MJE13009L-T3P-TA [UTC]

Transistor;
MJE13009L-T3P-TA
型号: MJE13009L-T3P-TA
厂家: Unisonic Technologies    Unisonic Technologies
描述:

Transistor

文件: 总8页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UNISONIC TECHNOLOGIES CO.,LTD.  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
SWITCHMODE SERIES NPN  
SILICON POWER  
TRANSISTORS  
DESCRIPTION  
The MJE13009 is designed for high–voltage, high–speed  
power switching inductive circuits where fall time is critical. They  
are particularly suited for 115 and 220 V switchmode applications  
such as Switching Regulators, Inverters, Motor Controls,  
Solenoid/Relay drivers and Deflection circuits.  
TO-3P  
FEATURES  
* VCEO 400 V and 300 V  
*Pb-free plating product number:MJE13009L  
* Reverse Bias SOA with Inductive Loads @ TC = 100  
* Inductive Switching Matrix 3 ~ 12 Amp, 25 and 100℃  
tc @ 8 A, 100is 120 ns (Typ).  
PIN CONFIGURATION  
PIN NO.  
PIN NAME  
Base  
* 700 V Blocking Capability  
* SOA and Switching Applications Information.  
1
2
3
Collector  
Emitter  
ORDERING INFORMATION  
Order Number  
Package  
TO-3P  
Packing  
Tube  
Normal  
Lead free  
MJE13009-T3P-T MJE13009L-T3P-T  
www.unisonic.com.tw  
Copyright © 2005 Unisonic Technologies Co.,LTD  
1
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
ABSOLUATE MAXIUM RATINGS (Ta = 25)  
PARAMETER  
Collector-Emitter Voltage  
Collector-Base Voltage  
SYMBOL  
VCEO  
VCBO  
IEBO  
IC  
RATINGS  
UNIT  
400  
700  
9
V
V
V
Emitter Base Voltage  
Continuous  
12  
24  
6
Collector Current  
Peak*  
A
A
A
ICM  
Continuous  
IB  
Base Current  
Peak*  
IBM  
12  
18  
36  
Continuous  
IE  
Emitter Current  
Peak*  
IEM  
Total Power Dissipation @ Ta = 25℃  
Derate above 25℃  
2
16  
W
mW/℃  
W
mW/℃  
PD  
PD  
Total Power Dissipation @ TC = 25℃  
Derate above 25℃  
100  
800  
Junction Temperature  
TJ  
+150  
-40 ~ +150  
Storage Temperature  
TSTG  
*Pulse Test: Pulse Width = 5ms, Duty Cycle 10%  
THERMAL CHARACTERISTICS  
PARAMETER  
SYMBOL  
θJA  
RATINGS  
62.5  
UNIT  
/W  
/W  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
θJC  
1.55  
ELECTRICAL CHARACTERISTICS (TC= 25, unless otherwise specified.)  
PARAMETER  
*OFF CHARACTERISTICS  
Collector- Emitter Sustaining Voltage  
Collector Cutoff Current  
SYMBOL  
TEST CONDITIONS  
MIN TYP MAX UNIT  
VCEO  
ICBO  
IEBO  
IC = 10mA, IB = 0  
400  
V
V
V
BE(off) = 1.5Vdc  
BE(off) = 1.5Vdc, TC = 100℃  
1
5
1
mA  
mA  
VCBO=Rated Value  
Emitter Cutoff Current  
VEB = 9Vdc, IC = 0  
*ON CHARACTERISTICS  
hFE1  
hFE 2  
IC = 5A,VCE = 5V  
IC = 8A,VCE = 5V  
IC = 5A, IB = 1A  
40  
30  
1
DC Current Gain  
IC = 8A, IB = 1.6A  
IC = 12A, IB = 3A  
IC = 8A, IB = 1.6A, TC = 100℃  
IC = 5A, IB = 1A  
1.5  
3
2
Current-Emitter Saturation Voltage  
VCE(sat)  
V
V
1.2  
1.6  
1.5  
Base-Emitter Saturation Voltage  
VBE(sat) IC = 8A, IB = 1.6A  
IC = 8A, IB = 1.6A, TC = 100℃  
DYNAMIC CHARACTERISTICS  
Transition frequency  
fT  
IC = 500mA, VCE = 10V, f = 1MHz  
VCB = 10V, IE = 0, f = 0.1MHz  
4
MHz  
pF  
Output Capacitance  
Cob  
180  
0.06 0.1  
SWITCHING CHARACTERISTICS (Resistive Load, Table 1)  
Delay Time  
Rise Time  
Storage Time  
Fall Time  
tDLY  
tR  
µs  
µs  
µs  
µs  
VCC = 125Vdc, IC = 8A  
0.45  
1.3  
1
3
IB1 = IB2 = 1.6A, tP = 25μs  
tS  
Duty Cycle 1%  
tF  
0.2  
0.7  
Inductive Load, Clamped (Table 1, Figure 13)  
Voltage Storage Time  
Crossover Time  
tsv  
tc  
IC=8A, Vclamp=300V, IB1=1.6A  
0.92 2.3  
0.12 0.7  
µs  
µs  
VBE(off) = 5V, TC = 100℃  
*Pulse Test: Pulse Wieth = 300µs, Duty Cycle = 2%  
UNISONIC TECHNOLOGIES CO., LTD  
2
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
CLASSIFICATION of hFE1  
RANK  
A
B
C
D
E
F
RANGE  
8 ~ 16  
15 ~ 21  
20 ~ 26  
25 ~ 31  
30 ~ 36  
35 ~ 40  
TABLE 1. TEST CONDITIONS FOR DYNAMIC PERFORMANCE  
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING  
RESISTIVE SWITCHING  
+125V  
+5V  
VCC  
33  
1N4933  
MJE210  
L
MR826*  
0.001μF  
1N4933  
33  
RC  
5V  
Vclamp  
IC  
TUT  
PW  
2N2222  
RB  
1k  
SCOPE  
RB  
DUTY CYCLE10%  
tR, tF 10 ns  
68  
*SELECTED FOR . 1 kV  
1k  
+5V  
5.1k  
51  
IB  
VCE  
D1  
1k  
D.U.T.  
1N4933  
270  
2N2905  
MJE200  
0.02μF  
-4.0V  
47  
100  
NOTE  
1/2W  
PW and VCC Adjusted for Desired IC  
RB Adjusted for Desired IB1  
–VBE(off)  
VCC = 125 V  
RC = 15 Ω  
D1 = 1N5820 or Equiv.  
Coil Data:  
Ferroxcube Core #6656  
Full Bobbin (~16 Turns) #16  
GAP for 200 µH/20 A  
Lcoil = 200 µH  
VCC = 20 V  
Vclamp = 300 Vdc  
RB = Ω  
+10V  
0
25 µs  
OUTPUT WAVEFORMS  
tF CLAMPED  
IC  
tF UNCLAMPED 9 t2  
t1 ADJUSTED TO  
OBTAIN IC  
ICM  
Test Equipment  
Scope–Tektronics  
475 or Equivalent  
t
Lcoil (ICM  
VCC  
)
t1≈  
t2≈  
t1  
tF  
-8V  
VCE  
Lcoil (ICM  
)
VCEM  
Vclamp  
tR, tF < 10 ns  
Vclamp  
Duty Cycle = 1.0%  
RB and RC adjusted  
t2  
TIME  
for desired IB and IC  
UNISONIC TECHNOLOGIES CO., LTD  
3
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
TABLE 2. APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS  
CIRCUIT  
LOAD LINE DIAGRAMS  
TIME DIAGRAMS  
IC  
TURNON (FORWARD BIAS) SOA  
ON 10 ms  
DUTY CYCLE10%  
24A  
t
SERIES SWITCHING  
REGULATOR  
PD = 4000 W  
2
TC = 100°C  
t
350V  
TIME  
TURNOFF (REVERSE BIAS) SOA  
1.5 V VBE(off) 9.0 V  
12A  
VCE  
TURN–ON  
DUTY CYCLE10%  
VCC  
VCC  
VOUT  
TURNOFF  
+
1
1
VCC 400V  
700V  
t
COLLECTOR VOLTAGE  
TIME  
RINGING CHOKE  
INVERTER  
TURNON (FORWARD BIAS) SOA  
ON 10 ms  
DUTY CYCLE10%  
IC  
24A  
t
PD = 4000 W  
2
tOFF  
TC = 100°C  
VCC  
VOUT  
tON  
350V  
t
N
TURNOFF (REVERSE BIAS) SOA  
12A  
LEAKAGE SPIKE  
VCE  
1.5 V VBE(off) 9.0 V  
DUTY CYCLE10%  
TURNOFF  
TURNON  
+
VCC  
N(VO)  
VCC  
+
VCC  
1
1
700V  
400V  
t
VCC+N(VOUT )  
COLLECTOR VOLTAGE  
PUSH–PULL  
INVERTER/CONVERTER  
TURNON (FORWARD BIAS) SOA  
tON 10 ms  
IC  
24A  
DUTY CYCLE10%  
tOFF  
tON  
PD = 4000 W 2  
350V  
TC = 100°C  
t
VOUT  
VCE  
TURN–OFF (REVERSE BIAS) SOA  
12A  
1.5 V VBE(off) 9.0 V  
TURN–ON  
VCC  
2 VCC  
VCC  
DUTY CYCLE10%  
TURNOFF  
2 VCC  
+
VCC  
1
700V  
COLLECTOR VOLTAGE  
1
400V  
t
IC  
TURN–ON (FORWARD BIAS) SOA  
tON 10 ms  
SOLENOID DRIVER  
24A  
DUTY CYCLE10%  
VCC  
tOFF  
tON  
PD = 4000 W 2  
350V  
TC = 100°C  
t
SOLENOID  
12A  
TURN–OFF (REVERSE BIAS) SOA  
1.5 V VBE(off) 9.0 V  
VCE  
DUTY CYCLE10%  
TURN–OFF  
TURN–ON  
VCC  
VCC  
2 VCC  
+
1
1
400V  
700V  
COLLECTOR VOLTAGE  
t
UNISONIC TECHNOLOGIES CO., LTD  
4
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
TABLE 3. TYPICAL INDUCTIVE SWITCHING PERFORMANCE  
IC(A)  
3
TC()  
25  
100  
25  
100  
25  
100  
25  
tsv(ns)  
770  
1000  
630  
trv(ns)  
100  
230  
72  
100  
55  
tfi(ns)  
150  
160  
26  
tti(ns)  
200  
200  
10  
30  
2
tc(ns)  
240  
320  
100  
180  
77  
120  
41  
54  
5
8
820  
55  
720  
920  
27  
50  
70  
8
640  
800  
20  
32  
17  
24  
2
4
12  
100  
SWITCHING TIME NOTES  
In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and  
voltage  
waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power  
supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements  
must be made on each waveform to determine the total switching time. For this reason, the following new terms  
have been defined.  
t
sv = Voltage Storage Time, 90% IB1 to 10% VCEM  
trv = Voltage Rise Time, 10–90% VCEM  
tfi = Current Fall Time, 90–10% ICM  
tti = Current Tail, 10–2% ICM  
tc = Crossover Time, 10% VCEM to 10% ICM  
An enlarged portion of the turn–off waveforms is shown in Figure 13 to aid in the visual identity of these terms.  
For the designer, there is minimal switching loss during storage time and the predominant switching power losses  
occur during the crossover interval and can be obtained using the standard equation from AN–222:  
PSWT = 1/2 VCCIC(tc) f  
Typical inductive switching waveforms are shown in Figure 14. In general, trv + tfi tc. However, at lower test  
currents this relationship may not be valid.  
As is common with most switching transistors, resistive switching is specified at 25and has become a  
benchmark for designers. However, for designers of high frequency converter circuits, the user oriented  
specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are  
guaranteed at 100.  
UNISONIC TECHNOLOGIES CO., LTD  
5
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
TYPICAL CHARATERISTICS  
Figure 2. Reverse Bias Switching Safe Operating Area  
Figure 1. Forward Bias Safe Operating Area  
100  
50  
14  
12  
10  
10μs  
20  
10  
5
100μs  
1ms  
T
C 100℃  
IB1 = 2.5 A  
2
1
0.5  
TC = 25℃  
8
6
4
dc  
VBE(off) = 9V  
5V  
THERMAL LIMIT  
BONDING WIRE LIMIT  
SECOND BREAKDOWN LIMIT  
0.2  
0.1  
0.05  
2
0
CURVES APPLY BELOW RATED VCEO  
3V  
0.02  
0.01  
1.5V  
100 200 300 400 500 600 700 800  
COLLECTOREMITTER CLAMP VOLTAGE, VCBO (V)  
5
7
10  
20 30  
50 70 100  
200 300 500  
0
COLLECTOREMITTER VOLTAGE, VCE (V)  
Figure 3. Forward Bias Power Derating  
1
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second breakdown.  
Safe operating area curves indicate ICVCE limits of the transistor  
that must be observed for reliable operation; i.e., the transistor  
must not be subjected to greater dissipation than the curves  
indicate.  
SECOND BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
The data of Figure1 is based on TC = 25; TJ(pk) is variable  
depending on power level. Second breakdown pulse limits are  
THERMAL  
DERATING  
valid for duty cycles to 10% but must be derated when T 25.  
C
Second breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on Figure 1  
may be found at any case temperature by using the appropriate  
curve on Figure 3.  
TJ(pk) may be calculated from the data in Figure 4. At high  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations imposed  
by second breakdown. Use of reverse biased safe operating  
area data (Figure 2) is discussed in the applications information  
section.  
0.2  
0
20  
40  
60  
80  
100  
120  
140  
160  
CASE TEMPERATURE, TC (°C)  
Figure 4. Typical Thermal Response [ZθJC(t)]  
1
0.7  
0.5  
D = 0.5  
0.3  
0.2  
0.2  
0.1  
P(pk)  
0.1  
Z
θJC (t) = r(t) θJC  
0.05  
0.02  
θJC = 1.25°C/W MAX  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.07  
0.05  
t1  
0.03  
0.02  
READ TIME AT t  
1
t2  
TJ(pk) TC = P(pk) ZθJC(t)  
0.01  
DUTY CYCLE, D = t1/t2  
SINGLE PULSE  
0.05 0.1  
0.01  
0.01 0.02  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500 1.0k  
TIME, t (ms)  
UNISONIC TECHNOLOGIES CO., LTD  
6
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
TYPICAL CHARACTERICS( cont.)  
Figure 6. Collector Saturation Region  
2
Figure 5. DC Current Gain  
50  
30  
20  
VCE = 5V  
1.6  
TJ = 150℃  
25℃  
3A  
IC = 1A  
5A  
8A  
12A  
1.2  
0.8  
10  
7
0.4  
0
TJ = 25℃  
5
0.2 0.3 0.5 0.7  
1
2
3
5
7
10  
20  
0.050.07 0.1  
0.2 0.3  
0.5 0.7  
1
2
3
5
COLLECTOR CURRENT, IC (A)  
BASE CURRENT, IB (A)  
Figure 7. BaseEmitter Saturation Voltage  
Figure 8. CollectorEmitter Saturation Voltage  
1.4  
1.2  
1
0.7  
0.6  
0.5  
IC/IB = 3  
IC/IB = 3  
TJ = 150℃  
0.4  
0.3  
0.2  
0.8  
0.6  
0.4  
25℃  
25℃  
TJ = 150℃  
0.1  
0
0.2 0.3  
0.5 0.7  
1
2
3
5
7
10  
20  
0.2 0.3 0.5 0.7  
1
2
3
5
7
10  
20  
COLLECTOR CURRENT, IC (A)  
COLLECTOR CURRENT, IC (A)  
Figure 9. Collector Cutoff Region  
Figure 10. Capacitance  
10k  
1k  
4k  
2k  
TJ = 25℃  
VCE = 250V  
C
ib  
TJ = 150℃  
125℃  
1k  
800  
600  
100  
100℃  
400  
10  
1
75℃  
50℃  
Cob  
200  
100  
80  
60  
25℃  
REVERSE  
-0.2  
BASEEMITTER VOLTAGE, VBE (V)  
FORWARD  
0.1  
-0.4  
40  
0
+0.2 +0.4  
+0.6  
0.1 0.2 0.5 1  
2
5
10 20 50  
REVERSE VOLTAGE, VR (V)  
100  
200  
500  
UNISONIC TECHNOLOGIES CO., LTD  
7
www.unisonic.com.tw  
QW-R214-011,A  
MJE13009  
NPN EPITAXIAL SILICON TRANSISTOR  
RESISTIVE SWITCHING PERFORMANCE  
Figure 11. TurnOn Time  
Figure 12. TurnOff Time  
1k  
2k  
tS  
VCC = 125V  
IC/IB = 5  
700  
TJ = 25℃  
1k  
500  
700  
VCC = 125V  
IC/IB = 5  
TJ = 25℃  
300  
500  
200  
tR  
300  
100  
200  
tF  
tDLY @ VBE(off) = 5V  
70  
50  
100  
0.2 0.3 0.5 0.7  
1
2
3
5
7
10  
20  
0.2 0.3 0.5 0.7  
1
2
5
7
10  
20  
COLLECTOR CURRENT, IC (A)  
COLLECTOR CURRENT, IC (A)  
Figure 13. Typical Inductive Switching Waveforms  
(at 300V and 12A with IB1 = 2.4A and VBE(off) = 5V)  
IC  
VCE  
IC  
VCE  
TIME 20 ns/DIV  
UTC assumes no responsibility for equipment failures that result from using products at values that  
exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or  
other parameters) listed in products specifications of any and all UTC products described or contained  
herein. UTC products are not designed for use in life support appliances, devices or systems where  
malfunction of these products can be reasonably expected to result in personal injury. Reproduction in  
whole or in part is prohibited without the prior written consent of the copyright owner. The information  
presented in this document does not form part of any quotation or contract, is believed to be accurate  
and reliable and may be changed without notice.  
UNISONIC TECHNOLOGIES CO., LTD  
8
www.unisonic.com.tw  
QW-R214-011,A  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY