MAX-M8 [U-BLOX]

u-blox M8 concurrent GNSS modules;
MAX-M8
型号: MAX-M8
厂家: u-blox AG    u-blox AG
描述:

u-blox M8 concurrent GNSS modules

文件: 总28页 (文件大小:808K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX-M8  
u-blox M8 concurrent GNSS modules  
Data Sheet  
Highlights  
·
·
·
·
·
·
Concurrent reception of up to 3 GNSS (GPS, Galileo, GLONASS, BeiDou)  
Industry leading -167 dBm navigation sensitivity  
Product variants to meet performance and cost requirements  
Miniature LCC package  
Superior anti-spoofing and anti-jamming  
Pin-compatible with the MAX-7 and MAX-6  
w w w .u-blox.com  
UBX-15031506 - R02  
MAX-M8 - Data Sheet  
Document Information  
Title  
MAX-M8  
Subtitle  
u-blox M8 concurrent GNSS modules  
Data Sheet  
Document type  
Document number  
Revision and Date  
Document status  
UBX-15031506  
R02  
15-Aug-2016  
Production Information  
Document status explanation  
Objective Specification  
Document contains target values. Revised and supplementary data will be published later.  
Document contains data based on early testing. Revised and supplementary data will be published later.  
Document contains data from product verification. Revised and supplementary data may be published later.  
Document contains the final product specification.  
Advance Information  
Early Production Information  
Production Information  
This document applies to the follow ing products:  
Product name  
Type number  
ROM/FLASH version  
PCN reference  
MAX-M8C  
MAX-M8Q  
MAX-M8W  
MAX-M8C-0-10  
MAX-M8Q-0-10  
MAX-M8W-0-10  
ROM SPG 3.01  
ROM SPG 3.01  
ROM SPG 3.01  
UBX-16013125  
UBX-16013125  
UBX-16013125  
u-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein  
may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this  
document or any part thereof without the express permission of u-blox is strictly prohibited.  
The information contained herein is provided as is” and u-blox assumes no liability for the use of the information. No warranty, either  
express or implied, is given, including but not limited, with respect to the accuracy, correctness, reliability and fitness for a particular  
purpose of the information. This document may be revised by u-blox at any time. For most recent documents, visit www.u-blox.com.  
Copyright © 2016, u-blox AG.  
u-blox® is a registered trademark of u-blox Holding AG in the EU and other countries. ARM® is the registered trademark of ARM Limited in  
the EU and other countries.  
UBX-15031506 - R02  
Page 2 of 28  
MAX-M8 - Data Sheet  
Contents  
Contents..............................................................................................................................3  
1
Description....................................................................................................................5  
1.1  
Overview .............................................................................................................................................. 5  
Product features ................................................................................................................................... 5  
GNSS performance ............................................................................................................................... 6  
Block diagram....................................................................................................................................... 7  
Supported GNSS Constellations............................................................................................................ 7  
1.2  
1.3  
1.4  
1.5  
1.5.1  
1.5.2  
GPS............................................................................................................................................... 7  
GLONASS...................................................................................................................................... 8  
BeiDou .......................................................................................................................................... 8  
Galileo........................................................................................................................................... 8  
1.5.3  
1.5.4  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.7  
1.7.1  
1.7.2  
Assisted GNSS (A-GNSS) ....................................................................................................................... 8  
AssistNowTM Online........................................................................................................................ 8  
AssistNowTM Offline ....................................................................................................................... 8  
AssistNowTM Autonomous.............................................................................................................. 9  
Augmentation Systems......................................................................................................................... 9  
Satellite-Based Augmentation System (SBAS)................................................................................. 9  
QZSS ............................................................................................................................................. 9  
IMES.............................................................................................................................................. 9  
Differential GPS (D-GPS)................................................................................................................ 9  
1.7.3  
1.7.4  
1.8  
Odometer........................................................................................................................................... 10  
Geofencing......................................................................................................................................... 10  
Message Integrity Protection ........................................................................................................... 10  
Spoofing Detection ......................................................................................................................... 10  
Broadcast Navigation Data .............................................................................................................. 10  
EXTINT: External interrupt ............................................................................................................... 11  
1.9  
1.10  
1.11  
1.12  
1.13  
1.13.1 Pin Control.................................................................................................................................. 11  
1.13.2 Aiding ......................................................................................................................................... 11  
1.14  
TIMEPULSE...................................................................................................................................... 11  
Protocols and interfaces.................................................................................................................. 11  
Interfaces........................................................................................................................................ 11  
1.15  
1.16  
1.16.1 UART........................................................................................................................................... 11  
1.16.2 Display Data Channel (DDC)........................................................................................................ 12  
1.17  
Clock generation ............................................................................................................................ 12  
1.17.1 Oscillators.................................................................................................................................... 12  
1.17.2 Real-Time Clock (RTC) ................................................................................................................. 12  
1.18  
Power management........................................................................................................................ 12  
1.18.1 DC/DC converter ......................................................................................................................... 12  
1.18.2 Power Mode Setup...................................................................................................................... 12  
1.19  
Antenna.......................................................................................................................................... 13  
UBX-15031506 - R02  
Production Information  
Contents  
Page 3 of 28  
 
MAX-M8 - Data Sheet  
1.19.1 Active antenna control (LNA_EN)................................................................................................. 13  
1.19.2 Antenna supervisor and short circuit detection ............................................................................ 13  
1.20  
Configuration management............................................................................................................ 14  
2
3
Pin Definition..............................................................................................................15  
2.1  
Pin assignment ................................................................................................................................... 15  
2.2  
Pin name changes............................................................................................................................... 16  
Electrical specification ................................................................................................17  
3.1  
Absolute maximum rating .................................................................................................................. 17  
Operating conditions .......................................................................................................................... 18  
Indicative current requirements........................................................................................................... 19  
3.2  
3.3  
4
5
Mechanical specifications ..........................................................................................20  
Reliability tests and approvals ..................................................................................21  
5.1  
Reliability tests.................................................................................................................................... 21  
5.2  
Approvals ........................................................................................................................................... 21  
6
Product handling & soldering ....................................................................................22  
6.1  
6.1.1  
6.1.2  
6.2  
6.2.1  
6.2.2  
6.2.3  
Packaging........................................................................................................................................... 22  
Reels ........................................................................................................................................... 22  
Tapes .......................................................................................................................................... 22  
Shipment, storage and handling ......................................................................................................... 23  
Moisture Sensitivity Levels ........................................................................................................... 23  
Reflow soldering ......................................................................................................................... 23  
ESD handling precautions............................................................................................................ 24  
7
8
Default messages .......................................................................................................25  
Labeling and ordering information...........................................................................26  
8.1  
Product labeling.................................................................................................................................. 26  
Explanation of codes........................................................................................................................... 26  
Ordering codes................................................................................................................................... 26  
8.2  
8.3  
Related documents...........................................................................................................27  
Revision history ................................................................................................................27  
Contact ..............................................................................................................................28  
UBX-15031506 - R02  
Production Information  
Contents  
Page 4 of 28  
MAX-M8 - Data Sheet  
1 Description  
1.1 Overview  
The MAX-M8 series of concurrent GNSS modules are built on the high performing u-blox M8 GNSS engine in  
the industry proven MAX form factor.  
The modules can concurrently receive up to three GNSS systems (GPS/Galileo) together with BeiDou or  
GLONASS). The MAX-M8 modules recognize multiple constellations simultaneously and provide outstanding  
positioning accuracy in scenarios with urban canyon or weak signals. The modules offer high performance even  
at low power consumption levels. For even better and faster positioning improvement, the MAX-M8 modules  
support augmentation of QZSS and IMES together with WAAS, EGNOS, MSAS, GAGAN.  
The MAX-M8 modules support message integrity protection, Geofencing, and spoofing detection with  
configurable interface settings to easily fit to customer applications. The MAX form factor allows easy migration  
from previous MAX generations.  
u-blox MAX-M8 modules use GNSS chips qualified according to AEC-Q100, are manufactured in ISO/TS 16949  
certified sites, and fully tested on a system level. Qualification tests are performed as stipulated in the ISO16750  
standard: “Road vehicles – Environmental conditions and testing for electrical and electronic equipment”.  
MAX-M8 modules are available in three product variants:  
·
·
MAX-M8C is optimized for cost sensitive applications and has the lowest power consumption.  
MAX-M8Q provides best performance for passive and active antennas designs. It is also halogen free  
(green) which makes it perfectly suited for consumer applications.  
·
MAX-M8W provides best performance and is optimized for active antennas.  
The modules combine a high level of integration capability with flexible connectivity options in a miniature  
2
package. This makes it perfectly suited for industrial applications with strict size and cost requirements. The I C  
compatible DDC interface provides connectivity and enables synergies with most u-blox cellular modules.  
The u-blox MAX-M8 modules can also benefit from the u-blox AssistNow assistance service. The Online service  
provides GNNS broadcast parameters, e.g. ephemeris, almanac plus time or rough position to reduce the  
receiver’s time to first fix significantly and improve acquisition sensitivity. The extended validity of AssistNow  
Offline data (up to 35 days) and AssistNow Autonomous data (up to 3 days) provide faster acquisition after a  
long off time.  
See section 1.6 for more information concerning the MAX-M8 related AssistNow Assistance.  
1.2 Product features  
UBX-15031506 - R02  
Production Information  
Description  
Page 5 of 28  
 
 
 
MAX-M8 - Data Sheet  
1.3 GNSS performance  
Parameter  
Specification  
Receiver type  
72-channel u-blox M8 engine  
GPS L1C/A, SBAS L1C/A, QZSS L1C/A, QZSS L1 SAIF, GLONASS L1OF, BeiDou B1I, Galileo E1B/C  
Velocity accuracy 1  
Heading accuracy 1  
0.05 m/s  
0.3 degrees  
Accuracy of time pulse signal  
RMS  
99%  
30 ns  
60 ns  
Frequency of time pulse signal  
Operational limits 2  
0.25 Hz…10 MHz (configurable)  
Dynamics  
Altitude  
Velocity  
£ 4 g  
50,000 m  
500 m/s  
GPS &  
GLONASS  
2.5 m  
10 Hz  
26 s  
MAX-M8Q/W  
GNSS  
GPS  
GLONASS  
BEIDOU  
GALILEO  
Horizontal position accuracy3  
Max navigation update rate5  
Time-To-First-Fix 6  
2.5 m  
18 Hz  
29 s  
1 s  
4 m  
18 Hz  
30 s  
1 s  
3 m  
18 Hz  
34 s  
1 s  
TBC4  
18 Hz  
45 s  
1 s  
Cold start  
Hot start  
1 s  
Aided starts 7  
2 s  
2 s  
2 s  
3 s  
7 s  
Sensitivity 8  
Tracking &  
Navigation  
–167 dBm  
–166 dBm  
–166 dBm  
–160dBm  
–159dBm  
Reacquisition  
Cold start  
Hot start  
–160 dBm  
–148 dBm  
–157 dBm  
–160 dBm  
–148 dBm  
–157 dBm  
–156 dBm  
–145 dBm  
–156 dBm  
–157dBm  
–143dBm  
–155dBm  
–153dBm  
–138dBm  
–151dBm  
MAX-M8C  
GPS &  
GLONASS  
GNSS  
GPS  
GLONASS  
BEIDOU  
GALILEO  
Time-To-First-Fix 6  
Cold start  
Hot start  
26 s  
1 s  
30 s  
1 s  
31 s  
1 s  
39 s  
1 s  
57 s  
1 s  
Aided starts 7  
3 s  
3 s  
3 s  
7 s  
7 s  
Sensitivity 8  
Tracking &  
Navigation  
–164 dBm  
–164 dBm  
–163 dBm  
–160 dBm  
–154 dBm  
Reacquisition  
Cold start  
Hot start  
–160 dBm  
–148 dBm  
–157 dBm  
–159 dBm  
–147 dBm  
–156 dBm  
–156 dBm  
–145 dBm  
–155 dBm  
–155 dBm  
–143 dBm  
–155 dBm  
–152 dBm  
–133 dBm  
–151 dBm  
Table 1: MAX-M8 indicative performance in different GNSS modes (default: concurrent reception of GPS & GLONASS incl. QZSS,  
SBAS)  
1
50% @ 30 m/s  
2
Assuming Airborne < 4 g platform  
3
CEP, 50% , 24 hours static, -130 dBm, > 6 SVs  
4
To be confirmed when Galileo reaches full operational capability  
5
Rates with SBAS and QZSS enabled for > 98% fix report rate under typical conditions  
6
All satellites at -130 dBm, except Galileo at -127 dBm  
7
Dependent on aiding data connection speed and latency  
8
Demonstrated with a good external LNA  
UBX-15031506 - R02  
Production Information  
Description  
Page 6 of 28  
 
