TC59WM815BFT-75 [TOSHIBA]

IC 16M X 16 DDR DRAM, 0.75 ns, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, PLASTIC, TSOP2-66, Dynamic RAM;
TC59WM815BFT-75
型号: TC59WM815BFT-75
厂家: TOSHIBA    TOSHIBA
描述:

IC 16M X 16 DDR DRAM, 0.75 ns, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, PLASTIC, TSOP2-66, Dynamic RAM

动态存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总44页 (文件大小:1742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC59WM815/07/03BFT-70,-75,-80  
TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC  
4,194,304-WORDS × 4 BANKS × 16-BITS SYNCHRONOUS DYNAMIC RAM  
8,388,608-WORDS × 4 BANKS × 8-BITS SYNCHRONOUS DYNAMIC RAM  
16,777,216-WORDS × 4 BANKS × 4-BITS SYNCHRONOUS DYNAMIC RAM  
DESCRIPTION  
TC59WM815BFT is a CMOS Double Data Rate synchronous dynamic random access memory organized as  
4,194,304 words × 4 banks × 16 bits and TC59WM807BFT is organized as 8,388,608 words × 4 banks × 8 bits and  
the TC59WM803BFT is organized as 16,777,216 words × 4 banks × 4 bits. All inputs reference to the positive edge  
of CLK (except for DQ, DM, and CKE). The timing reference point for the differential clock is when the CLK and  
CLK signals cross during a transition. And Write and Read data are synchronized with both edges of DQS (Data  
Strobe). These devices are ideal for main memory applications such as work-stations.  
FEATURES  
TC59WM815/07/03  
PARAMETER  
-70  
7.5 ns  
7 ns  
-75  
-80  
10 ns  
8 ns  
CL = 2  
8 ns  
t
Clock Cycle Time (min)  
CK  
CL = 2.5  
7.5 ns  
45 ns  
65 ns  
110 mA  
155 mA  
3 mA  
t
t
I
Active to Precharge Command Period (min)  
Active to Ref/Active Command Period (min)  
Operation Current (max) (Single bank)  
Burst Operation Current (max)  
45 ns  
65 ns  
110 mA  
165 mA  
3 mA  
50 ns  
70 ns  
100 mA  
150 mA  
3 mA  
RAS  
RC  
DD1  
DD4  
DD6  
l
l
Self-Refresh Current (max)  
Fully Synchronous Operation  
Double Data Rate (DDR)  
Data Input/Output and DM are synchronized with both edges of DQS (Write/Read Data Strobe).  
Differential Clock inputs  
All input signals reference to the positive edge of CLK (except for DQ, DM and CKE).  
The timing reference point for the differential clock is when the CLK and CLK signals cross during a  
transition.  
Fast cycle time of 7 ns minimum  
Clock: 143 MHz maximum  
Data: 286 Mbps/pin maximum  
Auto Refresh and Self Refresh  
Precharged Power Down and Active Power Down  
Write Data Mask  
Write Latency = 1  
Organization: x4  
x8  
8K row × 2K col. × 4 banks × 4 bits  
8K row × 1K col. × 4 banks × 8 bits  
8K row × 512 col. × 4 banks × 16 bits  
x16  
Output Strobe Signal: Bidirectional  
Programmable CAS Latency and Burst Length: CAS Latency = 2, 2.5  
Burst Length = 2, 4, 8  
Interface:  
Package:  
SSTL-2  
400 × 875 mil, 66 pin TSOP II, 0.65 mm Pin pitch (TSOPII66-P-400-0.65)  
000707EBA2  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general  
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the  
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and  
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or  
damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the  
most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling  
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal  
equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are  
neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or  
failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy  
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control  
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document  
shall be made at the customer’s own risk.  
2001-03-19 1/44  
TC59WM815/07/03BFT-70,-75,-80  
PIN NAMES  
PIN ASSIGNMENT (TOP VIEW)  
A0~A12  
Address  
TC59WM803BFT  
TC59WM807BFT  
TC59WM815BFT  
BS0, BS1  
Bank Address  
DQ0~DQ3  
(x4)  
1
66 VSS  
VSS  
VSSQ  
VSS  
VSSQ  
VDD  
NC2  
VDDQ  
NC2  
DQ0  
VSSQ  
NC2  
NC2  
VDDQ  
NC2  
DQ1  
VSSQ  
NC2  
NC1  
VSSQ  
NC2  
NC1  
VDD  
VDD  
DQ0  
VDDQ  
NC2  
DQ1  
VSSQ  
NC2  
DQ2  
VDDQ  
NC2  
DQ3  
VSSQ  
NC2  
NC1  
VDDQ  
NC2  
NC1  
VDD  
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC1  
2
65 DQ15 DQ7 NC2  
DQ0~DQ7  
(x8)  
3
64 VSSQ  
Data Input/Output  
4
63 DQ14 NC2 NC2  
62 DQ13 DQ6 DQ3  
5
6
61 VDDQ  
VDDQ  
VDDQ  
DQ0~DQ15  
(x16)  
7
60 DQ12 NC2 NC2  
8
59 DQ11 DQ5 NC2  
9
58 VSSQ  
VSSQ  
VSSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
57 DQ10 NC2 NC2  
56 DQ9 DQ4 DQ2  
CS  
Chip Select  
RAS  
CAS  
WE  
Row Address Strobe  
Column Address Strobe  
Write Enable  
55 VDDQ  
VDDQ  
VDDQ  
54 DQ8 NC2 NC2  
53 NC1 NC1 NC1  
52 VSSQ  
VSSQ  
VSSQ  
VDDQ  
LDQS  
NC1  
51 UDQS DQS DQS  
50 NC1 NC1 NC1  
49 VREF  
48 VSS  
VREF  
VSS  
VREF  
VSS  
DM  
VDD  
NC1  
NC2  
NC1  
NC2  
NC1  
DM  
(x4/x8)  
47 UDM DM  
LDM  
46  
Write Mask  
CLK  
CLK CLK  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
45 CLK CLK CLK  
44 CKE CKE CKE  
43 NC1 NC1 NC1  
42 A12 A12 A12  
UDM/LDM  
(x16)  
NC1  
BS0  
BS1  
NC1  
BS0  
BS1  
NC1  
BS0  
BS1  
CLK, (/CLK)  
Clock input  
41 A11  
40 A9  
39 A8  
38 A7  
37 A6  
36 A5  
35 A4  
34 VSS  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
A11  
A9  
A8  
A7  
A6  
A5  
A4  
VSS  
DQS  
(x4/x8)  
A10/AP A10/AP A10/AP  
A0  
A1  
A0  
A1  
A0  
A1  
Write/Read Data Strobe  
A2  
A2  
A2  
U/LDQS  
(x16)  
A3  
A3  
A3  
VDD  
VDD  
VDD  
CKE  
Clock Enable  
Power (+2.5 V)  
Ground  
V
V
DD  
SS  
Power (+2.5 V)  
(for I/O buffer)  
V
DDQ  
SSQ  
Ground  
(for I/O buffer)  
V
V
Reference Voltage  
Not Connected  
REF  
1
2
NC , NC  
000707EBA2  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by  
TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its  
use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or  
others.  
The information contained herein is subject to change without notice.  
2001-03-19 2/44  
TC59WM815/07/03BFT-70,-75,-80  
BLOCK DIAGRAM  
CLK  
DLL CLOCK  
CLK  
BUFFER  
CKE  
CONTROL  
SIGNAL  
GENERATOR  
CS  
COMMAND  
DECODER  
RAS  
CAS  
WE  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
A10  
MODE  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
REGISTER  
ADDRESS  
BUFFER  
A0~A9  
A11  
A12  
Prefetch Register  
DATA CONTROL  
CIRCUIT  
BS0  
BS1  
DQ0~DQn  
DQ BUFFER  
REFRESH  
COUNTER  
COLUMN  
COUNTER  
DQS  
DM  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
Note: The TC59WM803BFT configuration is 8192 × 2048 × 4 of cell array with the DQ pins numbered DQ~DQ3.  
The TC59WM807BFT configuration is 8192 × 1024 × 8 of cell array with the DQ pins numbered DQ0~DQ7.  
The TC59WM815BFT configuration is 8192 × 512 × 16 of cell array with the DQ pins numbered DQ0~DQ15.  
2001-03-19 3/44  
TC59WM815/07/03BFT-70,-75,-80  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
, V  
PARAMETER  
Input, Output Voltage  
RATING  
UNITS  
NOTES  
V
V
0.3~V  
+ 0.3  
V
V
1
1
1
1
1
1
1
IN OUT  
DDQ  
, V  
DD DDQ  
Power Supply Voltage  
Operating Temperature  
Storage Temperature  
0.3~3.6  
T
T
T
0~70  
55~150  
260  
°C  
°C  
°C  
W
opr  
stg  
Soldering Temperature (10 s)  
Power Dissipation  
solder  
P
1
D
I
Short Circuit Output Current  
50  
mA  
OUT  
RECOMMENDED DC OPERATING CONDITIONS (Ta = 0°~70°C)  
SYMBOL  
PARAMETER  
Power Supply Voltage  
MIN  
TYP.  
MAX  
2.7  
UNITS  
NOTES  
V
V
V
V
V
V
V
2.3  
2.3  
2.5  
2.5  
V
V
V
V
V
V
V
2
2
DD  
Power Supply Voltage (for I/O buffer)  
Input Reference Voltage  
V
DD  
DDQ  
0.49 × V  
0.50 × V  
0.51 × V  
DDQ  
2, 3  
2, 8  
2
REF  
DDQ  
DDQ  
REF  
Termination Voltage (system)  
Input High Voltage (DC)  
V
V
0.04  
+ 0.15  
V
V
+ 0.04  
+ 0.3  
TT  
REF  
REF  
REF  
V
IH (DC)  
IL (DC)  
ICK (DC)  
DDQ  
REF  
Input Low Voltage (DC)  
0.3  
V
0.15  
+ 0.3  
2
Differential Clock DC Input Voltage  
0.3  
V
15  
DDQ  
DDQ  
Input Differential Voltage. CLK and  
CLK inputs (DC)  
V
0.36  
V
+ 0.6  
V
13, 15  
ID (DC)  
V
V
Input High Voltage (AC)  
Input Low Voltage (AC)  
V
+ 0.31  
REF  
V
V
2
2
IH (AC)  
IL (AC)  
V
0.31  
+ 0.6  
REF  
Input Differential Voltage. CLK and  
CLK inputs (AC)  
V
0.7  
V
V
13, 15  
ID (AC)  
DDQ  
V
V
Differential AC Input Cross Point Voltage  
Differential Clock AC Middle Point  
V
/2 0.2  
/2 0.2  
V
/2 + 0.2  
/2 + 0.2  
V
V
12, 15  
14, 15  
X (AC)  
DDQ  
DDQ  
V
V
ISO (AC)  
DDQ  
DDQ  
Note: Undershoot limit: V (min) = −0.9 V with a pulsewidth 5 ns  
IL  
Overshoot limit:  
V
(max) = V  
+ 0.9 V with a pulsewidth 5 ns  
IH  
DDQ  
V
V
and V  
and V  
are levels to maintain the current logic state.  
are levels to change to the new logic state.  
IH (DC)  
IH (AC)  
IL (DC)  
IL (AC)  
2001-03-19 4/44  
TC59WM815/07/03BFT-70,-75,-80  
CAPACITANCE  
(V = V  
= 2.5 V 0.2 V, f = 1 MHz, Ta = 25°C, V  
= V /2,  
DDQ  
DD  
DDQ  
OUT (DC)  
V
= 0.2 V)  
OUT (Peak to Peak)  
SYMBOL  
PARAMETER  
MIN  
MAX  
DELTA (MAX)  
UNIT  
Input Capacitance (except for CLK pin)  
Input Capacitance (CLK pin)  
2.0  
2.0  
4.0  
3.0  
3.0  
5.0  
1.5  
5.0  
0.5  
0.25  
0.5  
pF  
pF  
pF  
pF  
pF  
C
IN1  
C
C
C
DQ, DQS, DM Capacitance  
I/O  
1
1
NC pin Capacitance  
NC  
NC  
2
2
NC pin Capacitance  
4.0  
Note: These parameters are periodically sampled and not 100% tested.  
2
The NC pins have additional capacitance for adjustment of the adjacent pin capacitance.  
2
The NC pins have Power or Ground clamp.  
2001-03-19 5/44  
TC59WM815/07/03BFT-70,-75,-80  
RECOMMENDED DC OPERATING CONDITIONS  
MAX  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
-70  
-75  
-80  
OPERATING CURRENT: One Bank  
Active-Precharge; t  
= t min; t = t min;  
RC CK CK  
RC  
I
DQ, DM and DQS inputs changing twice per clock  
cycle; Address and control inputs changing once  
per clock cycle  
110  
110  
100  
7
DD0  
OPERATING CURRENT: One Bank  
Active-Read-Precharge; Burst = 2; t  
= t min;  
RC  
RC  
I
I
I
110  
2
110  
2
100  
2
7, 9  
DD1  
CL = 2.5; t = t min; I = 0 mA; Address  
CK  
CK  
OUT  
and control inputs changing once per clock cycle  
Precharge Power-Down Standby Current: All  
Banks Idle; Power down mode; CKE V max;  
DD2P  
DD2F  
IL  
t
= t min; V = V  
for DQ, DQS and DM  
REF  
CK  
CK  
IN  
Idle Floating Standby Current: CS V min; All  
IH  
Banks Idle; CKE V min; Address and other  
IH  
45  
40  
35  
7
7
7
control inputs changing once per clock cycle; V  
IN  
= V  
for DQ, DQS and DM  
REF  
Idle Standby Current: CS V min; All Banks  
IH  
Idle; CKE V min; t = t min; Address and  
IH  
CK  
CK  
I
other control inputs changing once per clock  
45  
40  
35  
DD2N  
cycle; V V min or V V max for DQ,  
IN  
IH  
IN  
IL  
DQS and DM  
Idle Quiet Standby Current: CS V min; All  
IH  
Banks Idle; CKE V min; t = t min;  
IH  
CK  
CK  
I
I
40  
20  
35  
20  
30  
20  
DD2Q  
DD3P  
Address and other control inputs stable; V  
IN  
V
for DQ, DQS and DM  
REF  
mA  
Active Power-Down Standby Current: One Bank  
Active; Power down mode; CKE V max; t  
=
IL  
CK  
t
min  
CK  
Active Standby Current: CS V min; CKE ≥  
IH  
V
min; One Bank Active-Precharge; t  
= t  
IH  
RC RAS  
I
I
I
max; t = t min; DQ, DM and DQS inputs  
changing twice per clock cycle; Address and other  
control inputs changing once per clock cycle  
70  
65  
60  
7
DD3N  
DD4R  
DD4W  
CK  
CK  
Operating Current: Burst = 2; Reads; Continuous  
burst; One Bank Active; Address and control  
inputs changing once per clock cycle; CL = 2.5;  
165  
165  
155  
155  
150  
150  
7, 9  
t
= t min; I  
CK  
= 0 mA  
CK  
OUT  
Operating Current: Burst = 2; Write; Continuous  
burst; One Bank Active; Address and control  
inputs changing once per clock cycle; CL = 2.5;  
7
7
t
= t min; DQ, DM and DQS inputs changing  
CK  
CK  
twice per clock cycle  
I
I
Auto Refresh Current: t  
= t min  
RFC  
190  
3
190  
3
170  
3
DD5  
DD6  
RC  
Self Refresh Current: CKE 0.2 V  
Random Read Current: 4 banks active read with  
activate every 20 ns, Auto-Precharge read every  
I
20 ns; Burst = 4; t  
= 3 t ; I = 0 mA; DQ,  
270  
270  
270  
DD7  
RCD  
CK OUT  
DM and DQS inputs changing twice per clock  
cycle; Address changing once per clock cycle  
2001-03-19 6/44  
TC59WM815/07/03BFT-70,-75,-80  
RANDOM READ CURRENT TIMING (I 7)  
DD  
t
= 10 ns  
CK  
t
RC  
CK  
CK  
t
RCD  
READ  
READ  
AP  
READ  
AP  
READ  
AP  
Command ACT  
ACT  
ACT  
ACT  
ACT  
AP  
Bank0  
Address  
Bank3  
Col c  
Bank1  
Row e  
Bank0  
Col d  
Bank2  
Row f  
Bank1  
Col e  
Bank3  
Row g  
Bank2  
Col f  
Bank0  
Row h  
Row d  
DQS  
DQ  
Qa  
Qa  
Qb  
Qb  
Qb  
Qb  
Qc  
Qc  
Qc  
Qc  
Qd  
Qd  
Qd  
Qd  
Qe  
Qe  
PARAMETER  
SYMBOL  
MIN  
MAX  
2
UNITS  
NOTES  
INPUT LEAKAGE CURRENT  
(0 V V V All other pins not under test = 0 V)  
I (L)  
I
2  
µA  
IN  
DDQ  
OUTPUT LEAKAGE CURRENT  
(Output disabled, 0 V V V  
I (L)  
5  
5
µA  
V
O
)
DDQ  
OUT  
OUTPUT HIGH VOLTAGE  
(Under AC test load condition)  
V
V
+ 0.76  
TT  
OH  
OUTPUT LOW VOLTAGE  
(Under AC test load condition)  
V
V
0.76  
TT  
V
OL  
Full Strength  
Half Strength  
OUTPUT MINIMUM SOURCE DC CURRENT  
OUTPUT MINIMUM SINK DC CURRENT  
OUTPUT MINIMUM SOURCE DC CURRENT  
OUTPUT MINIMUM SINK DC CURRENT  
I
15.2  
15.2  
mA  
mA  
mA  
mA  
4, 6  
4, 6  
5
OH (DC)  
I
OL (DC)  
OH (DC)  
I
10.4  
10.4  
I
5
OL (DC)  
2001-03-19 7/44  
TC59WM815/07/03BFT-70,-75,-80  
AC CHARACTERISTICS AND OPERATING CONDITIONS (Notes: 10, 12)  
-70  
-75  
-80  
SYMBOL  
PARAMETER  
UNITS NOTES  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
Active to Ref/Active Command Period  
Ref to Ref/Active Command Period  
Active to Precharge Command Period  
65  
75  
45  
65  
75  
45  
70  
80  
50  
RC  
t
t
RFC  
RAS  
100000  
100000  
100000  
ns  
Active to Read/Write Command Delay  
Time  
t
15  
15  
15  
15  
20  
20  
RCD  
Active to Read with Auto Precharge  
enable  
t
RAP  
CCD  
Read/Write (a) to Read/Write (b)  
Command Period  
t
1
1
1
t
CK  
t
t
t
t
Precharge to Active Command Period  
20  
15  
15  
30  
20  
15  
15  
30  
20  
15  
15  
35  
RP  
Active (a) to Active (b) Command  
Period  
RRD  
WR  
DAL  
Write Recovery Time  
Auto Precharge Write Recovery +  
Precharge time  
ns  
CL = 2  
CLK Cycle Time  
CL = 2.5  
7.5  
7
15  
15  
8
15  
15  
10  
8
15  
15  
t
CK  
7.5  
t
t
Data Access time from CLK, CLK  
0.75  
0.75  
0.75  
0.75  
0.8  
0.8  
AC  
16  
11  
DQS output access time from CLK,  
CLK  
0.75  
0.75  
0.5  
0.75  
0.75  
0.5  
0.8  
0.8  
0.6  
DQSCK  
DQSQ  
Data Strobe Edge to Output Data  
Edge Skew  
t
t
t
CLK High level width  
0.45  
0.45  
min  
0.55  
0.55  
0.45  
0.45  
min  
0.55  
0.55  
0.45  
0.45  
min  
0.55  
0.55  
CH  
CL  
t
CK  
CLK Low level width  
CLK half period (minimum of actual  
t
t
HP  
QH  
t
, t  
CH CL  
)
(t , t  
CL CH  
)
(t , t  
CL CH  
)
(t , t  
CL CH  
)
ns  
t
t
HP  
0.75  
HP  
DQ output data hold time from DQS  
t
1.0  
HP  
0.75  
t
t
t
t
DQS Read Preamble Time  
DQS Read Postamble Time  
DQ and DM Setup Time  
DQ and DM Hold Time  
0.9  
1.1  
0.6  
0.9  
1.1  
0.6  
0.9  
1.1  
0.6  
RPRE  
RPST  
DS  
t
11  
CK  
0.4  
0.4  
0.4  
0.6  
0.6  
0.5  
0.5  
0.5  
0.5  
DH  
ns  
DQ and DM input pulse width (for  
each input)  
t
1.75  
1.75  
2
DIPW  
t
t
t
t
DQS input high pulse width  
0.35  
0.35  
0.2  
0.35  
0.35  
0.2  
0.35  
0.35  
0.2  
DQSH  
DQSL  
DSS  
DQS input low pulse width  
t
11  
CK  
DQS falling edge to CLK setup time  
DQS falling edge hold time from CLK  
0.2  
0.2  
0.2  
DSH  
Clock to DQS Write Preamble Set-Up  
Time  
t
0
0
0
ns  
WPRES  
2001-03-19 8/44  
TC59WM815/07/03BFT-70,-75,-80  
-70  
-75  
-80  
SYMBOL  
PARAMETER  
UNITS NOTES  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
DQS Write Preamble Time  
DQS Write Postamble Time  
0.25  
0.4  
0.25  
0.4  
0.25  
0.4  
WPRE  
WPST  
11  
t
CK  
Write command to first DQS latching  
transition  
t
0.75  
1.25  
0.25  
0.75  
1.25  
0.25  
0.75  
1.25  
0.25  
DQSS  
t
t
t
UDQS-LDQS Skew (x16)  
Input Setup Time  
0.25  
0.9  
0.25  
0.9  
0.25  
1.2  
DSSK  
IS  
Input Hold Time  
0.9  
0.9  
1.2  
IH  
Control & Address input pulse width  
(for each input)  
t
t
2.2  
2.2  
2.5  
IPW  
HZ  
ns  
Data-out High-impedance Time from  
CLK, CLK  
0.75  
0.75  
0.75  
0.75  
0.8  
0.8  
Data-out Low-impedance Time from  
CLK, CLK  
t
t
t
0.75  
0.5  
1
0.75  
1.5  
0.75  
0.5  
1
0.75  
1.5  
0.8  
0.5  
1
0.8  
1.5  
LZ  
SSTL Input Transition  
T (SS)  
WTR  
Internal Write to Read command  
delay  
t
CK  
Exit Self Refresh to non-Read  
comand  
t
75  
10  
75  
10  
80  
10  
ns  
XSNR  
t
t
t
Exit Self Refresh to Read command  
Refresh Time (8K)  
t
CK  
XSRD  
REF  
64  
64  
64  
ms  
Mode Register Set cycle time  
15  
15  
16  
ns  
MRD  
2001-03-19 9/44  
TC59WM815/07/03BFT-70,-75,-80  
AC TEST CONDITIONS  
SYMBOL  
PARAMETER  
Input High voltage (AC)  
VALUE  
UNITS  
NOTES  
V
V
V
V
V
V
V
+ 0.31  
V
V
IH  
REF  
REF  
Input Low voltage (AC)  
0.31  
IL  
Input reference voltage  
0.5 × V  
0.5 × V  
1.0  
V
REF  
TT  
DDQ  
DDQ  
Termination voltage  
V
Input signal peak to peak swing  
Differential Clock Input Reference Voltage  
Input Differential Voltage. CLK and CLK inputs (AC)  
Input signal minimum slew rate  
Output timing measurement reference voltage  
V
SWING  
Vr  
V
V
X (AC)  
V
1.5  
1.0  
V
ID (AC)  
SLEW  
V/ns  
V
V
0.5 × V  
DDQ  
OTR  
V
DDQ  
V
V
IH min (AC)  
REF  
V
SWING (max)  
V
R
TT  
measurement point  
Z = 50 Ω  
V
IL max (AC)  
= 50 Ω  
T
Output  
V
SS  
30 pF  
Output  
T  
SLEW = (V  
T  
V  
)/T  
IL max (AC)  
AC test load  
IH min (AC)  
2001-03-19 10/44  
TC59WM815/07/03BFT-70,-75,-80  
Note:  
(1)  
Conditions outside the limits listed under “ABSOLUTE MAXIMUM RATINGS” may cause permanent  
damage to the device.  
(2)  
(3)  
(4)  
(5)  
(6)  
All voltages are referenced to V , V  
.
SS SSQ  
Peak to peak AC noise on V  
REF  
may not exceed 2% V  
.
REF (DC)  
V
OH  
V
OH  
= 1.95 V, V  
= 0.35 V  
= 0.4 V  
OL  
= 1.9 V, V  
OL  
The values of I  
The values of I  
is based on V  
= 2.3 V and V = 1.19 V.  
TT  
OH (DC)  
OL (DC)  
DDQ  
DDQ  
is based on V  
= 2.3 V and V = 1.11 V.  
TT  
(7)  
(8)  
These parameters depend on the cycle rate and these values are measured at a cycle rate with the  
minimum values of t and t  
.
CK RC  
V
TT  
is not applied directly to the device. V  
is a system supply for signal termination resistors, is  
TT  
expected to be set equal to V  
and must track variations in the DC level of V  
.
REF  
REF  
(9)  
These parameters depend on the output loading. Specified values are obtained with the output open.  
(10)  
Transition times are measured between V  
signals have a fixed slope.  
and V . Transition (rise and fall) of input  
IL max (AC)  
IH min (AC)  
(11)  
If the result of nominal calculation with regard to t  
rounded up to the nearest decimal place.  
contains more than one decimal place, the result is  
CK  
(i.e., t  
DQSS  
= 0.75 × t , t = 7.5 ns, 0.75 × 7.5 ns = 5.625 ns is rounded up to 5.6 ns.)  
CK CK  
(12)  
(13)  
(14)  
(15)  
V
V
V
is the differential clock cross point voltage where input timing measurement is referenced.  
X
is magnitude of the difference between CLK input level and CLK input level.  
ID  
ISO  
means {V  
(CLK) + V  
ICK  
(CLK )}/2.  
ICK  
Refer to the figure below.  
CLK  
V
V
X
X
V
V
V
ID (AC)  
ICK  
ICK  
V
V
V
X
X
X
CLK  
V
V
ICK  
ICK  
V
SS  
V
ID (AC)  
0 V Differential  
V
ISO  
V
(min)  
V
(max)  
ISO  
ISO  
V
SS  
(16)  
t
AC  
and t  
depend on the clock jitter. These timing are measured at stable clock.  
DQSCK  
2001-03-19 11/44  
TC59WM815/07/03BFT-70,-75,-80  
POWER UP SEQUENCE  
(1)  
Apply power and attempt to CKE at a low state (0.2 V).  
(all other inputs may be undefined)  
1)  
2)  
Apply V  
Apply V  
before or at the same time as V  
.
DD  
DDQ  
before or at the same time as V and V .  
REF  
DDQ  
TT  
(2)  
(3)  
(4)  
(5)  
Start Clock and maintain stable condition for 200 µs (min).  
After stable power and clock, apply NOP and take CKE high.  
Issue EMRS-enable DLL and establish Output Driver Type.  
Issue MRS-reset DLL and set device to idle with bit A8.  
(an additional 200 cycles (min) of clock are required for DLL Lock)  
Issue precharge command for all banks of the device.  
Issue two or more Auto Refresh commands.  
(6)  
(7)  
(8)  
Issue MRS-Initialize device operation.  
(If device operation mode is set at sequence 5, sequence 8 can be skipped.)  
EMRS: Extended Mode Register Set  
MRS: Mode Register Set  
2001-03-19 12/44  
TC59WM815/07/03BFT-70,-75,-80  
TIMING DIAGRAMS  
Command Input Timing  
t
CK  
t
t
t
CL  
CK  
CH  
CLK  
CLK  
t
t
t
t
t
t
t
t
t
t
IS  
IS  
IS  
IS  
IS  
IH  
IH  
IH  
IH  
IH  
CS  
RAS  
CAS  
WE  
A0~A12  
BS0, 1  
Refer to the Command Truth Table.  
Timing of the CLK, /CLK  
t
t
CL  
CH  
/CLK  
CLK  
V
IH  
V
V
V
IH (AC)  
IL (AC)  
IL  
t
t
T
T
t
CK  
/CLK  
CLK  
V
V
IH  
IL  
V
V
V
X
X
X
2001-03-19 13/44  
TC59WM815/07/03BFT-70,-75,-80  
Read Timing (Burst Length = 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
t
IH  
IS  
CMD  
READ  
t
IS  
IH  
ADD  
Col  
t
t
DQSCK  
DQSCK  
t
t
RPST  
DQSCK  
t
RPRE  
CAS latency = 2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQS  
Preamble  
t
Postamble  
QH  
t
t
t
t
DQSQ  
QH  
DQSQ  
DQSQ  
Output  
(Data)  
QA0  
QA1  
QA2  
QA3  
t
AC  
t
t
HZ  
DQSCK  
t
t
DQSCK  
LZ  
t
DQSCK  
CAS latency = 2.5  
t
t
RPST  
RPRE  
DQS  
Preamble  
t
Postamble  
t
DQSQ  
QH  
t
t
t
QH  
DQSQ  
QA1  
DQSQ  
Output  
(Data)  
QA0  
QA2  
QA3  
t
AC  
t
t
HZ  
LZ  
Note: The correspondence of LDQS, UDQS to DQ. (TC59WM815BFT)  
LDQS  
UDQS  
DQ0~7  
DQ8~15  
2001-03-19 14/44  
TC59WM815/07/03BFT-70,-75,-80  
Write Timing (Burst Length = 4)  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
t
t
t
IH  
IS  
CMD  
WRIT  
t
t
t
t
t
DSS  
IS  
IH  
DSH  
DSS  
DSH  
ADD  
Col  
t
t
t
t
t
WPST  
WPRES  
DQSH  
DQSL  
DQSH  
x4, x8 device  
DQS  
t
WPRE  
Preamble  
Postamble  
t
t
t
DS  
DS  
DS  
t
t
DH  
DH  
t
DH  
Input  
(Data)  
DA0  
DA1  
DA2  
DA3  
t
t
t
t
DSS  
DSH  
DSS  
DSH  
t
DQSS  
t
t
t
t
t
WPST  
WPRES  
DQSH  
DQSL  
DQSH  
x16 device  
LDQS  
t
WPRE  
Preamble  
Postamble  
t
t
t
DS  
DS  
DS  
t
t
DH  
DH  
t
DH  
DQ0~7  
DA0  
DA1  
DA2  
DA3  
t
DQSS  
t
t
t
DSSK  
DSSK  
DSSK  
t
DSSK  
t
t
t
t
DSH  
DQSH  
DSS  
DSH  
DSS  
t
WPST  
t
WPRE  
t
t
t
t
WPRES  
DQSL  
DQSH  
UDQS  
Preamble  
DA0  
t
t
DS  
DS  
Postamble  
t
DS  
t
t
t
DH  
DH  
DH  
DQ8~15  
DA1  
DA2  
DA3  
t
DQSS  
Note: x16 has 2DQSs (UDQS for uper byte and LDQS for lower byte). Even if one of the  
2 bytes is not used, both UDQS and LDQS must be toggled.  
2001-03-19 15/44  
TC59WM815/07/03BFT-70,-75,-80  
DM, DATA MASK (TC59WM807/M803BFT)  
CLK  
/CLK  
CMD  
WRIT  
DQS  
DM  
t
t
t
t
DH  
DS  
DS DH  
t
DIPW  
D3  
DQ  
D0  
D1  
t
Masked  
DIPW  
DM, DATA MASK (TC59WM815BFT)  
CLK  
/CLK  
CMD  
WRIT  
LDQS  
LDM  
t
t
t
t
DS  
DS DH  
DH  
t
DIPW  
DQ0~  
DQ7  
D0  
D1  
D3  
t
Masked  
DIPW  
UDQS  
UDM  
t
t
t
t
DH  
DS  
DS DH  
t
DIPW  
DQ8~  
DQ15  
D0  
D2  
D3  
Masked  
t
DIPW  
2001-03-19 16/44  
TC59WM815/07/03BFT-70,-75,-80  
Mode Register Set (MRS) Timing  
CLK  
/CLK  
t
MRD  
CMD  
ADD  
MRS  
NEXT CMD  
Register Set data  
Burst Length  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A2  
0
A1  
0
A0  
0
Sequential  
Interleaved  
Burst Length  
Addressing Mode  
CAS Latency  
Reserved  
Reserved  
0
0
1
2
4
8
2
4
8
0
1
0
0
1
1
1
0
0
1
0
1
Reserved  
Reserved  
1
1
0
1
1
1
A3  
Addressing Mode  
0
1
Sequential  
Interleaved  
0”  
Reserved  
DLL Reset  
A6  
A5  
A4  
CAS Latency  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0”  
A10 0”  
A11 0”  
A12 0”  
BS0 0”  
BS1 0”  
Reserved  
Reserved  
2.5  
Reserved  
Mode Register Set  
or Extended Mode  
Register Set  
A8  
DLL Reset  
0
1
No  
Yes  
Reservedshould stay 0during  
MRS cycle.  
BS1  
BS0  
MRS or EMRS  
0
0
1
1
0
1
0
1
Regular MRS cycle  
Extended MRS cycle  
Reserved  
2001-03-19 17/44  
TC59WM815/07/03BFT-70,-75,-80  
Extended Mode Register Set (EMRS) Timing  
CLK  
/CLK  
t
MRD  
CMD  
ADD  
EMRS  
NEXT CMD  
Register Set data  
A0  
DLL Switch  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
DLL Switch  
0
1
Enable  
Disable  
Output Driver  
0”  
0”  
0”  
0”  
0”  
0”  
0”  
0”  
A1  
Output Driver Size  
0
1
Full Strength  
Half Strength  
BS1  
BS0  
MRS or EMRS  
Reserved  
0
0
1
1
0
1
0
1
Regular MRS cycle  
Extended MRS cycle  
Reserved  
A10 0”  
A11 0”  
A12 0”  
BS0 1”  
BS1 0”  
Mode Register  
Set or Extended  
Mode Register  
Set  
Reservedshould stay 0during EMRS cycle.  
2001-03-19 18/44  
TC59WM815/07/03BFT-70,-75,-80  
Auto Precharge Timing (Read cycle, CL = 2)  
1).  
t
(READA) t (min) (BL/2) × t  
RAS CK  
RCD  
t
t
RP  
RAS  
CLK  
/CLK  
BL = 2  
CMD  
ACT  
READA  
AP  
ACT  
DQS  
DQ  
Q0 Q1  
BL = 4  
CMD  
DQS  
DQ  
ACT  
READA  
AP  
ACT  
Q0 Q1 Q2 Q3  
BL = 8  
CMD  
DQS  
DQ  
ACT  
READA  
AP  
ACT  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
Note: CL2 shown; same command operation timing with CL = 2.5  
In this case, the internal precharge operation begin after BL/2 cycle from READA command.  
represents the start of internal precharging.  
AP  
The Read with Auto precharge command cannot be interrupted by any other command.  
2001-03-19 19/44  
TC59WM815/07/03BFT-70,-75,-80  
2).  
t
(min) t  
RCD  
(READA) < t (min) (BL/2) × t  
RAS CK  
RCD/RAP  
t
t
RP  
RAS  
CLK  
/CLK  
BL = 2  
CMD  
ACT  
READA  
AP  
ACT  
ACT  
ACT  
t
RAP  
t
RCD  
DQS  
DQ  
Q0 Q1  
BL = 4  
CMD  
ACT  
READA  
AP  
t
RAP  
t
RCD  
DQS  
DQ  
Q0 Q1 Q2 Q3  
BL = 8  
CMD  
ACT  
READA  
AP  
t
RAP  
t
RCD  
DQS  
DQ  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
Note: CL2 shown; same command operation timing with CL = 2.5  
In this case, the internal precharge operation does not begin until after t  
(min) has command.  
RAS  
represents the start of internal precharging.  
AP  
The Read with Auto Precharge command cannot be interrupted by any other command.  
2001-03-19 20/44  
TC59WM815/07/03BFT-70,-75,-80  
Auto Precharge Timing (Write cycle)  
CLK  
/CLK  
t
DAL  
BL = 2  
WRITA  
WRITA  
WRITA  
AP  
ACT  
CMD  
DQS  
DQ  
D0 D1  
t
DAL  
BL = 4  
CMD  
DQS  
DQ  
AP  
ACT  
D0 D1 D2 D3  
t
DAL  
BL = 8  
CMD  
DQS  
DQ  
AP  
ACT  
D0 D1 D2 D3 D4 D5 D6 D7  
The Write with Auto Precharge command cannot be interrupted by any other command.  
AP represents the start of internal precharg.  
2001-03-19 21/44  
TC59WM815/07/03BFT-70,-75,-80  
Read Interrupted by Read (CL = 2, BL = 2, 4, 8)  
CLK  
/CLK  
CMD  
ADD  
DQS  
DQ  
ACT  
READ A  
READ B  
READ C  
READ D  
READ E  
t
t
t
t
t
CCD  
RCD  
CCD  
CCD  
CCD  
Row Address  
Col. Add. A  
Col. Add. B  
Col. Add. C  
Col. Add. D  
Col. Add. E  
QA0  
QA1  
QB0  
QB1  
QC0  
Burst Read Stop (BL = 8)  
CLK  
/CLK  
CMD  
READ  
BST  
CAS Latency = 2  
DQS  
CAS Latency  
Q0 Q1 Q2 Q3 Q4 Q5  
DQ  
CAS Latency = 2.5  
DQS  
CAS Latency  
Q0 Q1 Q2 Q3 Q4 Q5  
DQ  
2001-03-19 22/44  
TC59WM815/07/03BFT-70,-75,-80  
Read Interrupted by Write & BST (BL = 8)  
CLK  
/CLK  
CAS Latency = 2  
CMD  
DQS  
DQ  
READ  
BST  
WRIT  
Q0 Q1 Q2 Q3 Q4 Q5  
D0 D1 D2 D3 D4 D5 D6 D7  
CAS Latency = 2.5  
CMD  
DQS  
DQ  
READ  
BST  
WRIT  
Q0 Q1 Q2 Q3 Q4 Q5  
D0 D1 D2 D3 D4 D5 D6 D7  
Burst Read cycle must be terminated by BST Command to avoid I/O conflict.  
Read Interrupted by Precharge (BL = 8)  
CLK  
/CLK  
CMD  
READ  
PRE  
CAS Latency = 2  
DQS  
CAS Latency  
DQ  
Q0 Q1 Q2 Q3 Q4 Q5  
CAS Latency = 2.5  
DQS  
CAS Latency  
DQ  
Q0 Q1 Q2 Q3 Q4 Q5  
2001-03-19 23/44  
TC59WM815/07/03BFT-70,-75,-80  
Write Interrupted by Write (BL = 2, 4, 8)  
CLK  
/CLK  
CMD  
ADD  
DQS  
DQ  
ACT  
WRIT A  
WRIT B  
WRIT C  
WRIT D  
WRIT E  
t
t
t
t
CCD  
RCD  
CCD  
CCD  
Row Address  
Col. Add. A Col. Add. B Col. Add. C Col. Add. D Col. Add. E  
DA0 DA1 DB0 DB1 DC0 DC1 DD0 DD1  
Write Interrupted by Read (CL = 2, BL = 8)  
CLK  
/CLK  
CMD  
DQS  
DM  
WRIT  
READ  
t
WTR  
DQ  
D0 D1 D2 D3 D4 D5 D6 D7  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
Data must be  
masked by DM.  
Data Masked by READ Command,  
DQS input ignored.  
2001-03-19 24/44  
TC59WM815/07/03BFT-70,-75,-80  
Write Interrupted by Read (CL = 2.5, BL = 4)  
CLK  
/CLK  
CMD  
DQS  
DM  
WRIT  
READ  
t
WTR  
DQ  
D0 D1 D2 D3  
Q0 Q1 Q2 Q3  
Data must be masked by DM.  
Write Interrupted by Precharge (BL = 8)  
CLK  
/CLK  
CMD  
DQS  
DM  
WRIT  
PRE  
ACT  
t
t
PR  
WR  
DQ  
D0 D1 D2 D3 D4 D5 D6 D7  
Data must be  
masked by DM.  
Data masked by PRE command,  
DQS input ignored.  
2001-03-19 25/44  
TC59WM815/07/03BFT-70,-75,-80  
2 Bank Interleave Read Operation (CL = 2, BL = 2) t = 100 MHz  
CK  
CLK  
/CLK  
t
RC (b)  
t
RC (a)  
t
t
RRD  
RRD  
CMD  
DQS  
DQ  
ACTa  
ACTb  
READAa  
READAb  
ACTa  
ACTb  
t
RCD (a)  
t
t
RP (a)  
RAS (a)  
t
RCD (b)  
t
t
RP (b)  
RAS (b)  
Preamble Postamble Preamble  
Postamble  
CL (a)  
CL (b)  
Q0a Q1a  
Q0b Q1b  
ACTa/b : Bank Act. CMD of bank a/b  
READAa/b: Read with Auto Pre. CMD of bank a/b  
APa/b : Auto Pre. of bank a/b  
APa  
APb  
2 Bank Interleave Read Operation (CL = 2, BL = 4)  
CLK  
/CLK  
t
RC (b)  
t
RC (a)  
t
t
RRD  
RRD  
CMD  
DQS  
DQ  
ACTa  
ACTb  
READAa  
READAb  
ACTa  
ACTb  
t
RCD (a)  
t
t
RP (a)  
RAS (a)  
t
RCD (b)  
t
t
RP (b)  
RAS (b)  
Preamble  
Postamble  
CL (a)  
CL (b)  
Q0a Q1a Q2a Q3a Q0b Q1b Q2b Q3b  
ACTa/b  
: Bank Act. CMD of bank a/b  
READAa/b: Read with Auto Pre. CMD of bank a/b  
APa/b : Auto Pre. of bank a/b  
APa  
APb  
2001-03-19 26/44  
TC59WM815/07/03BFT-70,-75,-80  
4 Bank Interleave Read Operation (CL = 2, BL = 2)  
CLK  
/CLK  
t
RC (a)  
t
t
t
t
RRD  
RRD  
RRD  
RRD  
CMD  
ACTa  
ACTb  
ACTc  
READAa  
ACTd  
READAb  
ACTa  
READAc  
t
RCD (a)  
t
t
RP  
RAS (a)  
t
RCD (b)  
t
RAS (b)  
t
RCD (c)  
t
RAS (c)  
t
RCD (d)  
t
RAS (d)  
DQS  
DQ  
Preamble Postamble Preamble  
CL (a) CL (b)  
Q0a Q1a  
Q0b Q1b  
ACTa/b/c/d : Bank Act. CMD of bank a/b/c/d  
READAa/b/c/d: Read with Auto Pre. CMD of bank a/b/c/d  
APa/b/c/d : Auto Pre. of bank a/b/c/d  
APa  
APb  
4 Bank Interleave Read Operation (CL = 2, BL = 4)  
CLK  
/CLK  
t
RC (a)  
t
t
t
t
RRD  
RRD  
RRD  
RRD  
CMD  
ACTa  
ACTb  
READAa  
ACTc  
READAb  
ACTd  
READAc  
ACTa  
READAd  
t
RCD (a)  
t
t
RP (a)  
RAS (a)  
t
RCD (b)  
t
RAS (b)  
t
RCD (c)  
t
RAS (c)  
t
RCD (d)  
t
RAS (d)  
DQS  
DQ  
Preamble  
CL (a)  
CL (b)  
CL (c)  
Q0a Q1a Q2a Q3a Q0b Q1b Q2b Q3b Q0c Q1c  
ACTa/b/c/d : Bank Act. CMD of bank a/b/c/d  
READAa/b/c/d: Read with Auto Pre. CMD of bank a/b/c/d  
APa/b/c/d : Auto Pre. of bank a/b/c/d  
APa  
APb  
APc  
2001-03-19 27/44  
TC59WM815/07/03BFT-70,-75,-80  
Auto Refresh cycle  
CLK  
/CLK  
CKE  
CMD  
PREA  
NOP  
AREF  
NOP  
AREF  
NOP  
CMD  
t
t
t
RFC  
RP  
RFC  
CKE has to be kept Highlevel for Auto-Refresh cycle.  
Active Power Down Mode Entry and Exit Timing  
CLK  
/CLK  
t
t
t
t
t
IS  
IH  
IS  
CK  
IH  
CKE  
CMD  
Entry  
NOP  
Exit  
NOP  
NOP  
CMD  
NOP  
Precharged Power Down Mode Entry and Exit Timing  
CLK  
/CLK  
t
t
t
t
t
IS  
IH  
IS  
CK  
IH  
CKE  
CMD  
Entry  
NOP  
Exit  
NOP  
NOP  
CMD  
NOP  
2001-03-19 28/44  
TC59WM815/07/03BFT-70,-75,-80  
Self Refresh Entry and Exit Timing  
/CLK  
CLK  
t
CK  
t
t
t
t
IS  
IH  
IS  
IH  
CKE  
CMD  
PREA  
NOP  
SELF  
SELEX  
NOP  
CMD  
t
RP  
Entry  
Exit  
CLK  
/CLK  
t
XSNR  
t
XSRD  
CKE  
CMD  
SELF  
Entry  
SELEX  
NOP  
ACT  
NOP  
READNOP  
Exit  
2001-03-19 29/44  
TC59WM815/07/03BFT-70,-75,-80  
PIN FUNCTIONS  
CLOCK INPUTS: CLK &  
CLK  
The CLK & CLK inputs are used as the reference for SDRAM operation. All inputs reference to the positive  
edges of CLK (except for DQ, DM, and CKE).  
The timing reference point for the differential clock is when the CLK and CLK signals cross during a  
transition.  
CLOCK ENABLE: CKE  
The CKE input controls the entry to the Power Down or Self Refresh modes.  
BANK SELECTS: BS0, BS1  
The BS0, BS1 inputs are latched at the time of assertion of the operation commands and selects the bank to  
be used for the operation.  
BS0  
BS1  
0
1
0
1
0
0
1
1
Bank#0  
Bank#1  
Bank#2  
Bank#3  
ADDRESS INPUTS: A0~A12  
The A0~A12 inputs are address to access the memory cell array. The row address bits are latched at the Bank  
Active command and column address bits are latched on the Read or Write command. Also, the A0~A12 inputs  
are used to set the data in the Mode register in a Mode Register Set Cycle.  
Row Address  
Column Address  
TC59WM803BFT  
TC59WM807BFT  
TC59WM815BFT  
A0~A12  
A0~A12  
A0~A12  
A0~A9, A11 (A10 is used for auto precharge) (A12: Dont care)  
A0~A9 (A10 is used for auto precharge) (A11~A12: Dont care)  
A0~A8 (A10 is used for auto precharge) (A9, A11~A12: Dont care)  
CS  
CHIP SELECT:  
When CS is asserted “low”, it controls the latching of commands. No commands are latched as long as CS  
in held “high”.  
RAS  
ROW ADDRESS STROBE:  
The RAS input defines the operation commands in conjunction with the CAS and WE inputs, and is  
latched at the cross points of CLK rising edge and CLK falling edge.  
CAS  
COLUMN ADDRESS STROBE:  
The CAS input defines the operation commands in conjunction with the RAS and WE inputs, and is  
latched at the cross points of CLK rising edge and CLK falling edge.  
WRITE ENABLE:  
WE  
The WE input defines the operation commands in conjunction with the RAS and CAS inputs, and is  
latched at the cross points of CLK rising edge and CLK falling edge.  
2001-03-19 30/44  
TC59WM815/07/03BFT-70,-75,-80  
WRITE MASK: DM or LDM, UDM  
When DM is asserted “high” in burst write, the input data is masked. DM is synchronized with both edges of  
DQS. The LDM input can mask DQ0~DQ7 in a Write cycle and the UDM can mask DQ8~DQ15 in a Write cycle.  
DATA INPUT/OUTPUT: DQ0~DQ15  
The DQ0~DQ15 input and output data are synchronized with both edges of DQS or UDQS, LDQS.  
REFERENCE VOLTAGE: V  
REF  
V
REF  
is Reference voltage for inputs.  
DATA STROBE: DQS or UDQS, LDQS  
Both edges of DQS are used as the reference of data input/output.  
DQS is Bi-directional signal. DQS is input signal in write operation and output signal in read operation.  
POWER SUPPLY: V , V  
DD DDQ  
V
DD  
are power supply and V are DQ power supply.  
DDQ  
GROUND: V , V  
SS  
SSQ  
V
SS  
are ground and V  
are DQ ground.  
SSQ  
2001-03-19 31/44  
TC59WM815/07/03BFT-70,-75,-80  
Operation Mode  
The following table shows the operation commands.  
Simplified Truth Table (Note (1) and (2))  
A12,  
A10 A11,  
A9~A0  
BS0,  
BS1  
(4)  
Symbol  
Command  
Device State CKE  
(3)  
CKE DM  
CS  
RAS  
CAS  
WE  
n-1  
n
ACT  
Bank Active  
Idle  
H
H
H
H
X
X
X
X
X
V
V
X
V
V
L
V
X
X
V
L
L
L
L
L
L
H
H
H
L
H
L
L
L
(3)  
PRE  
Bank Precharge  
Precharge All  
Write  
Any  
X
X
X
PREA  
WRIT  
Any  
H
L
L
(3)  
(3)  
(3)  
(3)  
Active  
Active  
Active  
Active  
Idle  
H
Write with Auto  
Precharge  
WRITA  
READ  
READA  
MRS  
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
V
V
H
L
V
V
V
V
V
L
L
L
L
L
H
H
H
L
L
L
L
L
L
L
H
H
L
Read  
Read with Auto  
Precharge  
V
H
V
V
Mode Register Set  
L, L  
H, L  
Extended Mode  
Register Set  
EMRS  
Idle  
L
L
NOP  
BST  
No Operation  
Any  
H
H
H
H
H
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
H
H
X
L
H
H
X
L
H
L
Burst Read Stop  
Device Deselect  
Auto Refresh  
Active  
Any  
DSL  
H
L
X
H
H
X
AREF  
SELF  
Idle  
Self Refresh Entry  
Idle  
L
L
L
Idle  
(Self  
Refresh)  
H
X
X
SELEX  
PD  
Self Refresh Exit  
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
H
X
H
X
H
X
H
X
X
X
X
X
(5)  
Power down mode entry Idle/Active  
Any  
(Power  
Down)  
H
PDEX  
Power down mode exit  
H
L
X
X
H
X
X
H
X
X
X
X
X
WDE  
WDD  
Data write enable  
Data write disable  
Active  
Active  
H
H
X
X
L
X
X
X
X
X
X
H
Note: 1. V = Valid X = Dont Care L = Low level H = High level  
2. CKE signal is input level when commands are issued.  
n
CKE signal is input level one clock cycle before the commands are issued.  
n-1  
3. These are state designated by the BS0, BS1 signals.  
4. LDM, UDM (TC59WM815BFT)  
5. Power Down Mode can not entry in the burst cycle.  
2001-03-19 32/44  
TC59WM815/07/03BFT-70,-75,-80  
Function Truth Table (Note 1)  
Current State CS RAS  
CAS WE  
Address  
Command  
DSL  
NOP/BST  
Action  
Notes  
Idle  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
H
H
H
L
X
H
L
X
X
H
L
X
X
Nop  
Nop  
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
ILLEGAL  
Row activating  
Nop  
3
3
L
H
H
L
H
L
BS, RA  
ACT  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
L
H
L
X
Refresh or Self refresh  
Mode register accessing  
Nop  
2
2
L
L
Op-Code  
Row active  
X
H
H
H
L
X
H
L
X
X
H
L
X
X
NOP/BST  
Nop  
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
Begin read: Determine AP  
Begin write: Determine AP  
ILLEGAL  
4
4
3
5
L
H
H
L
H
L
BS, RA  
ACT  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
Precharge  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Read  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Continue burst to end  
Continue burst to end  
Burst stop  
NOP  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
Term burst, new read: Determine AP  
ILLEGAL  
6
3
L
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
Term burst, precharging  
ILLEGAL  
L
H
L
X
L
L
Op-Code  
ILLEGAL  
Write  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
Term burst, start read: Determine AP  
Term burst, new write: Determine AP  
ILLEGAL  
6, 7  
6
L
H
H
L
H
L
BS, RA  
BS, A10  
X
ACT  
3
L
PRE/PREA  
AREF/SELF  
MRS/EMRS  
Term burst. precharging  
ILLEGAL  
8
L
H
L
L
L
Op-Code  
ILLEGAL  
2001-03-19 33/44  
TC59WM815/07/03BFT-70,-75,-80  
Current State CS RAS  
CAS WE  
Address  
Command  
DSL  
Action  
Notes  
Read with auto  
precharge  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
L
ILLEGAL  
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
3
3
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Write with auto  
precharge  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Continue burst to end  
Continue burst to end  
ILLEGAL  
NOP  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
L
ILLEGAL  
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
3
3
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Precharging  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Nop Idle after t  
Nop Idle after t  
ILLEGAL  
RP  
RP  
NOP  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
3
3
3
L
ILLEGAL  
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
Nop Idle after t  
ILLEGAL  
RP  
L
H
L
X
L
L
Op-Code  
ILLEGAL  
Row activating  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Nop Row active after t  
Nop Row active after t  
ILLEGAL  
RCD  
NOP  
RCD  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
3
3
3
3
L
ILLEGAL  
H
H
L
H
L
BS, RA  
BS, A10  
X
ACT  
ILLEGAL  
L
PRE/PREA  
AREF/SELF  
MRS/EMRS  
ILLEGAL  
L
H
L
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
2001-03-19 34/44  
TC59WM815/07/03BFT-70,-75,-80  
Current State CS RAS  
CAS WE  
Address  
Command  
DSL  
Action  
Notes  
Write  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Nop Row active after t  
Nop Row active after t  
ILLEGAL  
WR  
recovering  
NOP  
BST  
WR  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
3
3
3
3
L
ILLEGAL  
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Write  
recovering with  
auto precharge  
X
H
H
H
H
L
X
H
H
L
X
H
L
X
X
X
Nop Enter precharge after t  
Nop Enter precharge after t  
ILLEGAL  
WR  
NOP  
WR  
BST  
H
L
BS, CA, A10 READ/READA  
BS, CA, A10 WRIT/WRITA  
ILLEGAL  
3
3
3
3
L
ILLEGAL  
H
H
L
H
L
BS, RA  
ACT  
ILLEGAL  
L
BS, A10  
PRE/PREA  
AREF/SELF  
MRS/EMRS  
DSL  
ILLEGAL  
L
H
L
X
ILLEGAL  
L
L
Op-Code  
ILLEGAL  
Refreshing  
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
X
Nop Idle after t  
Nop Idle after t  
ILLEGAL  
RFC  
RFC  
NOP  
BST  
X
X
READ/WRIT  
ACT/PRE/PREA  
ILLEGAL  
H
ILLEGAL  
AREF/SELF/MRS/  
EMRS  
L
L
L
X
X
ILLEGAL  
Mode register  
accessing  
H
L
L
L
X
H
H
H
X
H
H
L
X
H
L
X
X
X
X
DSL  
Nop Idle after t  
Nop Idle after t  
ILLEGAL  
MRD  
MRD  
NOP  
BST  
X
READ/WRIT  
ACT/PRE/PREA/  
ILLEGAL  
L
L
X
X
X
AREF/SELF/MRS/ ILLEGAL  
EMRS  
Note: 1. All entries assume that CKE was active (High level) during the preceding clock cycle and the current clock cycle.  
2. Illegal if any bank is not idle.  
3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BS), depending on the  
state of that bank.  
4. Illegal if t  
5. Illegal if t  
is not satisfied.  
is not satisfied.  
RCD  
RAS  
6. Must satisfy burst interrupt condition.  
7. Must avoid bus contention, bus turn around, and/or satisfy write recovery requirements.  
8. Must mask preceding data which dont satisfy t  
.
WR  
Remark: H = High level, L = Low level, X = High or Low level (Dont care), V = Valid data  
2001-03-19 35/44  
TC59WM815/07/03BFT-70,-75,-80  
Function Truth Table for CKE  
CKE  
Current State  
CS  
RAS  
CAS  
WE  
Address  
Action  
Notes  
n-1  
H
L
n
X
Self refresh  
X
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
H
H
H
H
L
Exit Self Refresh Idle after t  
Exit Self Refresh Idle after t  
ILLEGAL  
XSNR  
XSNR  
L
L
L
L
L
X
X
X
X
H
X
X
X
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
X
X
X
H
L
Maintain Self Refresh  
INVALID  
Power Down  
All banks idle  
H
×
L
H
Exit Power Down Idle after 1 clock cycle  
L
L
H
L
L
L
L
L
X
H
L
L
L
L
L
X
X
X
H
L
Maintain power down mode  
Refer to Function Truth Table  
Enter Power down  
Enter Power down  
Self Refresh  
H
H
H
H
H
H
L
2
2
1
L
L
H
L
L
ILLEGAL  
L
X
X
X
X
H
L
ILLEGAL  
X
X
H
L
X
X
X
H
L
Power down  
2
Row Active  
H
H
H
H
H
H
L
Refer to Function Truth Table  
Enter Power down  
Enter Power down  
ILLEGAL  
2
2
L
L
H
L
L
ILLEGAL  
L
X
X
ILLEGAL  
X
X
Power down  
Any state other  
than listed  
above  
H
H
X
X
X
X
X
Refer to Function Truth Table  
Note: 1. Self refresh can enter only from the all banks idle state.  
2. Power down can enter only from bank idle or row active state.  
Remark: H = High level, L = Low level, X = High or Low level (Dont care), V = Valid data  
2001-03-19 36/44  
TC59WM815/07/03BFT-70,-75,-80  
SIMPLIFIED STATE DIAGRAM  
SELF  
REFRESH  
SELF  
SELEX  
AREF  
MRS/EMR  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
ACT  
PD  
PDEX  
POWER  
DOWN  
POWER  
DOWN  
PD  
PDEX  
WRIT  
ROW  
ACTIVE  
BST  
READ  
READ  
WRITE  
READ  
WRITA  
READA  
WRITA  
READA  
READA  
PRE  
PRE  
WRITEA  
READA  
PRE  
POWER  
APPLIED  
POWER  
ON  
PRE  
CHARGE  
PRE  
Automatic Sequence  
Command Sequence  
2001-03-19 37/44  
TC59WM815/07/03BFT-70,-75,-80  
1. Command Function  
1-1  
Bank Activate command  
( RAS = L, CAS = H, WE = H, BS0, BS1 = Bank, A0~A12 = Row Address)  
The Bank Activate command activates the bank designated by the BS (Bank Address) signal.  
Row addresses are latched on A0~A12 when this command is issued and the cell data is read out of the  
sense amplifiers. The maximum time that each bank can be held in the active state is specified as t  
(max). After this command is issued, Read or Write operation can be executed.  
RAS  
1-2  
1-3  
1-4  
Bank Precharge command  
( RAS = L, CAS = H, WE = L, BS0, BS1 = Bank, A10 = L, A0~A9, A11, A12 = Don’t care)  
The Bank Precharge command precharges the bank designated by BS. The precharged bank is  
switched from the active state to the idle state.  
Precharge All command  
( RAS = L, CAS = H, WE = L, BS0, BS1 = Don’t care, A10 = H, A0~A9, A11, A12 = Don’t care)  
The Precharge All command precharges all banks simultaneously. Then all banks are switched to the  
idle state.  
Write command  
( RAS = H, CAS = L, WE = L, BS0, BS1 = Bank, A10 = L, A0~A9, A11 = Column Address)  
The Write command performs a Write operation to the bank designated by BS. The write data are  
latched at both edges of DQS. The length of the write data (Burst Length) and column access sequence  
(Addressing Mode) must be in the Mode Register at power-up prior to the Write operation.  
1-5  
1-6  
Write with Auto Precharge command  
( RAS = H, CAS = L, WE = L, BS0, BS1 = Bank, A10 = H, A0~A9, A11 = Column Address)  
The Write with Auto Precharge command performs the Precharge operation automatically after the  
Write operation. This command must not be interrupted by any other commands.  
Read command  
( RAS = H, CAS = L, WE = H, BS0, BS1 = Bank, A10 = L, A0~A9, A11 = Column Address)  
The Read command performs a Read operation to the bank designated by BS. The read data are  
synchronized with both edges of DQS. The length of read data (Burst Length), Addressing Mode and  
CAS Latency (access time from CAS command in a clock cycle) must be programmed in the Mode  
Register at power-up prior to the Read operation.  
1-7  
Read with Auto Precharge command  
( RAS = H, CAS = L, WE = H, BS0, BS1 = Bank, A10 = H, A0~A9, A11 = Column Address)  
The Read with Auto Precharge command automatically performs the Precharge operation after the  
Read operation.  
1) READA t  
RAS  
(min) (BL/2) × t  
CK  
Internal precharge operation begin after BL/2 cycle from Read with Auto Precharge command.  
2) t (min) READA < t (min) (BL/2) × t  
RCD RAS CK  
Data can be read with shortest latency, but the internal precharge operation does not begin until  
after t  
RAS  
(min) has completed.  
This command muest not be interrupted by any other command.  
1-8  
Mode Register Set command  
( RAS = L, CAS = L, WE = L, BS0 = L, BS1 = L, A0~A12 = Register Data)  
The Mode Register Set command programs the values of CAS latency, Addressing Mode, Burst  
Length and DLL reset in the Mode Register. The default values in the Mode Register after power-up are  
undefined, therefore this command must be issued during the power-up sequence. Also, this command  
can be issued while all banks are in the idle state. Refer to the table for specific codes.  
2001-03-19 38/44  
TC59WM815/07/03BFT-70,-75,-80  
1-9  
Extended Mode Register Set command  
( RAS = L, CAS = L, WE = L, BS0 = H, BS1 = L, A0~A12 = Register Data)  
The Extended Mode Register Set command can be implemented as needed for function extensions to  
the standard (SDR-SDRAM). Currently the available mode in EMRS are DLL enable/disable and Output  
Driver Size Control. The default value of the extended mode register is not defined, therefore this  
command must be issued during the power-up sequence. Refer to the table for specific codes.  
1-10 No-Operation command  
( RAS = H, CAS = H, WE = H)  
The No-Operation command simply performs no operation (same command as Device Deselect).  
1-11 Burst Read stop command  
( RAS = H, CAS = H, WE = L)  
The Burst stop command is used to stop the burst operation. This command is only valid during a  
Burst Read operation.  
1-12 Device Deselect command  
(CS = H)  
The Device Deselect command disables the command decoder so that the RAS , CAS , WE and  
Address inputs are ignored. This command is similar to the No-Operation command.  
1-13 Auto Refresh command  
( RAS = L, CAS = L, WE = H, CKE = H, BS0, BS1, A0~A12 = Don’t care)  
The Auto Refresh command is used to refresh the row address provided by the internal refresh counter.  
The Refresh operation must be performed 8192 times within 64 ms. The next command can be issued  
after t  
from the end of the Auto Refresh command. When the Auto Refresh command is issued, all  
RFC  
banks must be in the idle state.  
1-14 Self Refresh Entry command  
( RAS = L, CAS = L, WE = H, CKE = L, BS0, BS1, A0~A12 = Don’t care)  
The Self Refresh Entry command is used to enter Self Refresh mode. While the device is in Self Refresh  
mode, all input and output buffers (except the CKE buffer) are disabled and the Refresh operation is  
automatically performed. Self Refresh mode is exited by taking CKE “high” (the Self Refresh Exit  
command). During Self Refresh, DLL is disabled.  
1-15 Self Refresh Exit command  
(CKE = H, CS = H or CKE = H, RAS = H, CAS = H)  
This command is used to exit from Self Refresh mode. Any subsequent commands can be issued after  
t
(t for Read Command) from the end of this command.  
XSNR XSRD  
1-16 Data Write Enable/Disable command  
(DM = L/H or LDM, UDM = L/H)  
During a Write cycle, the DM or LDM, UDM signal functions as Data Mask and can control every word  
of the input data. The LDM signal controls DQ0~DQ7 and UDM signal controls DQ8~DQ15.  
2. Read Operation  
Issuing the Bank Activate command to the idle bank puts it into the active state. When the Read command is  
issued after t  
RCD  
from the Bank Activate command, the data is read out sequentially, synchronized with both  
edges of DQS (Burst Read operation). The initial read data becomes available after CAS latency from the  
issuing of the Read command. The CAS latency must be set in the Mode Register at power-up. In addition, the  
burst length of read data and Addressing Mode must be set in the Mode Register at power-up.  
When the Precharge Operation is performed on a bank during a Burst read operation, the Burst operation is  
terminated.  
When the Read with Auto Precharge command is issued, the Prechage operation is performed automatically  
after the Read cycle, then the bank is switched to the idle state. This command cannot be interrupted by any  
other commands. Refer to the diagrams for Read operation.  
2001-03-19 39/44  
TC59WM815/07/03BFT-70,-75,-80  
3. Write Operation  
Issuing the Write command after t  
from the Bank Activate command, the input data is latched  
RCD  
sequentially, synchronizing with both edges (rising & falling) of DQS after the Write command (Burst Write  
operation). The burst length of the Write data (Burst Length) and Addressing Mode must be set in the Mode  
Register at power-up.  
When the Precharge operation is performed in a bank during a Burst Write operation, the Burst operation is  
terminated.  
When the Write with Auto Precharge command is issued, the Precharge operation is performed automatically  
after the Write cycle, then the bank is switched to the idle state. The Write with Auto Precharge command  
cannot be interrupted by any other command for the entire burst data duration. Refer to the diagrams for Write  
operation.  
4. Precharge  
There are two commands which perform the Precharge operation (Bank Precharge and Precharge All). When  
the Bank Precharge command is issued to the active bank, the bank is precharged and then switched to the idle  
state. The Bank Precharge command can precharge one bank independently of the other bank and hold the  
unprecharged bank in the active state. The maximum time each bank can be held in the active state is specifed  
as t  
RAS  
(max). Therefore, each bank must be precharged within t (max) from the Bank Activate command.  
RAS  
The Precharge All command can be used to precharge all banks simultaneously. Even if banks are not in the  
active state, the Precharge All command can still be issued. In this case, the Precharge operation is performed  
only for the active bank and the precharged bank is then switched to the idle state.  
5. Burst Termination  
When the Precharge command is issued for a bank in a Burst cycle, the Burst operation is terminated. When  
the Burst Read cycle is interrupted by the Precharge command, read operation is disabled after clock cycle of  
(CAS latency) from the Precharge command. When the Burst Write cycle is interrupted by the Precharge  
command, the input circuit is reset at the same clock cycle at which the Precharge command is issued. In this  
case, the DM signal must be asserted “High” during t  
WR  
to prevent writing the invalid data to the cell array.  
When the Burst Read Stop command is issued for the bank in a Burst Read cycle, the Burst Read operation is  
terminated. The Burst Read Stop command is not supported during a write burst operation. Refer to the  
diagrams for Burst termination.  
6. Refresh Operation  
Two types of Refresh operation can be performed on the device: Auto Refresh and Self Refresh. By repeating  
the Auto Refresh cycle, each bank in turn refreshed automatically. The Refresh operation must be performed  
8192 times (rows) within 64 ms. The period between the Auto Refresh command and the next command is  
specified by t  
.
RFC  
Self Refresh mode enter issuing the Self Refresh command (CKE asserted “low”) while all banks are in the  
idle state. The device is in Self Refresh mode for as long as CKE held “low”. In the case of 8192 burst Auto  
Refresh commands, 8192 burst Auto Refresh commands must be performed within 7.8 µs before entering and  
after exiting the Self Refresh mode. In the case of distributed Auto Refresh commands, distributed Auto Refresh  
commands must be issued every 7.8 µs and the last distributed Auto Refresh command must be performed  
within 7.8 µs before entering the Self Refresh mode. After exiting from the Self Refresh mode, the refresh  
operation must be performed within 7.8 µs. In Self Refresh mode, all input/output buffers are disabled, resulting  
in lower power dissipation (except CKE buffer). Refer to the diagrams for Refresh operation.  
7. Power Down Mode  
Two types of Power Down Mode can be performed on the device: Active Standby Power Down Mode and  
Precharge Standby Power Down Mode.  
When the device enters the Power Down Mode, all input/output buffers and DLL are disabled resulting in  
lower power dissipation (except CKE buffer).  
Power Down Mode enter asserting CKE “low” while the device is not running a Burst cycle. Taking CKE  
“high” can exit this mode. When CKE goes high, a No-operation command must be input at next CLK rising  
edge. Refer to the diagrams for Power down mode.  
2001-03-19 40/44  
TC59WM815/07/03BFT-70,-75,-80  
8. Mode Register Operation  
The Mode Register is programmed by the Mode Register Set Command (MRS/EMRS) when all banks are in  
the idle state. The data to be set in the Mode Register is transferred using the A0~A12 and BS0, BS1 address  
inputs.  
The Mode register designates the operation mode for the Read or Write cycle. This register is divided into five  
fields; (1) Burst Length field to set the length of burst data (2) Addressing Mode selected bit to designate the  
column access sequence in a Burst cycle (3) CAS Latency field to set the access time in clock cycle (4) DLL  
Reset field to reset the DLL (5) Regular/Extended Mode Register field to select a type of MRS  
(Regular/Extended MRS). EMRS cycles can be implemented the extended function (DLL Enable/Disable mode).  
The initial value of the Mode Register (including EMRS) after power-up is undefined, therefore the Mode  
Register Set command must be issued before proper operation.  
(1) Burst Length field (A2~A0)  
This field specifies the data length for column access using the A2~A0 pins and sets the Burst Length to  
be 2, 4 and 8 words.  
A2  
A1  
A0  
Burst Length  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Reserved  
2 words  
4 words  
8 words  
Reserved  
(2) Addressing Mode Select (A3)  
The Addressing Mode can be one of two modes; Interleave mode or Sequential Mode. When the A3 bit is  
“0”, Sequential mode is selected. When the A3 bit is “1”, Interleave mode is selected. Both Addressing Mode  
support burst length 2, 4 and 8 words.  
A3  
Addressing Mode  
0
1
Sequential  
Interleave  
2001-03-19 41/44  
TC59WM815/07/03BFT-70,-75,-80  
Addressing sequence of Sequential mode  
A column access is performed by incrementing the column address input to the device. The address is  
varied by the Burst Length as the following.  
CAS Latency = 2  
CLK, /CLK  
Command  
DQS  
Read  
DQS  
Data0 Data1 Data2 Data3 Data4 Data5 Data6 Data7  
Addressing sequence for Sequential mode  
DATA  
Access Address  
Burst Length  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
n
2 words (Address bits is A0)  
not carried from A0~A1  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
4 words (Address bits is A1, A0)  
not carried from A1~A2  
8 words (Address bits is A2, A1, A0)  
not carried from A2~A3  
Addressing sequence of Interleave mode  
A column access is started from the inputed column address and is performed by interleaving the address  
bits in the sequence shown as the following.  
Addressing sequence for Interleave mode  
DATA  
Access Address  
Burst Length  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
2 words  
4 words  
8 words  
2001-03-19 42/44  
TC59WM815/07/03BFT-70,-75,-80  
(3) CAS Latency field (A6~A4)  
This field specifies the number of clock cycles from the assertion of the Read command to the first data  
read. The minimum values of CAS Latency depends on the frequency of CLK.  
A6  
A5  
A4  
CAS Latency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
Reserved  
Reserved  
Reserved  
2.5  
Reserved  
(4) DLL Reset bit (A8)  
This bit is used to reset DLL. When the A8 bit is “1”, DLL is reset.  
(5) Mode Register/Extended Mode Register change bits (BS0, BS1)  
These bits are used to select MRS/EMRS.  
BS1  
BS0  
A12~A0  
0
0
1
0
1
X
Regular MRS Cycle  
Extended MRS Cycle  
Reserved  
(6) Extended Mode Resister field  
1) DLL Switch field (A0)  
This bit is used to select DLL enable or disable.  
A0  
DLL  
0
1
Enable  
Disable  
2) Output Driver Size Control field (A1)  
This bit is used to select Output Driver Size.  
Both Full strength and Half strength are based on JEDEC Standard.  
A1  
Output Driver  
0
1
Full strength  
Half strength  
(7) Reserved field  
Test mode entry bit (A7)  
This bit is used to enter Test mode and must be set to “0” for normal operation.  
Reserved bits (A9, A10, A11, A12)  
These bits are reserved for future operations. They must be set to “0” for normal operation.  
2001-03-19 43/44  
TC59WM815/07/03BFT-70,-75,-80  
PACKAGE DIMENSIONS  
Unit: mm  
2001-03-19 44/44  

相关型号:

TC59WM815BFT-80

IC 16M X 16 DDR DRAM, 0.8 ns, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, PLASTIC, TSOP2-66, Dynamic RAM
TOSHIBA

TC59YM916AMG24A

IC 32M X 16 RAMBUS, PBGA108, LEAD FREE, CSP-108, Dynamic RAM
TOSHIBA

TC59YM916AMG32B

IC 32M X 16 RAMBUS, PBGA108, LEAD FREE, CSP-108, Dynamic RAM
TOSHIBA

TC59YM916AMG40B

IC 32M X 16 RAMBUS, PBGA108, LEAD FREE, CSP-108, Dynamic RAM
TOSHIBA

TC59_13

Low Dropout, Negative Output Voltage Regulator
MICROCHIP

TC5A

Topstek Current Transducer
TOPSTEK

TC5A4V

Topstek Current Transducer
TOPSTEK

TC5C-006.4M

HCMOS Output Clock Oscillator, 6.4MHz Nom, ROHS COMPLIANT, MINIATURE, CERAMIC, SMD, 10 PIN
CONNOR-WINFIE

TC5C-009.72M

HCMOS Output Clock Oscillator, 9.72MHz Nom, ROHS COMPLIANT, MINIATURE, CERAMIC, SMD, 10 PIN
CONNOR-WINFIE

TC5C-010.0M

HCMOS Output Clock Oscillator, 10MHz Nom, ROHS COMPLIANT, MINIATURE, CERAMIC, SMD, 10 PIN
CONNOR-WINFIE

TC5C-012.5M

HCMOS Output Clock Oscillator, 12.5MHz Nom, ROHS COMPLIANT, MINIATURE, CERAMIC, SMD, 10 PIN
CONNOR-WINFIE

TC5C-013.5M

HCMOS Output Clock Oscillator, 13.5MHz Nom, ROHS COMPLIANT, MINIATURE, CERAMIC, SMD, 10 PIN
CONNOR-WINFIE