L2572 [UTC]

WIDEBAND PLL FM DEMODULATOR; 宽带锁相环调频解调器
L2572
型号: L2572
厂家: Unisonic Technologies    Unisonic Technologies
描述:

WIDEBAND PLL FM DEMODULATOR
宽带锁相环调频解调器

文件: 总14页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UNISONIC TECHNOLOGIES CO., LTD  
L2572  
LINEAR INTEGRATED CIRCUIT  
WIDEBAND PLL FM  
DEMODULATOR  
„
DESCRIPTION  
As a wideband PLL FM demodulator, the UTC L2572 is  
intended for application in satellite tuners primarily.  
The device includes all the necessary elements, with  
external oscillator sustaining network and the exception of  
loop feedback components, to form a PLL system operating  
at frequencies up to 800MHz completely.  
SOP-16  
An AFC with window adjust (whose output signal can be  
used to correct for any frequency drift at the head end local  
oscillator) is provided.  
*Pb-free plating product number: L2572L  
„
FEATURES  
* Constant voltage and constant current control  
* Single chip PLL system for wideband FM demodulation  
* Simple low component count application  
* Allows for application of threshold extension  
* Fully balanced low radiation design  
* High operating input sensivity  
* Improved VCO stability with variations in supply or  
temperature  
* AGC detect and bias adjust  
* 75video output drive with low distortion levels  
* Dynamic self biasing analog AFC  
* Full ESD Protection  
„
ORDERING INFORMATION  
Ordering Number  
Package  
Packing  
Normal  
Lead Free Plating  
L2572-S16-R  
L2572-S16-T  
L2572L-S16-R  
L2572L-S16-T  
SOP-16  
SOP-16  
Tape Reel  
Tube  
www.unisonic.com.tw  
Copyright © 2007 Unisonic Technologies Co., Ltd  
1 of 14  
QW-R102-032.A  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
PIN CONFIGURATION  
„
PIN DESCRIPTION  
PIN NO.  
PIN NAME  
AFC PUMP  
I/O  
DESCRIPTION  
Current pump, integrating the signal pulses into a DC voltage  
Set the AFC deadband voltages corresponding the frequency  
GND  
1
2
I
I
AFC WINDOW ADJUST  
VEE  
3
4
OSCILLATOR+  
OSCILLATOR-  
AGC BIAS  
I
I
Oscillator positive signal  
Oscillator negative signal  
Set the AGC bias  
5
6
I
7
AGC OUTPUT  
RF INPUT  
O
I
Output AGC DC voltage  
Input signal  
8
9
RF INPUT  
I
Input signal  
10  
11  
12  
13  
14  
15  
16  
VIDEO OUTPUT  
VIDEO FEEDBACK-  
VIDEO+  
O
I
Output video signal  
Feedback the video negative signal  
Video positive signal  
O
O
I
VIDEO-  
Video negative signal  
VIDEO FEEDBACK+  
VCC  
Feedback the video positive signal  
Input VCC  
AFC OUTPUT  
O
Output AFC DC voltage  
UNISONIC TECHNOLOGIES CO., LTD  
2 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
BLOCK DIAGRAM  
UNISONIC TECHNOLOGIES CO., LTD  
3 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
TEST CONFIGURATION  
BASE BAND VIDEO 1V pp  
VIDEO GENERATOR  
TV SAT TEST TX  
ROHDE &  
ROHDE &  
SCHWARZ SGPF  
SCHWARZ SFZ  
RF CARRIER FREQ 479.5MHz  
FM MODULATION 13.5MHz PP  
PREEMPHASISED VIDEO  
TEST APPLICATION BOARD  
See Fig. 1 for details  
MONTFORD TEST OVEN  
PRE EMPHASISED BASE BAND VIDEO  
VIDEO AMPLIFIER/  
DE EMPHASISED NETWORK  
DE EMPHASISED BASE BAND VIDEO 1V pp  
VIDEO ANALYSER  
ROHDE & SCHWARZ UAF  
Using the above test configuration the video drive characteristics measurements were made. In the Electrical  
Characteristics Table the maximum figures recorded coincide with extremes of supply voltage and high temperatures.  
There’s no adjustment to the recorded figures has been made to compensate for the effects of temperature on the  
external components of the application test board, in the varactor diodes particularly. Attention to temperature  
compensation of the external circuitry will result in performance figures closer to the stated typical figures if operation  
of the device at high ambient temperatures is envisaged.  
UNISONIC TECHNOLOGIES CO., LTD  
4 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
ABSOLUTE MAXIMUM RATINGS (VEE=0V)  
PARAMETER  
SYMBOL  
VCC  
RATINGS  
-0.3~7  
UNIT  
V
Supply Voltage  
RF Input Voltage  
RF Input DC Offset  
Oscillator ± DC Offset  
Video ± DC Offset  
VIN(RF)  
2.5  
VP-P  
V
VIN_RF(OFF)  
VOSC(OFF)  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
-0.3~VCC+0.3  
250  
V
V
VVDO(OFF)  
Video Feedback ± DC Offset  
Video Output DC Offset  
AFC Pump DC Offset  
V
V
V
VAFC(OFF)  
AFC Disable DC Offset  
AFC Deadband DC Offset  
AGC Bias DC Offset  
V
V
V
VAGC(OFF)  
PD  
AGC Output DC Offset  
Power Dissipation (at 5.5V)  
ESD Protection - Pin 1 to 15  
ESD Protection - Pin 16  
Junction Temperature  
Storage Temperature  
V
mW  
kV  
kV  
°C  
°C  
2
ESD  
1.7  
TJ  
150  
TSTG  
-55~125  
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.  
Absolute maximum ratings are stress ratings only and functional device operation is not implied.  
„
THERMAL DATA  
Parameter  
SYMBOL  
ΘJA  
RATINGS  
111  
Unit  
°C/W  
°C/W  
Junction to Ambient  
Junction to Case  
ΘJC  
41  
„
ELECTRICAL CHARACTERISTICS  
(Ta = -20°C~+80°C, VCC = +4.5V ~ +5.5V. Either design or production test guarantee the electrical characteristics.  
Unless otherwise stated they apply within the specified ambient temperature and supply voltage.)  
PARAMETER  
Supply Current  
SYMBOL  
VCC  
CONDITIONS  
MIN TYP MAX UNIT  
36  
40  
mA  
Operating Frequency  
Input Sensitivity  
FOPR  
300  
800  
MHz  
dBm  
dBm  
Preamp limiting  
-40  
Input Overload  
0
VCO Sensitivity (dF/dV)  
Refer to Fig. 1  
25  
32  
25  
39 MHz/V  
Refer to Fig. 1 with13.5MHz p-p  
deviation  
VCO linearity  
%
VCO Supply Stability  
See note 5  
2.0  
20  
MHz/V  
KHz/°C  
VCO Temperature Stability  
See note 5  
Differential loop filter  
Single ended loop filter  
0.5  
0.25  
Phase Detector Gain  
V/rad  
Loop Amplifier Input Impedance  
Loop Amplifier Output Impedance  
Loop Amplifier Open Loop Gain  
Loop Amplifier Gain Bandwidth Product  
Loop Amplifier Output Swing  
RIN  
450 570 700  
ROUT(LOOP)  
25  
38  
dB  
BW  
240  
1.2  
MHz  
Vp-p  
Video Drive Output Impedance  
ROUT(VIDEO)  
55  
75  
95  
UNISONIC TECHNOLOGIES CO., LTD  
5 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
ELECTRICAL CHARACTERISTICS(Cont.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN TYP MAX UNIT  
VIDEO DRIVE  
Luminance Nonlinearity  
Differential Gain  
1Kload, See note 3 and 4  
75Kload, See note 3 and 4  
75Kload, See note 3 and 4  
See notes 1, 3 and 4  
1Kload, See note 2 and 4  
1Kload, See note 3 and 4  
1Kload, See note 3 and 4  
Maximum load voltage drop 2V  
1.9  
0.5  
1.0  
5
2.5  
3
%
%
Degree  
dB  
dB  
%
Differential Phase  
Intermodulation  
Signal/noise  
Tilt  
-40  
66  
72  
0.3  
0.4  
3
2
Baseline Distortion  
%
AGC Output Current  
IOUT  
IBIAS  
10  
0
400  
250  
400  
µA  
AGC Bias Current  
µA  
400µA gives 1.5V deadband  
window  
0
µA  
AFC Window Current  
AFC Charge Pump Current  
AFC Leakage Current  
50  
µA  
µA  
V
ILEAK  
With charge pump disabled  
10  
AFC Output Saturation Voltage  
VO(SAT) AFC output enabled  
0.4  
Note 1. Input modulation’s product f 1 at 4.43MHz, 13.5MHz p–p deviation and f 2 at 6MHz p–p deviation, (PAL  
chroma and sound subcarriers).  
2. To output rms noise in 6MHz bandwidth with no input modulation, ratio of output video signal with input  
modulation at 1MHz, 13.5MHz p–p deviation.  
3. Output voltage is 600mV pk–pk and input test signal pre–emphasised video 13.5MHz p–p deviation.  
4. See page 4  
5. Assuming ambient temperature of +20°C and operating frequency of 479.5MHz set with VCC @ 5.0V. Only  
applies to application shown in Fig. 1 also refer to Fig. 4.  
UNISONIC TECHNOLOGIES CO., LTD  
6 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
APPLICATION CIRCUIT  
UNISONIC TECHNOLOGIES CO., LTD  
7 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
FUNCTIONAL DESCRIPTION  
The UTC L2572 as optimized for application in satellite receiver systems and requiring a minimum external  
component count is a wideband PLL FM demodulator. It includes all the elements required to construct a phase  
locked loop circuit, with the exception of an AFC detector circuit for generation of error signal to correct for any  
frequency drift in the outdoor unit local oscillator, and tuning components for the local oscillator contains a block  
diagram and Fig. 1 contains the typical application.  
Fig. 2-1 contains the internal pin connections  
In applications the second satellite IF frequency of typically 479.5 or 402MHz is fed to the RF preamplifier normally,  
which depending on application and layout has a working sensitivity of typically -40 dBm. An RF level detect circuit,  
which generates an AGC signal that can be used for controlling the gain of the IF amplifier stages is contained in the  
preamplifier, so it can be maintaining a fixed level to the RF input of the UTC L2572, for optimum threshold  
performance. The AGC circuit’s bias point can be adjusted to cater for device input power and variation in AGC line  
voltage requirement. Fig. 5 shows the typical AGC curves are shown in. That the device is recommended that be  
operated with an input signal between -30 and -35dBm. That can ensure optimum linearity and threshold  
performance, and when over the typical sensitivity of -40dBm can give a good safety margin.  
The preamplifier’s output is fed to the mixer section which is of balanced design for low radiation. In this stage the  
RF signal is mixed with which is generated by an on–board oscillator, the local oscillator frequency. The oscillator  
block is optimized for high linearity over the normal deviation range and uses an external varactor tuned sustaining  
network. Fig. 3 contains a typical frequency versus voltage characteristic for the oscillator. Fig.4 shows the typical  
stability that he loop output is designed to compensate for first order temperature variation effects.  
The mixer’s output is then fed to the loop amplifier around which feedback is applied to effect loop transfer  
characteristic. Feedback could be applied either in single ended or differential mode; both modes should give the  
same loop response if the appropriate phase detector gains are assumed in calculating loop filters.  
The loop amplifier drives a 75output impedance buffer amplifier, which could be connected to a 75load and  
used to drive a high input impedance stage giving greater linearity and approximately 6dB higher demodulated signal  
output level too.  
UNISONIC TECHNOLOGIES CO., LTD  
8 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
INTERNAL CIRCUITS  
VCC  
AGC Bias  
VREF:2.7V  
VREF:2V  
AGC Output  
Fig. 2-1 AGC Output  
Fig. 2-2 AGC Bias Adjust  
AFC WINDOW  
VREF:36V  
2X1500  
RF Input  
VREF:1.6V  
Fig. 2-4 AFC Window Adjust  
Fig. 2-3 RF Input  
VCC  
AFC Pump  
Video +  
Video -  
10K  
AFC OUTPUT  
330  
330  
2mA  
2mA  
Fig. 2-5 AFC Output Stage  
Fig. 2-6 Video Amp Output  
UNISONIC TECHNOLOGIES CO., LTD  
9 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
INTERNAL CIRCUITS(Cont.)  
From Phase Detector  
2x570  
VREF:1.2V  
2X5K  
VIDEO  
FEEDBACK +  
OSCILLATOR +  
OSCILLATOR -  
VIDEO  
FEEDBACK -  
Fig. 2-7 Local Oscillator  
Fig. 2-8 Video amp feedback inputs  
VCC  
68  
Output  
Video  
105  
4mA  
Fig. 2-9 Video Output Drive  
UNISONIC TECHNOLOGIES CO., LTD  
10 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
2.0  
1.5  
1.0  
AGC Bias Resistor 5.1K  
AGC Bias Current 297 A  
AGC Load Resistor 3.9K  
AGC Bias Resistor 10.5K  
AGC Bias Current 150 A  
AGC Load Resistor 4.7K  
0.5  
AGC Bias Resistor 32K  
AGC Bias Current 52 A  
AGC Load Resistor 10K  
-70 -60 -50 -40 -30 -20 -10  
RF Input Level (dBm) Unmodulated  
0
VCC = 5.0 V  
Fig.5 AGC Output Voltage for Differing Values of AGC Bias Resistor  
UNISONIC TECHNOLOGIES CO., LTD  
11 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
DESIGN OF PLL LOOP PARAMETERS  
The UTC L2572 is normally used as a type 1 second order loop and can be represented by the above diagram.  
For such a system the following parameters apply;  
τ1 = C1.R1  
τ2 = C1.R2  
and  
K0 KD  
τ1 =  
ωn2  
2ζ  
τ 2 =  
ωn  
where:  
K0 is the VCO gain in radian seconds per volt  
KD is the phase detector gain in volts per radian  
ωn is the natural loop bandwidth  
ξ is the loop damping factor  
R1 is loop amplifier input impedance  
Note: K0 is dependant on sensitivity of VCO used.  
KD = 0.25V/rad single ended, 0.5V/rad differential  
From these factors the loop 3dB bandwidth can be determined from the following expression;  
ω32dB = ωn2 (2ζ 2 +1) ± ωn2 (2ζ 2 +1)2 +1  
1
Which approximates to ω3dB = 2ωn when ζ =  
2
UNISONIC TECHNOLOGIES CO., LTD  
12 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
„
AFC FACILITY  
An analog frequency error detect circuit, which generates DC voltage proportional to the integral of frequency error  
is contained in UTC L2572.As the incident RF is high then the AFC voltage increases, as low then the voltage  
decreases. ADC converts the AFC voltage can then be an to be read by the micro controller for frequency fine  
tuning.  
Around the aligned frequency the AFC detect circuit contains a deadband centre. From zero window to  
approximately 25MHz width assuming an oscillator dF/dV of 15MHz/V the deadband can be adjusted. The AFC  
voltage does not integrate if the incident RF is within this window, except by component leakage.  
With reference to Fig. 6; the demodulated video is fed to a dual comparator which can be compared with two  
reference voltages in normal operation, corresponding to the extremes of the deadband, or window. These voltages  
are variable and the window adjust input can set it.  
Two digital outputs corresponding to voltages above or below the voltage window, or frequency above or below  
deadband can be produced by the comparators. These digital control signals can control a complimentary current  
source pump. The current signals are then fed to an amplifier’s input. it is arranged as an integrator, so integrating  
the pulses into a DC voltage.  
Both the current source and sink are disabled if the frequency is correctly aligned, therefore the DC output voltage  
can be constant. Due to component leakage there will be a small drift; the maximum drift can be calculated from  
here:  
dV  
dt  
I
Vcc  
=
where  
I =  
,
C = CEXT  
2500.C  
REXT  
UNISONIC TECHNOLOGIES CO., LTD  
13 of 14  
QW-R102-032.A  
www.unisonic.com.tw  
L2572  
LINEAR INTEGRATED CIRCUIT  
UTC assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or  
other parameters) listed in products specifications of any and all UTC products described or contained  
herein. UTC products are not designed for use in life support appliances, devices or systems where  
malfunction of these products can be reasonably expected to result in personal injury. Reproduction in  
whole or in part is prohibited without the prior written consent of the copyright owner. The information  
presented in this document does not form part of any quotation or contract, is believed to be accurate  
and reliable and may be changed without notice.  
UNISONIC TECHNOLOGIES CO., LTD  
14 of 14  
QW-R102-032.A  
www.unisonic.com.tw  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY