  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
CL = 4  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQ  
CL = 4  
WL = 3  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
CL = 5  
Hi-Z  
Hi-Z  
DQS  
DQS  
CL = 5  
WL = 4  
Hi-Z  
Da0 Da1  
Qb0 Qb1  
Dc0 Dc1  
Qd0 Qd1  
Da0 Da1  
DQ  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 37/57  
TC59LM914/06AMB-37,-45,-50  
MULTIPLE BANK READ-WRITE TIMING (BL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
= 2 cycles  
RBD  
Command  
DESL  
= 3 cycles  
DESL  
WRA LAL RDA LAL  
WRA LAL RDA  
LAL  
LA  
WRA LAL RDA LAL  
I
= 1 cycle  
I
I
= 1 cycle  
I
= 3 cycles  
I
= 1 cycle  
WRD  
RWD  
WRD  
RWD  
WRD  
Address  
UA  
LA  
UA  
LA  
UA  
LA  
UA  
UA  
LA  
UA  
LA  
Bank  
"a"  
Bank  
"b"  
Bank  
"c"  
Bank  
"d"  
Bank  
"a"  
Bank  
"b"  
Bank Add.  
I
(Bank"a")  
RC  
I
(Bank"b")  
RC  
CL = 3  
Hi-Z  
Hi-Z  
DQS  
DQS  
CL = 3  
WL = 2  
Hi-Z  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
DQ  
CL = 4  
Hi-Z  
Hi-Z  
DQS  
DQS  
CL = 4  
WL = 3  
Hi-Z  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
DQ  
CL = 5  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQ  
CL = 5  
WL = 4  
Hi-Z  
Da0 Da1 Da2 Da3  
Qb0 Qb1 Qb2 Qb3  
Dc0 Dc1 Dc2 Dc3  
Qd0 Qd1 Qd2 Qd3  
Note: l  
to the same bank must be satisfied.  
RC  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 38/57  
TC59LM914/06AMB-37,-45,-50  
WRITE with VARIAVLE WRITE LENGTH (VW) CONTROL (CL = 4)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
BL = 2, SEQUENTIAL MODE  
Command  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
VW=All  
LA=#1  
VW=1  
Address  
UA  
UA  
Bank  
"a"  
Bank  
VW=1  
"a"  
Bank Add.  
VW=A11  
VW0 = Low  
VW1 = don't care  
VW0 = High  
VW1 = don't care  
DQS/ DQS  
(input)  
DQ  
(input)  
D0 D1  
D0  
Lower Address #3 #2  
#1 (#0)  
Last one data is masked.  
BL = 4, SEQUENTIAL MODE  
Command  
Address  
WRA LAL  
DESL  
WRA LAL  
DESL  
WRA LAL  
DESL  
LA=#3  
LA=#1  
LA=#2  
UA  
UA  
UA  
VW=All  
VW=1  
VW=2  
Bank  
"a"  
Bank  
VW=1  
"a"  
Bank  
VW=2  
"a"  
Bank Add.  
VW=A11  
VW0 = High  
VW1 = Low  
VW0 = High  
VW1 = High  
VW0 = Low  
VW1 = High  
DQS/ DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
D0  
D0 D1  
Lower Address #3 #0 #1 #2  
#1(#2)(#3)(#0)  
Last three data are masked.  
Note: DQS ( DQS ) input must be continued till end of burst count even if some of laster data is masked.  
#2 #3 (#0)(#1)  
Last two data are masked.  
2003-08-04 39/57  
TC59LM914/06AMB-37,-45,-50  
POWER DOWN TIMING (CL = 4, BL = 4)  
Read cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-1  
n
n+1  
n+2  
n+3  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
RDA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
IS  
I
= 1 cycle  
PD  
t
IH  
PD  
t
t
QPDH  
PDEX  
l
, t  
RC(min) REFI(max)  
Hi-Z  
DQS  
(output)  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQS  
(output)  
CL = 4  
DQ  
(output)  
Q0 Q1 Q2 Q3  
Power Down Entry  
Note: PD must be kept "High" level until end of Burst data output.  
Power Down Exit  
cycles later.  
PD should be brought to "High" within t  
(max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
TC59LM914AMB doesn’t have DQS .  
PDA  
2003-08-04 40/57  
TC59LM914/06AMB-37,-45,-50  
POWER DOWN TIMING (CL = 4, BL = 4)  
Write cycle to Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
n-1  
n
n+1  
n+2  
n+3  
CLK  
CLK  
I
PDA  
RDA  
or  
Command  
Address  
WRA LAL  
DESL  
DESL  
WRA  
UA  
LA  
UA  
t
IS  
I
= 1 cycle  
PD  
t
IH  
PD  
WL = 3  
2 clock cycles  
t
PDEX  
l
, t  
RC(min) REFI(max)  
DQS  
(input)  
DQS  
(input)  
WL = 3  
DQ  
(input)  
D0 D1 D2 D3  
Note: PD must be kept "High" level until WL+2 clock cycles from LAL command.  
PD should be brought to "High" within t (max.) to maintain the data written into cell.  
REFI  
In Power Down Mode, PD "Low" must be maintained.  
When PD is brought to "High", a valid executable command may be applied l  
TC59LM914AMB doesn’t have DQS .  
cycles later.  
PDA  
2003-08-04 41/57  
TC59LM914/06AMB-37,-45,-50  
MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A13~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
BA2="0"  
BA0~BA2  
CL + BL/2  
Hi-Z  
DQS  
(output)  
Hi-Z  
DQS  
DQ  
(output)  
Q0 Q1  
Note: Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2.  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 42/57  
TC59LM914/06AMB-37,-45,-50  
MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A13~A0  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="0"  
BA1="0"  
BA2="0"  
BA0~BA2  
WL+BL/2  
DQS  
(input)  
DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
Note: Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 43/57  
TC59LM914/06AMB-37,-45,-50  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 2)  
From Read operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A13~A0  
RDA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
BA2="0"  
BA0~BA2  
CL + BL/2  
Hi-Z  
DQS  
(output)  
Hi-Z  
DQS  
(output)  
DQ  
(output)  
Q0 Q1  
Note: Minimum delay from LAL following RDA to RDA of EMRS operation is CL+BL/2.  
DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 44/57  
TC59LM914/06AMB-37,-45,-50  
EXTENDED MODE REGISTER SET TIMING (CL = 4, BL = 4)  
From Write operation to Extended Mode Register Set operation.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CLK  
I
RSC  
RDA  
or  
Command  
A13~A0  
WRA LAL  
DESL  
RDA MRS  
DESL  
LAL  
LA  
WRA  
Valid  
(opcode)  
UA  
BA  
LA  
UA  
BA  
BA0="1"  
BA1="0"  
BA2="0"  
BA0~BA2  
WL+BL/2  
DQS  
(input)  
DQS  
(input)  
DQ  
(input)  
D0 D1 D2 D3  
Note: DLL switch in Extended Mode Register must be set to enable mode for normal operation.  
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.  
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.  
TC59LM914AMB doesn’t have DQS .  
2003-08-04 45/57  
TC59LM914/06AMB-37,-45,-50  
AUTO-REFRESH TIMING (CL = 4, BL = 4)  
0
1
2
3
4
5
6
7
n 1  
n
n + 1  
n + 2  
CLK  
CLK  
I
= 5 cycles  
I
= 18 cycles  
RC  
REFC  
RDA LAL or  
WRA  
Command  
RDA  
LAL  
LA  
DESL  
WRA  
REF  
DESL  
or  
MRS or  
REF  
Bank,  
UA  
Bank, Address  
I
= 1 cycle  
I
= 4 cycles  
I = 1 cycle  
RCD  
RCD  
RAS  
DQS/ DQS  
(output)  
Hi-Z  
Hi-Z  
Hi-Z  
CL = 4  
DQ  
(output)  
Hi-Z  
Q0 Q1 Q2 Q3  
Note: In case of CL = 4, I  
must be meet 18 clock cycles.  
REFC  
When the Auto-Refresh operation is performed, the synthetic average interval of Auto-Refresh command  
specified by t  
REFI  
TC59LM914AMB doesn’t have DQS .  
must be satisfied.  
REFI  
is average interval time in 8 Refresh cycles that is sampled randomly.  
t
t
1
t
2
t
3
t
7
t
8
CLK  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
WRA REF  
8 Refresh cycle  
Total time of 8 Refresh cycle  
8
t + t + t + t + t + t + t + t  
1 2 3 4 5 6 7 8  
t
=
=
REFI  
8
t
is specified to avoid partly concentrated current of Refresh operation that is activated larger area  
REFI  
than Read / Write operation.  
2003-08-04 46/57  
TC59LM914/06AMB-37,-45,-50  
SELF-REFRESH ENTRY TIMING  
0
1
2
3
4
5
m 1  
m
m + 1  
CLK  
CLK  
I
= 1 cycle  
I
REFC  
RCD  
Command  
WRA  
REF  
DESL  
t
t
FPDL (min) FPDL (max)  
Auto Refresh  
PD  
Self Refresh Entry  
*2  
I
PDV  
I
t
QPDH  
CKD  
Hi-Z  
Hi-Z  
DQS/ DQS  
(output)  
DQ  
(output)  
Qx  
Notes: 1.  
is don’t care.  
2. PD must be brought to "Low" within the timing between t  
(min) and t  
(max) to Self Refresh  
FPDL  
FPDL  
mode. When PD is brought to "Low" after l  
, TC59LM914/06AMB perform Auto Refresh and  
PDV  
enter Power down mode. In case of PD fall between t  
(max) and l  
, TC59LM914/06AMB will  
FPDL  
PDV  
either entry Self-Refresh mode or Power down mode after Auto-Refresh operation. It can’t be  
specified which mode TC59LM914/06AMB operates.  
3. It is desirable that clock input is continued at least l  
brought to “Low” for Self-Refresh Entry.  
4. TC59LM914AMB doesn’t have DQS .  
from REF command even though PD is  
CKD  
5. In case of Self-Refresh entry after Write Operation, the delay time from the LAL command following  
WRA to the REF command is Write latency (WL)+3 clock cycles minimum.  
SELF-REFRESH EXIT TIMING  
0
1
2
m 1  
m
m + 1  
m + 2  
n 1  
n
n + 1  
p 1  
p
CLK  
CLK  
*2  
*6  
Command (1st)  
I
I
*6  
REFC  
REFC  
Command (2nd)  
*3  
*5  
*5  
*7  
*7  
Command  
PD  
DESL  
WRA  
REF  
DESL  
RDA  
LAL  
*4  
I
= 1 cycles  
I
= 1 cycle  
I
= 1 cycle  
PDA  
RCD  
RCD  
t
PDEX  
I
LOCK  
DQS/ DQS  
(output)  
Hi-Z  
DQ  
(output)  
Hi-Z  
Self-Refresh Exit  
Notes: 1. is don’t care.  
2. Clock should be stable prior to PD = “High” if clock input is suspended in Self-Refresh mode.  
3. DESL command must be asserted during I after PD is brought to “High”.  
REFC  
is defined from the first clock rising edge after PD is brought to “High”.  
4.  
I
PDA  
5. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any  
other operation.  
6. Any command (except Read command) can be issued after I  
.
REFC  
7. Read command (RDA + LAL) can be issued after I  
.
LOCK  
8. TC59LM914AMB doesn’t have DQS .  
2003-08-04 47/57  
TC59LM914/06AMB-37,-45,-50  
FUNCTIONAL DESCRIPTION  
TM  
Network FCRAM  
FCRAMTM is an acronym of Fast Cycle Random Access Memory. The Network FCRAMTM is competent to  
perform fast random core access, low latency and high-speed data transfer.  
PIN FUNCTIONS  
CLOCK INPUTS: CLK & CLK  
The CLK and CLK inputs are used as the reference for synchronous operation. CLK is master clock input.  
The CS , FN and all address input signals are sampled on the crossing of the positive edge of CLK and the  
negative edge of CLK . The DQS and DQ output are aligned to the crossing point of CLK and CLK . The  
timing reference point for the differential clock is when the CLK and CLK signals cross during a transition.  
POWER DOWN: PD  
The PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a  
Clock Suspend function like a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into  
low state if any Read or Write operation is being performed.  
CS  
CHIP SELECT & FUNCTION CONTROL:  
& FN  
The CS and FN inputs are a control signal for forming the operation commands on FCRAMTM. Each  
operation mode is decided by the combination of the two consecutive operation commands using the CS and  
FN inputs.  
BANK ADDRESSES: BA0~BA2  
The BA0 to BA2 inputs are latched at the time of assertion of the RDA or WRA command and are selected the  
bank to be used for the operation. BA0 and BA1 also define which mode register is loaded during the Mode  
Register Set command (MRS or EMRS).  
BA0  
BA1  
BA2  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Bank #4  
Bank #5  
Bank #6  
Bank #7  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
ADDRESS INPUTS: A0~A13  
Address inputs are used to access the arbitrary address of the memory cell array within each bank. The  
Upper Addresses with Bank addresses are latched at the RDA or WRA command and the Lower Addresses are  
latched at the LAL command. The A0 to A13 inputs are also used for setting the data in the Regular or  
Extended Mode Register set cycle.  
UPPER ADDRESS  
LOWER ADDRESS  
TC59LM906AMB  
TC59LM914AMB  
A0~A13  
A0~A13  
A0~A8  
A0~A7  
2003-08-04 48/57  
TC59LM914/06AMB-37,-45,-50  
DATA INPUT/OUTPUT: DQ0~DQ7 or DQ15  
The input data of DQ0 to DQ15 are taken in synchronizing with the both edges of DQS input signal. The  
output data of DQ0 to DQ15 are outputted synchronizing with the both edges of DQS output signal.  
DATA STROBE: DQS, DQS  
The DQS is bi-directional signal. Both edge of DQS are used as the reference of data input or output. In write  
operation, the DQS used as an input signal is utilized for a latch of write data. In read operation, the DQS is an  
output signal provides the read data strobe.  
TC59LM906AMB has differential data strobe pin ( DQS ). When DQS is enable mode, DQS is differential  
output signal for DQS in read operation, data input are latched at the crossing point of DQS and DQS in Write  
operation. When DQS is disable mode, DQS is always Hi-Z, and data input are latched at the crossing point  
of DQS and VREF level. DQS mode is set at Extended Mode Register Set Cycle.  
TC59LM914AMB doesn’t have DQS pin. Data input are latched at the crossing point of L/UDQS and VREF  
level in Write operation. LDQS is strobe signal for DQ0-DQ7. UDQS is strobe signal for DQ8-DQ15.  
POWER SUPPLY: V , V  
, V , V  
DD DDQ SS SSQ  
V
DD  
and V are power supply pins for memory core and peripheral circuits.  
SS  
V
DDQ  
and V  
are power supply pins for the output buffer.  
SSQ  
REFERENCE VOLTAGE: V  
REF  
V
REF  
is reference voltage for all input signals.  
2003-08-04 49/57  
TC59LM914/06AMB-37,-45,-50  
COMMAND FUNCTIONS and OPERATIONS  
TC59LM914/06AMB are introduced the two consecutive command input method. Therefore, except for Power  
Down mode, each operation mode decided by the combination of the first command and the second command from  
stand-by states of the bank to be accessed.  
Read Operation (1st command + 2nd command = RDA + LAL)  
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank  
designated by Bank Address in a read mode. When the LAL command with Lower Addresses is issued at the next  
clock of the RDA command, the data is read out sequentially synchronizing with the both edges of DQS/ DQS  
output signal (Burst Read Operation). The initial valid read data appears after CAS latency from the issuing of  
the LAL command. The valid data is outputted for a burst length. The CAS latency, the burst length of read  
data and the burst type must be set in the Mode Register beforehand. The read operated bank goes back  
automatically to the idle state after l . DQS is differential data strobe signal supported TC59LM906AMB.  
RC  
Write Operation (1st command + 2nd command = WRA + LAL)  
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank  
designated by Bank Address in a write mode. When the LAL command with Lower Addresses is issued at the  
next clock of the WRA command, the input data is latched sequentially synchronizing with the both edges of  
DQS/ DQS input signal (Burst Write Operation). The data and DQS/ DQS inputs have to be asserted in keeping  
with clock input after CAS latency-1 from the issuing of the LAL command. The DQS/ DQS has to be provided  
for a burst length. The CAS latency and the burst type must be set in the Mode Register beforehand. The write  
operated bank goes back automatically to the idle state after l . Write Burst Length is controlled by VW0 and  
RC  
VW1 inputs with LAL command. See VW truth table. DQS is differential data strobe signal supported  
TC59LM906AMB.  
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)  
TC59LM914/06AMB are required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with  
the REF command following to the WRA command. The Auto-Refresh mode can be effective only when all banks  
are in the idle state and all outputs are in Hi-Z states. In a point to notice, the write mode started with the WRA  
command is canceled by the REF command having gone into the next clock of the WRA command instead of the  
LAL command. The minimum period between the Auto-Refresh command and the next command is specified by  
l . However, about a synthetic average interval of Auto-Refresh command, it must be careful. In case of  
REFC  
equally distributed refresh, Auto-Refresh command has to be issued within once for every 3.9 µs by the maximum.  
In case of burst refresh or random distributed refresh, the average interval of eight consecutive Auto-Refresh  
command has to be more than 400 ns always. In other words, the number of Auto-Refresh cycles that be  
performed within 3.2 µs (8 × 400 ns) is to 8 times in the maximum.  
PD  
= “L”)  
Self-Refresh Operation (1st command + 2nd command = WRA + REF with  
In case of Self-Refresh operation, refresh operation can be performed automatically by using an internal timer.  
When all banks are in the idle state and all outputs are in Hi-Z states, the TC59LM914/06AMB become  
Self-Refresh mode by issuing the Self-Refresh command. PD has to be brought to “Low” within t  
from the  
FPDL  
REF command following to the WRA command for a Self-Refresh mode entry. In order to satisfy the refresh  
period, the Self-Refresh entry command should be asserted within 3.9 µs after the latest Auto-Refresh command.  
Once the device enters Self-Refresh mode, the DESL command must be continued for l  
period. In addition, it  
REFC  
is desirable that clock input is kept in l  
period. The device is in Self-Refresh mode as long as PD held “Low”.  
CKD  
During Self-Refresh mode, all input and output buffers are disabled except for PD , therefore the power  
dissipation lowers. Regarding a Self-Refresh mode exit, PD has to be changed over from “Low” to “High” along  
with the DESL command, and the DESL command has to be continuously issued in the number of clocks specified  
by l . The Self-Refresh exit function is asynchronous operation. It is required that one Auto-Refresh  
REFC  
command is issued to avoid the violation of the refresh period just after l  
from Self-Refresh exit.  
REFC  
PD  
= “L”)  
Power Down Mode (  
When all banks are in the idle state and DQ outputs are in Hi-Z states, the TC59LM914/06AMB become Power  
Down Mode by asserting PD is “Low”. When the device enters the Power Down Mode, all input and output  
buffers are disabled after specified time except for PD . Therefore, the power dissipation lowers. To exit the  
Power Down Mode, PD has to be brought to “High” and the DESL command has to be issued for two clock cycle  
after PD goes high. The Power Down exit function is asynchronous operation.  
2003-08-04 50/57  
TC59LM914/06AMB-37,-45,-50  
Mode Register Set (MRS) and Extended Mode Register Set (EMRS)  
(1st command + 2nd command = RDA + MRS)  
When all banks are in the idle state, issuing the MRS command following to the RDA command can program  
the Mode Register. In a point to notice, the read mode started with the RDA command is canceled by the MRS  
command having gone into the next clock of the RDA command instead of the LAL command. The data to be set  
in the Mode Register is transferred using A0 to A13, BA0 to BA2 address inputs. The TC59LM914/06AMB have  
two mode registers. These are Regular and Extended Mode Register. The Regular or Extended Mode Register is  
chosen by BA0 and BA1 in the MRS command. The Regular Mode Register designates the operation mode for a  
read or write cycle. The Regular Mode Register has four function fields.  
The four fields are as follows:  
(R-1) Burst Length field to set the length of burst data  
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle  
(R-3) CAS Latency field to set the access time in clock cycle  
(R-4) Test Mode field to use for supplier only.  
The Extended Mode Register has five function fields.  
The five fields are as follows:  
(E-1) DLL Switch field to choose either DLL enable or DLL disable  
(E-2) Output Driver Impedance Control field.  
(E-3) Off-Chip Driver (OCD) Impedance Adjustment for Full Strength Output Driver  
(E-4) DQS enable field  
(E-5) Interface mode select  
Once those fields in the Mode Register are set up, the register contents are maintained until the Mode Register  
is set up again by another MRS command or power supply is lost. The initial value of the Regular or Extended  
Mode Register after power-up is undefined, therefore the Mode Register Set command must be issued before  
proper operation.  
Regular Mode Register/Extended Mode Register change bits (BA0, BA1)  
These bits are used to choose either Regular MRS or Extended MRS  
BA1  
BA0  
BA2, A13~A0  
0
0
1
0
1
×
Regular MRS Cycle  
Extended MRS Cycle  
Reserved  
Regular Mode Register Fields  
(R-1) Burst Length field (A2 to A0), (BL)  
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length  
to be 2 or 4 words.  
A2  
A1  
A0  
BURST LENGTH  
0
0
0
0
1
0
0
1
1
×
0
1
0
1
×
Reserved  
2 words  
4 words  
Reserved  
Reserved  
(R-2) Burst Type field (A3), (BT)  
The Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is “0”, Sequential  
mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both burst types support burst  
length of 2 and 4 words.  
A3  
BURST TYPE  
0
1
Sequential  
Interleave  
2003-08-04 51/57  
TC59LM914/06AMB-37,-45,-50  
Addressing sequence of Sequential mode  
A column access is started from the inputted lower address and is performed by incrementing the lower  
address input to the device.  
CAS Latency = 4  
CLK  
CLK  
Command  
RDA  
LAL  
DQS/  
DQS  
DQ  
Data Data Data Data  
0
1
2
3
Addressing sequence for Sequential mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
n
2 words (address bits is LA0)  
not carried from LA0~LA1  
n + 1  
n + 2  
n + 3  
4 words (address bits is LA1, LA0)  
not carried from LA1~LA2  
Addressing sequence of Interleave mode  
A column access is started from the inputted lower address and is performed by interleaving the address bits  
in the sequence shown as the following.  
Addressing sequence for Interleave mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
Data 1  
Data 2  
Data 3  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
ּּּA8 A7 A6 A5 A4 A3 A2 A1 A0  
2 words  
4 words  
(R-3) CAS Latency field (A6 to A4), (CL)  
This field specifies the number of clock cycles from the assertion of the LAL command following the  
RDA command to the first data read. The minimum values of CAS Latency depends on the frequency  
of CLK. In a write mode, the place of clock that should input write data is CAS Latency cycles 1.  
A6  
A5  
A4  
CAS LATENCY  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
3
4
5
Reserved  
Reserved  
(R-4) Test Mode field (A7), (TE)  
This bit is used to enter Test Mode for supplier only and must be set to “0” for normal operation.  
(R-5) Reserved field in the Regular Mode Register  
Reserved bits (A8 to A13, BA2)  
These bits are reserved for future operations. They must be set to “0” for normal operation.  
2003-08-04 52/57  
TC59LM914/06AMB-37,-45,-50  
Extended Mode Register fields  
(E-1) DLL Switch field (A0), (DS)  
This bit is used to enable DLL. When the A0 bit is set “0”, DLL is enabled. This bit must set to “0” for  
normal operation.  
(E-2) Output Driver Impedance Control field (A1, A6) (DIC)  
This field is used to choose Output Driver Strength. Four types of Driver Strength are supported.  
Output Driver Strength can be set by field in EMRS with OCD calibration default (A7~A9 = 1 at EMRS)  
or OCD calibration mode exit (A7~A9 = 0 at EMRS).  
A6  
A1  
OUTPUT DRIVER IMPEDANCE CONTROL  
0
0
1
1
0
1
0
1
Normal Output Driver  
Strong Output Driver  
Weak Output Driver  
Full Strength Output Driver  
(E-3) Off-Chip Driver (OCD) Impedance Adjustment (A7 to A9) (OCD)  
OCD calibration (Off Chip Driver impedance adjustment) is available only for Full Strength Output  
Driver. When OCD calibration is performed, A1 and A6 inputs at EMRS must be “1” for Full Strength  
Output Driver.  
Output Driver Strength can be set by DIC field (E-2). This Driver strength is the initial driver level at  
OCD Impedance Adjustment.  
The Network FCRAMTM supports driver calibration feature and the flow chart below is an example of  
sequence. Every calibration mode command should be followed by “OCD calibration mode exit” before  
any other command being issued. MRS should be set before entering OCD impedance adjustment.  
MRS should be set before entering OCD impedance adjustment.  
Start  
EMRS: OCD calibration mode exit  
EMRS: Drive(1)  
DQ &DQS High; DQS Low  
EMRS: Drive(0)  
DQ &DQS Low; DQS High  
ALL OK  
Need Calibration  
ALL OK  
Test  
Test  
Need Calibration  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS:  
Enter Adjust Mode  
EMRS:  
Enter Adjust Mode  
BL=4 code Input to all DQs  
Inc, Dec, or NOP  
BL=4 code Input to all DQs  
Inc, Dec, or NOP  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
End  
2003-08-04 53/57  
TC59LM914/06AMB-37,-45,-50  
Extended Mode Register Set for OCD Impedance adjustment  
OCD impedance adjustment can be done using the following EMRS mode. In drive mode all outputs are  
driven out by Network FCRAM. In drive (1) mode, all DQ, DQS signals are driven high and DQS signals are  
driven low. In drive (0) mode, all DQ, DQS signals are driven low and DQS signals are driven high. In adjust  
mode, BL=4 of operation code data must be used  
A9  
A8  
A7  
Operation  
0
0
0
1
1
0
0
1
0
1
0
1
0
0
1
OCD calibration mode exit  
Drive (1) DQ, DQS high and DQS low  
Drive (0) DQ, DQS low and DQS high  
Adjust mode  
OCD calibration default  
OCD impedance adjust  
To adjust output driver impedance, controllers must issue the ADJUST EMRS command along with a 4bit  
burst code to Network FCRAM. For this operation, Burst Length has to be set to BL=4 via MRS command  
before activating OCD and controllers must drive this burst code to all DQs at the same time. DT0 means all  
DQ bits at bit time 0, DT1 at bit time 1, and so forth. The driver output impedance is adjusted for all DQs  
simultaneously and after OCD calibration, all DQs of a given Network FCRAM will be adjusted to the same  
driver strength setting. The maximum step count for adjustment is 16 and when the limit is reached, further  
increment or decrement code has no effect.  
Off-Chip Driver Program  
4bit burst code inputs to all DQs  
Operation  
D
T0  
D
T1  
D
T2  
D
T3  
Pull-up driver strength  
Pull-down driver strength  
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
1
0
0
0
0
1
0
0
0
1
0
1
0
1
0
0
0
1
0
1
0
NOP (No operation)  
Increase by 1 step  
Decrease by 1 step  
NOP  
NOP (No operation)  
NOP  
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Increase by 1 step  
Decrease by 1 step  
Decrease by 1 step  
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Decrease by 1 step  
Other Combinations  
Reserved  
For proper operation of adjust mode, WL=CL-1 clocks and tDS / tDH should be met as the following timing  
diagram. For input data pattern for adjustment, DT0~DT3 is a fixed order and “not affected by MRS  
addressing mode (i.e. Sequential or interleave).  
Driver strength is controlled within the following range by OCD impedance adjustment.  
SYMBOL  
PARAMETER  
Output Source DC Current for V Q = 1.7V~1.9V  
MIN  
MAX  
UNIT NOTES  
mA  
DD  
I
(DC)  
(DC)  
14.0  
18.7  
OH  
V Q = 1.7V  
DD  
V
OH  
= 1.420V  
Full Strength  
Output Driver  
Output Sink DC Current for V Q = 1.7V~1.9V  
DD  
I
14.0  
18.7  
OL  
V Q = 1.7V  
DD  
V
OL  
= 0.280V  
2003-08-04 54/57  
TC59LM914/06AMB-37,-45,-50  
OCD adjust mode  
EMRS  
OCD calibration mode exit  
Command  
RDA  
NOP  
NOP  
NOP  
NOP  
RDA  
EMRS  
NOP  
CLK  
CLK  
WL  
1clock  
DQS  
DQS_in  
DQ_in  
t
t
DS DH  
D
D
T1  
D
T2  
D
T3  
T0  
Drive mode  
Drive mode, both Drive (1) and Drive (0), is used for controllers to measure Network FCRAM Driver  
impedance. In this mode, all outputs are driven out tOIT after “enter drive mode” command and all output  
drivers are turned-off tOIT after “OCD calibration mode exit” command as the following timing diagram.  
OCD calibration mode exit  
EMRS NOP  
Enter Drive mode  
EMRS  
Command  
RDA  
NOP  
NOP  
RDA  
CLK  
CLK  
DQS,  
DQS  
DQS high & DQS low for Drive (1), DQS low & DQS high for Drive (0)  
DQs high for Drive (1), DQs low for Drive (0)  
DQ  
t
t
OIT  
OIT  
(E-4) DQS enable field (A10), ( DQS )  
This bit is used to enable Differential Data strobe.  
DQS is available on TC59LM906AMB. This field of TC59LM914AMB is ignored.  
A10  
DQS Enable  
0
1
Disable  
Enable  
(E-5) Interface mode select (A11)  
This bit must be always set “0”.  
(E-6) Reserved field (A2 to A5, A12, A13, BA2)  
These bits are reserved for future operations and must be set to “0” for normal operation.  
2003-08-04 55/57  
TC59LM914/06AMB-37,-45,-50  
PACKAGE DIMENSIONS  
P-BGA64-1317-1.00AZ  
16.5  
0
13.086-0.15  
0.2 S  
0.5 0.05  
1.25  
0.08  
S
AB  
B
1.0  
2.0  
2003-08-04 56/57  
TC59LM914/06AMB-37,-45,-50  
RESTRICTIONS ON PRODUCT USE  
030619EBA  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
2003-08-04 57/57  

相关型号:

TC59LM906AMG

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-37

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM906AMG-45

IC 64M X 8 DDR DRAM, 0.6 ns, PBGA64, 13 X 17 MM, 1 MM PITCH, PLASTIC, BGA-64, Dynamic RAM
TOSHIBA

TC59LM906AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM913AMB-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM913AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM914AMG

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM914AMG-37

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59LM914AMG-50

MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
TOSHIBA

TC59R0409

IC 512K X 9 RAMBUS, PSIP32, VERTICAL SMT, PLASTIC, SIP-32, Dynamic RAM
TOSHIBA

TC59R0808HK

IC 1M X 8 RAMBUS, PDSO36, 11 X 25 MM, PLASTIC, HORIZONTAL SMT-36, Dynamic RAM
TOSHIBA

TC59R1609VK

IC 2M X 9 RAMBUS, PSIP32, VERTICAL SMT, SIP-32, Dynamic RAM
TOSHIBA