UP1566PQKF [UPI]

Complete DDR3/ DDR4 Memory Power Solution Controller;
UP1566PQKF
型号: UP1566PQKF
厂家: uPI Semiconductor Corp.    uPI Semiconductor Corp.
描述:

Complete DDR3/ DDR4 Memory Power Solution Controller

双倍数据速率
文件: 总14页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
uP1566  
Complete DDR3/ DDR4 Memory Power Solution Controller  
Features  
General Description  
The uP1566 is a high performance synchronous buck † Synchronous Buck Controller (VDDQ)  
controller with 1.5Asource/sink LDO for memory system  
„
„
„
„
„
Wide Input Voltage Range from 4.5V to 26V  
Fast Load Transient Response  
RCOTTM Control Topology  
power. It also provides a buffered low noise reference  
VTTREF. The uP1566 has wide operation range from 4.5V  
to 26V for input voltage and 0.75V to 3.3V for memory  
output voltage.  
Soft-Off in S4/S5 States  
The synchronous buck of the uP1566 adopts uPI  
proprietary robust constant on-time (RCOTTM) PWM  
scheme that features easy-to-use, low external component  
count, fast transient response and quasi-constant  
frequency operation over the operation range.  
Lossless RDS(ON) Current Sensing for Inductor  
Current Limit  
„
„
Fixed 1.5V (DDR3), 1.8V (DDR2) Output or  
Adjustable from 0.75V to 3.3V  
The 1.5A source/sink LDO for VTT has fast transient  
response, requiring only two 10uF of ceramic output  
capacitors. In addition, the LDO supply input is available  
externally to significantly reduce the total power losses.  
The uP1566 supports all the sleep state controls, in S3  
state (suspend to RAM) VTT is disable and in S4/S5  
(suspend to disk) VDDQ, VTT and VTTREF are soft off.  
POK, OVP, UVP and Thermal Shutdown  
† LDO (VTT)  
„
„
1.5A Source/Sink Capability  
Requires Only Two 10uF Ceramic Output  
Capacitors  
„
„
„
Disable in S3 and Soft-Off in S4/S5  
Thermal Shutdown  
The uP1566 has complete functions including under  
voltage protection, over current protection, over voltage  
protection, power-up sequencing, power OK output, and  
thermal shutdown. The uP1566 is available in WQFN3x3-  
20L package.  
+
20mV Accuracy  
† Reference Voltage (VTTREF)  
+
„
„
20mV Accuracy  
+
Low Noise 10mA Output  
Applications  
† Desktop PCs, Notebooks, and Workstations  
Pin Configuration  
† Microprocessor and Chipset Supplies  
† DDR3/DDR3L/DDR4 Memory Power Supplies  
† SSTL-2 SSTL-18 and HSTL Bus Termination  
20 19 18 17 16  
VTTGND  
VTTSNS  
GND  
1
2
3
4
5
15 LGATE  
14 PGND  
13 CS  
Ordering Information  
21  
GND  
Order Number  
uP1566PQKF  
Package Type  
WQFN3x3-20L  
Top Marking  
u1566P  
VTTREF  
VDDQ  
12 PVCC  
11 VCC  
Note: uPI products are compatible with the current IPC/  
JEDEC J-STD-020 requirement. They are halogen-free,  
RoHS compliant and 100% matte tin (Sn) plating that are  
suitable for use in SnPb or Pb-free soldering processes.  
6
7
8
9
10  
WQFN3x3 20L  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
1
uP1566  
Typical Application Circuit  
VIN  
TON  
BOOT  
5V  
PVCC  
UGATE  
PHASE  
VVDDQ  
VCC  
LGATE  
CS  
POK  
POK  
FB  
S3  
S5  
S3  
S5  
VTTIN  
VDDQ  
VTTREF  
GND  
VTT  
VVTT  
PGND  
VTTGND VTTSNS  
Exposed Pad  
Adjustable Output Voltage Regulator for VDDQ  
VIN  
TON  
BOOT  
5V  
PVCC  
UGATE  
PHASE  
VVDDQ  
1.8V/1.5V  
VCC  
LGATE  
FB  
CS  
To 5V for DDRII  
To GND for DDRIII  
POK  
POK  
S3  
S5  
S3  
S5  
VTTIN  
VDDQ  
VTTREF  
VTT  
VVTT  
0.9V/0.75V  
GND  
VTTSNS  
PGND  
VTTGND  
Exposed Pad  
Fixed Output Voltage Regulator for VDDQ  
2
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Functional Pin Description  
Pin No. Pin Name Pin Function  
Power Ground for the VTT LDO.  
1
2
3
4
VTTGND  
VTTSNS  
GND  
VTT LDO Output Voltage Sense. Connect this pin to the VTT LDO output capacitors for  
VTT output voltage sensing.  
Signal Ground for the IC. All voltage levels are measured with respect to this pin.  
Buffered Reference Output. Bypass this pin with a 33nF ceramic capacitor to GND. This  
pin is capable of sourcing up to 10mA current for external loads.  
VTTREF  
Reference Input for VTT and VTTREF. Connect this pin to the VDDQ output. This pin is  
the discharge current sinking terminal of VDDQ output inS4/S5 states. WhenVDDQ regulator  
is in fixed output configuration (FB pin is tied to VCC or GND), this pin is the output voltage  
feedback input.  
5
VDDQ  
VDDQ Voltage Feedback Input. This pinis the inverting input of the error amplifier. Aresistor  
divider from output to GND is used to set the regulator output voltage. For fixed output voltage  
application, connect this pin to VCC for DDR2 power supply, or connect this pin to GND for  
DDR3 power supply.  
6
7
FB  
S3  
S3 Signal Input. Connect this pin to the computer system's SLP_S3 signal. This pin  
companied withS5 switches the IC's operating state from active (S0, S1/S2) to S3 and S4/S5  
sleep states.  
S5 Signal Input. Connect this pin to the computer system's SLP_S5 signal. This pin  
companied withS3 switches the IC's operating state from active (S0, S1/S2) to S3 and S4/S5  
sleep states.  
8
9
S5  
On-Time Setting Pin. Connect a resistor from this pin to VIN to set the on-time for the upper  
MOSFET.  
TON  
Power OK Indication. POK is the open-drain architecture that indicates the output voltage  
is ready or not. This pin is set to high impedance when the output voltage is within regulation  
and the soft-start ends. POK is pulled low immediately when either output is in soft-start,  
standby, shutdown or fault protection.  
10  
POK  
5V Power Supply Input. This pin provides power for internal circuit. Bypass this pin with a  
1uF ceramic capacitor to GND.  
11  
12  
13  
14  
VCC  
PVCC  
CS  
Supply Voltage for the Gate Drivers. Connect this pin to 5V voltage source and bypass it  
to GND with at least 1uF ceramic capacitor.  
Current Limit Threshold Setting. Connect this pin through the setting resistor to VCC for  
inductor current limit threshold setting.  
Power Ground. This pin is dedicated for lower MOSFET gate driver and should be directly  
connected to the source of the lower MOSFET with an isolated path.  
PGND  
Lower MOSFET Gate Driver Output. This pin is monitored by the shoot-through protection  
circuitry to determine when the lower MOSFET has turned off. Connect this pin to the gate of  
lower MOSFET.  
15  
16  
17  
LGATE  
PHASE  
Switch Node. This pin is used as the sink for the upper MOSFET gate driver. This pin is  
also monitored bythe shoot-throughprotectioncircuitryto determine whenthe upper MOSFET  
has turned off. Connect this pin to the source of the upper MOSFET and the drain of the lower  
MOSFET.  
Upper MOSFET Gate Driver Output. This pin is monitored by the shoot-through protection  
UGATE circuitry to determine when the upper MOSFET has turned off. Connect this pin to the gate of  
upper MOSFET.  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
3
uP1566  
Functional Pin Description  
Pin No. Pin Name Pin Function  
Bootstrap Supply for the Floating Upper MOSFET Gate Driver. The bootstrap capacitor  
provides the charge to turn on the upper MOSFET. Connect this bootstrap capacitor between  