MAX-M8 - Data Sheet  
1.4 Block diagram  
Figure 1: MAX-M8 block diagram  
1.5 Supported GNSS Constellations  
The MAX-M8 GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS systems:  
GPS, Galileo, GLONASS and BeiDou. Owing to the dual-frequency RF front-end architecture, either GLONASS or  
BeiDou can be processed concurrently with GPS and Galileo signals providing reception of three GNSS systems.  
By default the M8 receivers are configured for concurrent GPS and GLONASS, including SBAS and QZSS  
reception. If power consumption is a key factor, then the receiver should be configured for a single GNSS  
operation using GPS, Galileo, GLONASS or BeiDou and disabling QZSS and SBAS. QZSS, IMES and SBAS, GAGAN  
augmentation systems share the same frequency band as GPS and can always be processed in conjunction with  
GPS.  
The module can be configured to receive any single GNSS constellation or within the set of permissible  
combinations shown below.  
GPS  
Galileo  
GLONASS  
BeiDou  
Table 2 Permissible GNSS combinations (• = enabled)  
The augmentation systems: SBAS and QZSS can be enabled only if GPS operation is configured.  
Galileo is not enabled as the default configuration.  
1.5.1 GPS  
The MAX-M8 positioning modules are designed to receive and track the L1C/A signals provided at 1575.42 MHz  
by the Global Positioning System (GPS). The MAX-M8 series can receive and process GPS concurrently with  
GLONASS or BeiDou.  
UBX-15031506 - R02  
Production Information  
Description  
Page 7 of 28  
 
 
 
MAX-M8 - Data Sheet  
1.5.2 GLONASS  
The MAX-M8 modules can receive and process GLONASS concurrently with GPS or BeiDou. The Russian  
GLONASS satellite system is an alternative system to the US-based Global Positioning System (GPS). u-blox MAX-  
M8 positioning modules are designed to receive and track the L1OF signals GLONASS provided at 1602 MHz +  
k*562.5 kHz, where k is the satellite’s frequency channel number (k = –7,..., 5, 6). The ability to receive and  
track GLONASS L1OF satellite signals allows design of GLONASS receivers where required by regulations.  
To take advantage of GPS and GLONASS, dedicated hardware preparation must be made during the design-in  
phase. See the u-blox 8 / u-blox M8 Receiver Description Including Protocol Specification [2] for u-blox design  
recommendations.  
1.5.3 BeiDou  
The MAX-M8 modules can receive and process the B1I signals broadcast at 1561.098 MHz from the BeiDou  
Navigation Satellite System. The ability to receive and track BeiDou signals in conjunction with another  
constellation results in higher coverage, improved reliability and better accuracy. Currently, BeiDou is not fully  
operational globally and provides Chinese regional coverage only. Global coverage is scheduled for 2020.  
1.5.4 Galileo  
The MAX-M8 positioning modules can receive and track the E1-B/C signals centered on the GPS L1 frequency  
band. GPS and Galileo signals can be processed concurrently together with either BeiDou or GLONASS signals,  
enhancing coverage, reliability and accuracy. The SAR return link message (RLM) parameters for both short and  
long versions are decoded by the receiver and made available to users via UBX proprietary messages.  
Galileo has been implemented according to ICD release 1.2 (November 2015) and verified with live signals  
from the Galileo in-orbit validation campaign. Since the Galileo satellite system has not yet reached Initial  
(IOC) nor Full Operational Capability (FOC), changes to the Galileo signal specification (OS SIS ICD) remain  
theoretically possible.  
Galileo reception is by default disabled, but can be enabled by sending a configuration message (UBX-  
CFG-GNSS) to the receiver. See the u-blox 8 / u-blox M8 Receiver Description Including Protocol  
Specification [2] for more information.  
1.6 Assisted GNSS (A-GNSS)  
Supply of aiding information, such as ephemeris, almanac, rough last position and time, will reduce the time to  
first fix significantly and improve the acquisition sensitivity. All u-blox M8030 based products support the u-blox  
AssistNow Online and AssistNow Offline A-GNSS services, support AssistNow Autonomous, and are OMA SUPL  
compliant.  
1.6.1 AssistNow TM Online  
With AssistNow Online, an internet-connected GNSS device downloads assistance data from the u-blox  
AssistNow Online Service at system start-up. AssistNow Online is network operator independent and globally  
available. u-blox only sends ephemeris data for those satellites currently visible to the device requesting the data,  
thus minimizing the amount of data transferred.  
Supply of aiding information, such as ephemeris, almanac, rough last position and time, will reduce the time to  
first fix significantly and improve the acquisition sensitivity.  
The AssistNow Online service provides data for GPS, GLONASS, BeiDou, Galileo and QZSS  
1.6.2 AssistNow TM Offline  
With AssistNow Offline, users download u-blox’s long-term orbit data from the Internet at their convenience.  
The orbit data must be stored in the memory of the application processor. Thus the service requires no  
connectivity at system start-up and enables a position fix within seconds, even when no network is available.  
AssistNow Offline offers augmentation for up to 35 days.  
UBX-15031506 - R02  
Production Information  
Description  
Page 8 of 28  
 
 
 
 
 
 
MAX-M8 - Data Sheet  
AssistNow Offline service provides data for GPS and GLONASS only, BeiDou and Galileo are not currently  
supported.  
1.6.3 AssistNow TM Autonomous  
AssistNow Autonomous provides aiding information without the need for a host or external network  
connection. Based on previous broadcast satellite ephemeris data downloaded to and stored by the GNSS  
receiver, AssistNow Autonomous automatically generates accurate predictions of satellite orbital data  
(AssistNow Autonomous data”) that is usable for future GNSS position fixes. The concept capitalizes on the  
periodic nature of GNSS satellites; by capturing strategic ephemeris data at specific times of the day, the receiver  
can predict accurate satellite ephemeris for up to 3 days after initial reception.  
u-blox’s AssistNow Autonomous benefits are:  
·
·
·
·
Faster fix in situations where GNSS satellite signals are weak  
No connectivity required  
Compatible with AssistNow Online and Offline (can work stand-alone, or in tandem with these services)  
No integration effort; calculations are done in the background, transparent to the user.  
u-blox M8 ROM-based receivers, such as the MAX-M8 series, can use AssistNow Autonomous to calculate  
GPS only orbit predictions for up to 3 days. For best AssistNow Autonomous performance, it is  
recommended to use u-blox M8 flash-based receivers.  
For more details see the u-blox 8 / u-blox M8 Receiver Description Including Protocol Specification [2]  
1.7 Augmentation Systems  
1.7.1 Satellite-Based Augmentation System (SBAS)  
u-blox M8 positioning modules support SBAS. These systems supplement GPS data with additional regional or  
wide area GPS augmentation data. The system broadcasts augmentation data via satellite and this information  
can be used by GNSS receivers to improve the resulting precision. SBAS satellites can be used as additional  
satellites for ranging (navigation), further enhancing precision and availability. The following SBAS types are  
supported with u-blox M8: GAGAN, WAAS, EGNOS and MSAS.  
For more details see the u-blox 8 / u-blox M8 Receiver Description Including Protocol Specification [2].  
1.7.2 QZSS  
The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system that transmits additional GPS  
L1C/A signals for the Pacific region covering Japan and Australia. MAX-M8 positioning modules are able to  
receive and track these signals concurrently with GPS signals, resulting in better availability especially under  
challenging signal conditions, e.g. in urban canyons.  
The L1- SAIF signal provided by QZSS can be enabled for reception via a GNSS configuration message.  
1.7.3 IMES  
The Japanese Indoor MEssaging System (IMES) system is used for indoor position reporting using low-power  
transmitters which broadcast a GPS–like signal. MAX-M8 modules can be configured to receive and demodulate  
the signal to provide an in-door location estimate.  
This service is authorized and available only in Japan.  
IMES reception is disabled by default  
1.7.4 Differential GPS (D-GPS)  
u-blox M8 receivers support Differential-GPS data according RTCM 10402.3: "RECOMMENDED STANDARDS  
FOR DIFFERENTIAL GNSS". The use of Differential-GPS data improves GPS position accuracy. RTCM cannot be  
used together with SBAS. The RTCM implementation supports the following RTCM 2.3 messages:  
UBX-15031506 - R02  
Production Information  
Description  
Page 9 of 28  
 
 
 
 
 
 
MAX-M8 - Data Sheet  
Message Type  
Description  
1
2
3
9
Differential GPS Corrections  
Delta Differential GPS Corrections  
GPS Reference Station Parameters  
GPS Partial Correction Set  
Table 3: Supported RTCM 2.3 messages  
For more details see the u-blox 8 / u-blox M8 Receiver Description Including Protocol Specification [2].  
RTCM corrections cannot be used together with SBAS.  
1.8 Odometer  
The odometer provides information on travelled ground distance (in meter) using solely the position and  
Doppler-based velocity of the navigation solution. For each computed travelled distance since the last odometer  
reset, the odometer estimates a 1-sigma accuracy value. The total cumulative ground distance is maintained and  
saved in the BBR memory.  
The odometer feature is disabled by default. For more details see the u-blox 8 / u-blox M8 Receiver  
Description Including Protocol Specification [2].  
1.9 Geofencing  
The u-blox MAX-M8 modules support up to four circular Geofencing areas defined on the Earths surface using  
a 2D model. Geofencing is active when at least one Geofence is defined, the current status can be found by  
polling the receiver.  
1.10 Message Integrity Protection  
The MAX-M8 modules provide a function to prevent a third party interfering with the UBX message steam sent  
from receiver to host. The security mechanism essentially ‘signs’ nominated messages with a following message  
containing an md5 generated hash of the nominated message. This message signature is then compared with  
one generated by the host to determine if the message data has been altered. The hash algorithm seed can use  
one fixed secret ID-key set by eFuse in production or a dynamic ID-key set by host enabling users to detect Man-  
in-the-middle’ style attacks.  
1.11 Spoofing Detection  
Spoofing is a process whereby a malicious third party tries to control the reported position via a ‘fake’ GNSS  
broadcast signal. This may result in the form of reporting incorrect position, velocity or time. To combat against  
this the MAX-M8 modules include anti-spoofing measures to alert the host when signals appear to be  
suspicious. The receiver combines a number of checks on the received signals looking for inconsistencies across  
several parameters.  
This feature does not guarantee detection of all spoofing attacks  
1.12 Broadcast Navigation Data  
The MAX-M8 can output all the GNSS broadcast data upon reception from tracked satellites. This includes all  
the supported GNSS signals plus the augmentation services SBAS, QZSS and IMES. The receiver also makes  
available the tracked satellite signal information, i.e. raw code phase and Doppler measurements in a form  
aligned to the ETSI mobile cellular location services protocol (RRLP) [6]. For more details see the u-blox 8 / u-blox  
M8 Receiver Description Including Protocol Specification [2].  
UBX-15031506 - R02  
Production Information  
Description  
Page 10 of 28  
 
 
 
 
 
MAX-M8 - Data Sheet  
1.13 EXTINT: External interrupt  
EXTINT is an external interrupt pin with fixed input voltage thresholds with respect to VCC_IO. It can be used  
for control of the receiver or for aiding.  
For more information on how to implement and configure these features see the u-blox 8 / u-blox M8 Receiver  
Description including Protocol Specification [2] and the MAX-8 / MAX-M8 Hardware Integration Manual [1].  
1.13.1 Pin Control  
The pin control feature allows overriding the automatic active/inactive cycle of Power Save Mode. The state of  
the receiver can be controlled through the EXTINT pin. The receiver can also be turned off and sent into Backup  
Mode using EXTINT when Power Save Mode is not active.  
1.13.2 Aiding  
The EXTINT pin can be used to supply time or frequency aiding data to the receiver.  
For time aiding, hardware time synchronization can be achieved by connecting an accurate time pulse to the  
EXTINT pin.  
Frequency aiding can be implemented by connecting a periodic rectangular signal with a frequency up to 500  
kHz and arbitrary duty cycle (low/high phase duration must not be shorter than 50 ns) to the EXTINT pin, and  
providing the applied frequency value to the receiver using UBX messages.  
1.14 TIMEPULSE  
A configurable time pulse signal is available with all u-blox M8 modules.  
The TIMEPULSE output generates pulse trains synchronized with a GNSS or UTC time grid, with intervals  
configurable over a wide frequency range. Thus it may be used as a low frequency time synchronization pulse or  
as a high frequency reference signal.  
By default the time pulse signal is configured to 1 pulse per second. For more information see the u-blox 8 /  
u-blox M8 Receiver Description Including Protocol Specification [2].  
1.15 Protocols and interfaces  
Protocol  
Type  
NMEA 0183, version 4.0 (V2.1, V2.3 or V4.1  
configurable)  
Input/output, ASCII  
UBX  
Input/output, binary, u-blox proprietary  
Input, message 1, 2, 3, 9  
RTCM  
Table 4: Available Protocols  
2
All protocols are available on UART and DDC (I C compliant). For specification of the various protocols see the  
u-blox 8 / u-blox M8 Receiver Description Including Protocol Specification [2].  
1.16 Interfaces  
A number of interfaces are provided either for data communication or memory access. The embedded firmware  
uses these interfaces according to their respective protocol specifications.  
1.16.1 UART  
MAX-M8 modules include one UART interface, which can be used for communication to a host. It supports  
configurable baud rates. For supported baud rates see the u-blox 8 / u-blox M8 Receiver Description Including  
Protocol Specification [2].  
Designs must allow access to the UART and the SAFEBOOT_N function pin for future service, updates  
and reconfiguration.  
UBX-15031506 - R02  
Production Information  
Description  
Page 11 of 28  
 
 
 
 
 
 
 
MAX-M8 - Data Sheet  
1.16.2 Display Data Channel (DDC)  
2
An I C compliant DDC interface is available for communication with an external host CPU or u-blox cellular  
modules. The interface can be operated in slave mode only. The DDC protocol and electrical interface are fully  
2
compatible with the Fast-Mode of the I C industry standard. Since the maximum SCL clock frequency is 400 kHz,  
the maximum transfer rate is 400 kb/s.  
2
2
The DDC interface is I C Fast Mode compliant. For timing parameters consult the I C standard.  
The maximum bit rate is 400 kb/s. The interface stretches the clock when slowed down while serving  
interrupts, so real bit rates may be slightly lower.  
1.17 Clock generation  
1.17.1 Oscillators  
MAX-M8 concurrent GNSS modules are available in Crystal and TCXO versions. The TCXO option allows  
accelerated weak signal acquisition, enabling faster start and reacquisition times.  
1.17.2 Real-Time Clock (RTC)  
The RTC is driven by a 32 kHz oscillator, which makes use of an RTC crystal. If the main supply voltage fails and a  
battery is connected to V_BCKP, parts of the receiver switch off, but the RTC still runs providing a timing  
reference for the receiver. This operating mode is called Hardware Backup Mode, which enables all relevant data  
to be saved in the backup RAM to allow a hot or warm start later.  
With MAX-M8C in Hardware Backup Mode, the main oscillator is used as timing reference instead of the 32 kHz  
oscillator. The MAX-M8C applies single crystal mode, where the 26 MHz crystal oscillator can also be used to  
provide a frequency reference to the RTC without using an additional crystal for the RTC. This makes MAX-M8C  
a more cost efficient solution at the expense of a higher backup current.  
For more information see the MAX-8 / MAX-M8 Hardware Integration Manual [1]  
1.18 Pow er management  
u-blox M8 technology offers a power optimized architecture with built-in autonomous power saving functions to  
minimize power consumption at any given time. Furthermore, the receiver can be used in two operating modes:  
Continuous mode for best performance or Power Save Mode for optimized power consumption respectively. In  
addition, a high efficiency DC/DC converter is integrated to allow low power consumption even for higher main  
supply voltages.  
1.18.1 DC/DC converter  
MAX-M8Q and MAX-M8C modules integrate a DC/DC converter, allowing reduced power consumption by up  
to 50% .  
For more information see the MAX-8 / MAX-M8 Hardware Integration Manual [1]  
1.18.2 Pow er Mode Setup  
u-blox M8 modules can be configured to run in either continuous or a choice of Power Save mode  
configurations. A template of power mode settings can be used to easily select typical power mode setups to  
cover the majority of users’ requirements.  
·
·
·
·
Continuous (default) mode for best GNSS performance vs power consumption  
A 1Hz cyclic tracking mode for aggressive power reduction  
Choice of 2 or 4 Hz9 cyclic tracking modes for typical wearable applications  
ON/OFF interval mode  
9
Single GNSS constellation configuration only  
UBX-15031506 - R02  
Production Information  
Description  
Page 12 of 28  
 
 
 
 
 
 
 
MAX-M8 - Data Sheet  
1.18.2.1 Continuous Mode  
Continuous Mode uses the acquisition engine at full performance, resulting in the shortest possible TTFF and the  
highest sensitivity. The receiver searches for all possible satellites until the almanac is completely downloaded.  
The receiver then switches to the tracking engine to lower the power consumption.  
Thus, a lower tracking current consumption level will be achieved when:  
·
·
·
A valid GNSS position is obtained  
The entire almanac has been downloaded  
The ephemeris for each satellite in view is valid  
1.18.2.2 Pow er Save Mode  
For power sensitive applications, u-blox M8 receivers provide a Power Save Mode for reduced power  
consumption.  
Power Save Mode provides two dedicated methods, ON/OFF and Cyclic tracking, that reduce average current  
consumption in different ways to match the needs of the specific application. These options can be set by using  
a specific UBX message.  
For more information about power management strategies, see the u-blox 8 / u-blox M8 Receiver  
Description Including Protocol Specification [2].  
1.19 Antenna  
MAX-M8 modules are designed for use with passive10 and active11 antennas.  
Parameter  
Specification  
Antenna Type  
Passive and active antenna  
Minimum gain  
15 dB (to compensate signal loss in RF cable)  
Active Antenna Recommendations  
Maximum gain  
50dB  
Maximum noise figure  
1.5 dB  
Table 5: Antenna Specifications for all MAX-M8 modules  
1.19.1 Active antenna control (LNA_EN)  
The LNA_EN Pin can be used to turn on and off an external LNA or an active antenna. This reduces power  
consumption in Power Save Mode (Backup mode). This pin is available only on MAX-M8C and MAX-M8Q.  
1.19.2 Antenna supervisor and short circuit detection  
An antenna supervisor is available with MAX-M8W. The antenna supervisor enables the receiver to detect short  
circuits (ANT_OK) at the active antenna and shut down the voltage bias immediately. A resistor is needed in  
series with the V_ANT input to enable checking of the antenna bias voltage. UBX and NMEA messages are  
provided to report the condition of the antenna supply. Open circuit detection can also be supported with an  
additional external circuit.  
Antenna open circuit detection (ANT_DET) can be mapped to PIO13 and requires external components  
For more information see the MAX-8 / MAX-M8 Hardware Integration Manual [1]  
10  
For integration MAX-M8 modules with Cellular products, see the MAX-8 / MAX-M8 Hardware Integration Manual [1]  
11  
For information on using active antennas with MAX-M8 modules, see the MAX-8 / MAX-M8 Hardware Integration Manual [1].  
UBX-15031506 - R02  
Production Information  
Description  
Page 13 of 28  
 
 
 
MAX-M8 - Data Sheet  
1.20 Configuration management  
Configuration settings can be modified with UBX configuration messages. The modified settings remain effective  
until power-down or reset. If these settings have been stored in battery-backup RAM, then the modified  
configuration will be retained, as long as the backup battery supply is not interrupted.  
For more information about configuration management, see the u-blox 8 / u-blox M8 Receiver Description  
Including Protocol Specification [2].  
UBX-15031506 - R02  
Production Information  
Description  
Page 14 of 28  
 
MAX-M8 - Data Sheet  
2 Pin Definition  
2.1 Pin assignment  
Figure 2: Pin Assignment  
12  
PIO Nr.  
No  
1
Module  
Name  
I/O  
Description  
All  
GND  
-
Ground  
2
All  
TXD  
6
7
11  
13  
-
O
I
Serial Port  
3
All  
RXD  
Serial Port  
4
All  
TIMEPULSE  
EXTINT  
V_BCKP  
VCC_IO  
VCC  
O
I
Time pulse (1PPS)  
External Interrupt Pin  
Backup voltage supply  
IO Supply Voltage  
Supply voltage  
RESET_N  
5
All  
6
All  
7
All  
-
8
All  
-
9
All  
RESET_N  
GND  
-
I
I
10  
11  
12  
All  
-
Ground  
All  
RF_IN  
-
GNSS signal input  
Ground  
All  
GND  
-
MAX-M8C/Q  
MAX-M8W  
All  
LNA_EN  
Reserved  
VCC_RF  
V_ANT  
Reserved  
SDA  
16  
-
O
-
Antenna control  
Reserved  
13  
14  
15  
-
Output Voltage RF section  
Active Antenna Supply Voltage  
Reserved  
MAX-M8W  
MAX-M8C/Q  
All  
-
-
-
16  
17  
18  
9
8
-
I/O  
I/O  
I
DDC Data  
All  
SCL  
DDC Clock  
All  
SAFEBOOT_N  
SAFEBOOT_N (for reconfiguration, leave OPEN)  
Table 6: Pinout  
Antenna open circuit detection (ANT_DET) can be mapped to PIO13 and requires external components.  
MAX-M8W does not have a dedicated ANT_DET pin. The ANT_DET pin can be made available on the  
EXTINT pin. For more information see the MAX-8 / MAX-M8 Hardware Integration Manual [1]  
Pins designated Reserved should not be used. For more information about Pinouts see the MAX-8 / MAX-  
M8 Hardware Integration Manual [1].  
12  
Peripheral Input Output  
UBX-15031506 - R02  
Production Information  
Pin Definition  
Page 15 of 28  
 
 
MAX-M8 - Data Sheet  
2.2 Pin name changes  
Selected pin names have been updated to agree with a common naming convention across u-blox modules. The  
pins have not changed their operation and are the same physical hardware but with updated names. The table  
below lists the pins that have changed name along with their old and new names.  
No  
13  
5
Previous Name  
ANT_ON  
New name  
LNA_EN  
EXTINT0  
EXTINT  
18  
Reserved  
SAFEBOOT_N  
Table 7: Pin name change list  
UBX-15031506 - R02  
Production Information  
Pin Definition  
Page 16 of 28  
 
MAX-M8 - Data Sheet  
3 Electrical specification  
The limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress  
above one or more of the limiting values may cause permanent damage to the device. These are stress  
ratings only, and operation of the device at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied. Exposure to these limits for extended periods  
may affect device reliability.  
Where application information is given, it is advisory only and does not form part of the specification. For  
more information see the MAX-8 / MAX-M8 Hardware Integration Manual [1].  
3.1 Absolute maximum rating  
Parameter  
Symbol  
VCC, VCC_IO  
V_BCKP  
Vin  
Module  
All  
Condition  
Min  
–0.5  
–0.5  
–0.5  
Max  
Units  
V
Power supply voltage  
Backup battery voltage  
Input pin voltage  
3.6  
All  
3.6  
V
All  
VCC_IO+0.5  
10  
V
DC current trough any digital I/O pin  
(except supplies)  
Ipin  
mA  
VCC_RF output current  
Input power at RF_IN  
ICC_RF  
Prfin  
All  
All  
100  
15  
mA  
source  
dBm  
impedance = 50  
W, continuous  
wave  
Antenna bias voltage  
Antenna bias current  
V_ANT  
I_ANT  
6
V
100  
mA  
MAX-M8C  
–40  
–40  
105  
85  
°C  
°C  
Storage temperature  
Tstg  
MAX-M8Q/M8W  
Table 8: Absolute maximum ratings  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. The product is not protected against overvoltage or reversed  
voltages. If necessary, voltage spikes exceeding the pow er supply voltage specification, given in  
table above, must be limited to values w ithin the specified boundaries by using appropriate  
protection diodes.  
UBX-15031506 - R02  
Production Information  
Electrical specification  
Page 17 of 28  
 
 
MAX-M8 - Data Sheet  
3.2 Operating conditions  
All specifications are at an ambient temperature of 25°C. Extreme operating temperatures can  
significantly impact specification values. Applications operating near the temperature limits should be  
tested to ensure the specification.  
Unit  
s
Parameter  
Symbol  
Module  
Min  
Typ  
Max  
Condition  
Power supply voltage  
VCC, VCC_IO  
MAX-M8C  
MAX-M8Q/W  
All  
1.65  
2.7  
3.0  
3.0  
3.6  
3.6  
3.6  
V
V
Backup battery voltage  
Backup battery current  
V_BCKP  
I_BCKP  
1.4  
V
MAX-M8Q/W  
15  
µA  
V_BCKP = 3.0 V,  
VCC = 0 V  
MAX-M8C  
100  
µA  
V_BCKP = 3.0 V,  
VCC = 0 V  
SW backup current  
I_SWBCKP  
MAX-M8Q/W  
MAX-M8C  
30  
µA  
µA  
VCC = 3.0 V  
VCC = 3.0 V  
105  
Input pin voltage range13  
Vin  
Vil  
All  
All  
0
0
VCC_IO+0.5  
0.2*VCC_IO  
V
V
Digital IO Pin Low level input  
voltage  
Digital IO Pin High level input  
voltage  
Vih  
All  
All  
All  
All  
2.7  
0.7*VCC_IO  
VCC_IO+0.5  
0.4  
V
Digital IO Pin Low level output  
voltage  
Vol  
Voh  
Rpu  
V
Iol=4 mA  
Ioh=4 mA  
Digital IO Pin High level output  
voltage  
VCC_IO - 0.4  
V
Pull-up resistor for RESET_N  
(Internal)  
11  
kW  
V_ANT antenna bias voltage  
Antenna bias voltage drop  
VCC_RF voltage  
V_ANT  
V_ANT_DROP  
VCC_RF  
ICC_RF  
NFtot  
5.5  
V
IANT < –50 mA  
0.1  
V
ICC_RF =50 mA  
All  
All  
All  
All  
VCC - 0.1  
3.5  
V
VCC_RF output current  
50  
85  
mA  
dB  
°C  
14  
Receiver Chain Noise Figure  
Operating temperature  
Topr  
–40  
Table 9: Operating conditions  
Operation beyond the specified operating conditions can affect device reliability.  
13  
14  
If VCC or VCC_IO is 0V there should not be any voltage applied to any I/O (Including RESET_N)  
Only valid for the GPS band  
UBX-15031506 - R02  
Production Information  
Electrical specification  
Page 18 of 28  
 
MAX-M8 - Data Sheet  
3.3 Indicative current requirements  
Table 10 lists examples of the total system supply current for a possible application.  
Values in Table 10 are provided for customer information only as an example of typical power  
requirements. Values are characterized on samples. Actual power requirements can vary depending on  
FW version used, external circuitry, number of SVs tracked, signal strength, type of start as well as time,  
duration and conditions of test.  
Typ  
Typ  
GPS &  
Parameter  
Symbol  
Module  
Max  
Units  
Condition  
GPS / QZSS /  
GLONASS/  
SBAS  
QZSS / SBAS  
15  
Max. supply current  
Iccp  
All  
67  
mA  
mA  
mA  
mA  
mA  
mA  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
MAX-M8C  
MAX-M8W  
MAX-M8Q  
MAX-M8C  
MAX-M8W  
26  
43  
26  
23  
38  
20  
32  
20  
17  
30  
Icc Acquisition18  
16, 17  
Icc Tracking  
(Continuous mode)  
Average supply current  
MAX-M8Q  
MAX-M8C  
MAX-M8W  
MAX-M8Q  
23  
5.4  
9.7  
6.2  
18  
4.9  
8.9  
5.7  
mA  
mA  
mA  
mA  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
Estimated at 3 V  
Icc Tracking  
(Power Save mode / 1 Hz)  
Table 10: MAX-M8C/W/Q indicative pow er requirements at 3.0 V  
For more information about power requirements, see the MAX-8 / MAX-M8 Hardware Integration  
Manual [1].  
For more information on how to noticeably reduce current consumption, see the Power Management  
Application Note [4].  
15  
16  
17  
18  
Use this figure to dimension maximum current capability of power supply. Measurement of this parameter with 1 Hz bandwidth.  
Use this figure to determine required battery capacity.  
Simulated GNSS constellation using power levels of -130 dBm. VCC= 3.0 V  
Average current from start-up until the first fix.  
UBX-15031506 - R02  
Production Information  
Electrical specification  
Page 19 of 28  
 
 
MAX-M8 - Data Sheet  
4 Mechanical specifications  
Figure 3: Dimensions  
For information about the paste mask and footprint, see the MAX-8 / MAX-M8 Hardware Integration  
Manual [1].  
UBX-15031506 - R02  
Production Information  
Mechanical specifications  
Page 20 of 28  
 
MAX-M8 - Data Sheet  
5 Reliability tests and approvals  
5.1 Reliability tests  
All MAX-M8 modules are based on AEC-Q100 qualified GNSS chips.  
Tests for product family qualifications are according to ISO 16750 "Road vehicles – Environmental conditions  
and testing for electrical and electronic equipment”, and appropriate standards.  
5.2 Approvals  
Products marked with this lead-free symbol on the product label comply with the  
"Directive 2002/95/EC and Directive 2011/65/EU of the European Parliament and the  
Council on the Restriction of Use of certain Hazardous Substances in Electrical and  
Electronic Equipment" (RoHS).  
All u-blox M8 GNSS modules are RoHS compliant.  
UBX-15031506 - R02  
Production Information  
Reliability tests and approvals  
Page 21 of 28  
 
 
 
MAX-M8 - Data Sheet  
6 Product handling & soldering  
6.1 Packaging  
MAX-M8 modules are delivered as hermetically sealed, reeled tapes in order to enable efficient production,  
production lot set-up and tear-down. For more information see the u-blox Package Information Guide [3].  
6.1.1 Reels  
MAX-M8 GNSS modules are deliverable in quantities of 500 pcs on a reel. MAX-M8 modules are shipped on  
Reel Type B, as specified in the u-blox Package Information Guide [3].  
6.1.2 Tapes  
Figure 4 shows the position and orientation of MAX-M8 modules as they are delivered on tape. The dimensions  
of the tapes are specified in Figure 5.  
Figure 4: Tape and module orientation  
UBX-15031506 - R02  
Production Information  
Product handling & soldering  
Page 22 of 28  
 
 
 
 
 
MAX-M8 - Data Sheet  
Figure 5: MAX-M8 Tape dimensions  
6.2 Shipment, storage and handling  
For more information regarding shipment, storage and handling see the u-blox Package Information Guide [3].  
6.2.1 Moisture Sensitivity Levels  
The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions required. MAX-M8  
modules are rated at MSL level 4.  
For MSL standard see IPC/JEDEC J-STD-020, which can be downloaded from www.jedec.org.  
6.2.2 Reflow soldering  
Reflow profiles are to be selected according u-blox recommendations (see the MAX-8 / MAX-M8 Hardware  
Integration Manual [1]).  
UBX-15031506 - R02  
Production Information  
Product handling & soldering  
Page 23 of 28  
 
 
 
 
MAX-M8 - Data Sheet  
6.2.3 ESD handling precautions  
MAX-M8 modules are Electrostatic Sensitive Devices (ESD). Observe precautions for handling!  
Failure to observe these precautions can result in severe damage to the GNSS receiver!  
GNSS receivers are Electrostatic Sensitive Devices (ESD) and require special precautions when handling. Particular  
care must be exercised when handling patch antennas, due to the risk of electrostatic charges. In addition to  
standard ESD safety practices, the following measures should be taken into account whenever handling the  
receiver:  
·
Unless there is a galvanic coupling between the  
local GND (i.e. the work table) and the PCB GND,  
then the first point of contact when handling the  
PCB must always be between the local GND and  
PCB GND.  
·
·
Before mounting an antenna patch, connect  
ground of the device  
When handling the RF pin, do not come into  
contact with any charged capacitors and be  
careful when contacting materials that can  
develop charges (e.g. patch antenna ~10 pF, coax  
cable ~50 to 80 pF/m, soldering iron, …)  
·
·
To prevent electrostatic discharge through the RF  
input, do not touch any exposed antenna area. If  
there is any risk that such exposed antenna area is  
touched in non ESD protected work area,  
implement proper ESD protection measures in the  
design.  
When soldering RF connectors and patch  
antennas to the receiver’s RF pin, make sure to  
use an ESD safe soldering iron (tip).  
UBX-15031506 - R02  
Production Information  
Product handling & soldering  
Page 24 of 28  
 
MAX-M8 - Data Sheet  
7 Default messages  
Interface  
Settings  
UART Output  
9600 Baud, 8 bits, no parity bit, 1 stop bit  
Configured to transmit both NMEA and UBX protocols, but only the following NMEA (and no UBX)  
messages have been activated at start-up:  
GGA, GLL, GSA, GSV, RMC, VTG, TXT  
UART Input  
DDC  
9600 Baud, 8 bits, no parity bit, 1 stop bit, Autobauding disabled  
Automatically accepts following protocols without need of explicit configuration:  
UBX, NMEA, RTCM  
The GNSS receiver supports interleaved UBX and NMEA messages.  
2
Fully compatible with the I C industry standard, available for communication with an external host CPU or  
u-blox cellular modules; operated in slave mode only.  
NMEA and UBX are enabled as input messages, only NMEA as output messages  
Maximum bit rate 400 kb/s.  
TIMEPULSE  
(1Hz Nav)  
1 pulse per second, synchronized at rising edge, pulse length 100 ms  
Table 11: Default messages  
Refer to the u-blox 8 / u-blox M8 Receiver Description including Protocol Specification [2] for information  
about further settings.  
UBX-15031506 - R02  
Production Information  
Default messages  
Page 25 of 28  
 
MAX-M8 - Data Sheet  
8 Labeling and ordering information  
8.1 Product labeling  
The labeling of u-blox M8 GNSS modules includes important product information. The location of the product  
type number is shown in Figure 6.  
Figure 6: Location of product type number on MAX-M8 module label  
8.2 Explanation of codes  
Three different product code formats are used. The Product Name is used in documentation such as this data  
sheet and identifies all u-blox M8 products, independent of packaging and quality grade. The Ordering Code  
includes options and quality, while the Type Number includes the hardware and firmware versions. Table 12  
shows the structure of these three different formats.  
Format  
Structure  
Product Name  
Ordering Code  
Type Number  
PPP-TGV  
PPP-TGV-N  
PPP-TGV-N-XX  
Table 12: Product Code Formats  
The parts of the product code are explained in Table 13.  
Code  
Meaning  
Example  
PPP  
TG  
V
Product Family  
Product Generation  
Variant  
MAX  
M8 = u-blox M8  
Function set (A-Z), T = Timing, R = DR, etc.  
N
Option / Quality Grade  
Describes standardized functional element or quality grade  
0 = Default variant, A = Automotive  
XX  
Product Detail  
Describes product details or options, such as hardware or software revision, cable length, etc.  
Table 13: part identification code  
8.3 Ordering codes  
Ordering No.  
MAX-M8C-0  
MAX-M8Q-0  
MAX-M8W-0  
Product  
u-blox M8 concurrent GNSS LCC Module, Crystal, ROM, 9.7x10.1 mm, 500 pcs/reel  
u-blox M8 concurrent GNSS LCC Module, TCXO, ROM, Green, 9.7x10.1 mm, 500 pcs/reel  
u-blox M8 concurrent GNSS LCC Module, TCXO, Active Antenna Supply, ROM, 9.7x10.1 mm, 500 pcs/reel  
Table 14: Product ordering codes for professional grade modules  
Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change  
Notifications (PCNs) see our website.  
UBX-15031506 - R02  
Production Information  
Labeling and ordering information  
Page 26 of 28  
 
 
 
 
 
 
 
MAX-M8 - Data Sheet  
Related documents  
[1]  
[2]  
MAX-8 / MAX-M8 Hardware Integration Manual, Doc. No. UBX-15030059  
u-blox 8 / u-blox M8 Receiver Description including Protocol Specification (Public version), Doc. No.  
UBX-13003221  
[3]  
[4]  
[5]  
[6]  
Power Management Application Note, Doc. No. UBX-13005162  
RTCM 10402.3 Recommended Standards for Differential GNSS, Ver. 2.3, RTCM AUG. 20, 2001  
u-blox Package Information Guide, Doc. No. UBX-14001652  
Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11  
For regular updates to u-blox documentation and to receive product change notifications, register on our  
homepage (http://www.u-blox.com).  
Revision history  
Revision  
Date  
Name  
Status / Comments  
R01  
R02  
2-Jun-2016  
ghun  
ghun  
Advance Information  
15-Aug-2016  
Production Information  
UBX-15031506 - R02  
Production Information  
Related documents  
Page 27 of 28  
 
 
 
 
 
 
 
MAX-M8 - Data Sheet  
Contact  
For complete contact information visit us at www.u-blox.com  
u-blox Offices  
North, Central and South America  
u-blox America, Inc.  
Headquarters  
Europe, Middle East, Africa  
Asia, Australia, Pacific  
u-blox Singapore Pte. Ltd.  
u-blox AG  
Phone:  
E-mail:  
+1 703 483 3180  
info_us@u-blox.com  
Phone:  
E-mail:  
+65 6734 3811  
info_ap@u-blox.com  
Phone:  
E-mail:  
+41 44 722 74 44  
info@u-blox.com  
Support: support_ap@u-blox.com  
Regional Office West Coast:  
Support: support @u-blox.com  
Regional Office Australia:  
Phone:  
E-mail:  
Phone:  
E-mail:  
+1 408 573 3640  
info_us@u-blox.com  
+61 2 8448 2016  
info_anz@u-blox.com  
Technical Support:  
Support: support_ap@u-blox.com  
Phone:  
E-mail:  
+1 703 483 3185  
support @u-blox.com  
Regional Office China (Beijing):  
Phone:  
E-mail:  
+86 10 68 133 545  
info_cn@u-blox.com  
Support: support_cn@u-blox.com  
Regional Office China (Chongqing):  
Phone:  
E-mail:  
+86 23 6815 1588  
info_cn@u-blox.com  
Support: support_cn@u-blox.com  
Regional Office China (Shanghai):  
Phone:  
E-mail:  
+86 21 6090 4832  
info_cn@u-blox.com  
Support: support_cn@u-blox.com  
Regional Office China (Shenzhen):  
Phone:  
E-mail:  
+86 755 8627 1083  
info_cn@u-blox.com  
Support: support_cn@u-blox.com  
Regional Office India:  
Phone:  
E-mail:  
+91 80 4050 9200  
info_in@u-blox.com  
Support: support_in@u-blox.com  
Regional Office Japan (Osaka):  
Phone:  
E-mail:  
+81 6 6941 3660  
info_jp@u-blox.com  
Support: support_jp@u-blox.com  
Regional Office Japan (Tokyo):  
Phone:  
E-mail:  
+81 3 5775 3850  
info_jp@u-blox.com  
Support: support_jp@u-blox.com  
Regional Office Korea:  
Phone:  
E-mail:  
+82 2 542 0861  
info_kr@u-blox.com  
Support: support_kr@u-blox.com  
Regional Office Taiw an:  
Phone:  
E-mail:  
+886 2 2657 1090  
info_tw@u-blox.com  
Support: support_tw@u-blox.com  
UBX-15031506 - R02  
Production Information  
Contact  
Page 28 of 28  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY