TLP2601_07 [TOSHIBA]

Simplex / Multiplex Data Transmission; 单/多路数据传输
TLP2601_07
型号: TLP2601_07
厂家: TOSHIBA    TOSHIBA
描述:

Simplex / Multiplex Data Transmission
单/多路数据传输

数据传输
文件: 总9页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLP2601  
TOSHIBA Photocoupler GaAAs Ired & PhotoIC  
TLP2601  
Isolated Line Receiver  
Unit in mm  
Simplex / Multiplex Data Transmission  
ComputerPeripheral Interface  
Microprocessor System Interface  
Digital Isolation For A/D, D/A Conversion  
Direct Replacement For HCPL2601  
The TOSHIBA TLP2601 a photocoupler which combines a GaAAs IRed  
as the emitter and an integrated high gain, high speed photodetector.  
The output of the detector circuit is an open collector, Schottky clamped  
transistor.  
A Faraday shield integrated on the photodetector chip reduces the effects  
of capacitive coupling between the input LED emitter and the high gain  
stages of the detector. This provides an effective common mode transient  
immunity of 1000V/μs.  
TOSHIBA  
1110C4  
Input current thresholds: I = 5mA max.  
F
Weight: 0.54g  
Isolation voltage: 2500Vrms min.  
Switching speed: 10MBd  
Common mode transient immunity: 1000V/μs min.  
Guaranteed performance over temp.: 0°C~70°C  
UL Recognized: UL1577, file No. E67349  
Pin Configuration (top view)  
1
2
8
7
Truth Table  
(positive logic)  
3
4
6
5
Input  
Enable  
Output  
SHIELD  
H
L
H
H
L
L
H
H
H
Schematic  
H
L
I
I
CC  
F
L
V
V
2
CC  
I
O
8
+
-
A 0.01 to 0.1μF bypass capacitor must be  
connected between pins 8 and 5 (see Note 1).  
V
F
O
6
3
GND  
SHIELD  
5
I
E
7
V
E
1
2007-10-01  
TLP2601  
Recommended Operating Conditions  
Characteristic  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Input current, low level  
Input current, high level  
Supply voltage**, output  
High level enable voltage  
Low level enable voltage  
I
0
6.3 (*)  
4.5  
2.0  
0
250  
20  
μA  
mA  
V
FL  
I
FH  
V
V
5.5  
CC  
V
V
EH  
CC  
V
0.8  
8
V
EL  
Fan out (TTL load)  
N
Operating temperature  
T
0
70  
°C  
opr  
Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the  
device. Additionally, each item is an independent guideline respectively. In developing designs using this  
product, please confirm specified characteristics shown in this document.  
(*) 6.3mA is a guard banded value which allows for at least 20% CTR degradation.  
Initial input current threshold value is 5.0mA or less.  
**This item denotes operating ranges, not meaning of recommended operating conditions.  
Absolute Maximum Ratings (no derating required)  
Characteristic  
Forward current  
Symbol  
Rating  
Unit  
I
20  
5
mA  
V
F
Reverse voltage  
V
R
Output current  
I
25  
mA  
V
O
Output voltage  
V
0.5~7  
O
Supply voltage  
V
7
V
V
CC  
(1 minute maximum)  
Enable input voltage  
V
5.5  
E
(not to exceed V  
by more than 500mV)  
CC  
Output collector power dissipation  
Operating temperature range  
Storage temperature range  
Lead solder temperature (10s)  
Isolation voltage  
P
40  
40~85  
55~125  
260  
mW  
°C  
o
T
opr  
T
°C  
stg  
sol  
(**)  
T
°C  
2500  
Vrms  
BV  
S
(R.H.60%,AC 1min.,  
(Note 10)  
3540  
V
dc  
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even  
if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum  
ratings and the operating ranges.  
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook  
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test  
report and estimated failure rate, etc).  
(**) 1.6mm below seating plane.  
2
2007-10-01  
TLP2601  
Electrical Characteristics (Ta = 0°C ~70°C unless otherwise noted)  
Characteristic  
Symbol  
Test Condition  
Min.  
Typ.  
1
Max.  
Unit  
V
= 5.5V, V = 5.5V  
O
CC  
High level output current  
I
250  
μA  
OH  
I
= 250μA, V = 2.0V  
F
E
V
V
= 5.5V, I = 5mA  
F
CC  
Low level output voltage  
High level supply current  
V
0.4  
7
0.6  
15  
V
OL  
= 2.0V, I (sinking) = 13mA  
OL  
E
I
V
= 5.5V, I = 0, V = 0.5V  
mA  
CCH  
CC  
F
E
V
V
= 5.5V, I = 10mA  
F
CC  
Low level supply current  
I
12  
19  
mA  
CCL  
= 0.5V  
E
Low level enable current  
High level enable current  
I
V
V
= 5.5V, V = 0.5V  
E
1.6  
1  
2.0  
mA  
mA  
EL  
CC  
CC  
I
= 5.5V, V = 2.0V  
E
EH  
High level enable voltage  
V
(Note 11)  
2.0  
EH  
V
Low level enable voltage  
Input forward voltage  
V
0.8  
EL  
V
I
I
= 10mA, Ta = 25  
= 10μA, Ta = 25℃  
1.65  
1.75  
V
V
F
F
Input reverse breakdown  
voltage  
BV  
5
45  
R
R
Input capacitance  
C
V
= 0, f = 1MHz  
F
pF  
IN  
Input diode temperature  
coefficient  
ΔV /ΔT  
I = 10mA  
F
2.0  
mV / °C  
F
A
Relative humidity = 45%  
Ta=25, t = 5 second  
Inputoutput insulation  
I
1
μA  
IO  
leakage current  
V
= 3000Vdc,  
(Note 10)  
IO  
V
= 500V, R.H.60%  
1014  
0.6  
IO  
Resistance (inputoutput)  
Capacitance (inputoutput)  
R
C
5×1010  
Ω
IO  
IO  
(Note 10)  
(Note 10)  
f = 1MHz,  
pF  
(**)All typ.values are at VCC = 5V, Ta = 25°C.  
3
2007-10-01  
TLP2601  
Switching Characteristics (Ta = 25, V = 5 V)  
CC  
Test  
Circuit  
Characteristic  
Symbol  
Test Condition  
Min.  
Typ.  
60  
Max.  
75  
Unit  
ns  
Propagation delay time to  
high output level  
t
t
pLH  
pHL  
R = 350, C = 15pF  
L
L
I
= 7.5mA  
Propagation delay time to  
low output level  
F
1
60  
75  
ns  
(Note 2), (Note 3),  
(Note 4)&(Note 5)  
Output rise time(1090%)  
Output fall time(9010%)  
Propagation delay time of  
t
30  
30  
ns  
ns  
r
t
f
R = 350, C = 15pF  
L
L
t
t
25  
ns  
ELH  
EHL  
enable from V  
to V  
I = 7.5mA  
F
EH  
EL  
2
V
V
= 3.0V  
= 0.5V  
EH  
EL  
Propagation delay time of  
enable from V to V  
25  
ns  
EL  
EH  
(Note 6)&(Note 7)  
V
= 400V  
CM  
Common mode transient  
immunity at high output  
level  
R = 350Ω  
L
CM  
1000 10000  
V/μs  
V/μs  
H
V
= 2V  
O(min.)  
I
= 0mA,  
(Note 9)  
F
3
V
= 400V  
CM  
Common mode transient  
immunity at low output  
level  
R = 350Ω  
L
CM  
1000 10000  
L
V
= 0.8V  
O(max.)  
I
= 7.5mA,  
(Note 8)  
F
4
2007-10-01  
TLP2601  
Test Circuit 1.  
5V  
t
and t  
pLH  
pHL  
Pulse  
1
2
3
4
8
7
6
5
V
CC  
generator  
I
I
= 7.5mA  
F
F
R
L
Z
O
= 50Ω  
Input I  
F
= 3.75mA  
t = 5ns  
r
V
O
t
pHL  
(*)  
Output  
monitor-  
ing  
I
V
V
F
OH  
OL  
t
pLH  
C
L
Monitoring  
node  
Output V  
O
GND  
1.5V  
node  
(*) C is approximately 15pF which includes probe and stray wiring capacitance.  
L
Test Circuit 2.  
Input V  
E
monitoring node  
t
and t  
EHL  
ELH  
Pulse  
generator  
5V  
Z
O
= 50 Ω  
t = 5ns  
r
1
2
3
4
8
V
CC  
3.0V  
1.5V  
R
7.5mA  
dc  
L
7
6
5
Input V  
E
V
O
t
EHL  
I
F
(*)  
Output  
monitor-  
ing  
V
V
OH  
OL  
t
ELH  
C
L
Output V  
O
GND  
1.5V  
node  
(*) C is approximately 15pF which includes probe and stray wiring capacitance.  
L
Test Circuit 3.  
Transient Immunity and Typ. Waveforms.  
1
8
V
5V  
CC  
400V  
0V  
I
F
10%  
90%  
2
7
6
5
R
L
10%  
90%  
V
A
CM  
3
V
O
t
t
f
r
B
4
GND  
V
5V  
V
V
O
O
Switch at A : I = 0mA  
V
FF  
Pulse gen.  
F
Z
O
= 50 Ω  
CM  
V
OL  
Switch at B : I = 5mA  
F
5
2007-10-01  
TLP2601  
I
– V  
F
ΔV / ΔTa – I  
F
F
F
100  
10  
1
-2.6  
-2.4  
-2.2  
-2.0  
-1.8  
-1.6  
-1.4  
Ta = 25°C  
0.1  
1
0.1  
0.3  
3
10  
30  
0.01  
1.0  
1.2  
1.4  
1.6  
1.8  
Forward current  
I
F
(mA)  
Forward voltage  
V
F
(V)  
I
Ta  
V
– I  
F
OH  
O
100  
8
6
4
2
0
V
= 5V  
CC  
I
= 250μA  
F
Ta = 25°C  
50  
30  
V
V
= 5.5V  
CC  
= 5.5V  
O
R =350Ω  
L
1kΩ  
4kΩ  
10  
5
3
2
0
3
4
6
1
5
1
Forward current  
I
F
(mA)  
0
10  
20  
30  
40  
50  
60  
70  
Ambient temperature Ta (°C)  
V
– I  
V
– T  
OL a  
O
F
8
6
4
2
0
I
= 5mA  
F
V
= 5V  
CC  
0.5  
0.4  
0.3  
V
V
= 5.5V  
CC  
R =350Ω  
L
= 2V  
E
R =4kΩ  
L
I
=16mA  
OL  
Ta = 70°C  
0°C  
12.8mA  
9.6mA  
6.4mA  
0
1
2
3
4
6
5
0.2  
Forward current  
I
F
(mA)  
80  
0
20  
40  
60  
Ambient temperature Ta (°C)  
6
2007-10-01  
TLP2601  
t
t
– I  
t
t
Ta  
pHL, pLH  
F
pHL, pLH  
120  
120  
100  
R = 4kΩ  
L
t
R =4kΩ  
pLH  
L
t
pLH  
100  
80  
350Ω  
1kΩ  
t
pLH  
1kΩ  
t
80  
60  
40  
20  
pLH  
350Ω  
350Ω  
350Ω  
t
pLH  
t
pHL  
60  
1kΩ  
4kΩ  
t
1kΩ  
4kΩ  
pHL  
40  
T
= 25°C  
a
20  
V
= 5 V  
CC  
V
= 5V  
CC  
17  
I
= 7.5mA  
60  
F
0
9
5
11  
13  
15  
19  
7
0
10  
20  
30  
0
40  
50  
70  
Forward current  
I
F
(mA)  
Ambient temperature Ta (°C)  
t
t
Ta  
t t Ta  
r, f  
EHL, ELH  
320  
300  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
CC  
V
V
= 5V  
= 3V  
CC  
I
= 7.5mA  
F
EH  
R = 4kΩ  
L
t
R = 4kΩ  
I
= 7.5mA  
ELH  
L
F
t
f
f
280  
80  
1kΩ  
t
60  
40  
20  
0
350Ω  
350Ω  
t
f
1kΩ  
350Ω  
350Ω  
t
ELH  
t
r
t
ELH  
1kΩ  
4kΩ  
20  
10  
30  
40  
50  
60  
70  
0
t
EHL  
1kΩ  
4kΩ  
Ambient temperature Ta (°C)  
10  
20  
30  
40  
50  
60  
0
70  
Ambient temperature Ta (°C)  
7
2007-10-01  
TLP2601  
Notes  
1. The V  
supply voltage to each TLP2601 isolator must be bypassed by a 0.1μF capacitor of larger.This can be  
CC  
either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected  
as close as possible to the package V and GND pins of each device.  
CC  
2.  
3.  
4.  
5.  
6.  
7.  
t
t
t
t
t
t
Propagation delay is measured from the 3.75mA level on the low to high transition of the input  
current pulse to the 1.5V level on the high to low transition of the output voltage pulse.  
pHL  
pLH  
f
Propagation delay is measured from the 3.75mA level on the high to low transition of the input  
current pulse to the 1.5V level on the low to high transition of the output voltage pulse.  
Fall time is measured from the 10% to the 90% levels of the high to low transition on the output  
pulse.  
Rise time is measured from the 90% to 10% levels of the low to high transition on the output  
pulse.  
r
Enable input propagation delay is measured from the 1.5V level on the low to high transition of  
the input voltage pulse to the 1.5V level on the high to low transition of the output voltage pulse.  
EHL  
ELH  
Enable input propagation delay is measured from the 1.5V level on the high to low transition of  
the input voltage pulse to the 1.5V level on the low to high transition of the output voltage pulse.  
8. CM  
9. CM  
The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain  
L
in the low output state (i.e., V  
< 0.8V).  
OUT  
Measured in volts per microsecond (V / μs).  
The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain  
H
in the high state (i.e., V  
> 2.0V).  
OUT  
Measured in volts per microsecond(V / μs).  
Volts/microsecond can be translated to sinusoidal voltages:  
(dv  
)
CM  
V / μs =  
= f  
V
(p.p.)  
CM CM  
dt  
Max.  
Example:  
= 318V when f  
V
= 1MHz using CM and CM = 1000V / μs data sheet specified  
L H  
CM  
pp  
CM  
minimum.  
10.  
Device considered a twoterminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and  
8 shorted together.  
11. Enable  
input  
No pull up resistor required as the device has an internal pull up resistor.  
8
2007-10-01  
TLP2601  
RESTRICTIONS ON PRODUCT USE  
20070701-EN  
The information contained herein is subject to change without notice.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc.  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his  
document shall be made at the customer’s own risk.  
The products described in this document shall not be used or embedded to any downstream products of which  
manufacture, use and/or sale are prohibited under any applicable laws and regulations.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patents or other rights of  
TOSHIBA or the third parties.  
GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break,  
cut, crush or dissolve chemically.  
Please contact your sales representative for product-by-product details in this document regarding RoHS  
compatibility. Please use these products in this document in compliance with all applicable laws and regulations  
that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses  
occurring as a result of noncompliance with applicable laws and regulations.  
9
2007-10-01  

相关型号:

TLP260J

TOSHIBA Photocoupler GaAs IRED&Photo-triac
TOSHIBA

TLP260J(F)

暂无描述
TOSHIBA

TLP260J(TPL)

TRIAC-OUTPUT OPTOCOUPLER,1-CHANNEL,3KV ISOLATION,SO
TOSHIBA

TLP260J(TPL,F)

TRIAC-OUTPUT OPTOCOUPLER,1-CHANNEL,3KV ISOLATION,SO
TOSHIBA

TLP260J(TPR)

PHOTOCOUPLER PHOTO-TRIAC 4SOP
TOSHIBA

TLP260J(TPR,F)

暂无描述
TOSHIBA

TLP260J(V4)

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT OPTOCOUPLER, 11-4C1, MINIFLAT-4/6
TOSHIBA

TLP260J(V4-TPR)

TLP260J(V4-TPR)
TOSHIBA

TLP260J_07

GaAs IRED + Photo-Triac
TOSHIBA

TLP261J

GaAs IRED + Photo−Triac
TOSHIBA

TLP261J(IFT7,F)

TRIAC-OUTPUT OPTOCOUPLER,1-CHANNEL,3KV ISOLATION,SO
TOSHIBA

TLP261J(IFT7-TPL)

TRIAC-OUTPUT OPTOCOUPLER,1-CHANNEL,3KV ISOLATION,SO
TOSHIBA