BOOT pin and the PHASE pin to form a bootstrap circuit.  
18  
19  
20  
BOOT  
VTTIN  
VTT  
Input for the VTT LDO. This is the drain input to the power device that supplies current to  
the VTT pin.  
Output for the VTT LDO. This pin is the output of VTT. Typical value of two 10uF ceramic  
capacitors is recommended to reduce the effects of current transients on VOUT. A pull low  
resistance exists when the device is disabled.  
Exposed  
Pad  
Ground. The exposed pad dominates heat conduction path and should be well soldered to  
PCB for optimal thermal performance.  
Functional Block Diagram  
S3  
S5  
Output Enable  
and Discharge  
Enable  
POR  
VCC  
POK  
VPOK  
OV  
VOV  
VTTREF  
VTTIN  
PVCC  
VUV  
UV  
BOOT  
UGATE  
VTT  
Control  
Logic  
PHASE  
LGATE  
PGND  
VTTGND  
VTTSNS  
VDDQ  
Zero Cross  
Detection  
CS  
Current  
Limit  
Ramp  
Generator  
Soft-Start  
On-time  
Calculator  
FB  
Reference  
Voltage  
GND  
TON  
4
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Functional Description  
The uP1566 is a high performance synchronous buck  
controller with 1.5A source/sink VTT LDO for memory  
system power. It also provides the buffered low noise  
reference with 10mA capability.  
BOOT  
VIN  
UGATE  
PHASE  
VVDDQ  
The buck controller adopts RCOTTM PWM scheme that  
features easy-to-use, low external component count, fast  
transient response and quasi-constant frequency operation  
over the operation range.  
LGATE  
FB  
RFB1  
RFB2  
The 1.5Asource/sink VTT LDO has fast transient response  
that only requires two 10uF of ceramic output capacitors.  
GND  
VDDQ  
The reference voltage tracks VDDQ/2 within 1% of VDDQ.  
The VTT tracks VTTREF within 20mV at no load condition  
and within 40mV over all load conditions.  
Figure 1. VDDQ Output Voltage Setting  
On-Time Setting  
The uP1566 supports all the sleep state controls, and also  
has complete functions including over current protection,  
over voltage protection, thermal shutdown, power-up  
sequencing, power OK output, and thermal shutdown. The  
uP1566 is available in space-saving WQFN3x3-20L  
package.  
The uP1566 adopts a compensated constant-on-time  
control scheme. A resistor RTON connected to TON pin  
programs the constant on time according to equation:  
3.8×1012 × VDDQ×RTON  
=
TON  
VIN 0.5V  
Output Voltage Selection  
where RTON is in kΩ, VIN is the supply input voltage and  
VDDQ is the sensed output voltage.  
As shown in Table 1, uP1566 can support DDR2, DDR3,  
DDR3L,DDR4 power supply or adjustable output voltage  
by connecting resistor divider to the FB pin.  
700  
600  
500  
400  
300  
200  
Table 1. Output Voltage Selection  
FB  
VTTREF  
and VTT  
VDDQ  
Application  
Connection  
VCC  
GND  
1.8 V  
1.5 V  
VDDQ / 2  
VDDQ / 2  
DDR2  
DDR3  
DDR3L, DDR4  
0.75V < VVDDQ  
< 3.3V  
Resistor  
Divider  
Adjustable VDDQ / 2  
The uP1566 can adjust output voltage by connecting a  
resistive voltage divider between VDDQ and GND as  
shown in Figure 1. Choose RFB2 to be approximately 10kΩ  
and solve RFB1 using the equation as below:  
400  
500  
600  
700  
800  
900 1000  
RTON (kohm)  
Figure 2. Switching Frequency vs. RTON  
Soft Start and POK  
RFB1  
VDDQ = VREF ×(1+  
)
RFB2  
The soft-start function of the uP1566 for VDDQ is achieved  
by ramping up reference as shown in Figure 3. After S5 is  
set high, the VREF is rising. There is a time delay between  
VREF ramping up and VDDQ rising.After that, the uP1566  
initiates soft-start operation.  
where VREF is 0.75V (typ.).  
The POK is an open-drain output. The uP1566 asserts  
POK high impedance output if the output voltage is within  
regulation with a time delay after soft-start end. Anytime  
the fault protection is triggered, the POK signal will go low  
immediately.  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
5
uP1566  
Functional Description  
level is higher than VOCSET. When triggered, the over current  
limit will keep upper MOSFET off even the voltage loop  
commands it to turn on.  
VS5  
The output voltage will decrease if the load continuously  
demands more current than current limit level. Further  
increase in load current higher than the current limit level  
will eventually let VVDDQ decrease to trip UVP to shut down  
the uP1566.  
VVREF  
VVDDQ  
VPOK  
T1  
T2  
T3  
The current limit threshold is set by connecting a resistor  
from CS to VCC. The CS pin will sink a 10uA current  
Figure 3. VDDQ Soft Start and POK Timing  
source and create a voltage drop across RCS as the VOCSET  
.
VDDQ Light Load Operation  
VOCSET = 10uA x RCS.  
The uP1566 automatically reduces switching frequency  
at light load to maintain high efficiency. As the output  
current decreases from heavy-load condition, the inductor  
current will also be reduced, and eventually comes to the  
point that its valley touches zero current, which is the  
boundary between continuous conduction and  
discontinuous conduction modes. By emulating the  
behavior of diodes, the lower MOSFET allows only partial  
of negative current when the inductor freewheeling current  
reaches negative.As the load current is further decreased,  
it takes longer time to discharge the output capacitor to  
the level than requires the next ON cycle.  
When the voltage drop across the lower MOSFET equals  
the voltage across the setting resistor, the current limit  
will be activated.  
The voltage across PHASE and PGND pins is compared  
with VOCSET for current limit. The current limit level is  
calculated as:  
VOCSET IRIPPlE  
ILIM  
=
+
RDS(ON)  
2
where IRIPPLE is the peak-to-peak inductor ripple current at  
steady state.  
Outputs Control by S3, S5  
Over Voltage/Under Voltage Protection  
The uP1566 provides the output management for the  
sleep-mode signals such as SLP_S3 and SLP_S5 in the  
notebook PC system by monitoring S3, S5 status, the  
output control table is as shown in Table 2 below.  
The uP1566 monitors FB voltage to detect overvoltage  
and undervoltage condition of VDDQ output.  
When the FB voltage becomes higher than 115% of the  
target voltage, the OVP is triggered. Then, upper  
MOSFET is off and lower MOSFET is on. When the FB  
voltage is lower than 70% of the target voltage, the UVP  
is triggered after 30us fault detection. Then, upper  
MOSFET and lower MOSFET are latched off. This function  
is enabled 5ms after S5 go high to ensure startup.  
Table 2. S0, S3 and S5 State  
State  
S0  
S3  
S5 VDDQSNS VTTREF  
VTT  
On  
High High  
On  
On  
Off  
On  
On  
Off  
S3  
Low  
Low  
High  
Low  
Off (Hi-Z)  
S4  
S5  
Off  
VCC UVLO  
(discharge) (discharge) (discharge)  
The VCC has under voltage lockout protection (UVLO).  
When the VCC voltage is lower than UVLO threshold  
voltage, all functions are turned off. This is non-latch  
protection.  
Ouput Discharge Control  
The uP1566 is in non-tracking discharge mode when it  
enters S4/S5 state. In this non-tracking discharge mode,  
the uP1566 discharges the VDDQ and VTT outputs  
through the internal MOSFETs with 15Ω RDS(on) which are  
connected from VDDQ toGND, and from VTT to VTTGND,  
respectively.  
Thermal Protection  
The uP1566 monitors the temperature of itself. If the  
temperature exceeds typical 165OC, the uP1566 will be  
turned off. This is non-latch protection.  
Output Current Limit  
The synchronous buck VDDQ monitors the inductor valley  
current by lower MOSFET RDS(ON) when it turns on. The  
over current limit is triggered once the sensing current  
6
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Absolute Maximum Rating  
(Note 1)  
VCC, PVCC to GND ----------------------------------------------------------------------------------------------------------- -0.3V to +6V  
BOOT to PHASE ------------------------------------------------------------------------------------------------------------- -0.3V to +6V  
PHASE to GND  
DC ------------------------------------------------------------------------------------------------------------------------- -0.3V to +30V  
< 200ns -------------------------------------------------------------------------------------------------------------------- -5V to +38V  
UGATE to PHASE  
DC---------------------------------------------------------------------------------------------------------------------- -0.3V to +6V  
< 200ns ---------------------------------------------------------------------------------------------------------------- -5V to +7V  
LGATE to GND  
DC ------------------------------------------------------------------------------------------------------------------------ -0.3V to +6V  
< 200ns ----------------------------------------------------------------------------------------------------------------- -2V to +7V  
Other Pins ----------------------------------------------------------------------------------------------------------------------- -0.3V to +6V  
Storage Temperature Range ----------------------------------------------------------------------------------- -65OC to +150OC  
Junction Temperature ------------------------------------------------------------------------------------------------------- 150OC  
Lead Temperature Range(Soldering 10sec) ------------------------------------------------------------------------------------------- 260OC  
ESD Rating (Note 2)  
HBM(Human Body Mode)---------------------------------------------------------------------------------------------------------------2KV  
MM(Mechine Mode)-----------------------------------------------------------------------------------------------------------------------200V  
Thermal Information  
Package Thermal Resistance (Note 3)  
WQFN3x3-20L θJA------------------------------------------------------------------------------------------------------- 68°C/W  
WQFN3x3-20L θJC---------------------------------------------------------------------------------------------------------- 6°C/W  
Power Dissipation, PD @ TA = 25°C  
WQFN3x3-20L ------------------------------------------------------------------------------------------------------------------ 1.47W  
Recommended Operation Conditions  
(Note 4)  
Supply Input Voltage, VIN ------------------------------------------------------------------------------------------------------- 4.5V to 26V  
Control Voltage, VCC, PVCC ----------------------------------------------------------------------------------------------- 4.5V to 5.5V  
Operating Junction Temperature Range -------------------------------------------------------------------- -40OC to +125OC  
Operating Ambient Temperature Range -------------------------------------------------------------------------------- -40OC to +85OC  
Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device.  
These are for stress ratings. Functional operation of the device at these or any other conditions beyond  
those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. θJA is measured in the natural convection at TA = 25°C on a high effective thermal conductivity test board of  
JEDEC 51-7 thermal measurement standard.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Note 5. Guarantee by design.  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
7
uP1566  
Electrical Characteristics  
(VIN = 15V, VPVCC = VVCC = 5V, VTTIN is connected to VDDQ output, TA = +25OC unless otherwise specified.)  
Parameter  
Symbol Test Conditions  
Min  
Typ Max Unit  
Supply Current  
Supply current, VS3 = 0V, VS5 = 5V, force  
FB above regulation level (no switching).  
--  
--  
--  
--  
--  
470 1000  
uA  
VCC, PVCC Current  
VTTIN Current  
IVCC+PVCC  
Shutdown current, VS3 = VS5 = 0V  
1
0.1  
0.1  
1
10  
10  
1
Standby current, VS3 = 0V, VS5 = 5V. No  
load at VTT pin  
IVTTIN  
Shutdown current, VS3 = VS5 = 0V  
uA  
uA  
Bias current, VS3 = VS5 = 5V, no load at  
VTT pin.  
--  
Operating current, RTON = 1MΩ  
--  
--  
15  
--  
5
TON Current  
ITON  
Shutdown current, VS3 = VS5 = 0V  
0.1  
Reference Voltage  
VVCC = 4.5V to 5.5V  
Connect FB pin to VCC.  
Connect FB pin to GND.  
VFB = 0.75V.  
0.742 0.75 0.758  
FB Reference Voltage  
VREF  
--  
--  
1.8  
1.5  
0.1  
--  
--  
1
V
FB Input Bias Current  
IFB  
-1  
uA  
VTTREF Output  
Connect FB pin to VCC.  
--  
--  
0.9  
0.75  
--  
--  
--  
VTTREF Output Voltage  
VVTTREF  
V
Connect FB pin to GND.  
VVDDQ = VVTTIN = 1.8V , | IVTTREF | <10mA  
-18  
-15  
10  
18  
15  
--  
VTTREF Output Voltage  
Tolerance  
VVTTREFTO  
mV  
mA  
V
VDDQ = VVTTIN = 1.5V , | IVTTREF | <10mA  
--  
IVTTREFOCLSRC  
VTTREF Source Current Limit  
VVTTREF = 0V  
--  
VTT Output  
VVDDQ = VVTTIN = 1.2V/ 1.35V /1.5V/ 1.8V,  
IVTT = 0A  
-20  
-30  
--  
--  
20  
30  
V
VDDQ = VVTTIN = 1.2V/ 1.35V/ 1.5V /1.8V,  
VTT Output Voltage Tolerance  
VVTTTO  
mV  
| IVTT | < 1A  
VVDDQ = VVTTIN = 1.2V/ 1.35V, | IVTT | < 1.2A -40  
--  
40  
40  
3.6  
--  
V
VDDQ = VVTTIN = 1.5V/ 1.8V, | IVTT | < 1.5A  
-40  
1.6  
--  
--  
VVTT = (VVDDQ/ 2) x 0.95  
2.6  
1.3  
2.6  
1.3  
--  
VTT Source Current Limit  
VTT Sink Current Limit  
IVTTTOCLSRC  
A
A
V
VTT = 0V  
VVTT = (VVDDQ/ 2) x 1.05  
VVTT = VVDDQ  
1.6  
--  
3.6  
--  
IVTTTOCLSNK  
VTTSNS Leakage Current  
VTT Discharge Current  
IVTTSNSLK Sink current = 1mA  
IVTTDis VS3 = VS5 = 0V, VVDDQ = 0V, VVTT = 0.5V  
- 1  
10  
1
uA  
30  
--  
mA  
8
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Electrical Characteristics  
Parameter  
Symbol Test Conditions  
Min  
Typ Max Unit  
VDDQ  
VDDQ Input Resistance  
VDDQ Discharge Resistance  
On Time  
RVDDQ  
--  
--  
100  
15  
--  
--  
kΩ  
IVDDQDis VS5 = 0V  
Ω
On-Time  
TON  
RTON = 1MΩ, VVDDQ = 1.25V  
267  
--  
334  
80  
401  
--  
ns  
ns  
ns  
Minimum On-Time  
Minimum Off-Time  
Power OK  
TONMIN  
TOFFMIN  
250  
400  
550  
Measured at FB, with respect to  
reference voltage.  
87  
--  
90  
5
93  
--  
POK Rising Threshold  
VTHPOKH  
%
Hysteresis  
From FB forced below POK falling  
threshold to POK go low.  
POK Propagation Delay  
TPOK  
--  
2.5  
--  
us  
POK Leakage Current  
ILK_POK High state, POK = 5V  
VPOK_L Sink current = 1mA  
--  
--  
--  
--  
1
uA  
V
POK Output Low Voltage  
Logic Input Threshold  
High Level Input Voltage  
Low Level Input Voltage  
Logic Input Leakage Current  
Internal Bootstrap Switch  
0.4  
VIH  
VIL  
S3, S5 High  
S3, S5 Low  
2
--  
--  
--  
--  
--  
0.8  
1
V
V
VINLEAK S3, S5 = 5V/0V  
-1  
uA  
Internal Boost Charging Switch  
On-Resistance  
RBOOT PVCC to BOOT, IBOOT = 10mA  
--  
--  
80  
Ω
Ω
Output Drivers  
Source, VBOOT-VUGATE = 100mV  
RUGATE  
--  
--  
--  
--  
--  
2.5  
1.5  
2.5  
0.8  
40  
5
3
UGATE Resistance  
Sink, VUGATE-VPHASE = 100mV  
Source, VPVCC-VLGATE = 100mV  
RLGATE  
5
LGATE Resistance  
Ω
Sink, VLGATE = 100mV  
1.6  
--  
Dead Time  
TD  
VUGATE < 1V to VLGATE > 1V  
ns  
Protection: Current Limit  
CS Sink Current  
ICS  
VCS > 4.5V  
9
10  
11  
--  
uA  
ppm/-  
OC  
CS Current Temp. Coefficient  
OCP Comparator Offset  
TCICS  
On the basis of 25OC (Note 5)  
--  
4700  
VOCLoff GND - VPHASE, RCS = 5kΩ  
-15  
35  
--  
50  
200  
--  
15  
65  
mV  
mV  
mV  
GND - VPHASE, RCS = 5kΩ  
VOCL  
Current Limit Threshold  
Zero Current Threshold  
GND - VPHASE, RCS = 20kΩ  
170  
-5  
230  
10  
VZC  
GND - VPHASE  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
9
uP1566  
Electrical Characteristics  
Parameter  
Symbol Test Conditions  
Min  
Typ Max Unit  
Protection: UVP & OVP  
Measured at FB, with respect to  
reference voltage.  
OVP Trip Threshold  
OVP Propagation Delay  
UVP Trip Threshold  
VOVP  
110  
--  
115  
20  
120  
--  
%
us  
%
TOVPDEL Force FB above OVP trip threshold.  
Measured at FB, with respect to  
reference voltage.  
VUVP  
60  
70  
80  
UVP Propagation Delay  
UVP Enable Delay  
Protection: UVLO  
TUVPDEL Force FB below UVP trip threshold.  
TUVPEN From S5 signal go high  
20  
--  
30  
2
40  
--  
us  
ms  
Rising edge  
VUVLO  
3.9  
--  
4.2  
4.5  
--  
VCC UVLO Threshold  
V
Hysteresis  
0.12  
Protection: Thermal Shutdown  
Thermal Shutdown Threshold  
Shutdown temperature  
--  
--  
165  
10  
--  
--  
TSDN  
OC  
Hysteresis  
10  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Typical Operation Characteristics  
This page is intentionally left blank and will be updated later.  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
11  
uP1566  
Application Information  
PCB Layout Considerations  
„
Place the output capacitor for VTT should close to  
the pin with short and wide trace to avoid additional ESR  
and/or ESL of the trace.  
High speed switching and relatively large peak currents  
in a synchronous-rectified buck converter make the PCB  
layout a very important part of design. Fast current  
switching from one device to another in a synchronous-  
rectified buck converter causes voltage spikes across the  
interconnecting impedances and parasitic circuit elements.  
The voltage spikes can degrade efficiency and radiate  
noise that result in overvoltage stress on devices. Careful  
component placement layout and printed circuit board  
design minimizes the voltage spikes induced in the  
converter.  
„
Connect VTT to the positive of VTT output capacitors  
with a separate trace.  
„
VDDQ can be connected separately from VTTIN.  
Remember that this sensing potential is the reference  
voltage of VTTREF. Avoid any noise generative lines.  
„
Negative node of VTT output capacitor(s) and  
VTTREF capacitor should be tied together by avoiding  
common impedance to the high current path of the VTT  
source/sink current.  
Follow the layout guidelines for optimal performance of  
uP1566.  
„
GND(SignalGND) pin node represents the reference  
potential for VTTREF and VTT outputs. Connect GND to  
„
Keep the PCB trace PHASE node as short and wide negative nodes of VTT capacitor(s), VTTREF capacitor  
as possible.  
and VDDQ capacitor(s) with care to avoid additional ESR  
and/or ESL. GND and PGND (power ground) should be  
connected together at a single point.  
„
Add a sunbber circuit between PHASE and PGND to  
eliminate the high frequency voltage spike at PHASE node.  
„
Keep sensitive analog circuits such as VDDQ,  
VTTSNS and CS away from high voltage switching node  
such PHASE, UGATE and LGATE.  
„
Connect VDDQ output to VTTIN with short and wide  
trace. If other power source is used as VTTIN, a bypass  
input capacitor should be placed as close to VTTIN as  
possible.  
12  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
uP1566  
Package Information  
WQFN3x3-20L  
0.30 - 0.50  
1.40 - 1.80  
0.15 - 0.25  
2.90 - 3.10  
Bottom View - Exposed Pad  
Pin 1 mark  
0.70 - 0.80  
0.00 - 0.05  
0.20 REF  
Note  
1.Package Outline Unit Description:  
BSC: Basic. Represents theoretical exact dimension or dimension target  
MIN: Minimum dimension specified.  
MAX: Maximum dimension specified.  
REF: Reference. Represents dimension for reference use only. This value is not a device specification.  
TYP. Typical. Provided as a general value. This value is not a device specification.  
2.Dimensions in Millimeters.  
3.Drawing not to scale.  
4.These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm.  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  
13  
uP1566  
Important Notice  
uPI and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products  
and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete.  
uPI products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment. However, no responsibility is  
assumed by uPI or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use.  
No license is granted by implication or otherwise under any patent or patent rights of uPI or its subsidiaries.  
COPYRIGHT (C) 2012, UPI SEMICONDUCTOR CORP.  
uPI Semiconductor Corp.  
Sales Branch Office  
uPI Semiconductor Corp.  
Headquarter  
12F-5, No. 408, Ruiguang Rd. Neihu District,  
Taipei Taiwan, R.O.C.  
TEL : 886.2.8751.2062 FAX : 886.2.8751.5064  
9F.,No.5, Taiyuan 1st St. Zhubei City,  
Hsinchu Taiwan, R.O.C.  
TEL : 886.3.560.1666 FAX : 886.3.560.1888  
14  
uP1566-DS-P0000, Jan. 2013  
www.upi-semi.com  

相关型号:

UP1586

nullDual Synchronous Buck Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1586PQAG

nullDual Synchronous Buck Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1586QQAG

nullDual Synchronous Buck Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1586RQAG

nullDual Synchronous Buck Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1590

Dual Synchronous Buck Controller with 5V/3.3V 100mA LDOs for Notebook System Power

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1590PQKF

Dual Synchronous Buck Controller with 5V/3.3V 100mA LDOs for Notebook System Power

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1590QQKF

Dual Synchronous Buck Controller with 5V/3.3V 100mA LDOs for Notebook System Power

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP1590RQKF

Dual Synchronous Buck Controller with 5V/3.3V 100mA LDOs for Notebook System Power

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UPI

UP159A

159 Pin Molded Plastic Pin Grid Array NS Package Number UP159A

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NSC

UP1620

PNP SILICON POWER TRANSISTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UTC

UP1620G-O-T3P-T

PNP SILICON POWER TRANSISTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UTC

UP1620G-P-T3P-T

PNP SILICON POWER TRANSISTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
UTC