UP1664 [UPI]

2-Phase 1-Phase PWM Controller;
UP1664
型号: UP1664
厂家: uPI Semiconductor Corp.    uPI Semiconductor Corp.
描述:

2-Phase 1-Phase PWM Controller

文件: 总31页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
uP1664  
2-Phase + 1-Phase PWM Controller  
with I2C Digital Interface for VR12 CPUs  
Features  
General Description  
The uP1664 is a VR12 compliant CPU voltage regulator  
controller supports 2-phase for VCORE and 1-phase for VGT.  
The 2-phase VCORE regulator controller has integrated 12V  
MOSFET drivers, and the 1-phase VGT regulator controller  
has a logic level PWM output. This part adopts uPI  
proprietary RCOTTM (Robust Constant On-Time) topology  
to have fast transient response and smooth mode  
transition. The uP1664 features I2C digital interface. The  
integrated I2C interface programmability makes the uP1664  
high performance and easy design. Similar to digital based  
PWM controller, this device provides many VR parameters  
that are programmable by I2C interface to achieve design  
flexibility. Platform designer can define different power  
scenario for different current states to optimize the VR  
performance and efficiency. The uP1664 combines true  
differential remote voltage sensing, inductorDCR current  
sensing and adaptive voltage positioning to provide  
accurately regulated power for desktop CPUs. This device  
provides VROK indicator and complete fault protection  
functions, including over voltage, under voltage, over current,  
and under voltage lockout. The uP1664 is available in  
VQFN5X5-40Lpackage.  
†
†
Intel VR12 Compliant  
2-Phase for VCORE with Integrated 12V MOSFET  
Drivers  
†
†
1-Phase for VGT with Logic Level PWM Output  
RCOTTM Control Topology  
„
Easy Setting  
„
„
Smooth Mode Transient  
Fast Transient Response  
†
†
†
Differential Remote Voltage Sense  
Inductor DCR Current Sense for Droop  
MOSFET RDS(ON) Current Sense for Current  
Balance  
†
†
Programmable Vboot  
I2C Interface for Performance and Effciency  
Optimization  
„
Dynamic Programmable VR Parameters  
Programmable Protection Thresholds  
VR Reporting  
„
„
Ordering Information  
†
†
OVP, UVP, OCP, UVLO  
RoHS Compliant and Halogen Free  
Order Number  
uP1664PQGJ  
Package  
Remark  
VQFN5x5 - 40L  
Applications  
Note:  
(1) Please check the sample/production availability with  
uPI representatives.  
(2) uPI products are compatible with the current IPC/JEDEC  
J-STD-020 requirements. They are halogen-free, RoHS  
compliant and 100% matte tin (Sn) plating that are suit-  
able for use in SnPb or Pb-free soldering processes.  
† Desktop PC CPU Power Supplies  
Pin Configuration  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
STM  
VRHOT#  
BOOT2  
SDAC  
SCSN  
SCSP  
SPWM  
SDAT  
ALERT#  
SCLK  
VBOOT  
DAC  
UGATE2  
PHASE2  
LGATE2  
VCC12  
41  
GND  
LGATE1  
PHASE1  
UGATE1  
EAP  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
1
uP1664  
Typical Application Circuit  
12V  
VCC12  
GND  
BOOT1  
UGATE1  
PHASE1  
VCORE  
LGATE1  
BOOT PWM  
SPWM  
UGATE OD#  
PHASE VCC  
VGT  
BOOT2  
LGATE GND  
uP1959  
UGATE2  
PHASE2  
SCSP  
SCSN  
LGATE2  
ISEN1  
ISEN2  
SEAP  
SDAC  
CSP  
CSN  
VGTSS_SENSE  
VGTCC_SENSE  
SFBRTN  
SFB  
1Ω  
1Ω  
SCOMP  
SIMON  
VCC5  
EAP  
DAC  
5V  
FBRTN  
FB  
VSS_SENSE  
VCC_SENSE  
VBOOT  
TM  
COMP  
IMON  
STM  
VRHOT#  
SDAT  
SCLK  
ALERT#  
VROK  
EN  
SDA  
SCL  
2
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Pin Description  
No.  
Name  
Pin Function  
BOOT for Phase 1. Connect a capacitor from this pin to PHASE1, and also connect a  
bootstrap diode from 12V power supply to this pin to form a bootstrap circuit for upper  
gate driver of the phase 1.  
1
BOOT1  
Current Sensing for Phase 1. Connect a resistor from this pin to phase1 switching  
node for current sensing.  
2
3
ISEN1  
ISEN2  
Current Sensing for Phase 2. Connect a resistor from this pin to phase2 switching  
node for current sensing.  
VCORE Total Current Sense Positive Input.  
VCORE Total Current Sense Negative Input.  
4
5
CSP  
CSN  
VCORE Output Current Monitor. The output current of IMON pin is proportional to the total  
load current. Connect a resistor from this pin to GND. The IMON voltage is decoded by  
ADC for current reporting. The IMON voltage is also used for over current protection.  
6
IMON  
VGT Output Current Monitor. The output current of SIMON pin is proportional to the total  
load current. Connect a resistor from this pin to GND. The SIMON voltage is decoded by  
ADC for current reporting. The SIMON voltage is also used for over current protection.  
7
8
SIMON  
FBRTN  
VCORE Feedback Return. VCORE VID DAC and error amplifier reference for remote  
sensing of the output voltage.  
VCORE Feedback Pin. Error amplifier inverting input for remote sensing of the VCORE output  
voltage.  
9
FB  
VCORE Compensation Output. Error amplifier output and compensation point.  
10  
11  
COMP  
EAP  
VCORE Non-Inverting Input of the Error Amplifier. A resistor between EAP and the  
DAC sets the load line.  
VCORE DAC Output. Connect a capacitor from this pin to FBRTN to program the slew rate  
during soft start and dynamic VID transition.  
12  
13  
DAC  
Boot Voltage Setting. Connect a voltage divider from VCC5 to this pin to set boot-up  
voltage for VCORE and VGT regulators.  
VBOOT  
SVID Clock.  
SVID Alert#.  
SVID Data.  
14  
15  
16  
SCLK  
ALERT#  
SDAT  
VGT PWM Output. Connect this pin to the PWM input of external MOSFET driver for VGT  
voltage regulator.  
17  
SPWM  
VGT Total Current Sense Positive Input.  
VGT Total Current Sense Negative Input.  
18  
19  
SCSP  
SCSN  
V
GT DAC Output. Connect a capacitor from this pin to SFBRTN to program the slew rate  
20  
SDAC  
during soft start and dynamic VID transition.  
VGT Non-Inverting Input of the Error Amplifier. A resistor between SEAP and the  
SDAC sets the load line.  
21  
22  
SEAP  
VGT Compensation Output. Error amplifier output and compensation point.  
SCOMP  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
3
uP1664  
Functional Pin Description  
No.  
Name  
Pin Function  
V
GT Feedback Pin. Error amplifier inverting input for remote sensing of the VGT output  
23  
SFB  
voltage.  
VGT Feedback Return. VGT VID DAC and error amplifier reference for remote sensing of  
the output voltage.  
24  
25  
SFBRTN  
VROK  
VCORE Power Good Indication. This pin is an open-drain output that indicates the VCORE  
soft start process is complete and no fault happens.  
SMBUS Clock Input. This pin receives serial bus clock signal.  
26  
27  
SCL  
SDA  
SMBUS Data Input. This pin is input or output of serial bus data signal.  
VCORE Thermal Monitoring Input. Connect a NTC network from VCC5 to this pin for  
sensing VCORE VR temperature. uP1664 uses specific nonlinear A/D converter in thermal  
reporting. The recommended NTC thermistor is 10k, and the recommended lower  
dividing resistor is 6k.  
28  
TM  
Enable Control. Voltage of this pin higher than 0.8V enables both of the VCORE and VGT  
VR. If it is lower than 0.4V, both of the VCORE and VGT VR outputs will be disabled.  
29  
30  
EN  
Supply Input for the IC Control Logic. Connect this pin to a 5V voltage source with an  
RC filter.  
VCC5  
VGT Thermal Monitoring Input. Connect a NTC network from VCC5 to this pin for  
sensing VGT VR temperature. uP1664 uses specific nonlinear A/D converter in thermal  
reporting. The recommended NTC thermistor is 10k, and the recommended lower  
dividing resistor is 6k.  
31  
32  
STM  
V
CORE and VGT VRHOT Output. This pin is an open-drain output. When the VTM or VSTM  
VRHOT#  
reaches the level that the decoded temperature reaches Temp_Max (SVID Reg. 22h)  
setting, it will trigger VRHOT#.  
BOOT for Phase 2. Connect a capacitor from this pin to PHASE2, and also connect a  
bootstrap diode from 12V power supply to this pin to form a bootstrap circuit for upper  
gate driver of the phase 2.  
33  
34  
35  
BOOT2  
Upper Gate Driver for Phase 2. Connect this pin to the gate of phase 2 upper  
MOSFET.  
UGATE2  
Phase Pin for Phase 2. This pin is the return path of upper gate driver for phase 2.  
PHASE2 Connect a capacitor from this pin to BOOT2 to form a bootstrap circuit for upper gate  
driver of the phase 2.  
Lower Gate Driver for Phase 2. Connect this pin to the gate of phase 2 lower MOSFET.  
36  
37  
38  
LGATE2  
VCC12  
LGATE1  
Supply Input for Embedded MOSFET Drivers. Connect this pin to a 12V voltage  
source with an RC filter.  
Lower Gate Driver for Phase 1. Connect this pin to the gate of phase 1 lower MOSFET.  
Phase Pin for Phase 1. This pin is the return path of upper gate driver for phase 1.  
39  
40  
PHASE1 Connect a capacitor from this pin to BOOT1 to form a bootstrap circuit for upper gate  
driver of the phase 1.  
Upper Gate Driver for Phase 1. Connect this pin to the gate of phase 1 upper  
UGATE1  
MOSFET.  
Ground. The exposed pad must be soldered to a large PCB and connected to GND.  
Exposed Pad  
4
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Block Diagram  
SDAC  
DAC  
Soft Start  
&
Power OK  
SVID/I2C  
VCC12  
BOOT1  
POR  
VROK  
ICSN  
ISCSN  
UGATE1  
PHASE1  
Ramp  
Generator  
Gate  
Control  
Logic  
COMP  
EAP  
FB  
LGATE1  
On Time  
Generation  
and  
ICSN  
Current  
Balance  
IMON  
CSN  
CSP  
OCP  
BOOT2  
UGATE2  
3.4V  
Gate  
Control  
Logic  
PHASE2  
LGATE2  
UVP  
OVP  
EAP - 300mV  
EAP + 300mV  
SEAP - 300mV  
SEAP + 300mV  
UVP  
OVP  
ISEN1  
ISEN2  
S/H  
S/H  
SFB  
SEAP  
Ramp  
Generator  
SCOMP  
SCSP  
On Time  
Generation  
ISCSN  
SCSN  
GND  
SIMON  
OCP  
3.4V  
SPWM  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
5
uP1664  
Functional Description  
The uP1664 is a VR12 compliant CPU voltage regulator  
controller supports 2-phase for VCORE and 1-phase for VGT.  
Table 1. Boot-up Voltage Setting  
Boot-up Voltage, Vboot (V)  
BOOT Pin Voltage  
(% of VCC5)  
Control Loop  
The uP1664 adopts the uPI proprietary RCOTTM control  
technology. The RCOTTM uses the constant on-time  
modulator. The output voltage is sensed to compare with  
the internal high accurate DAC. The DAC is commanded  
by CPU through the SVIDinterface. The amplified error signal,  
VCOMP, is compared to the internal ramp to initiate an on-  
time to PWM. The RCOT features easy design, fast transient  
response and smooth mode transition and especially suits  
for powering the microprocessor.  
VCORE  
0
VGT  
0
0
9.375  
0
0.9  
1
15.625  
0
21.875  
0
1.1  
0
28.125  
0.9  
0.9  
0.9  
0.9  
1
Power Input and Power On Reset  
34.375  
0.9  
1
Figure 1 shows the power ready detection of the uP1664.  
The uP1664 receives supply input from VCC12 pin to provide  
current to gate drivers. The VCC12 pin is monitored for  
power on reset, the POR level is typically 4.2V at VCC12  
rising.An RC filter is required for locally bypassing the supply  
input pin. Place a 1uF ceramic capacitor physically near  
the VCC12 pin for locally bypassing the VCC12 voltage.  
The VCC5 pin receives a well-decoupled 5V voltage source  
to power the internal control circuit. Place a 0.1uF ceramic  
capacitor physically near the VCC5 pin for locally bypassing  
the VCC5 voltage. The VCC5 voltage is continuously  
monitored for power on reset. The POR level is typical 4.3V  
at VCC5 rising.  
40.625  
46.875  
1.1  
0
53.125  
59.375  
1
0.9  
1
65.625  
1
71.875  
1
1.1  
0
78.125  
1.1  
1.1  
1.1  
1.1  
84.375  
0.9  
1
90.625  
VCC5  
4.3V  
100  
1.1  
I2C Device Address  
VCC12  
4.2V  
The I2C device address of uP1664 is 40h.  
Reference Voltage VDAC Generator  
The uP1664 embeds precise bandgap reference circuit for  
VCORE and VGT regulators as shown in Figure 2. The output  
voltage of bandgap reference is 2.1V with respective to  
FBRTN. The uP1664 uses plural resistors to generate  
precise reference voltages ranging from 0.0V to 2.1V, with  
5mV increments. All the voltages connect to a multiplexer  
(MUX). The multiplexer outputs VDAC according to the SVID  
inputs. Please note that all the voltage values in Figure 2  
are referred to FBRTN. The VDAC generator for VGT is  
identical to that of VCORE except that its voltage values are  
referred to SFBRTN. The VDAC voltage is expressed as:  
Figure 1. Circuit for Power ReadyDetection  
Phase Number of Operation  
The VCORE controller only supports 2-phase configuration,  
and it cannot be hardwarely configured as a single-phase  
controller.  
Initial Parameters Setting  
The VBOOT pin sets the initial boot-up voltage for VCORE  
and VGT regulator. ICCMAX in SVID register 0x21 of VCORE  
VR is fixed at 96A and ICCMAX in SVID register 0x21 of  
VGT VR is fixed at 48A. The VCORE and VGT regulator boot-up  
voltage is shown in Table 1.  
VDAC = VID + Offset  
where VIDand Offset can be programmed by SVIDor I2C  
interface. Table 2 illustrates the VIDvoltages according to  
VID code.  
6
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Soft Start  
2.1V  
SVID  
Interface  
VBG  
The uP1664 has programmable soft start function. The soft  
start function limits the output voltage slew rate during both  
soft start and VIDon the fly (VID_OTF) periods. Take VCORE  
regulator as an example. As shown in Figure 4, the soft  
start buffer is a current limited buffer whose output current  
ISS is used to charge/discharge the soft start capacitor CSS  
when VDAC transition during soft start and VID_OTF. This  
limits the slew rate of VDAC. Consequently EAP and FB pin  
voltages will follow the slew rate of VDAC. The VGT regulator  
has similar mechanism and it works in the same way. The  
VDAC voltage level can be dynamically programmed by SVID/  
I2C interfaces.  
R1  
2.1V  
R2  
0V to 2.1V  
Step = 5mV  
FBRTN  
SMBUS  
Interface  
VDAC  
RN  
0V  
FBRTN  
Figure 2. VDAC Generation Circuit for VCORE  
State Transition  
FB  
VCOMP  
EAP  
Figure 3 illustrates the state diagram. The soft start cycle  
is initiated when POR transits from Low to High. VROK is  
set high when soft start cycle completes and no fault occurs.  
If any fault occurs, the uP1664 shutdown both power rails  
and latches off. The latch state can only be reset by POR.  
RDRP  
VDAC  
DAC  
SS  
Buffer  
CSS  
FBRTN  
Controller  
POR  
Calibrate  
and  
Initialize  
Figure 4. Circuit for Soft Start and Dynamic VID  
Power Sequence  
POR = L  
to reset  
VBOOT not 0V  
VBOOT = 0V  
The initial boot-up voltage Vboot can be set to 0V, 0.9V,  
1V or 1.1V. Take VCORE controller as an example, the power  
sequence of each case is described as follows. Figure 5  
Soft Start  
Ramp I  
Soft Start  
Ramp I  
shows a typical soft start waveforms of Vboot 0V. When  
EN= Low, theDAC pin is held atGND. The uP1664 takes  
about 2ms (T1) for initialization before the VDAC begins to  
rise to Vboot. The ramping up period T2 is decided byVboot,  
CSS and ISS, and it is calculated as:  
VDAC = VBOOT  
VDAC = VID + Offset  
POR = L  
to reset  
VROK = High VROK = High  
VDAC = VID + Offset  
Soft Start  
Ramp II  
V
BOOT × CSS  
T2 =  
,
ISS = 50uA  
ISS  
Protection  
The VROK is asserted with an extra 650us time delay T3.  
When the SetVID command is acknowledged, the VDAC  
starts to ramp to the new target level with a typical 600ns  
delay time. The ramping periodT4 is decided byVDAC, Vboot,  
CSS and ISS, and it is calculated as:  
Figure 3. StateDiagram  
(
VDAC Vboot × CSS  
)
T4 =  
ISS  
For SetVID_fast command, typical ISS = 200uA, and for  
SetVID_slow command, typical ISS = 50uA.  
The uP1664 asserts soft start end when VDAC is within 10mV  
of the target level and setsALERT# low.  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
7
uP1664  
Functional Description  
VID_OTF may occur under either light or heavy load  
conditions. This voltage change can be upward or  
downward. During a VID_OTF, the internal VDAC is a  
staircase waveform, and CSS is being charged/ discharged  
as a timing capcitor to filter the VDAC and also controls the  
slew rate.  
ENABLE  
SVID  
SetVID PKG  
VBOOT  
VCORE VR Controller:  
VOUT  
=
Output Voltage Differential Sensing  
VDAC  
The uP1664 uses output voltage differential sensing by a  
high-gain low-offset error amplifier as shown in Figure 7.  
The CPU voltage is sensed between the FB and FBRTN  
pins.Aresistor RFB connects FB pin and the positive remote  
sense pin of the CPU VCCP. FBRTN pin connects to the  
negative remote sense pin of CPU VCCN directly. The error  
ALERT#  
T3  
VROK  
T1  
T2  
T4  
amplifier compares the VFB with VEAP (= VDAC - ISUM x RDRP  
to regulate the output voltage.  
)
Figure 5. Soft Start Waveforms of Vboot 0V  
CFB  
Figure 6 shows a typical soft start waveforms of Vboot =  
0V. When EN = Low, the DAC pin is held at GND. The  
uP1664 takes about 2ms (T1) for initialization. When the  
SetVIDcommand is acknowledged, the VDAC starts to ramp  
to the new target level with a typical 600ns delay. The  
ramping period T2 is decided by the target VDAC, CSS and  
VCCP  
FB  
COMP  
Positive  
remote sense  
pin of CPU  
gm  
RFB  
EAP  
ISUM  
ISS, and it is calculated as:  
RDRP  
DAC  
VDAC  
V
DAC × CSS  
Nagative  
remote sense  
pin of CPU  
T2 =  
,
ISS = 50uA  
CSS  
FBRTN  
ISS  
The uP1664 asserts soft start end when VDAC is within 10mV  
of its target level and sets ALERT# low. The VROK is  
asserted with an extra 800us time delay T3.  
VCCN  
Figure 7. Circuit for VOUT Differential Sensing  
Channel Current Sensing  
As shown in Figure 8, the uP1664 extracts phase currents  
for current balance and per phase over current protection  
by the on-resistance of the low side MOSFET when it is  
on. The ISEN1 pin and ISEN2 pin sense the corresponding  
phase current when the low side MOSFETs are turned on.  
ENABLE  
SetVID PKG  
SVID  
ISENX = ((IPHASEX x RDS(ON)) + VDC) / RSENX  
VOUT  
VDAC/SS  
=
where ISENX is the sample and hold phase current signal,  
IPHASEX is phase current, RDS(ON) is the on-resistance of the  
low side MOSFET, andVDC is an offset voltage for the current  
balance circuit. The current balance circuit increases the  
duty cycle of the phase whose phase current is smaller  
than others and decrease the duty cycle of the phase whose  
phase current is larger than others.  
ALERT#  
VROK  
T1  
T2  
T3  
PHASE1 PHASE2  
Figure 6. Soft Start Waveforms of Vboot = 0V  
ISEN1  
ISEN1  
Dynamic VID Transition  
S/H  
Current  
Balance  
&
Per Phase  
OCP  
RSEN1  
The controller accepts SetVIDcommand input during normal  
operation. This allows theVR output voltage to change while  
the VR is running and supplying current to the load. This is  
commonly referred to as VID on-the-fly (VID_OTF). A  
ISEN2  
ISEN2  
S/H  
RSEN2  
VDC  
Figure 8. Phase Current Sensing and Current Balance  
8
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Total Load Current Sensing  
The IMONpin voltage is also decoded by the internalADC  
for digital output current reporting via SVIDinterface. When  
IMONpin voltage reaches 2.56V, the controller reports FFh  
and assert ICCMAX alert.  
The uP1664 provides low input offset current sense amplifier  
(CSA) to monitor the total load current flowing through  
inductor as shown in Figure 9. Output current of CSA(ISUM  
)
is used for adaptive voltage positioning (AVP), load current Output Over Current Protection  
monitoring and total load over current protection. In this  
inductor current sensing topology, RSW and CSUM must be  
selected according to the equation below:  
The VIMON pin voltage is continuously monitored for total  
load over current protection (OCP). If VIMON is higher than  
3.4V, OCP is triggered and both high side and low side  
MOSFET are turned off. VROK will go low immediately.  
The total load current protection has 20us delay time. The  
total load OCP is latch-off type and can be reset only by  
POR toggling.  
RSW × CSUM  
L
k ×  
=
RDC  
2
where RDC is theDCR of the output inductor, 2 is the phase  
number of operation . Theoretically, k should be equal to 1 Over Voltage Protection (OVP)  
to sense the instantaneous total load current. But in real  
application usually 1.2 ~ 1.8 is better for transient response.  
The over voltage protection monitors the output voltage via  
the FB pin. Once VFB exceeds VEAP + 300mV, OVP is  
triggered and latched. The controller will try to turn on low  
side MOSFET and turn off high side MOSFET to protect  
CPU. VROK will go low immediately. A20us delay is used  
in OVP detection circuit to prevent false trigger. Only re-  
start up can release OVP latch.  
I
OUT ×RDC  
RSUM  
2
ISUM  
=
RSW1  
RSW2  
Under Voltage Protection (UVP)  
PHASE1  
PHASE2  
The under voltage protection monitors the output voltage  
via the FB pin. After starting up and VCORE ramping up to  
Vboot, the controller initiates UVP function. Once VFB is  
lower than VEAP - 300mV, UVP is triggered and latched.  
The controller will try to turn off both high side and low side  
MOSFETs. VROK will go low immediately. A 5us delay is  
used in UVP detection circuit to prevent false trigger. Only  
re-start up can release UVP latch.  
CSP  
CSN  
ISUM  
CSUM  
1ohm  
1ohm  
VCORE  
VCORE  
RSUM  
Figure 9. Total Load Current Sensing  
Droop (Load Line) Tuning  
VGT VR Controller:  
The ISUM is mirrored to EAP pin as shown in Figure 7.  
This creates voltage drop across RDRP and makes VEAP as:  
Output Voltage Differential Sensing  
The controller uses output voltage differential sensing by a  
high-gain low-offset error amplifier as shown in Figure 10.  
The CPU voltage is sensed between the SFB and SFBRTN  
pins. A resistor RFB connects SFB pin and the positive  
remote sense pin of the CPU VGT. FBRTNpin connects to  
the negative remote sense pin of CPU VGTN directly. The  
error amplifier compares the VSFB with VSEAP (= VSDAC - ISSUM  
x RDRP) to regulate the output voltage.  
I
OUT ×RDC ×RDRP  
VEAP = VDAC ISUM ×RDRP = VDAC  
R
CSN × 2  
In steady state, output voltage is equal to VEAP. Thus, the  
output voltage decreasing linearly with IOUT is obtained. The  
loadline is defined as:  
VOUT  
IOUT  
R
DC ×RDRP  
SUM × 2  
LoadLine =  
=
CFB  
R
Output Current Monitoring  
VGT  
SFB  
SCOMP  
The ISUM is mirrored to IMON pin for ourput current monitoring  
and over current protection. The VIMON voltage is created  
that is proportional to the output current as:  
Positive  
remote sense  
pin of CPU  
gm  
RFB  
SEAP  
ISSUM  
I
MAX ×RDC  
2.56V  
RIMON  
RDRP  
=
SDAC  
VDAC  
R
SUM × 2  
Nagative  
remote sense  
pin of CPU  
CSS  
SFBRTN  
, where IMAX is maximum supported current of VCORE  
regulator.  
VGTN  
Figure 10. Circuit for VGT Differential Sensing  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
9
uP1664  
Functional Description  
Phase Current Sensing  
Output Current Monitoring  
The controller senses the phase current by DCR current The ISSUM is mirrored to SIMON pin for ourput current  
sensing technique for droop tuning, load current monitoring, monitoring and over current protection. The VSIMON voltage  
over current protection as shown in Figure 11. A RCSP/CCS is created that is proportional to the output current as:  
nework is paralleled with the output inductor. The time  
I
SIMAX ×RDC  
2.56V  
constants can be express as:  
=
RSIMON  
RSUM  
L
R
CSP × CCS = k ×  
, where ISMAX is maximum supported current of VGT  
regulator.  
RDC  
where L is the output inductor, RDC is its parasitic resistance  
and k is a constant. Theoretically, if k = 1, the sensed  
current signal ISSUM can be expressed as:  
The SIMON pin voltage is also decoded by the internal  
ADC for digital output current reporting via SVIDinterface.  
When SIMON pin voltage reaches 2.56V, the controller  
reports FFh and assert ICCMAX alert.  
IL ×RDC  
ISSUM  
=
Output Over Current Protection  
RCSN  
The VSIMON pin voltage is continuously monitored for total  
load over current protection (OCP). If VSIMON is higher than  
3.4V, OCP is triggered and SPWM output is set to high  
impedance state to turn off both high side and low side  
MOSFET. VROK will go low immediately. The over current  
protection has 20us delay time. The OCP is latch-off type  
and can be reset only by POR toggling.  
, where IL is the phase current. In real application, k =  
1.2~1.8 is recommended for better transient response.  
VIN  
L
RDC  
VGT  
Over Voltage Protection (OVP)  
The over voltage protection monitors the output voltage via  
the SFB pin. Once VSFB exceeds VSEAP + 300mV, OVP is  
triggered and latched. The SPWM output will go low to  
turn on low side MOSFET and turn off high side MOSFET  
to protect CPU. VROK will go low immediately. A 20us  
delay is used in OVP detection circuit to prevent false  
trigger. Only re-start up can release OVP latch.  
RCSP  
SCSP  
CSA  
CCS  
ISSUM  
RCSN  
SCSN  
Under Voltage Protection (UVP)  
The under voltage protection monitors the output voltage  
via the SFB pin. After starting up and VGT ramping up to  
Vboot, the controller initiates UVP function. Once VSFB is  
lower than VSEAP - 300mV, UVP is triggered and latched.  
The SPWM output is set to high impedance state to turn  
off both high side and low side MOSFET. VROK will go  
low immediately. A 5us delay is used in UVP detection  
circuit to prevent false trigger. Only re-start up can release  
UVP latch.  
Figure 11. Channel Current Sensing  
Droop (Load Line) Tuning  
The controller senses the inductor current to get the current  
ISSUM as:  
I
OUT ×RDC  
ISSUM  
=
RCSN  
The current ISSUM is mirrored to SEAP pin as shown in Figure Serial VID (SVID)  
10. This creates voltage drop across RDRP and makes VSEAP  
as:  
Serial VID is a three wire (SCLK, SDAT, Alert#) serial  
synchronous interface used to transfer power management  
information between a micoprocessor and a VRM. The  
link is between one microprocessor and multiple VR  
controller on the same bus. The standard SVIDcommands  
are listed in Table 3. The supported data and configuration  
registers are listed in Table 4.  
I
OUT ×RDC ×RDRP  
VSEAP = VSDAC ISSUM ×RDRP = VSDAC −  
RCSN  
In steady state, output voltage is equal to VSEAP. Thus, the  
output voltage decreasing linearly with IOUT is obtained. The  
loadline is defined as:  
VOUT  
IOUT  
R
DC ×RDRP  
LoadLine =  
=
RSUM  
10  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 2. Intel SVIDTable  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
SVID  
HEX  
VDAC  
(V)  
0x00 0.000 0x25 0.430 0x4A 0.615 0x6F 0.800 0x94 0.985 0xB8 1.165 0xDC 1.345  
0x01 0.250 0x26 0.435 0x4B 0.620 0x70 0.805 0x95 0.990 0xB9 1.170 0xDD 1.350  
0x02 0.255 0x27 0.440 0x4C 0.625 0x71 0.810 0x96 0.995 0xBA 1.175 0xDE 1.355  
0x03 0.260 0x28 0.445 0x4D 0.630 0x72 0.815 0x97 1.000 0xBB 1.180 0xDF 1.360  
0x04 0.265 0x29 0.450 0x4E 0.635 0x73 0.820 0x98 1.005 0xBC 1.185 0xE0 1.365  
0x05 0.270 0x2A 0.455 0x4F 0.640 0x74 0.825 0x99 1.010 0xBD 1.190 0xE1 1.370  
0x06 0.275 0x2B 0.460 0x50 0.645 0x75 0.830 0x9A 1.015 0xBE 1.195 0xE2 1.375  
0x07 0.280 0x2C 0.465 0x51 0.650 0x76 0.835 0x9B 1.020 0xBF 1.200 0xE3 1.380  
0x08 0.285 0x2D 0.470 0x52 0.655 0x77 0.840 0x9C 1.025 0xC0 1.205 0xE4 1.385  
0x09 0.290 0x2E 0.475 0x53 0.660 0x78 0.845 0x9D 1.030 0xC1 1.210 0xE5 1.390  
0x0A 0.295 0x2F 0.480 0x54 0.665 0x79 0.850 0x9E 1.035 0xC2 1.215 0xE6 1.395  
0x0B 0.300 0x30 0.485 0x55 0.670 0x7A 0.855 0x9F 1.040 0xC3 1.220 0xE7 1.400  
0x0C 0.305 0x31 0.490 0x56 0.675 0x7B 0.860 0xA0 1.045 0xC4 1.225 0xE8 1.405  
0x0D 0.310 0x32 0.495 0x57 0.680 0x7C 0.865 0xA1 1.050 0xC5 1.230 0xE9 1.410  
0x0E 0.315 0x33 0.500 0x58 0.685 0x7D 0.870 0xA2 1.055 0xC6 1.235 0xEA 1.415  
0x0F 0.320 0x34 0.505 0x59 0.690 0x7E 0.875 0xA3 1.060 0xC7 1.240 0xEB 1.420  
0x10 0.325 0x35 0.510 0x5A 0.695 0x7F 0.880 0xA4 1.065 0xC8 1.245 0xEC 1.425  
0x11 0.330 0x36 0.515 0x5B 0.700 0x80 0.885 0xA5 1.070 0xC9 1.250 0xED 1.430  
0x12 0.335 0x37 0.520 0x5C 0.705 0x81 0.890 0xA6 1.075 0xCA 1.255 0xEE 1.435  
0x13 0.340 0x38 0.525 0x5D 0.710 0x82 0.895 0xA7 1.080 0xCB 1.260 0xEF 1.440  
0x14 0.345 0x39 0.530 0x5E 0.715 0x83 0.900 0xA8 1.085 0xCC 1.265 0xF0 1.445  
0x15 0.350 0x3A 0.535 0x5F 0.720 0x84 0.905 0xA9 1.090 0xCD 1.270 0xF1 1.450  
0x16 0.355 0x3B 0.540 0x60 0.725 0x85 0.910 0xAA 1.095 0xCE 1.275 0xF2 1.455  
0x17 0.360 0x3C 0.545 0x61 0.730 0x86 0.915 0xAB 1.100 0xCF 1.280 0xF3 1.460  
0x18 0.365 0x3D 0.550 0x62 0.735 0x87 0.920 0xAC 1.105 0xD0 1.285 0xF4 1.465  
0x19 0.370 0x3E 0.555 0x63 0.740 0x88 0.925 0xAD 1.110 0xD1 1.290 0xF5 1.470  
0x1A 0.375 0x3F 0.560 0x64 0.745 0x89 0.930 0xAE 1.115 0xD2 1.295 0xF6 1.475  
0x1B 0.380 0x40 0.565 0x65 0.750 0x8A 0.935 0xAF 1.120 0xD3 1.300 0xF7 1.480  
0x1C 0.385 0x41 0.570 0x66 0.755 0x8B 0.940 0xB0 1.125 0xD4 1.305 0xF8 1.485  
0x1D 0.390 0x42 0.575 0x67 0.760 0x8C 0.945 0xB1 1.130 0xD5 1.310 0xF9 1.490  
0x1E 0.395 0x43 0.580 0x68 0.765 0x8D 0.950 0xB2 1.135 0xD6 1.315 0xFA 1.495  
0x1F 0.400 0x44 0.585 0x69 0.770 0x8E 0.955 0xB3 1.140 0xD7 1.320 0xFB 1.500  
0x20 0.405 0x45 0.590 0x6A 0.775 0x8F 0.960 0xB4 1.145 0xD8 1.325 0xFC 1.505  
0x21 0.410 0x46 0.595 0x6B 0.780 0x90 0.965 0xB5 1.150 0xD9 1.330 0xFD 1.510  
0x22 0.415 0x47 0.600 0x6C 0.785 0x91 0.970 0xB6 1.155 0xDA 1.335 0xFE 1.515  
0x23 0.420 0x48 0.605 0x6D 0.790 0x92 0.975 0xB7 1.160 0xDB 1.340 0xFF 1.520  
0x24 0.425 0x49 0.610 0x6E 0.795 0x93 0.980  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
11  
uP1664  
Functional Description  
Table 3. Stanstard SVIDCommands  
Master Payload Slave Payload  
Pre-  
emptive Call  
All  
Code  
Command  
Description  
Contents  
Contents  
00h not supported  
01h SetVID_Fast  
NA  
NA  
NA  
NA  
NA  
Set the target VID code, VR jumps to new  
VID target with controlled default fast slew  
rate 10mV/us.  
VID Code  
VID Code  
NA  
NA  
Yes  
Yes  
Set the target VID code, VR jumps to new  
VID target with controlled default slow slew  
rate 2.5mV/us.  
02h SetVID_Slow  
03h SetVID_Decay  
Yes  
Yes  
Yes  
Yes  
Set the target VID code, VR jumps to new  
VID target but does not control the slew  
rate. The output voltage decays at a rate  
proportional to the load current.  
VID Code  
NA  
Byte indicating  
power states  
04h  
05h  
06h  
07h  
SetPS  
NA  
NA  
NA  
Set power state  
No  
No  
No  
No  
Yes  
No  
No  
No  
Pointer of  
registers in  
data table  
SetRegADR  
SetRegDAT  
GetReg  
Set the pointer of the data register  
Write the contents to the data register  
New data  
register content  
Pointer of  
register in data  
table  
Specified  
Register  
Contents  
Slave returns the contents of the specified  
register as the payload.  
08h  
~
not supported  
NA  
NA  
NA  
NA  
No  
1Fh  
12  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 4. SVID Data and Configuration Registers  
Reg  
Addr  
Register Name  
Access  
Default  
Description  
00h  
01h  
02h  
05h  
Vender_ID  
Product_ID  
RO  
RO  
RO  
RO  
26h Vender ID  
14h Product ID  
Product_Revision  
Protocol_Version  
08h Product Revision  
01h SVID Protocol Version  
Bit mapped register, identifies the SVID VR capability  
and which of the optional telemetry are supported.  
06h  
VR_Capability  
RO  
81h  
10h  
11h  
Status_1  
Status_2  
R-M, W-PWM  
R-M, W-PWM  
00h Data register containing the status of VR.  
00h Data register containing the status of transmission.  
Data register showing temperature zone that have been  
entered.  
12h  
Temperature_Zone R-M, W-PWM  
Output_Current R-M, W-PWM  
Status_2_LastRead R-M, W-PWM  
00h  
Data register showing the output current that have been  
entered.  
15h  
1Ch  
21h  
--  
00h This register contains a copy of the Status_2.  
Data register containing the maximum current the  
platform supports.  
ICC_Max  
RO Platform  
RO Platform  
--  
Data register containing the maximum temperature the  
64h platform supports.  
22h  
24h  
25h  
Temp_Max  
Binary format in OC, i.e. 64h = 100OC.  
Data register containing the capability of fast slew rate  
0Ah the platform can sustain. Binary format in mV/us, i.e. 0Ah  
= 10mV/us  
SR_Fast  
SR_Slow  
RO  
RO  
Data register containing the capability of slow slew rate  
the platform can sustain. Binary format in mV/us, i.e. 03h  
= 3mV/us  
02h  
26h  
30h  
VBOOT  
RO Platform  
RW Master  
--  
Data register containing Vboot voltage in VID steps.  
This register is programmed by master and sets the  
maximum VID.  
VOUT_Max  
FBh  
31h  
32h  
33h  
VID_Setting  
Power_State  
Offset  
RW Master  
RW Master  
RW Master  
00h Data register containing currently programmed VID.  
00h Register containing the programmed power state.  
00h Set offset in VID steps.  
Bit mapped data register which configures multiple VRs  
behavior on the same bus.  
34h  
35h  
Multi_VR_Config  
SetRegADR  
RW Master  
RW Master  
00h  
Scratch pad register for temporary storage of the  
SetRegADR pointer register.  
--  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
13  
uP1664  
Functional Description  
I2C Interface  
IICF0~3  
The uP1664 includes an I2C interface to adjust output Frequency adjust of the 4 load current states: IICF0~3  
voltage, switching frequency and operating phase number define the frequency in load current states LCS0~3  
of VR controller according to the total load current respectively as show in Table 6.  
dynamically. We call itAuto Phase. The target ofAuto Phase  
is an optimal VR design for both power conversion efficiency  
and CPU performance. Operating parameters that can be  
adjusted through the I2C are summarized as Table 10.  
Table 6. IICF Setting Table  
IICF0~3  
000  
001  
010  
011  
Freq(Hz)  
150K  
VM0~2: Define the 4 load current states (LCS0~3)  
200K (Default)  
250K  
Voltage at IMON pin VIMON is converted to an 8-bit digital  
value as IMONAD[7:0] = VIMON/10mV. IMONAD[7:0] is  
compared with three I2C programmable registers VM0~2  
to determine the load current states LCS0~3 as:  
300K  
LCS0: VIMON > VM0, highest load current.  
LCS1: VM0 > VIMON > VM1  
LCS2: VM1 > VIMON > VM2  
LCS3: VM2 > VIMON, lowest load current.  
VM_Hys  
100  
101  
110  
350K  
400K  
450K  
111  
500K  
Define the VM0~2 and SVM0 state hysteresis VMx_Hys  
as shown in Table 5.  
IICP0~3  
Table 5. VHYS Setting Table  
Operating phase number of the 4 load current states: 4  
I2C programmable registers IICP0~3 define the operating  
phase number in load current states LCS0~3 respectively.  
VM0~2_Hys;  
VM0~2_Hys  
SVM0_Hys  
SVM0_Hys  
000  
IICPn[1:0] = [00] => 2-phase  
60mV (Default) 120mV (Default)  
IICPn[1:0] = [01] => 2-phase  
IICPn[1:0] = [10] => 2-phase  
001  
80mV  
100mV  
120mV  
140mV  
160mV  
180mV  
200mV  
160mV  
200mV  
240mV  
280mV  
320mV  
360mV  
400mV  
IICPn[1:0] = [11] => 1-phase  
010  
Misc2[7:0]  
Register Misc2[7:0] enables/disables the I2C functions as:  
Misc[7]=[1]=> enables VCORE Auto Phase function  
Misc[7]=[0]=> disables VCORE Auto Phase function  
Misc[6]=[1]=> enables VGT Auto Phase function  
Misc[6]=[0]=> disables VGT Auto Phase function  
Misc[5]=[1]=> enables VCORE PSM operation  
Misc[5]=[0]=> disables VCORE PSM operation  
Misc[4]=[1]=> enables VGT PSM operation  
Misc[4]=[0]=> disables VGT PSM operation  
Misc[3]=[1]=> enables VCORE load line  
Misc[3]=[0]=> disables VCORE load line  
Misc[2]=[1]=> enables VGT load line  
011  
100  
101  
110  
111  
VOFS0~3  
Define voltage offset of the 4 load current states: 4 I2C  
programmable registers VOFS0~3 define the voltage offset  
in load current status LCS0~3 respectively. See Table 11  
for the voltage offset table.  
Misc[2]=[0]=> disables VGT load line  
Misc[1]=[1]=> enables VCORE voltage offset  
Misc[1]=[0]=> disables VCORE voltage offset  
Misc[0]=[1]=> enables VGT voltage offset  
Misc[0]=[0]=> disables VGT voltage offset  
14  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
RCOMP[3:0]  
The register OCP[3:2] is used to adjust VCORE Per Phase  
OCP Level as:  
RCOMP is the internal compensation resistor. It can be  
programmed by 0x13/0x1F Register as shown in Table 7. OCP[3:2] = [00] => 60uA  
OCP[3:2] = [01] => 100uA  
I2C  
EAP  
OCP[3:2] = [10] => 140uA  
GM  
FB  
OCP[3:2] = [11] => 180uA  
The register OCP[1:0] is used to adjust VGT Total Current  
RCOMP  
OCP Level as:  
OCP[1:0] = [00] => 120%  
OCP[1:0] = [01] => 133%  
OCP[1:0] = [10] => 150%  
OCP[1:0] = [11] => 171%  
UV/OV[7:0]: VR UV/OV Protection Setting  
Table 7. RCOMP Setting Table  
Bit[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
RCOMP(ohm)  
5K  
The register OV/UV[7:6] is used to adjust VCORE UVP  
Level as:  
10K  
UV/OV[7:6] = [00] => 200mV  
UV/OV[7:6] = [01] => 300mV  
UV/OV[7:6] = [10] => 400mV  
UV/OV[7:6] = [11] => 500mV  
15K  
20K (Default)  
25K  
The register OV/UV[5:4] is used to adjust VCORE OVP  
Level as:  
30K  
UV/OV[5:4] = [00] => 200mV  
UV/OV[5:4] = [01] => 300mV  
UV/OV[5:4] = [10] => 400mV  
UV/OV[5:4] = [11] => 500mV  
35K  
40K  
45K  
The register OV/UV[3:2] is used to adjust VGT UVP Level  
as:  
50K  
UV/OV[3:2] = [00] => 200mV  
UV/OV[3:2] = [01] => 300mV  
UV/OV[3:2] = [10] => 400mV  
UV/OV[3:2] = [11] => 500mV  
55K  
60K  
65K  
The register OV/UV[1:0] is used to adjust VGT OVP Level  
as:  
70K  
UV/OV[1:0] = [00] => 200mV  
UV/OV[1:0] = [01] => 300mV  
UV/OV[1:0] = [10] => 400mV  
UV/OV[1:0] = [11] => 500mV  
TEMP_SHIFT[7:0]: TEMPMAX Shift  
75K  
80K  
LCHVID[7:0]:Latch VID  
The register LCHVID stores the 8 bits VID Code of user  
defined, when enable this function, VR will ignore CPU The register TEMP_SHIFT is used to shift SVID TEMPMAX  
SETVIDCommand.  
and achieve to adjust VRHOT# trigger point.  
OCP[5:0]: VR Over Current Protection Setting  
TEMP_SHIFT[7]: VCORE’s VRHOT#  
The register OCP[5:4] is used to adjust VCORE Total 0: Enable  
Current OCP Level as:  
1:Disable VCORE VRHOT# and force SVID0x12 = 00h  
TEMP_SHIFT[6]: VGT’s VRHOT#  
OCP[5:4] = [00] => 120%  
OCP[5:4] = [01] => 133%  
OCP[5:4] = [10] => 150%  
OCP[5:4] = [11] => 171%  
0: Enable  
1:Disable VGT VRHOT# and force SVID0x12 = 00h  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
15  
uP1664  
Functional Description  
TEMP_SHIFT[5:3]:VCORE SVID 0X12 Shift left by LSB:  
IICLL0~3  
000: No Shift 001: Shift 1LSB 010: Shift 2LSB 011: Shift Load line adjust of 4 load current state: IICLL0~3 define  
3LSB 100:Shift 4LSB 101:Shift 5LSB 110:Shift 6LSB the DC load line slope in load current state LCS0~3  
111:Shift 7 LSB  
respectively as shown in Table 9.  
TEMP_SHIFT[2:0]:VCORE SVID 0X12 Shift left by LSB:  
Table 9. IICLL0~3  
000: No Shift 001: Shift 1LSB 010: Shift 2LSB 011: Shift  
3LSB 100:Shift 4LSB 101:Shift 5LSB 110:Shift 6LSB  
111:Shift 7 LSB  
IICL0~3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Load Line  
0%  
GCOMP[3:0]: OTA Transconductance Gain Setting  
12.5%  
25%  
The register GCOMP[3:0] is used to adjust error amp  
Gm(uA/V) for loop gain as show in Table 8.  
GCOMP[3] = [0] => 2020uA/V(default value)  
37.5%  
50%  
I2C  
EAP  
GM  
FB  
62.5%  
75%  
RCOMP  
87.5%  
100% (Default)  
112.5%  
125%  
Table 8. GCOMP Setting Table  
Bit[3] = 1, Bit[2:0]  
GCOMP(uA / V)  
X1 (Default)  
X1.17  
137.5%  
150%  
000  
001  
010  
011  
100  
101  
110  
111  
162.5%  
175%  
X1.31  
X1.45  
187.5%  
X1.69  
X0.81  
X0.6  
X0.33  
16  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
Description  
Set IMON voltage level 0,VIMON > level 0 => LCS0 (highest current  
state)  
0x01  
0x02  
0x03  
VM0[7:0]  
VM1[7:0]  
VM2[7:0]  
R/W  
R/W  
R/W  
00h  
00h Set IMON voltage level 1,VIMON > level 1 => LCS1  
Set IMON voltage level 2,VIMON > level 2 => LCS2, VIMON < level 2  
=> LCS3 (lowest current state).  
00h  
Bit[2:0] :Set VCORE VM0 Hysteresis  
000:60mV ; 001=80mV ;010=100mV; 011=120mV ;  
VM0_Hys[2:0]  
VM1_Hys[6:4]  
100=140mV;101=160mV;110=180 mV;111=200mV  
Bit[6:4] : Set VCORE VM1 Hysteresis  
000:60mV ; 001=80mV ;010=100mV; 011=120mV ;  
100=140mV;101=160mV;110=180 mV;111=200mV  
0x04  
0x05  
0x06  
R/W  
R/W  
R/W  
00h  
Bit[6:4] :Set VGT SVM0 Hystersis  
000:120mV ; 001=160mV ;010=200mV; 011=240mV ;  
100=280mV;101=320mV;110=360 mV;111=400mV  
Bit[2:0] :Set Vcore VM2 Hysteresis  
000:60mV ; 001=80mV ;010=100mV; 011=120mV ;  
100=140mV;101=160mV;110=180 mV;111=200mV  
SVM0_Hys[6:4]  
VM2_Hys[2:0]  
00h  
VCORE Operation Phase Number Setting  
Bit[7:6] : Phase Number of LCS3  
Bit[5:4] : Phase Number of LCS2  
IICP3[7:6];IICP2[5:4]  
IICP1[3:2];IICP0[1:0]  
00h  
Bit[3:2] : Phase Number of LCS1  
Bit[1:0] : Phase Number of LCS0  
00: 2 phase 01: 2 phase,10: 2 phase 11:1 phase  
0x07  
0x08  
0x09  
0x0A  
VOFS0[7:0]  
VOFS1[7:0]  
VOFS2[7:0]  
VOFS3[7:0]  
R/W  
R/W  
R/W  
R/W  
00h VCORE Voltage offset of LCS0. 5mV/ step.  
00h VCORE Voltage offset of LCS1. 5mV/ step.  
00h VCORE Voltage offset of LCS2. 5mV/ step.  
00h VCORE Voltage offset of LCS3. 5mV/ step.  
IICF0[6:4]: freq of LCS0; IICF1[2:0]: freq of LCS1;  
11h 000: 150K; 001:200K;010:250K;011:300K;100:350K;101:400K;  
110:450K;111:500K  
0x0B IICF0[6:4]; IICF1[2:0]  
0x0C IICF2[6:4]; IICF3[2:0]  
R/W  
R/W  
IICF2[6:4]: freq of LCS2; IICF3[2:0]: freq of LCS3  
11h 000: 150K; 001:200K;010:250K;011:300K;100:350K;101:400K;  
110:450K;111:500K  
IICLL0[7:4] load line setting of LCS0 (default 100%, min 0%, max  
IICLL0[7:4]  
0x0D  
187.5% ,12.5%/step)  
IICLL1[3:0] load line setting of LCS1 (default 100%, min 0%, max  
187.5% ,12.5%/step)  
R/W  
R/W  
88h  
IICLL1[3:0]  
IICLL2[7:4] load line setting of LCS2 (default 100%, min 0%, max  
187.5% ,12.5%/step)  
IICLL3[3:0] load line setting of LCS3 (default 100%, min 0%, max  
IICLL2[7:4]  
0x0E  
88h  
IICLL3[3:0]  
187.5% ,12.5%/step)  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
17  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
Description  
VCORE PHASE1 Current Balance Gain Adjust  
PH1_IGAIN[7]: 0:Disable 1:Enable  
Bit[6:4]:  
000:50%; 001:62.5%; 010:75%; 011:87.5%; 100:100%;  
101:112.5%; 110:125%; 111:137.5%  
VCORE PHASE2 Current Balance Gain Adjust  
PH2_IGAIN[3]: 0:Disable 1:Enable  
Bit[2:0]:  
PH1_IGAIN[7:4]  
PH2_IGAIN[3:0]  
0x0F  
R/W  
00h  
000:50%; 001:62.5%; 010:75%; 011:87.5%; 100:100%;  
101:112.5%; 110:125%; 111:137.5%  
VCORE PHASE1 Current Balance Offset Adjust  
Bit[7]: "1" => Offset enable, "0" => Offset disable  
Bit[6:4]:  
000:0mV ; 001:3mV; 010:6mV; 011:9mV; 100:12mV; 101:15mV;  
110:18mV; 111:21mV  
VCORE PHASE2 Current Balance Offset Adjust  
Bit[3]: "1" => Offset enable, "0" =>Offset disable  
Bit[2:0]:  
PH1_IOS[7:4]  
PH2_IOS[3:0]  
0x11  
R/W  
00h  
03h  
000:0mV ; 001:3mV; 010:6mV; 011:9mV; 100:12mV; 101:15mV;  
110:18mV; 111:21mV  
VCORE RCOMP Resistor  
RCOMP=5K(1+[3:0])  
0x13  
0x14  
RCOMP[3:0]  
GCOMP[3:0]  
R/W  
R/W  
VCORE OTA Gm  
00h Bit3:0 is default 2020 uA / V  
GCOMP[3:0]  
0x15  
0x16  
LCHVID[7:0]  
IOUT[7:0]  
R/W  
R
00h VCORE Latch VID Register.  
--  
--  
VCORE SVID 0x15 Reading.  
VCORE Voltage Reading.  
0x17 VCORE_VOUT[7:0]  
0x19 VCORE_OC[7:0]  
R
Bit[7]: "1" Enable "0" Disable  
Bit[6:0]: Mapping to SVID 0x15 Register.  
R/W  
00h  
18  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
SVM0[7:0]  
Description  
Set SIMON voltage level 0, SIMON > level 0 => SLCS0(highest  
load current state), SIMON < level 0 => SLCS1  
0x1A  
R/W  
00h  
0x1B  
0x1C  
VSOFS0[7:0]  
VSOFS1[7:0]  
R/W  
R/W  
00h VGT Voltage Offset of SLCS0. 5mV/step  
00h VGT Voltage Offset of SLCS1. 5mV/step  
IICSF0[6:4]: freq of SLCS0 IICSF1[2:0]: freq of SLCS1  
11h 000: 150K; 001: 200K; 010: 250K; 011: 300K; 100: 350K;  
101: 400K; 110: 450K; 111: 500K  
IICSF0[6:4]  
IICSF1[2:0]  
0x1D  
0x1E  
R/W  
R/W  
IICSLL0[7:4] load line setting of SLCS0 (default 100%, min 0%,  
IICSLL0[7:4]  
IICSLL1[3:0]  
max 187.5%, 12.5%/step)  
IICSLL1[3:0] load line setting of SLCS1 (default 100%, min 0%,  
88h  
max 187.5%, 12.5%/step)  
VGT RSCOMP Register  
03h  
0x1F  
0x20  
VGT_RCOMP[3:0]  
VGT_GCOMP[3:0]  
R/W  
R/W  
RSCOMP = 5K (1+[3:0])  
VGT OTA Gm  
00h Bit3:0 is default 2020 uA / V  
GCOMP[3:0]  
0x21  
0x22  
0x23  
VGT_LCHVID[7:0]  
VGT_IOUT[7:0]  
VGT_VOUT[7:0]  
R/W  
R
00h VGT Latch VID Register.  
--  
--  
VGT SVID 0X15 Reading.  
VGT Voltage Reading.  
R/W  
Bit[7]: "1" Enable "0" Disable  
Bit[6:0]: Mapping to SVID 0x15 Register.  
0x24  
VGT_OC[7:0]  
R/W  
00h  
VCORE Total Current OCP:  
Bit[5:4]:  
00: 120%, 01: 133%, 10: 150%, 11: 171%  
VCORE Per Phase OCP:  
0x25  
OCP[5:0]  
R/W  
11h Bit[3:2]:  
000: 60uA, 01: 100uA, 10: 140uA, 11: 180uA  
VGT: Total Current OCP:  
Bit[1:0]:  
000: 120%, 01: 133%, 10: 150%, 11: 171%  
UVP Setting:  
Bit [7:6] : VCORE  
00:200mV 01:300mV 10:400mV 11:500mV  
Bit [3:2] : VGT  
00:200mV 01:300mV 10:400mV 11:500mV  
OVP Setting:  
0x26  
UV/OV[7:0]  
R/W  
55h  
Bit [5:4] : VCORE  
00:200mV 01:300mV 10:400mV 11:500mV  
Bit [1:0] : VGT  
00:200mV 01:300mV 10:400mV 11:500mV  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
19  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
Description  
Bit[7]: "0" Disable immediately asserting ALERT#  
after +/- 2VID command is received  
"1" Enable immediately asserting ALERT#  
after +/- 2VID command is received  
Bit[6]: "0" VGT Power Enable  
"1" VGT Power Disable  
Bit[5]: "0" VCORE SVID 0x31 V DAC follow SVID  
"1" VCORE SVID 0x31 V DAC ignore SVID  
Bit[4]: "0" VCORE SVID 0x32 Power state follow SVID  
"1" VCORE SVID 0x32 Power state ignore SVID  
Bit[3]: "0" VCORE SVID 0x33 Offset follow SVID  
"1" VCORE SVID 0x33 Offset ignore SVID  
Bit[2]: "0" VGT SVID 0x31 V DAC follow SVID  
"1" VGT SVID 0x31 V DAC ignore SVID  
Bit[1]: "0" VGT SVID 0x32 Power state follow SVID  
"1" VGT SVID 0x32 Power state ignore SVID  
Bit[0]: "0" VGT SVID 0x33 Offset follow SVID  
"1" VGT SVID 0x33 Offset ignore SVID  
0x27  
Misc1[7:0]  
R/W  
00h  
Bit[7]: "0" Disable VCORE Auto Phase  
"1" Enable VCORE Auto Phase  
Bit[6]: "0" Disable VGT Auto Phase  
"1" Enable VGT Auto Phase  
Bit[5]: "0" Disable VCORE PSM  
"1" Enable VCORE PSM  
Bit[4]: "0" Disable VGT PSM  
"1" Enable VGT PSM  
Bit[3]: "0" Disable VCORE Load line  
"1" Enable VCORE Load line  
Bit[2]: "0" Disable VGT Load line  
"1" Enable VGT Load line  
0x28  
Misc2[7:0]  
R/W  
0Ch  
Bit[1]: "0" Disable VCORE Offset  
"1" Enable VCORE Offset  
Bit[0]: "0" Disable VGT Offset  
"1" Enable VGT Offset  
Bit[7]: "0" Enable VCORE's VRHOT#  
"1" Disable VCORE's VRHOT#  
Bit[6]: "0" Enable VGT's VRHOT#  
"1" Disable VGT's VRHOT#  
0x2C  
Bit[5:3]: VCORE SVID 0x12 Shift left by LSB  
000: No Shift 001: Shift 1LSB 010: Shift 2LSB 011: Shift 3LSB  
100: Shift 4LSB 101: Shift 5LSB 110: Shift 6LSB 111: Shift 7LSB  
Bit[2:0]: VGT SVID 0x12 Shift left by LSB  
TEMP_SHIFT[7:0]  
R/W  
00h  
000: No Shift 001: Shift 1LSB 010: Shift 2LSB 011: Shift 3LSB  
100: Shift 4LSB 101: Shift 5LSB 110: Shift 6LSB 111: Shift 7LSB  
20  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
Description  
VCORE TB In PS0  
Bit[7]: "0" Disable "1" Enable  
Bit[6:4]:  
000: 0mV 001: 10mV 010: 20mV 011: 30mV 100: 40mV  
101: 50mV 100: 60mV 111: 70mV  
VCORE TB In PS1/2  
0x2D  
VCORE_TB[7:0]  
R/W  
00h  
Bit[3]: "0" Disable "1" Enable  
Bit[2:0]:  
000: 0mV 001: 10mV 010: 20mV 011: 30mV 100: 40mV  
101: 50mV 100: 60mV 111: 70mV  
VCORE TB Vtrig Limit in PS0  
Bit[7]: "0" Disable "1" Enable  
Bit[6:4]:  
000: 1.25V 001: 1.35V 010: 1.45V 011: 1.55V 100: 1.65V  
101: 1.75V 110: 1.85V 111: 1.95V  
VCORE TB Vtrig Limit in PS1/2  
Bit[3]: "0" Disable "1" Enable  
Bit[2:0]:  
0x2E VCORE_TRIG[7:0]  
R/W  
R/W  
R/W  
00h  
000: 1.25V 001: 1.35V 010: 1.45V 011: 1.55V 100: 1.65V  
101: 1.75V 110: 1.85V 111: 1.95V  
VCORE TB ON Time  
Bit[5:3] PS0 TB ON Time  
000: 200nS 001: 300nS 010: 400nS 011: 500nS 100: 600nS  
0x2F  
VCORE_TON[5:0]  
00h 101: 700nS 110: 800nS 111: 900nS  
Bit[2:0] PS1/2 TB ON Time  
000: 200nS 001: 300nS 010: 400nS 011: 500nS 100: 600nS  
101: 700nS 110: 800nS 111: 900nS  
VGT TB In PS0  
Bit[7]: "0" Disable "1" Enable  
Bit[6:4]:  
000: 0mV 001: 10mV 010: 20mV 011: 30mV 100: 40mV  
101: 50mV 100: 60mV 111: 70mV  
VGT TB In PS1/2  
0x30  
VGT_TB[7:0]  
00h  
Bit[3] "0" Disable "1" Enable  
Bit[2:0]:  
000: 0mV 001: 10mV 010: 20mV 011: 30mV 100: 40mV  
101: 50mV 100: 60mV 111: 70mV  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
21  
uP1664  
Functional Description  
Table 10. I2C Configuration Registers  
Access Default  
Reg  
Addr  
Register Name  
VGT_TRIG[7:0]  
Description  
VGT TB Vtrig Limit in PS0  
Bit[7]: "0" Disable "1" Enable  
Bit[6:4]:  
000: 1.25V 001: 1.35V 010: 1.45V 011: 1.55V 100: 1.65V  
101: 1.75V 110: 1.85V 111: 1.95V  
VGT TB Vtrig Limit in PS1/2  
0x31  
R/W  
00h  
Bit[3]: "0" Disable "1" Enable  
Bit[2:0]:  
000: 1.25V 001: 1.35V 010: 1.45V 011: 1.55V 100: 1.65V  
101: 1.75V 110: 1.85V 111: 1.95V  
VGT TB ON Time  
Bit[5:3] PS0 TB ON Time  
000: 200nS 001: 300nS 010: 400nS 011: 500nS 100: 600nS  
0x32  
0x33  
VGT_TON[5:0]  
ITB[7:0]  
R/W  
R/W  
00h 101: 700nS 110: 800nS 111: 900nS  
Bit[2:0] PS1/2 TB ON Time  
000: 200nS 001: 300nS 010: 400nS 011: 500nS 100: 600nS  
101: 700nS 110: 800nS 111: 900nS  
VCORE internal testing bit:  
10mV x Bit[7:4]  
VGT internal testing bit:  
68h  
10mV x Bit[3:0]  
0x48  
0xB2  
Version ID  
CHIP ID  
R
R
08h  
20h  
22  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Functional Description  
Table 11. Offset Voltage Table vs. VOFSn[7:0]  
VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
160  
165  
170  
175  
180  
185  
190  
195  
200  
205  
210  
215  
220  
225  
230  
235  
240  
245  
250  
255  
260  
265  
270  
275  
280  
285  
290  
295  
300  
305  
310  
315  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
320  
325  
330  
335  
340  
345  
350  
355  
360  
365  
370  
375  
380  
385  
390  
395  
400  
405  
410  
415  
420  
425  
430  
435  
440  
445  
450  
455  
460  
465  
470  
475  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
480  
485  
490  
495  
500  
505  
510  
515  
520  
525  
530  
535  
540  
545  
550  
555  
560  
565  
570  
575  
580  
585  
590  
595  
600  
605  
610  
615  
620  
625  
630  
635  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
23  
uP1664  
Functional Description  
Table 11. Offset Voltage Table vs. VOFSn[7:0]  
VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV) VOFSn[7:0] Voffset (mV)  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
-640  
-635  
-630  
-625  
-620  
-615  
-610  
-605  
-600  
-595  
-590  
-585  
-580  
-575  
-570  
-565  
-560  
-555  
-550  
-545  
-540  
-535  
-530  
-525  
-520  
-515  
-510  
-505  
-500  
-495  
-490  
-485  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
-480  
-475  
-470  
-465  
-460  
-455  
-450  
-445  
-440  
-435  
-430  
-425  
-420  
-415  
-410  
-405  
-400  
-395  
-390  
-385  
-380  
-375  
-370  
-365  
-360  
-355  
-350  
-345  
-340  
-335  
-330  
-325  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
-320  
-315  
-310  
-305  
-300  
-295  
-290  
-285  
-280  
-275  
-270  
-265  
-260  
-255  
-250  
-245  
-240  
-235  
-230  
-225  
-220  
-215  
-210  
-205  
-200  
-195  
-190  
-185  
-180  
-175  
-170  
-165  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
-160  
-155  
-150  
-145  
-140  
-135  
-130  
-125  
-120  
-115  
-110  
-105  
-100  
-95  
-90  
-85  
-80  
-75  
-70  
-65  
-60  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
24  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Absolute Maximum Rating  
(Note 1)  
Supply InputVoltage, VCC12 ------------------------------------------------------------------------------------------------------------ -0.3Vto +15V  
BOOTx to PHASEx -------------------------------------------------------------------------------------------------------------------------- -0.3V to +15V  
PHASEx to GND  
DC --------------------------------------------------------------------------------------------------------------------------------------- -0.7V to 15V  
< 200ns ---------------------------------------------------------------------------------------------------------------------------------- -8V to 30V  
BOOTx toGND  
DC ----------------------------------------------------------------------------------------------------------------------- -0.3V to VCC12 + 15V  
< 200ns ------------------------------------------------------------------------------------------------------------------------------- -0.3V to 42V  
UGATEx to PHASEx  
DC --------------------------------------------------------------------------------------------------------------- -0.3V to (BOOTx - PHx +0.3V)  
<200ns -------------------------------------------------------------------------------------------------------- -5V to (BOOTx - PHx + 0.3V)  
LGATEx toGND  
DC ------------------------------------------------------------------------------------------------------------------- -0.3V to + (VCC12 + 0.3V)  
<200ns -------------------------------------------------------------------------------------------------------------------- -5V to VCC12 + 0.3V  
Other Pins --------------------------------------------------------------------------------------------------------------------------------------- -0.3V to +6V  
StorageTemperatureRange -------------------------------------------------------------------------------------------------------------- -65OCto+150OC  
JunctionTemperature --------------------------------------------------------------------------------------------------------------------------------------- 150OC  
LeadTemperature (Soldering, 10 sec) -------------------------------------------------------------------------------------------------------------- 260OC  
ESD Rating (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------------------------------------------- 2kV  
MM(MachineMode) -------------------------------------------------------------------------------------------------------------------------------- 200V  
Thermal Information  
Package Thermal Resistance (Note 3)  
VQFN5x5 - 40LθJA ------------------------------------------------------------------------------------------------------------------------ 36OC/W  
VQFN5x5 - 40LθJC ------------------------------------------------------------------------------------------------------------------------- 3OC/W  
PowerDissipation, PD @ TA = 25OC  
VQFN5x5-40L --------------------------------------------------------------------------------------------------------------------------------------- 2.78W  
Recommended Operation Conditions  
(Note 4)  
Operating JunctionTemperature Range --------------------------------------------------------------------------------------------- -40OC to +125OC  
OperatingAmbientTemperature Range ---------------------------------------------------------------------------------------------- -40OC to +85OC  
Supply InputVoltage, VCC5 ----------------------------------------------------------------------------------------------------------------- 4.5Vto 5.5V  
Supply InputVoltage, VCC12 -------------------------------------------------------------------------------------------------------------- 10.8Vto 13.2V  
Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device.  
These are for stress ratings. Functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may remain possibility to affect device reliability.  
Note 2. Devices are ESDsensitive. Handling precaution recommended.  
Note 3. θJA is measured in the natural convection at TA = 25OC on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
25  
uP1664  
Electrical Characteristics  
(VCC5 = 5V, VCC12 = 12V, TA = 25OC, unless otherwise specified)  
Parameter  
Supply Input (VCC5, VCC12)  
VCC5 POR Threshold  
VCC5 POR Hysteresis  
Supply Input Current  
Symbol  
Test Conditions  
Min  
Typ Max Units  
VVCC5_POR  
4
--  
--  
4
4.3  
0.2  
9
4.5  
--  
V
V
VVCC5_HYS VCC5 falling  
IVCC5  
--  
mA  
V
VCC12 POR Threshold  
VCC12 POR Hysteresis  
Supply Input Current  
VVCC12_POR  
4.2  
0.2  
0.15  
4.5  
--  
VVCC12_HYS VCC12 falling  
--  
--  
V
IVCC12  
EN = 0V, No Switching  
--  
mA  
Error Amplifier (VCORE and VGT)  
Offset Voltage  
VOS(EA)  
-1  
--  
--  
1
--  
--  
mV  
uA/V  
MHz  
Trans-Conductance  
GM  
2020  
10  
Gain Bandwidth Product  
GBWEA Guarantee by Design  
--  
DAC Voltage Accuracy (DAC, SDAC)  
1.0V to 1.52V  
0.8V to 1.0V  
0.25V to 0.8V  
-0.5  
-5  
--  
--  
--  
0.5  
5
%
mV  
mV  
DAC Output Accuracy  
VDAC  
-8  
8
Soft Start (VCORE and VGT)  
SetVID_Fast  
SetVID_Slow  
180  
45  
200  
50  
240  
58  
uA  
uA  
Soft Start Current  
ISS  
EN Input  
Input Low  
Input High  
Input Current  
VIL  
VIH  
--  
0.8  
-1  
--  
--  
--  
0.4  
--  
V
V
1
uA  
PWM On-Time Setting (VCORE and VGT)  
On Time Accuracy  
TON  
VIN = 12V, VID = 1.2V, default setting  
--  
500  
--  
ns  
Current Sense Amplifier (VCORE and VGT)  
Offset Voltage  
VOS(CSA) No Load, Guarantee by Design  
-1  
-10  
--  
--  
--  
1
10  
--  
mV  
nA  
Input Bias Current  
Gain Bandwidth Product  
GBW(CSA) Guarantee by Design  
10  
MHz  
26  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Electrical Characteristics  
Parameter  
PWM Output (SPWM)  
Symbol  
Test Conditions  
Min  
Typ Max Units  
Output Low Voltage  
VOL(PWM) ISINK = 4mA  
--  
4.7  
-1  
--  
--  
--  
0.2  
--  
V
V
Output High Voltage  
VOH(PWM) ISOURCE = 4mA  
High Impedance State Leakage  
VR Ready Output (VROK)  
Output Low Voltage  
V
PWM = 0V to 5V  
1
uA  
VOL  
ISINK = 4mA  
VROK = 5V  
--  
--  
--  
--  
0.2  
1
V
Output High Leakage  
V
uA  
Current Monitoring (IMON, SIMON)  
IMON Current Mirror Accuracy  
SIMON Current Mirror Accuracy  
Droop  
I
MON to ICSN ratio  
95  
95  
100  
100  
105  
105  
%
%
ISIMON to ISCSN ratio  
Current Mirror Ratio for VCORE  
Current Mirror Ratio for VGT  
Thermal Monitoring (TM, STM)  
I
EAP /ICSN  
95  
95  
100  
100  
105  
105  
%
%
ISEAP /ISCSN  
VTM = 4.097V to 4.307V  
-3  
-3  
--  
--  
3
3
OC  
OC  
A/D Accuracy  
V
STM = 4.097V to 4.307V  
Gate Drivers  
Upper Gate Source  
Upper Gate Sink  
RUG_SRC IUG = -80mA  
RUG_SNK IUG = 80mA  
RLG_SRC ILG = -80mA  
RLG_SNK ILG = 80mA  
TDT  
--  
--  
--  
--  
--  
2
4
3
ns  
1.5  
2
Lower Gate Source  
Lower Gate Sink  
4
0.8  
30  
1.6  
--  
Dead Time  
Protection (VCORE and VGT)  
OVP Threshold  
VOVP  
TOVP  
VUVP  
TUVP  
VOCP  
TOCP  
IOCP  
VFB - VEAP, VSFB - VSEAP  
250  
--  
300  
20  
300  
5
350  
--  
mV  
us  
mV  
us  
V
OVP Delay Time  
UVP Threshold  
VEAP - VFB, VSEAP - VSFB  
250  
--  
350  
--  
UVP Delay Time  
Total Current OCP Threshold  
Total Current OCP Delay Time  
Channel Current OCP Threshold  
Channel Current OCP Delay Time  
VIMON, VSIMON  
3.35  
--  
3.4  
20  
60  
20  
3.45  
--  
us  
uA  
us  
Measure IISEN1, I  
--  
--  
ISEN2  
TOCP2  
--  
--  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
27  
uP1664  
Typical Operation Characteristics  
This page is intentionally left blank and will be updated later.  
28  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
Application Information  
This page is intentionally left blank and will be updated later.  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
29  
uP1664  
Package Information  
VQFN5x5 - 40L  
0.30 - 0.50  
3.20 - 3.80  
4.90 - 5.10  
0.15 - 0.25  
Bottom View - Exposed Pad  
Pin 1 mark  
0.80 - 1.00  
0.0 - 0.05  
0.20 REF  
Note  
1.Package Outline UnitDescription:  
BSC: Basic. Represents theoretical exact dimension or dimension target  
MIN: Minimum dimension specified.  
MAX: Maximum dimension specified.  
REF: Reference. Represents dimension for reference use only. This value is not a device specification.  
TYP. Typical. Provided as a general value. This value is not a device specification.  
2.Dimensions in Millimeters.  
3.Drawing not to scale.  
4.These dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm.  
30  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
uP1664  
ImportantNotice  
uPI and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products  
and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete.  
uPI products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment. However, no responsibility  
is assumed by uPI or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of uPI or its subsidiaries.  
COPYRIGHT (C) 2013, UPI SEMICONDUCTOR CORP.  
uPI Semiconductor Corp.  
Headquarter  
uPI Semiconductor Corp.  
Sales Branch Office  
9F.,No.5, Taiyuan 1st St. Zhubei City,  
Hsinchu Taiwan, R.O.C.  
12F-5, No. 408, Ruiguang Rd. NeihuDistrict,  
Taipei Taiwan, R.O.C.  
TEL : 886.3.560.1666 FAX : 886.3.560.1888  
TEL : 886.2.8751.2062 FAX : 886.2.8751.5064  
uP1664-DS-F00A0, Apr. 2018  
www.upi-semi.com  
31  

相关型号:

UP1664PQGJ

2-Phase 1-Phase PWM Controller
UPI

UP1665P

2-Phase Synchronous-Rectified Buck Controller for Mobile GPU Power
UPI

UP1665PQKF

2-Phase Synchronous-Rectified Buck Controller for Mobile GPU Power
UPI

UP1666Q

2-Phase Synchronous-Rectified Buck Controller
UPI

UP1666QQKF

2-Phase Synchronous-Rectified Buck Controller
UPI

UP1715

High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1715PRU8

High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1715PSA8

High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1715R

High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1715RSA8

High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1722P

1.5MHz, 1.3A, High-Efficiency Synchronous-Rectified Buck Converter
UPI

UP1722PMA5-00

1.5MHz, 1.3A, High-Efficiency Synchronous-Rectified Buck Converter
UPI