BCM6123S60E15A3T02 [VICOR]

Fixed Ratio DC-DC Converter;
BCM6123S60E15A3T02
型号: BCM6123S60E15A3T02
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

Fixed Ratio DC-DC Converter

文件: 总23页 (文件大小:2749K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BCM® Bus Converter  
BCM6123x60E15A3yzz  
S
®
C
NRTL US  
C
US  
Fixed Ratio DC-DC Converter  
Features  
Product Ratings  
Up to 130 A continuous output current  
2870 W/in3 power density  
VPRI = 54 V (36 – 60 V)  
PSEC= up to 1950 W  
K = 1/4  
97.4% peak efficiency  
VSEC = 13.5 V (9 – 15 V)  
2,250 Vdc isolation  
(NO LOAD)  
Parallel operation for multi-kW arrays  
OV, OC, UV, short circuit and thermal protection  
6123 through-hole ChiP package  
n 2.402” x 0.990” x 0.286”  
Product Description  
The VI Chip® Bus Converter (BCM®) is a high efficiency  
Sine Amplitude Converter™ (SAC™), operating from a 36 to  
60 VDC primary bus to deliver an isolated, ratiometric output  
from 9 to 15 VDC.  
(61.00 mm x 25.14 mm x 7.26 mm)  
Typical Applications  
The BCM6123x60E15A3yzz offers low noise, fast transient  
response, and industry leading efficiency and power density. In  
addition, it provides an AC impedance beyond the bandwidth  
of most downstream regulators, allowing input capacitance  
normally located at the input of a POL regulator to be located at  
the primary side of the BCM module. With a primary to  
secondary K factor of 1/4, that capacitance value can be  
reduced by a factor of 16x, resulting in savings of board area,  
material and total system cost.  
High End Computing Systems  
Automated Test Equipment  
Industrial Systems  
High Density Power Supplies  
Communications Systems  
Transportation  
Leveraging the thermal and density benefits of Vicor’s ChiP  
packaging technology, the BCM module offers flexible thermal  
management options with very low top and bottom side  
thermal impedances. Thermally-adept ChiP-based power  
components, enable customers to achieve low cost power  
system solutions with previously unattainable system size,  
weight and efficiency attributes, quickly and predictably.  
BCM® Bus Converter  
Page 1 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Typical Application  
BCM  
TM  
EN  
enable/disable  
switch  
VAUX  
F1  
+VPRI  
–VPRI  
+VSEC  
VPRI  
CPRI  
POL  
–VSEC  
GND  
PRIMARY  
SECONDARY  
ISOLATION BOUNDRY  
BCM6123x60E15A3yzz + Point of load  
BCM® Bus Converter  
Page 2 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Pin Configuration  
TOP VIEW  
2
1
A’ +VSEC  
A
B
C
D
+VSEC  
-VSEC  
-VSEC  
2
2
B’  
C’  
-VSEC1  
-VSEC  
1
+VSEC  
+VSEC  
D’ +VSEC  
E’ +VSEC  
E
-VSEC  
2
2
F’  
-VSEC  
1
1
F
G
H
G’  
-VSEC  
-VSEC  
+VSEC  
H’ +VSEC  
+VPRI  
+VPRI  
+VPRI  
I’  
J’  
K’  
I
J
TM  
EN  
VAUX  
K
-VPRI  
+VPRI  
L’  
L
6123 ChiP Package  
Pin Descriptions  
Pin Number  
Signal Name  
Type  
Function  
I1, J1, K1, L1  
+VPRI  
TM  
PRIMARY POWER Positive primary transformer power terminal  
I’2  
J’2  
OUTPUT  
INPUT  
Temperature Monitor; primary side referenced signals  
Enables and disables power supply; primary side referenced signals  
Auxilary Voltage Source; primary side referenced signals  
EN  
K’2  
VAUX  
OUTPUT  
PRIMARY POWER  
RETURN  
L2  
-VPRI  
Negative primary transformer power terminal  
Positive secondary transformer power terminal  
Negative secondary transformer power terminal  
A1, D1, E1, H1,  
A’2, D’2, E’2, H’2  
SECONDARY  
POWER  
+VSEC  
B1, C1, F1, G1  
B’2, C’2, F’2, G’2  
SECONDARY  
POWER RETURN  
-VSEC*  
*For proper operation an external low impedance connection must be made between listed -VSEC1 and -VSEC2 terminals.  
BCM® Bus Converter  
Page 3 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Part Ordering Information  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package  
Size  
Package  
Mounting  
Max Primary  
Input Voltage  
Range  
Identifier  
Temperature  
Grade  
Option  
BCM  
6123  
x
60  
E
15  
A3  
y
zz  
00 = Analog Ctrl  
01 = PMBus Ctrl  
T = TH  
T = -40°C – 125°C  
Bus Converter  
Module  
61 = L  
23 = W  
15 V  
No Load  
60 V  
36 – 60 V  
130 A  
S = SMT  
M = -55°C – 125°C 0R = Reversible Analog Ctrl  
0P = Reversible PMBus Ctrl  
All products shipped in JEDEC standard high profile (0.400” thick) trays (JEDEC Publication 95, Design Guide 4.10).  
Standard Models  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package  
Size  
Package  
Mounting  
Max Primary  
Input Voltage  
Range  
Identifier  
Temperature  
Grade  
Option  
BCM  
6123  
T
60  
E
15  
A3  
T
00  
Absolute Maximum Ratings  
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.  
Parameter  
Comments  
Min  
Max  
Unit  
+VPRI_DC to –VPRI_DC  
-1  
80  
V
VPRI_DC or VSEC_DC slew rate  
(operational)  
1
V/µs  
+VSEC_DC to –VSEC_DC  
TM to –VPRI_DC  
-1  
20  
4.6  
5.5  
4.6  
V
V
V
V
EN to –VPRI_DC  
-0.3  
VAUX to –VPRI_DC  
BCM® Bus Converter  
Page 4 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Electrical Specifications  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powetrain PRIMARY to SECONDARY Specification (Forward Direction)  
Primary Input Voltage range,  
continuous  
VPRI_DC  
36  
60  
V
V
VPRI_DC voltage where µC is initialized,  
(ie VAUX = Low, powertrain inactive)  
VPRI µController  
VµC_ACTIVE  
14  
Disabled, EN Low, VPRI_DC = 54 V  
TINTERNAL 100ºC  
5
PRI to SEC Input Quiescent Current  
IPRI_Q  
mA  
10  
21.6  
35.2  
25  
VPRI_DC = 54 V, TINTERNAL = 25ºC  
VPRI_DC = 54 V  
14.7  
PRI to SEC No Load Power  
Dissipation  
7.5  
PPRI_NL  
W
VPRI_DC = 36 V to 60 V, TINTERNAL = 25 ºC  
VPRI_DC = 36 V to 60 V  
38  
VPRI_DC = 60 V, CSEC_EXT = 1000 µF, RLOAD_SEC = 20% of  
40  
full load current  
PRI to SEC Inrush Current Peak  
IPRI_INR_PK  
A
TINTERNAL 100ºC  
45  
33  
DC Primary Input Current  
Transformation Ratio  
IPRI_IN_DC  
K
At ISEC_OUT_DC = 130 A, TINTERNAL 100ºC  
Primary to secondary, K = VSEC_DC / VPRI_DC, at no load  
A
1/4  
V/V  
Secondary Output Power  
(continuous)  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
ISEC_OUT_DC  
Specified at VPRI_DC = 60 V  
1950  
2340  
130  
W
W
A
Specified at VPRI_DC = 60 V; 10 ms pulse, 25% Duty  
cycle, PSEC_AVG = 50% rated PSEC_OUT_DC  
Secondary Output Power (pulsed)  
Secondary Output Current  
(continuous)  
10 ms pulse, 25% Duty cycle, ISEC_OUT_AVG = 50% rated  
ISEC_OUT_DC  
Secondary Output Current (pulsed)  
ISEC_OUT_PULSE  
156  
A
VPRI_DC = 54 V, ISEC_OUT_DC = 130 A  
VPRI_DC = 36 V to 60 V, ISEC_OUT_DC = 130 A  
VPRI_DC = 54 V, ISEC_OUT_DC = 65 A  
VPRI_DC = 54 V, ISEC_OUT_DC = 130 A  
96.2  
95.2  
96.5  
95.8  
97  
PRI to SEC Efficiency (ambient)  
PRI to SEC Efficiency (hot)  
ηAMB  
%
97.4  
96.5  
ηHOT  
η20%  
%
%
PRI to SEC Efficiency  
(over load range)  
26 A < ISEC_OUT_DC < 130 A  
90  
RSEC_COLD  
RSEC_AMB  
RSEC_HOT  
FSW  
VPRI_DC = 54 V, ISEC_OUT_DC = 130 A, TINTERNAL = -40°C  
VPRI_DC = 54 V, ISEC_OUT_DC = 130 A  
1.2  
1.6  
2.2  
0.9  
1.5  
1.95  
2.5  
1.8  
1.3  
2.8  
1.0  
PRI to SEC Output Resistance  
mΩ  
VPRI_DC = 54 V, ISEC_OUT_DC = 130 A, TINTERNAL = 100°C  
Frequency of the Output Voltage Ripple = 2x FSW  
Switching Frequency  
0.95  
MHz  
mV  
CSEC_EXT = 0 µF, ISEC_OUT_DC = 130 A, VPRI_DC = 54 V,  
120  
20 MHz BW  
Secondary Output Voltage Ripple  
VSEC_OUT_PP  
TINTERNAL 100ºC  
250  
Primary Input Leads Inductance  
(Parasitic)  
Frequency 2.5 MHz (double switching frequency),  
Simulated lead model  
LPRI_IN_LEADS  
6.7  
nH  
nH  
Secondary Output Leads Inductance  
(Parasitic)  
Frequency 2.5 MHz (double switching frequency),  
Simulated lead model  
LSEC_OUT_LEADS  
0.64  
BCM® Bus Converter  
Page 5 of 23  
Rev 1.1  
vicorpower.com  
800 927.9474  
09/2015  
BCM6123x60E15A3yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powetrain PRIMARY to SECONDARY Specification (Forward Direction) Cont.  
Effective Primary Capacitance  
(Internal)  
CPRI_INT  
CSEC_INT  
CSEC_OUT_EXT  
CSEC_OUT_AEXT  
Effective Value at 54 VPRI_DC  
Effective Value at 15 VSEC_DC  
11.2  
140  
µF  
µF  
µF  
Effective Secondary Capacitance  
(Internal)  
Effective Secondary Output  
Capacitance (External)  
Effective Secondary Output  
Capacitance (External)  
Excessive capacitance may drive module into SC  
protection  
1000  
CSEC_OUT_AEXT Max = N * 0.5 * CSEC_OUT_EXT MAX, where  
N = the number of units in parallel  
Protection PRIMARY to SECONDARY (Forward Direction)  
Startup into a persistent fault condition. Non-Latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Auto Restart Time  
tAUTO_RESTART  
VPRI_OVLO+  
VPRI_OVLO-  
VPRI_OVLO_HYST  
tPRI_OVLO  
490  
64  
560  
68  
ms  
V
Primary Overvoltage Lockout  
Threshold  
66  
64  
2
Primary Overvoltage Recovery  
Threshold  
60  
66  
V
Primary Overvoltage Lockout  
Hysteresis  
V
Primary Overvoltage Lockout  
Response Time  
100  
28  
30  
2
µs  
V
Primary Undervoltage Lockout  
Threshold  
VPRI_UVLO-  
26  
28  
30  
32  
Primary Undervoltage Recovery  
Threshold  
VPRI_UVLO+  
VPRI_UVLO_HYST  
tPRI_UVLO  
V
Primary Undervoltage Lockout  
Hysteresis  
V
Primary Undervoltage Lockout  
Response Time  
100  
µs  
From VPRI_DC = VPRI_UVLO+ to powertrain active, EN  
Primary Undervoltage Startup Delay tPRI_UVLO+_DELAY floating, (i.e One time Startup delay form application  
of VPRI_DC to VSEC_DC  
20  
ms  
)
From powertrain active. Fast Current limit protection  
disabled during Soft-Start  
Primary Soft-Start Time  
tPRI_SOFT-START  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
ISEC_OUT_SCP  
tSEC_OUT_SCP  
tOTP+  
1
180  
3
ms  
A
Secondary Output Overcurrent Trip  
Threshold  
145  
195  
225  
Secondary Output Overcurrent  
Response Time Constant  
Secondary Output Short Circuit  
Protection Trip Threshold  
Secondary Output Short Circuit  
Protection Response Time  
Overtemperature Shutdown  
Threshold  
Effective internal RC filter  
ms  
A
1
110  
3
µs  
°C  
°C  
°C  
s
Temperature sensor located inside controller IC  
125  
Overtemperature Recovery  
Threshold  
tOTP–  
105  
115  
-45  
Undertemperature Shutdown  
Threshold  
Temperature sensor located inside controller IC;  
Protection not available for M-Grade units.  
Startup into a persistent fault condition. Non-Latching  
fault detection given VPRI_DC > VPRI_UVLO+  
tUTP  
Undertemperature Restart Time  
tUTP_RESTART  
BCM® Bus Converter  
Page 6 of 23  
Rev 1.1  
vicorpower.com  
800 927.9474  
09/2015  
BCM6123x60E15A3yzz  
2400  
2100  
1800  
1500  
1200  
900  
600  
300  
0
35  
45  
55  
65  
75  
85  
95  
105  
115  
125  
Case Temperature (°C)  
Top only at temperature  
Top and leads at temperature  
Leads at temperature  
Top, leads and belly at temperature  
Figure 1 Specified thermal operating area  
2300  
2200  
2100  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
200  
150  
100  
50  
0
800  
36  
38  
41  
43  
46  
48  
50  
53  
55  
58  
60  
36  
38  
41  
43  
46  
48  
50  
53  
55  
58  
60  
Input Voltage (V)  
Input Voltage (V)  
ISEC_OUT_DC  
ISEC_OUT_PULSE  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
Figure 2 Specified electrical operating area using rated RSEC_HOT  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
Secondary Output Current (% ISEC_DC  
)
Figure 3 Specified Primary start-up into load current and external capacitance  
BCM® Bus Converter  
Page 7 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Signal Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Temperature Monitor  
• The TM pin is a standard analog I/O configured as an output from an internal µC.  
• The TM pin monitors the internal temperature of the controller IC within an accuracy of 5°C.  
• µC 250 kHz PWM output internally pulled high to 3.3 V.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP MAX UNIT  
Powertrain active to TM  
time  
Startup  
tTM  
100  
µs  
TM Duty Cycle  
TM Current  
TMPWM  
ITM  
18.18  
68.18  
4
%
mA  
Recommended External filtering  
TM Capacitance (External)  
TM Resistance (External)  
CTM_EXT  
RTM_EXT  
Recommended External filtering  
Recommended External filtering  
0.01  
1
µF  
DIGITAL  
OUTPUT  
kΩ  
Regular  
Specifications using recommended filter  
Operation  
TM Gain  
ATM  
10  
mV / °C  
V
TM Voltage Reference  
VTM_AMB  
1.27  
RTM_EXT = 1 K Ohm, CTM_EXT = 0.01 uF, VPRI_DC  
= 54 V, ISEC_DC = 130 A  
28  
TM Voltage Ripple  
VTM_PP  
mV  
TINTERNAL 100ºC  
40  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3 V.  
• When held low the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize startup and permit startup into full load conditions.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.3  
TYP MAX UNIT  
EN to Powertrain active  
time  
VPRI_DC > VPRI_UVLO+, EN held low both  
conditions satisfied for T > tPRI_UVLO+_DELAY  
Startup  
tEN_START  
250  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VEN_TH  
REN_INT  
V
kΩ  
V
Regular  
Internal pull up resistor  
1.5  
Operation  
VEN_DISABLE_TH  
1
BCM® Bus Converter  
Page 8 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Signal Characteristics (Cont.)  
Specifications apply over all line, load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Auxiliary Voltage Source  
• The VAUX pin is a standard analog I/O configured as an output from an internal µC.  
• VAUX is internally connected to µC output as internally pulled high to a 3.3 V regulator with 2% tolerance, a 1% resistor of 1.5 kΩ.  
• VAUX can be used as a "Ready to process full power" flag. This pin transitions VAUX voltage after a 2 ms delay from the start of powertrain activating,  
signaling the end of softstart.  
• VAUX can be used as "Fault flag". This pin is pulled low internally when a fault protection is detected.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.8  
TYP MAX UNIT  
Powertrain active to VAUX  
time  
Startup  
tVAUX  
Powertrain active to VAUX High  
2
ms  
VAUX Voltage  
VVAUX  
IVAUX  
3.3  
4
V
VAUX Available Current  
mA  
50  
ANALOG  
OUTPUT  
Regular  
VAUX Voltage Ripple  
VVAUX_PP  
mV  
µF  
TINTERNAL 100ºC  
100  
Operation  
VAUX Capacitance  
(External)  
CVAUX_EXT  
0.01  
VAUX Resistance (External)  
VAUX Fault Response Time  
RVAUX_EXT  
tVAUX_FR  
VPRI_DC < VµC_ACTIVE  
1.5  
kΩ  
Fault  
From fault to VVAUX = 2.8 V, CVAUX = 0 pF  
10  
µs  
BCM® Bus Converter  
Page 9 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
BCM Module Timing diagram  
BCM® Bus Converter  
Page 10 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
High Level Functional State Diagram  
Conditions that cause state transitions are shown along arrows. Sub-sequence activities listed inside the state bubbles.  
VμC_ACTIVE < VPRI_DC < VPRI_UVLO+  
STARTUP SEQUENCE  
VPRI_DC > VPRI_UVLO+  
STANDBY SEQUENCE  
TM Low  
TM Low  
EN High  
EN High  
VAUX Low  
VAUX Low  
Powertrain Stopped  
Powertrain Stopped  
ENABLE falling edge,  
or OTP detected  
tPRI_UVLO+_DELAY  
expired  
Input OVLO or UVLO,  
Output OCP,  
ONE TIME DELAY  
Fault  
Auto-  
recovery  
INITIAL STARTUP  
or UTP detected  
ENABLE falling edge,  
or OTP detected  
FAULT  
SEQUENCE  
TM Low  
SUSTAINED  
OPERATION  
TM PWM  
Input OVLO or UVLO,  
Output OCP,  
EN High  
EN High  
or UTP detected  
VAUX Low  
VAUX High  
Powertrain Stopped  
Powertrain Active  
Short Circuit detected  
BCM® Bus Converter  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
Page 11 of 23  
BCM6123x60E15A3yzz  
Application Characteristics  
Product is mounted and temperature controlled via top side cold plate, unless otherwise noted. All data presented in this section are collected data form  
primary sourced units processing power in forward direction.See associated figures for general trend data.  
24  
22  
20  
18  
16  
14  
12  
10  
8
98.0  
97.5  
97.0  
96.5  
96.0  
6
36  
39  
41  
44  
47  
49  
52  
55  
57  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
Primary Input Voltage (V)  
Case Temperature (ºC)  
TTOP SURFACE CASE  
:
- 40°C  
25°C  
90°C  
VPRI  
:
36 V  
54 V  
60 V  
Figure 4 No load power dissipation vs. VPRI_DC  
Figure 5 Full load efficiency vs. temperature; VPRI_DC  
100  
98  
96  
94  
92  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
98  
80  
70  
60  
50  
40  
30  
20  
10  
0
96  
94  
PD  
92  
90  
88  
86  
84  
88  
86  
84  
PD  
0
13  
26  
39  
52  
65  
78  
91 104 117 130  
0
13  
26  
39  
52  
65  
78  
91 104 117 130  
Load Current (A)  
Secondary Output Current (A)  
VPRI  
:
36 V  
54 V 60 V  
VPRI  
:
36 V  
54 V  
60 V  
Figure 6 Efficiency and power dissipation at TCASE = -40°C  
Figure 7 Efficiency and power dissipation at TCASE = 25°C  
3
100  
98  
96  
94  
92  
90  
88  
86  
84  
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
0
PD  
0
13  
25  
38  
50  
63  
75  
88 100 113 125  
-40  
-20  
0
20  
40  
60  
80  
100  
Secondary Output Current (A)  
Case Temperature (°C)  
VPRI  
:
36 V  
54 V  
60 V  
ISEC  
:
130 A  
Figure 8 Efficiency and power dissipation at TCASE = 80°C  
Figure 9 RSEC vs. temperature; Nominal VPRI_DC  
ISEC_DC = 125 A at TCASE = 80°C  
BCM® Bus Converter  
Page 12 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
200  
175  
150  
125  
100  
75  
50  
25  
0
0
13  
26  
39  
52  
65  
78  
91 104 117 130  
Load Current (A)  
VPRI  
:
54 V  
Figure 10 VSEC_OUT_PP vs. ISEC_DC ; No external CSEC_OUT_EXT Board  
Figure 11 Full load ripple, 2700 µF CPRI_IN_EXT; No external  
.
mounted module, scope setting : 20 MHz analog BW  
CSEC_OUT_EXT Board mounted module, scope setting :  
.
20 MHz analog BW  
Figure 13 130 A – 0 A transient response:  
PRI_IN_EXT = 2700 µF, no external CSEC_OUT_EXT  
Figure 12 0 A– 130 A transient response:  
C
CPRI_IN_EXT = 2700 µF, no external CSEC_OUT_EXT  
Figure 15 Start up from application of EN with pre-applied  
Figure 14 Start up from application of VPRI_DC= 54 V, 20% IOUT  
,
VPRI_DC = 54 V, 20% ISEC_DC, 100% CSEC_OUT_EXT  
100% CSEC_OUT_EXT  
BCM® Bus Converter  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
Page 13 of 23  
BCM6123x60E15A3yzz  
General Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Mechanical  
Length  
Width  
L
W
H
60.87 / [2.396] 61.00 / [2.402] 61.13 / [2.407] mm/[in]  
24.76 / [0.975] 25.14 / [0.990] 25.52 / [1.005] mm/[in]  
Height  
Volume  
Weight  
7.21 / [0.284] 7.26 / [0.286] 7.31 / [0.288]  
mm/[in]  
cm3/[in3]  
g/[oz]  
Vol  
W
Without Heatsink  
11.13 / [0.679]  
41 / [1.45]  
Nickel  
0.51  
0.02  
2.03  
0.15  
Lead finish  
Palladium  
Gold  
µm  
0.003  
0.051  
Thermal  
Operating Temperature  
TINTERNAL  
BCM6123x60E15A3yzz (T-Grade)  
-40  
125  
°C  
Estimated thermal resistance to maximum  
temperature internal component from  
isothermal top  
Thermal Resistance Top Side  
ΦINT-TOP  
1.26  
1.21  
°C/W  
Estimated thermal resistance to  
Thermal Resistance Leads  
ΦINT-LEADS maximum temperature internal  
°C/W  
component from isothermal leads  
Estimated thermal resistance to  
ΦINT-BOTTOM maximum temperature internal  
component from isothermal bottom  
Thermal Resistance Bottom Side  
Thermal Capacity  
1.03  
34  
°C/W  
Ws/°C  
Assembly  
Storage temperature  
ESD Withstand  
BCM6123x60E15A3yzz (T-Grade)  
-55  
125  
°C  
ESDHBM  
ESDCDM  
Human Body Model, "ESDA / JEDEC JDS-001-2012" Class I-C (1kV to < 2 kV)  
Charge Device Model, "JESD 22-C101-E" Class II (200 V to < 500 V)  
BCM® Bus Converter  
Page 14 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
General Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Soldering[1]  
Peak Temperature Top Case  
135  
°C  
Safety  
PRIMARY to SECONDARY  
2,250  
2,250  
707  
Isolation voltage / Dielectric test  
VHIPOT  
PRIMARY to CASE  
SECONDARY to CASE  
Unpowered Unit  
At 500 Vdc  
VDC  
Isolation Capacitance  
Insulation Resistance  
CPRI_SEC  
RPRI_SEC  
620  
780  
940  
pF  
10  
MΩ  
MIL-HDBK-217Plus Parts Count - 25°C  
Ground Benign, Stationary, Indoors /  
Computer  
4.45  
7.01  
MHrs  
MHrs  
MTBF  
Telcordia Issue 2 - Method I Case III; 25°C  
Ground Benign, Controlled  
cTÜVus "EN 60950-1"  
cURus "UL 60950-1"  
Agency Approvals / Standards  
CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable  
[1] Product is not intended for reflow solder attach.  
BCM® Bus Converter  
Page 15 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
BCM Module Block Diagram  
A n a l o g C o n t r o l l e r  
D i g i t a l C o n t r o l l e r  
I N  
e s n s e I d a r w r  
+ F o  
c e t t i o n  
e n r r t u F C l o w d e  
BCM® Bus Converter  
Page 16 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Sine Amplitude Converter™ Point of Load Conversion  
R
SEC  
0.53 nH  
1.96 mΩ  
= 0.64 nH  
ISEC
LSEC_OUT_LEADS  
= 6.7 nH  
LPRI_IN_LEADS  
+
+
CPRI_INT_ESR  
0.75 mΩ  
C
SEC_INT_ESR  
10 mΩ  
1/4 • VPRI  
60.4 µΩ  
V•I  
K
1/4 • ISEC  
CPRI_INT  
11.2 µF  
CSEC_INT  
140 µF  
+
+
VSEC  
VPRI  
IPRI_Q  
270 mA  
Figure 16 BCM module AC model  
The Sine Amplitude Converter (SAC™) uses a high frequency resonant  
tank to move energy from Primary to secondary and vice versa. (The  
resonant tank is formed by Cr and leakage inductance Lr in the power  
transformer windings as shown in the BCM module Block Diagram).  
The resonant LC tank, operated at high frequency, is amplitude  
modulated as a function of input voltage and output current. A small  
amount of capacitance embedded in the primary and secondary stages  
of the module is sufficient for full functionality and is key to achieving  
high power density.  
The use of DC voltage transformation provides additional interesting  
attributes. Assuming that RSEC = 0 Ω and IPRI_Q = 0 A, Eq. (3) now  
becomes Eq. (1) and is essentially load independent, resistor R is now  
placed in series with VIN  
.
RIN  
SAC™  
The BCM6123x60E15A3yzz SAC can be simplified into the preceeding  
model.  
VSEC  
+
K = 1/4  
VPRI  
At no load:  
VSEC = VPRI • K  
(1)  
(2)  
Figure 17 K = 1/4 Sine Amplitude Converter  
with series input resistor  
K represents the “turns ratio” of the SAC.  
Rearranging Eq (1):  
The relationship between VPRI and VSEC becomes:  
VSEC  
K =  
K
VSEC = (VPRI – IPRI RIN)  
(5)  
VPRI  
Substituting the simplified version of Eq. (4)  
(IPRI_Q is assumed = 0 A) into Eq. (5) yields:  
In the presence of load, VOUT is represented by:  
VSEC = VPRI • K – ISEC • RSEC  
2
(3)  
(4)  
VSEC = VPRI K – ISEC RIN K  
(6)  
and IOUT is represented by:  
I
PRI – IPRI_Q  
ISEC  
=
K
ROUT represents the impedance of the SAC, and is a function of the  
RDSON of the input and output MOSFETs and the winding resistance of  
the power transformer. IQ represents the quiescent current of the SAC  
control, gate drive circuitry, and core losses.  
BCM® Bus Converter  
Page 17 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
This is similar in form to Eq. (3), where RSEC is used to represent the  
characteristic impedance of the SAC™. However, in this case a real R on  
the primary side of the SAC is effectively scaled by K2 with respect  
to the secondary.  
Low impedance is a key requirement for powering a high-current, low-  
voltage load efficiently. A switching regulation stage should have  
minimal impedance while simultaneously providing appropriate  
filtering for any switched current. The use of a SAC between the  
regulation stage and the point of load provides a dual benefit of scaling  
down series impedance leading back to the source and scaling up shunt  
capacitance or energy storage as a function of its K factor squared.  
However, the benefits are not useful if the series impedance of the SAC  
is too high. The impedance of the SAC must be low, i.e. well beyond the  
crossover frequency of the system.  
Assuming that R = 1 Ω, the effective R as seen from the secondary side is  
62.5 mΩ, with K = 1/4 .  
A similar exercise should be performed with the additon of a capacitor  
or shunt impedance at the primary input to the SAC. A switch in series  
with VPRI is added to the circuit. This is depicted in Figure 18.  
A solution for keeping the impedance of the SAC low involves  
switching at a high frequency. This enables small magnetic components  
because magnetizing currents remain low. Small magnetics mean small  
path lengths for turns. Use of low loss core material at high frequencies  
also reduces core losses.  
S
SAC™  
The two main terms of power loss in the BCM module are:  
V
K = 1/4  
SEC  
+
C
V
PRI  
n
No load power dissipation (PPRI_NL): defined as the power  
used to power up the module with an enabled powertrain  
at no load.  
n
Resistive loss (RSEC): refers to the power loss across  
the BCM® module modeled as pure resistive impedance.  
Figure 18 Sine Amplitude Converter with input capacitor  
PDISSIPATED= PPRI_NL + PRSEC  
(10)  
A change in VPRI with the switch closed would result in a change in  
capacitor current according to the following equation:  
Therefore,  
PSEC_OUT = PPRI_IN – PDISSIPATED = PRI_IN – PPRI_NL – PRSEC (11)  
dVPRI  
dt  
(7)  
IC(t) = C  
The above relations can be combined to calculate the overall module  
efficiency:  
Assume that with the capacitor charged to VPRI, the switch is opened  
and the capacitor is discharged through the idealized SAC. In this case,  
PSEC_OUT  
P
PRI_IN – PPRI_NL – PRSEC  
=
(12)  
h =  
PIN  
PIN  
IC= ISEC  
K
(8)  
substituting Eq. (1) and (8) into Eq. (7) reveals:  
2
VPRI  
I
PRI – PPRI_NL – (ISEC  
)
R
SEC  
=
C
K2  
dISEC  
dt  
(9)  
ISEC  
=
VIN  
I
IN  
The equation in terms of the output has yielded a K2 scaling factor for  
C, specified in the denominator of the equation.  
2
PPRI_NL + (ISEC  
)
R
SEC  
= 1 –  
(
)
VPRI IPRI  
A K factor less than unity results in an effectively larger capacitance on  
the secondary output when expressed in terms of the input. With a  
K= 1/4 as shown in Figure 18, C=1 μF would appear as C=16 μF when  
viewed from the secondary.  
BCM® Bus Converter  
Page 18 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Input and Output Filter Design  
Thermal Considerations  
A major advantage of SAC™ systems versus conventional PWM  
converters is that the transformer based SAC does not require external  
filtering to function properly. The resonant LC tank, operated at  
extreme high frequency, is amplitude modulated as a function of input  
voltage and output current and efficiently transfers charge through the  
isolation transformer. A small amount of capacitance embedded in the  
primary and secondary stages of the module is sufficient for full  
functionality and is key to achieving power density.  
The ChiP package provides a high degree of flexibility in that it presents  
three pathways to remove heat from internal power dissipating  
components. Heat may be removed from the top surface, the bottom  
surface and the leads. The extent to which these three surfaces are  
cooled is a key component for determining the maximum power that is  
available from a ChiP, as can be seen from Figure 1.  
Since the ChiP has a maximum internal temperature rating, it is  
necessary to estimate this internal temperature based on a real thermal  
solution. Given that there are three pathways to remove heat from the  
ChiP, it is helpful to simplify the thermal solution into a roughly  
equivalent circuit where power dissipation is modeled as a current  
source, isothermal surface temperatures are represented as voltage  
sources and the thermal resistances are represented as resistors. Figure  
19 shows the “thermal circuit” for a VI Chip® BCM module 6123 in an  
application where the top, bottom, and leads are cooled. In this case,  
the BCM power dissipation is PDTOTAL and the three surface  
temperatures are represented as TCASE_TOP, TCASE_BOTTOM, and TLEADS. This  
thermal system can now be very easily analyzed using a SPICE  
simulator with simple resistors, voltage sources, and a current source.  
The results of the simulation would provide an estimate of heat flow  
through the various pathways as well as internal temperature.  
This paradigm shiꢀ requires system design to carefully evaluate  
external filters in order to:  
n Guarantee low source impedance:  
To take full advantage of the BCM module’s dynamic  
response, the impedance presented to its input terminals  
must be low from DC to approximately 5 MHz. The  
connection of the bus converter module to its power  
source should be implemented with minimal distribution  
inductance. If the interconnect inductance exceeds  
100 nH, the input should be bypassed with a RC damper  
to retain low source impedance and stable operation. With  
an interconnect inductance of 200 nH, the RC damper  
may be as high as 1 μF in series with 0.3 Ω. A single  
electrolytic or equivalent low-Q capacitor may be used in  
place of the series RC bypass.  
Thermal Resistance Top  
MAX INTERNAL TEMP  
1.26°C / W  
n Further reduce input and/or output voltage ripple without  
Thermal Resistance Bottom  
Thermal Resistance Leads  
1.03°C / W  
1.21°C / W  
sacrificing dynamic response:  
+
+
+
Given the wide bandwidth of the module, the source  
response is generally the limiting factor in the overall  
system response. Anomalies in the response of the source  
will appear at the output of the module multiplied by its  
K factor.  
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
Figure 19 Top case, Bottom case and leads thermal model  
n Protect the module from overvoltage transients imposed  
by the system that would exceed maximum ratings and  
induce stresses:  
Alternatively, equations can be written around this circuit and  
analyzed algebraically:  
The module primary/secondary voltage ranges shall not be  
exceeded. An internal overvoltage lockout function  
prevents operation outside of the normal operating input  
range. Even when disabled, the powertrain is exposed  
to the applied voltage and power MOSFETs must  
withstand it.  
TINT – PD1 • 1.24 = TCASE_TOP  
TINT – PD2 • 1.24 = TCASE_BOTTOM  
TINT – PD3 • 7 = TLEADS  
PDTOTAL = PD1+ PD2+ PD3  
Where TINT represents the internal temperature and PD1, PD2, and PD3  
represent the heat flow through the top side, bottom side, and leads  
respectively.  
Total load capacitance at the output of the BCM module shall not  
exceed the specified maximum. Owing to the wide bandwidth and low  
output impedance of the module, low-frequency bypass capacitance  
and significant energy storage may be more densely and efficiently  
provided by adding capacitance at the input of the module. At  
frequencies <500 kHz the module appears as an impedance of RSEC  
between the source and load.  
Thermal Resistance Top  
MAX INTERNAL TEMP  
1.26°C / W  
Thermal Resistance Bottom  
Thermal Resistance Leads  
Within this frequency range, capacitance at the input appears as  
effective capacitance on the output per the relationship  
defined in Eq. (13).  
1.03°C / W  
1.21°C / W  
+
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
CPRI_EXT  
(13)  
CSEC_EXT  
=
K2  
Figure 20 Top case and leads thermal model  
This enables a reduction in the size and number of capacitors used in a  
typical system.  
BCM® Bus Converter  
Page 19 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Figure 20 shows a scenario where there is no bottom side cooling. In  
this case, the heat flow path to the bottom is leꢀ open and the  
equations now simplify to:  
ZIN_EQ1  
ZOUT_EQ1  
BCM®1  
R0_1  
Vout  
Vin  
TINT – PD1 • 1.24 = TCASE_TOP  
TINT – PD3 • 7 = TLEADS  
PDTOTAL = PD1 + PD3  
ZOUT_EQ2  
ZIN_EQ2  
BCM®2  
R0_2  
+
Load  
DC  
Thermal Resistance Top  
MAX INTERNAL TEMP  
1.26°C / W  
Thermal Resistance Bottom  
Thermal Resistance Leads  
1.03°C / W  
1.21°C / W  
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
ZOUT_EQn  
BCM®n  
R0_n  
ZIN_EQn  
Figure 21 Top case thermal model  
Figure 22 BCM module array  
Figure 21 shows a scenario where there is no bottom side and leads  
cooling. In this case, the heat flow path to the bottom is leꢀ open and  
the equations now simplify to:  
Fuse Selection  
In order to provide flexibility in configuring power systems  
VI Chip® modules are not internally fused. Input line fusing  
of VI Chip products is recommended at system level to provide thermal  
protection in case of catastrophic failure.  
TINT – PD1 • 1.24 = TCASE_TOP  
PDTOTAL = PD1  
Please note that Vicor has a suite of online tools, including a simulator  
and thermal estimator which greatly simplify the task of determining  
whether or not a BCM thermal configuration is valid for a given  
condition. These tools can be found at:  
The fuse shall be selected by closely matching system  
requirements with the following characteristics:  
n Current rating  
http://www.vicorpower.com/powerbench.  
(usually greater than maximum current of BCM module)  
n Maximum voltage rating  
Current Sharing  
(usually greater than the maximum possible input voltage)  
n Ambient temperature  
n Nominal melting I2t  
The performance of the SAC™ topology is based on efficient transfer of  
energy through a transformer without the need of closed loop control.  
For this reason, the transfer characteristic can be approximated by an  
ideal transformer with a positive temperature coefficient series  
resistance.  
n Recommend fuse: ≤ 40 A Littelfuse 456 Series  
Reverse Operation  
This type of characteristic is close to the impedance characteristic of a  
DC power distribution system both in dynamic (AC) behavior and for  
steady state (DC) operation.  
BCM modules are capable of reverse power operation. Once the unit is  
started, energy will be transferred from secondary back to the primary  
whenever the secondary voltage exceeds VPRI • K. The module will  
continue operation in this fashion for as long as no faults occur.  
When multiple BCM modules of a given part number are connected in  
an array they will inherently share the load current according to the  
equivalent impedance divider that the system implements from the  
power source to the point of load.  
Transient operation in reverse is expected in cases where there is  
significant energy storage on the output and transient voltages appear  
on the input.  
Some general recommendations to achieve matched array impedances  
include:  
n Dedicate common copper planes within the PCB  
to deliver and return the current to the modules.  
n Provide as symmetric a PCB layout as possible among modules  
n An input filter is required for an array of BCMs in order to  
prevent circulating currents.  
For further details see AN:016 Using BCM Bus Converters  
in High Power Arrays.  
BCM® Bus Converter  
Page 20 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
BCM Module Through Hole Package Mechanical Drawing and Recommended Land Pattern  
25.14 .ꢀ3  
.990 .015  
12.57  
.495  
11.4ꢀ  
.450  
2.0ꢀ  
.030  
(9) PL.  
2.0ꢀ  
.030  
(9) PL.  
27.21  
1.071  
(2) PL.  
21.94  
.364  
17.09  
.67ꢀ  
(2) PL.  
(2) PL.  
ꢀ0.50  
1.201  
12.52  
.49ꢀ  
7.94  
.ꢀ12  
(2) PL.  
(2) PL.  
ꢀ.ꢀ7  
.1ꢀ2  
1.49  
.053  
(2) PL.  
0
0
0
0
(2) PL.  
6.76  
.266  
61.00 .1ꢀ  
2.402 .005  
(2) PL.  
1.02  
.040  
1.02  
.040  
(ꢀ) PL.  
(ꢀ) PL.  
13.05  
.710  
20.34  
.320  
(2) PL.  
(2) PL.  
2ꢀ.64  
.9ꢀ1  
(2) PL.  
27.55  
1.035  
(2) PL.  
TOP VIEW (COMPONENT SIDE)  
BOTTOM VIEW  
.05 [.002]  
7.26 .05  
.236 .002  
NOTES:  
1- RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
SEATING  
PLANE  
2- UNLESS SPECIFIED OTHERWISE, DIMENSIONS ARE MM / [INCH], TOLERANCE 0.127 / [0.005]  
4.17  
.164  
.41  
.016  
(24) PL.  
(24) PL.  
27.21 .03  
1.071 .00ꢀ  
(2) PL.  
+VSEC  
-VSEC  
+VSEC  
21.94 .03  
.364 .00ꢀ  
(2) PL.  
-VSEC  
17.09 .03  
.67ꢀ .00ꢀ  
(2) PL.  
-VSEC  
+VSEC  
+VSEC  
-VSEC  
-VSEC  
+VSEC  
+VSEC  
-VSEC  
12.52 .03  
.49ꢀ .00ꢀ  
(2) PL.  
7.94 .03  
.ꢀ12 .00ꢀ  
(2) PL.  
ꢀ.ꢀ7 .03  
.1ꢀ2 .00ꢀ  
(2) PL.  
1.49 .03  
.053 .00ꢀ  
0
0
-VSEC  
-VSEC  
(2) PL.  
6.76 .03  
.266 .00ꢀ  
(2) PL.  
+VSEC  
+VSEC  
1.52 .03  
.060 .00ꢀ  
PLATED THRU  
.25 [.010]  
ANNULAR RING  
2.54 .03  
.100 .00ꢀ  
PLATED THRU  
.ꢀ3 [.015]  
ANNULAR RING  
+VPRI  
+VPRI  
+VPRI  
TM  
(6) PL.  
EN  
VAUX  
(13) PL.  
13.05 .03  
.710 .00ꢀ  
(2) PL.  
+VPRI  
-VPRI  
20.34 .03  
.320 .00ꢀ  
(2) PL.  
2ꢀ.64 .03  
.9ꢀ1 .00ꢀ  
(2) PL.  
27.55 .03  
1.035 .00ꢀ  
(2) PL.  
RECOMMENDED HOLE PATTERN  
(COMPONENT SIDE)  
BCM® Bus Converter  
Page 21 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Revision History  
Revision  
Date  
Description  
Page Number(s)  
1.0  
08/26/15  
Initial Release  
n/a  
Changed PRI to SEC Input Quiescent Current  
Added certifications  
5
1.1  
09/28/15  
1 & 15  
BCM® Bus Converter  
Page 22 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  
BCM6123x60E15A3yzz  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make  
changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and  
is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are  
used to the extent Vicor deems necessary to support Vicors product warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Vicor’s Standard Terms and Conditions  
All sales are subject to Vicors Standard Terms and Conditions of Sale, which are available on Vicors webpage or upon request.  
Product Warranty  
In Vicors standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard Specifications (the  
“Express Limited Warranty”). This warranty is extended only to the original Buyer for the period expiring two (2) years after the date of shipment  
and is not transferable.  
UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR SIGNATORY, VICOR DISCLAIMS  
ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH  
RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR  
PARTICULAR PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY OTHER MATTER.  
This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor shall not be liable  
for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of any product or circuit and assumes  
no liability for applications assistance or buyer product design. Buyers are responsible for their products and applications using Vicor products and  
components. Prior to using or distributing any products that include Vicor components, buyers should provide adequate design, testing and  
operating safeguards.  
Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer must contact  
Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be  
returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the  
product was defective within the terms of this warranty.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS  
PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support  
devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform  
when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the  
user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products  
and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and pending patent applications) relating to the products described in this  
data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document.  
Interested parties should contact Vicor's Intellectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
6,911,848; 6,930,893; 6,934,166; 7,145,786; 7,782,639; 8,427,269 and for use under 6,975,098 and 6,984,965.  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
BCM® Bus Converter  
Page 23 of 23  
Rev 1.1  
09/2015  
vicorpower.com  
800 927.9474  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY