BCM6123XD1E5135YZZ_17 [VICOR]

Isolated Fixed-Ratio DC-DC Converter;
BCM6123XD1E5135YZZ_17
型号: BCM6123XD1E5135YZZ_17
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

Isolated Fixed-Ratio DC-DC Converter

文件: 总30页 (文件大小:799K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BCM® Bus Converter  
BCM6123xD1E5135yzz  
S
®
C
NRTL US  
C
US  
Isolated Fixed-Ratio DC-DC Converter  
Features & Benefits  
Product Ratings  
Up to 35A continuous secondary current  
Up to 2735W/in3 power density  
98% peak efficiency  
VPRI = 400V (260 – 410V)  
ISEC = up to 35A  
K = 1/8  
VSEC = 50V (32.5 – 51.3V)  
(no load)  
4,242VDC isolation  
Product Description  
Parallel operation for multi-kW arrays  
OV, OC, UV, short circuit and thermal protection  
6123 through-hole ChiP package  
The BCM6123xD1E5135yzz Bus Converter (BCM®) is a high  
efficiency Sine Amplitude Converter™ (SAC™), operating from  
a 260 to 410VDC primary bus to deliver an isolated, ratiometric  
2.494” x 0.898” x 0.284”  
secondary voltage from 32.5 to 51.3VDC  
.
(63.34mm x 22.80mm x 7.21mm)  
The BCM6123xD1E5135yzz offers low noise, fast transient  
response, and industry leading efficiency and power density. In  
addition, it provides an AC impedance beyond the bandwidth of  
most downstream regulators, allowing input capacitance normally  
located at the input of a PoL regulator to be located at the primary  
side of the BCM module. With a primary to secondary K factor  
of 1/8, that capacitance value can be reduced by a factor of 64x,  
resulting in savings of board area, material and total system cost.  
PMBus™ management interface*  
Typical Applications  
380VDC Power Distribution  
High End Computing Systems  
Automated Test Equipment  
Industrial Systems  
Leveraging the thermal and density benefits of Vicor ChiP  
packaging technology, the BCM module offers flexible thermal  
management options with very low top and bottom side thermal  
impedances. Thermally-adept ChiP-based power components,  
enable customers to achieve low cost power system solutions  
with previously unattainable system size, weight and efficiency  
attributes, quickly and predictably.  
High Density Power Supplies  
Communications Systems  
Transportation  
This product can operate in reverse direction, at full rated power,  
after being previously started in forward direction.  
* When used with D44TL1A0 and I13TL1A0  
BCM® Bus Converter  
Page 1 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Typical Application  
BCM  
TM  
EN  
enable/disable  
switch  
VAUX  
F1  
+VPRI  
–VPRI  
+VSEC  
VPRI  
CPRI  
POL  
–VSEC  
GND  
PRIMARY  
SECONDARY  
ISOLATION BOUNDRY  
BCM6123xD1E5135y00 at Point of load  
BCM  
SER-OUT  
SER-OUT  
EN  
SER-IN  
enable/disable  
switch  
SER-IN  
FUSE  
+VPRI  
–VPRI  
+VSEC  
VPRI  
C
POL  
I_BCM_ELEC  
–VSEC  
PRIMARY  
SECONDARY  
SOURCE_RTN  
Digital  
Supervisor  
D44TL1A0  
ISOLATION BOUNDRY  
Digital Isolator  
Host µC  
I13TL1A0  
NC  
PRI_OUT_A  
SEC_IN_A  
SEC_IN_B  
SEC_OUT_C  
SEC_COM  
VDDB  
t
SER-IN  
+
V
EXT  
VDD  
TXD  
PRI_OUT_B  
PRI_IN_C  
SER-OUT  
SGND  
RXD  
PRI_COM  
SGND  
PMBus  
PMBus  
SGND  
SGND  
SGND  
BCM6123xD1E5135y01 at Point of load  
BCM® Bus Converter  
Page 2 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Typical Application  
PRM  
BCM  
ENABLE  
TRIM  
VAUX  
enable/disable  
switch  
TM/SER-OUT  
EN  
REF/  
REF_EN  
VTM  
V
OUT  
Adaptive Loop Temperature Feedback  
VTM Start Up Pulse  
AL  
VT  
VC  
IFB  
SHARE/  
CONTROL NODE  
SGND  
enable/disable  
switch  
R
R
AL_PRM  
TRIM_PRM  
SGND  
VAUX/SER-IN  
+VPRI  
LOAD  
C
R
R
O_VTM_CER  
I_PRM_DAMP  
O_PRM_DAMP  
FUSE  
+IN  
–IN  
+OUT  
–OUT  
+VSEC  
L
L
I_PRM_FLT  
O_PRM_FLT  
C
V
C
R
I_PRM_CER  
PRI  
I_BCM_ELEC  
O_PRM_CER  
–VPRI  
–VSEC  
SGND  
PRIMARY  
SECONDARY  
PRIMARY  
SECONDARY  
SOURCE_RTN  
LOAD_RTN  
ISOLATION BOUNDRY  
ISOLATION BOUNDRY  
SGND  
BCM6123xD1E5135yzz + PRM + VTM, Adaptive Loop Configuration  
V
REF  
BCM  
SGND  
REF 3312  
IN OUT  
PRM  
SGND  
Voltage Sense and Error Amplifier  
(Differential)  
TM/SER-OUT  
EN  
GND  
VAUX  
ENABLE  
TRIM  
enable/disable  
switch  
VTM  
REF/  
REF_EN  
SGND  
Voltage Reference with Soft Start  
SGND  
VT  
VC  
IFB  
TM  
VC  
+OUT  
AL  
SHARE/  
CONTROL NODE  
enable/disable  
switch  
VTM Start up Pulse  
VAUX/SER-IN  
+VPRI  
SGND  
V
+
V –  
PC  
VOUT  
+IN  
R
R
LOAD  
SGND  
C
–IN  
I_PRM_DAMP  
O_PRM_DAMP  
O_VTM_CER  
FUSE  
+IN  
–IN  
+VSEC  
+OUT  
–OUT  
+IN  
–IN  
L
External Current Sense L  
O_PRM_FLT  
C
C
O_PRM_CER  
VPRI  
I_PRM_FLT  
C
I_PRM_ELEC  
I_BCM_ELEC  
–VPRI  
–VSEC  
–OUT  
SGND  
PRIMARY  
SECONDARY  
SOURCE_RTN  
PRIMARY  
SECONDARY  
ISOLATION BOUNDRY  
ISOLATION BOUNDRY  
SGND  
BCM6123xD1E5135yzz + PRM + VTM, Remote Sense Configuration  
BCM® Bus Converter  
Page 3 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Pin Configuration  
TOP VIEW  
1
2
+VPRI  
A
B
+VSEC  
A’  
B’ –VSEC  
C’ +VSEC  
D’ –VSEC  
TM/SER-OUT  
EN  
C
D
VAUX/SER-IN  
–VPRI  
E
6123 ChiP Package  
Pin Descriptions  
Power Pins  
Pin Number  
Signal Name  
Type  
Function  
A1  
+VPRI  
PRIMARY POWER  
Positive primary transformer power terminal  
Negative primary transformer power terminal  
PRIMARY POWER  
RETURN  
E1  
-VPRI  
+VSEC  
-VSEC  
SECONDARY  
POWER  
A’2, C’2  
B’2, D’2  
Positive secondary transformer power terminal  
Negative secondary transformer power terminal  
SECONDARY  
POWER RETURN  
Analog Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
B1  
C1  
D1  
TM  
EN  
OUTPUT  
INPUT  
Temperature Monitor; primary side referenced signals  
Enables and disables power supply; primary side referenced signals  
Auxilary Voltage Source; primary side referenced signals  
VAUX  
OUTPUT  
PMBus Control Signal Pins  
Pin Number  
Signal Name  
Type  
Function  
B1  
C1  
D1  
SER-OUT  
EN  
OUTPUT  
INPUT  
UART transmit pin; Primary side referenced signals  
Enables and disables power supply; Primary side referenced signals  
UART receive pin; Primary side referenced signals  
SER-IN  
INPUT  
BCM® Bus Converter  
Page 4 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Part Ordering Information  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package Package  
Max Primary  
Range  
Identifier  
Temperature  
Option  
Size  
Mounting Input Voltage  
Grade  
BCM  
6123  
x
D1  
E
51  
35  
y
zz  
00 = Analog Ctrl  
01 = PMBus Ctrl  
T = TH  
T = -40°C – 125°C  
Bus Converter  
Module  
61 = L  
23 = W  
51.3V  
No Load  
410V  
260 – 410V  
35A  
S = SMT  
M = -55°C – 125°C 0R = Reversible Analog Ctrl  
0P = Reversible PMBus Ctrl  
All products shipped in JEDEC standard high profile (0.400” thick) trays (JEDEC Publication 95, Design Guide 4.10).  
Standard Models  
Max  
Secondary  
Voltage  
Secondary  
Output  
Current  
Product  
Function  
Package  
Size  
Package  
Mounting  
Max Primary  
Input Voltage  
Range  
Identifier  
Temperature  
Grade  
Option  
BCM  
BCM  
BCM  
BCM  
6123  
6123  
6123  
6123  
T
T
T
T
D1  
D1  
D1  
D1  
E
E
E
E
51  
51  
51  
51  
35  
35  
35  
35  
T
T
T
T
00  
01  
0R  
0P  
Absolute Maximum Ratings  
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.  
Parameter  
Comments  
Min  
Max  
Unit  
+VPRI_DC to –VPRI_DC  
-1  
480  
V
VPRI_DC or VSEC_DC slew rate  
(operational)  
1
V/µs  
+VSEC_DC to –VSEC_DC  
TM/SER-OUT to –VPRI_DC  
EN to –VPRI_DC  
-1  
60  
4.6  
5.5  
4.6  
V
V
V
V
-0.3  
VAUX/SER-IN to –VPRI_DC  
BCM® Bus Converter  
Page 5 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Electrical Specifications  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction)  
Primary Input Voltage range,  
continuous  
VPRI_DC  
260  
410  
V
V
VPRI_DC voltage where µC is initialized,  
(ie VAUX = Low, powertrain inactive)  
VPRI µController  
VµC_ACTIVE  
120  
Disabled, EN Low, VPRI_DC = 400V  
TINTERNAL 100ºC  
2
PRI to SEC Input Quiescent Current  
IPRI_Q  
mA  
4
VPRI_DC = 400V, TINTERNAL = 25ºC  
VPRI_DC = 400V  
10  
14  
21  
15  
22  
6
PRI to SEC No Load Power  
Dissipation  
PPRI_NL  
W
VPRI_DC = 260V to 410V, TINTERNAL = 25ºC  
VPRI_DC = 260V to 410V  
VPRI_DC = 410V, CSEC_EXT = 100µF, RLOAD_SEC = 50% of  
full load current  
6
PRI to SEC Inrush Current Peak  
IPRI_INR_PK  
A
TINTERNAL 100ºC  
12  
DC Primary Input Current  
Transformation Ratio  
IPRI_IN_DC  
K
At ISEC_OUT_DC = 35A, TINTERNAL 100ºC  
Primary to secondary, K = VSEC_DC / VPRI_DC, at no load  
4.5  
A
1/8  
V/V  
Secondary Output Current  
(continuous)  
ISEC_OUT_DC  
ISEC_OUT_PULSE  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
35  
40  
A
A
10ms pulse, 25% Duty cycle, ISEC_OUT_AVG 50% rated  
Secondary Output Current (pulsed)  
ISEC_OUT_DC  
Secondary Output Power  
(continuous)  
Specified at VPRI_DC = 410V  
1750  
2000  
W
W
Secondary Output Power  
(pulsed)  
Specified at VPRI_DC = 410V; 10ms pulse, 25% Duty  
cycle, PSEC_AVG 50% rated PSEC_OUT_DC  
VPRI_DC = 400V, ISEC_OUT_DC = 35A  
VPRI_DC = 260V to 410V, ISEC_OUT_DC = 35A  
VPRI_DC = 400V, ISEC_OUT_DC = 17.5A  
VPRI_DC = 400V, ISEC_OUT_DC = 35A  
96.9  
95.7  
97.5  
96.3  
97.4  
PRI to SEC Efficiency (ambient)  
PRI to SEC Efficiency (hot)  
ηAMB  
%
98  
ηHOT  
η20%  
96.8  
%
%
PRI to SEC Efficiency  
(over load range)  
7A < ISEC_OUT_DC < 35A  
92  
RSEC_COLD  
RSEC_AMB  
RSEC_HOT  
FSW  
VPRI_DC = 400V, ISEC_OUT_DC = 35A, TINTERNAL = -40°C  
VPRI_DC = 400V, ISEC_OUT_DC = 35A  
12  
16  
16  
22.6  
31  
20  
33  
PRI to SEC Output Resistance  
mΩ  
VPRI_DC = 400V, ISEC_OUT_DC = 35A, TINTERNAL = 100°C  
Frequency of the Output Voltage Ripple = 2x FSW  
24  
39  
Switching Frequency  
1.05  
1.10  
1.14  
MHz  
mV  
CSEC_EXT = 0µF, ISEC_OUT_DC = 35A, VPRI_DC = 400V,  
20MHz BW  
250  
Secondary Output Voltage Ripple  
VSEC_OUT_PP  
TINTERNAL 100ºC  
350  
Primary Input Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
Simulated lead model  
LPRI_IN_LEADS  
LSEC_OUT_LEADS  
LIN_INT  
6.7  
1.3  
nH  
nH  
µH  
Secondary Output Leads Inductance  
(Parasitic)  
Frequency 2.5MHz (double switching frequency),  
Simulated lead model  
Primary Input Series Inductance  
(internal)  
Reduces the need for input decoupling inductance in  
BCM arrays  
0.56  
BCM® Bus Converter  
Page 6 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
General Powertrain PRIMARY to SECONDARY Specification (Forward Direction) Cont.  
Effective Primary Capacitance  
(Internal)  
CPRI_INT  
CSEC_INT  
CSEC_OUT_EXT  
CSEC_OUT_AEXT  
Effective Value at 400VPRI_DC  
Effective Value at 50VSEC_DC  
0.37  
25.6  
µF  
µF  
µF  
Effective Secondary Capacitance  
(Internal)  
Effective Secondary Output  
Capacitance (External)  
Excessive capacitance may drive module into SC  
protection  
100  
Effective Secondary Output  
Capacitance (External)  
CSEC_OUT_AEXT Max = N * 0.5 * CSEC_OUT_EXT MAX, where  
N = the number of units in parallel  
Powertrain Protection PRIMARY to SECONDARY (Forward Direction)  
Startup into a persistent fault condition. Non-Latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Auto Restart Time  
tAUTO_RESTART  
VPRI_OVLO+  
VPRI_OVLO-  
292.5  
357.5  
450  
ms  
V
Primary Overvoltage Lockout  
Threshold  
420  
405  
436  
426  
10  
Primary Overvoltage Recovery  
Threshold  
440  
V
Primary Overvoltage Lockout  
Hysteresis  
VPRI_OVLO_HYST  
tPRI_OVLO  
V
Primary Overvoltage Lockout  
Response Time  
100  
1
µs  
ms  
A
From powertrain active. Fast Current limit protection  
disabled during Soft-Start  
Primary Soft-Start Time  
tPRI_SOFT-START  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
ISEC_OUT_SCP  
tSEC_OUT_SCP  
tOTP+  
Secondary Output Overcurrent Trip  
Threshold  
37.5  
52  
47  
59  
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
3.6  
ms  
A
Secondary Output Short Circuit  
Protection Trip Threshold  
Secondary Output Short Circuit  
Protection Response Time  
1
µs  
°C  
Overtemperature Shutdown  
Threshold  
Temperature sensor located inside controller IC  
125  
BCM® Bus Converter  
Page 7 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Powertrain Supervisory Limits PRIMARY to SECONDARY (Forward Direction)  
Primary Overvoltage Lockout  
Threshold  
VPRI_OVLO+  
VPRI_OVLO-  
VPRI_OVLO_HYST  
tPRI_OVLO  
420  
405  
436  
426  
10  
450  
440  
V
V
Primary Overvoltage Recovery  
Threshold  
Primary Overvoltage Lockout  
Hysteresis  
V
Primary Overvoltage Lockout  
Response Time  
100  
226  
244  
15  
µs  
V
Primary Undervoltage Lockout  
Threshold  
VPRI_UVLO-  
200  
225  
250  
259  
Primary Undervoltage Recovery  
Threshold  
VPRI_UVLO+  
VPRI_UVLO_HYST  
tPRI_UVLO  
V
Primary Undervoltage Lockout  
Hysteresis  
V
Primary Undervoltage Lockout  
Response Time  
100  
µs  
From VPRI_DC = VPRI_UVLO+ to powertrain active, EN  
Primary Undervoltage Startup Delay tPRI_UVLO+_DELAY floating, (i.e One time Startup delay from application  
of VPRI_DC to VSEC_DC  
20  
ms  
)
Secondary Output Overcurrent Trip  
Threshold  
ISEC_OUT_OCP  
tSEC_OUT_OCP  
tOTP+  
37.5  
47  
59  
A
ms  
°C  
°C  
°C  
s
Secondary Output Overcurrent  
Response Time Constant  
Effective internal RC filter  
3.6  
Overtemperature Shutdown  
Threshold  
Temperature sensor located inside controller IC  
125  
Overtemperature Recovery  
Threshold  
tOTP–  
105  
110  
3
115  
-45  
Undertemperature Shutdown  
Threshold  
Temperature sensor located inside controller IC;  
Protection not available for M-Grade units.  
tUTP  
Startup into a persistent fault condition. Non-Latching  
fault detection given VPRI_DC > VPRI_UVLO+  
Undertemperature Restart Time  
tUTP_RESTART  
BCM® Bus Converter  
Page 8 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
51.3  
Unit  
General Powertrain SECONDARY to PRIMARY Specification (Reverse Direction)  
Secondary Input Voltage range,  
continuous  
VSEC_DC  
32.5  
V
VSEC_DC = 50V, TINTERNAL = 25ºC  
VSEC_DC = 50V  
12  
17  
22  
6
SEC to PRI No Load Power  
Dissipation  
PSEC_NL  
W
VSEC_DC = 32.5V to 51.3V, TINTERNAL = 25ºC  
VSEC_DC = 32.5V to 51.3V  
18  
23  
DC Secondary Input Current  
ISEC_IN_DC  
At IPRI_DC = 4.38A, TINTERNAL 100ºC  
Specified at VSEC_DC = 51.3V  
36  
A
Primary Output Power (continuous)  
PPRI_OUT_DC  
1750  
W
Specified at VSEC_DC = 51.3V; 10ms pulse,  
25% Duty cycle, PPRI_AVG 50 rated PPRI_OUT_DC  
Primary Output Power (pulsed)  
Primary Output Current (continuous)  
Primary Output Current (pulsed)  
PPRI_OUT_PULSE  
IPRI_OUT_DC  
2000  
4.38  
5
W
A
10ms pulse, 25% Duty cycle,  
IPRI_OUT_AVG 50% rated IPRI_OUT_DC  
IPRI_OUT_PULSE  
A
VSEC_DC = 50V, IPRI_OUT_DC = 4.38A  
VSEC_DC = 32.5V to 51.3V, IPRI_OUT_DC= 4.38A  
VSEC_DC = 50V, IPRI_OUT_DC = 2.2A  
96.9  
95.7  
97.3  
96.3  
97.3  
SEC to PRI Efficiency (ambient)  
SEC to PRI Efficiency (hot)  
ηAMB  
%
97.8  
96.8  
ηHOT  
η20%  
VSEC_DC = 50V, IPRI_OUT_DC = 4.38A  
%
%
SEC to PRI Efficiency  
(over load range)  
0.88A < IPRI_OUT_DC < 4.38A  
92  
RPRI_COLD  
RPRI_AMB  
RPRI_HOT  
VSEC_DC = 50V, IPRI_OUT_DC = 4.38A, TINTERNAL = -40°C  
VSEC_DC = 50V, IPRI_OUT_DC = 4.38A  
1400  
1650  
2350  
1628  
2026  
2683  
2200  
2650  
3100  
SEC to PRI Output Resistance  
Primary Output Voltage Ripple  
mΩ  
VSEC_DC = 50V, IPRI_OUT_DC = 4.38A, TINTERNAL = 100°C  
CPRI_OUT_EXT = 0µF, IPRI_OUT_DC = 4.38A,  
VSEC_DC = 50V, 20MHz BW  
2000  
VPRI_OUT_PP  
mV  
TINTERNAL 100ºC  
2800  
BCM® Bus Converter  
Page 9 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Electrical Specifications (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Protection SECONDARY to PRIMARY (Reverse Direction)  
Secondary Overvoltage Lockout  
Threshold  
VSEC_OVLO+  
Module latched shutdown with VPRI_DC < VPRI_UVLO-_R  
52.5  
54.5  
100  
15  
56.5  
16  
V
µs  
V
Secondary Overvoltage Lockout  
Response Time  
tPRI_OVLO  
VSEC_UVLO-  
tSEC_UVLO  
Secondary Undervoltage Lockout  
Threshold  
Module latched shutdown with VPRI_DC < VPRI_UVLO-_R  
13.75  
Secondary Undervoltage Lockout  
Response Time  
100  
µs  
Applies only to reversilbe products in forward and in  
reverse direction; IPRI_DC 20% while VPRI_UVLO-_R  
< VPRI_DC < VPRI_MIN  
Primary Undervoltage Lockout  
Threshold  
VPRI_UVLO-_R  
110  
120  
120  
130  
150  
V
Primary Undervoltage Recovery  
Threshold  
Applies only to reversilbe products in forward and in  
reverse direction  
VPRI_UVLO+_R  
VPRI_UVLO_HYST_R  
IPRI_OUT_OCP  
tPRI_OUT_OCP  
IPRI_SCP  
135  
10  
V
V
Primary Undervoltage Lockout  
Hysteresis  
Applies only to reversilbe products in forward and in  
reverse direction  
Primary Output Overcurrent Trip  
Threshold  
Module latched shutdown with VPRI_DC < VPRI_UVLO-_R  
Effective internal RC filter  
4.69  
6.5  
5.88  
3.6  
7.38  
A
Primary Output Overcurrent  
Response Time Constant  
ms  
A
Primary Short Circuit Protection Trip  
Threshold  
Module latched shutdown with VPRI_DC < VPRI_UVLO-_R  
Primary Short Circuit Protection  
Response Time  
tPRI_SCP  
1
µs  
BCM® Bus Converter  
Page 10 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
35  
45  
55  
65  
75  
85  
95  
105  
115  
125  
Case Temperature (°C)  
Top only at temperture  
Top and leads at temperature  
Top, leads and belly at temperature  
Figure 1 — Specified thermal operating area  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
260 275 290 305 320 335 350 365 380 395 410  
260 275 290 305 320 335 350 365 380 395 410  
Primary Input Voltage (V)  
Primary Input Voltage (V)  
PSEC_OUT_DC  
PSEC_OUT_PULSE  
ISEC_OUT_DC  
ISEC_OUT_PULSE  
Figure 2 — Specified electrical operating area using rated RSEC_HOT  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
Seondary Output Current (% ISEC_DC  
)
Figure 3 — Specified Primary start-up into load current and external capacitance  
BCM® Bus Converter  
Page 11 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Analog Control Signal Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Temperature Monitor  
• The TM pin is a standard analog I/O configured as an output from an internal µC.  
• The TM pin monitors the internal temperature of the controller IC within an accuracy of 5°C.  
• µC 250kHz PWM output internally pulled high to 3.3V.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP MAX UNIT  
Powertrain active to TM  
time  
Startup  
tTM  
100  
µs  
TM Duty Cycle  
TM Current  
TMPWM  
ITM  
18.18  
68.18  
4
%
mA  
Recommended External filtering  
TM Capacitance (External)  
TM Resistance (External)  
CTM_EXT  
RTM_EXT  
Recommended External filtering  
Recommended External filtering  
0.01  
1
µF  
DIGITAL  
OUTPUT  
kΩ  
Regular  
Operation  
Specifications using recommended filter  
TM Gain  
ATM  
10  
mV / °C  
V
TM Voltage Reference  
VTM_AMB  
1.27  
RTM_EXT = 1kΩ, CTM_EXT = 0.01µF,  
VPRI_DC = 400V, ISEC_DC = 35A  
28  
TM Voltage Ripple  
VTM_PP  
mV  
TINTERNAL 100ºC  
40  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize startup.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.3  
TYP MAX UNIT  
VPRI_DC > VPRI_UVLO+, EN held low both  
conditions satisfied for T > tPRI_UVLO+_DELAY  
EN to Powertrain  
active time  
Startup  
tEN_START  
250  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VEN_TH  
REN_INT  
V
kΩ  
V
Regular  
Operation  
Internal pull up resistor  
1.5  
VEN_DISABLE_TH  
1
BCM® Bus Converter  
Page 12 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Analog Control Signal Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Auxiliary Voltage Source  
• The VAUX pin is a standard analog I/O configured as an output from an internal µC.  
• VAUX is internally connected to µC output as internally pulled high to a 3.3V regulator with 2% tolerance, a 1% resistor of 1.5kΩ.  
• VAUX can be used as a “Ready to process full power” flag. This pin transitions VAUX voltage after a 2ms delay from the start of powertrain activating,  
signaling the end of softstart.  
• VAUX can be used as “Fault flag”. This pin is pulled low internally when a fault protection is detected.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.8  
TYP MAX UNIT  
Powertrain active to  
VAUX time  
Startup  
tVAUX  
Powertrain active to VAUX High  
2
ms  
VAUX Voltage  
VVAUX  
IVAUX  
3.3  
4
V
VAUX Available Current  
mA  
50  
ANALOG  
OUTPUT  
Regular  
Operation  
VAUX Voltage Ripple  
VVAUX_PP  
mV  
µF  
TINTERNAL 100ºC  
100  
VAUX Capacitance  
(External)  
CVAUX_EXT  
0.01  
VAUX Resistance (External)  
VAUX Fault Response Time  
RVAUX_EXT  
tVAUX_FR  
VPRI_DC < VµC_ACTIVE  
1.5  
kΩ  
Fault  
From fault to VVAUX = 2.8V, CVAUX = 0pF  
10  
µs  
BCM® Bus Converter  
Page 13 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
PMBus™ Control Signal Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
UART SER-IN / SER-OUT Pins  
• Universal Asynchronous Receiver/Transmitter (UART) pins.  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
• Isolated I2C communication and telemetry is available when using Vicor Digital Isolator and Vicor Digital Supervisor. Please see specific product data sheet  
for more details.  
• UART SER-IN pin is internally pulled high using a 1.5kΩ to 3.3V.  
SIGNAL TYPE  
GENERAL I/O  
STATE  
ATTRIBUTE  
Baud Rate  
SYMBOL  
CONDITIONS / NOTES  
MIN  
TYP  
750  
MAX UNIT  
BRUART  
Rate  
Kbit/s  
SER-IN Pin  
VSER-IN_IH  
VSER-IN_IL  
2.3  
V
SER-IN Input Voltage Range  
1
V
ns  
ns  
kΩ  
pF  
DIGITAL  
INPUT  
SER-IN rise time  
SER-IN fall time  
SER-IN RPULLUP  
tSER-IN_RISE 10% to 90%  
tSER-IN_FALL 10% to 90%  
RSER-IN_PLP Pull up to 3.3V  
CSER-IN_EXT  
400  
25  
1.5  
SER-IN External Capacitance  
400  
Regular  
Operation  
SER-OUT Pin  
VSER-OUT_OH 0mA IOH -4mA  
VSER-OUT_OL 0mA IOL 4mA  
2.8  
V
V
SER-OUT Output Voltage  
Range  
0.5  
DIGITAL  
OUTPUT  
SER-OUT rise time  
tSER-OUT_RISE 10% to 90%  
tSER-OUT_FALL 10% to 90%  
55  
45  
ns  
ns  
SER-OUT fall time  
SER-OUT source current  
SER-OUT output impedance  
ISER-OUT  
ZSER-OUT  
VSER-OUT = 2.8V  
6
mA  
Ω
120  
Enable / Disable Control  
• The EN pin is a standard analog I/O configured as an input to an internal µC.  
• It is internally pulled high to 3.3V.  
• When held low the BCM internal bias will be disabled and the powertrain will be inactive.  
• In an array of BCMs, EN pins should be interconnected to synchronize startup.  
• Enable / disable command will have no effect if the EN pin is disabled.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
SYMBOL  
CONDITIONS / NOTES  
MIN  
2.3  
TYP  
250  
MAX UNIT  
VPRI_DC > VPRI_UVLO+  
,
Startup  
EN to Powertrain active time  
tEN_START  
EN held low both conditions satisfied  
for t > tPRI_UVLO+_DELAY  
µs  
ANALOG  
INPUT  
EN Voltage Threshold  
EN Resistance (Internal)  
EN Disable Threshold  
VENABLE  
REN_INT  
V
Regular  
Operation  
Internal pull up resistor  
1.5  
kΩ  
VEN_DISABLE_TH  
1
V
BCM® Bus Converter  
Page 14 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
PMBus™ Reported Characteristics  
Specifications apply over all line, load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Monitored Telemetry  
• The BCM communication version is not intended to be used without a Digital Supervisor.  
DIGITAL SUPERVISOR  
ACCURACY  
(RATED RANGE)  
FUNCTIONAL  
REPORTING RANGE  
UPDATE  
RATE  
ATTRIBUTE  
REPORTED UNITS  
PMBusTM READ COMMAND  
Input voltage  
(88h) READ_VIN  
(89h) READ_IIN  
5% (LL - HL)  
130V to 450V  
-5.9A to 5.9A  
100µs  
100µs  
100µs  
100µs  
100ms  
100ms  
VACTUAL = VREPORTED x 10-1  
IACTUAL = IREPORTED x 10-3  
VACTUAL = VREPORTED x 10-1  
IACTUAL = IREPORTED x 10-2  
RACTUAL = RREPORTED x 10-5  
TACTUAL = TREPORTED  
20% (10 - 20% of FL)  
5% (20 - 133% of FL)  
Input current  
Output voltage[1]  
Output current  
Output resistance  
Temperature[2]  
(8Bh) READ_VOUT  
5% (LL - HL)  
16.25V to 56.25V  
-47.5A to 47.5A  
10mΩ to 40mΩ  
- 55ºC to 130ºC  
20% (10 - 20% of FL)  
5% (20 - 133% of FL)  
(8Ch) READ_IOUT  
5% (50 - 100% of FL) at NL  
10% (50 - 100% of FL) (LL - HL)  
(D4h) READ_ROUT  
(8Dh) READ_TEMPERATURE_1  
7°C (Full Range)  
[1] Default READ Output Voltage returned when unit is disabled = -300 V.  
[2] Default READ Temperature returned when unit is disabled = -273°C.  
Variable Parameter  
• Factory setting of all below Thresholds and Warning limits are 100% of listed protection values.  
• Variables can be written only when module is disabled either EN pulled low or VIN < VIN_UVLO-  
.
• Module must remain in a disabled mode for 3ms after any changes to the below variables allowing ample time to commit changes to EEPROM.  
FUNCTIONAL  
REPORTING  
RANGE  
DIGITAL SUPERVISOR  
ACCURACY  
(RATED RANGE)  
DEFAULT  
VALUE  
ATTRIBUTE  
CONDITIONS / NOTES  
PMBusTM COMMAND [3]  
Input / Output Overvoltage  
Protection Limit  
VIN_OVLO- is automatically 3%  
lower than this set point  
(55h) VIN_OV_FAULT_LIMIT  
(57h) VIN_OV_WARN_LIMIT  
(D7h) DISABLE_FAULTS  
(5Bh) IIN_OC_FAULT_LIMIT  
(5Dh) IIN_OC_WARN_LIMIT  
(4Fh) OT_FAULT_LIMIT  
5% (LL - HL)  
5% (LL - HL)  
5% (LL - HL)  
130V to 435V  
130V to 435V  
130V or 260V  
0 to 5.625A  
0 to 5.625A  
0 to 125°C  
100%  
100%  
100%  
100%  
100%  
100%  
100%  
0ms  
Input / Output Overvoltage  
Warning Limit  
Input / Output Undervoltage  
Protection Limit  
Can only be disabled to a preset  
default value  
Input Overcurrent Protec-  
tion Limit  
20% (10 - 20% of FL)  
5% (20 - 133% of FL)  
Input Overcurrent  
Warning Limit  
20% (10 - 20% of FL)  
5% (20 - 133% of FL)  
Overtemperature Protection  
Limit  
7°C (Full Range)  
7°C (Full Range)  
50µs  
Overtemperature  
Warning Limit  
(51h) OT_WARN_LIMIT  
(60h) TON_DELAY  
0 to 125°C  
Additional time delay to the  
Undervoltage Startup Delay  
Turn on Delay  
0 to 100ms  
[3] Refer to Digital Supervisor datasheet for complete list of supported commands.  
BCM® Bus Converter  
Page 15 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
BCM Module Timing Diagram  
BCM® Bus Converter  
Page 16 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
High Level Functional State Diagram  
VµC_ACTIVE < VPRI_DC < VPRI_UVLO+  
STARTUP SEQUENCE  
TM Low  
VPRI_DC > VPRI_UVLO+  
STANDBY SEQUENCE  
TM Low  
EN High  
EN High  
VAUX Low  
VAUX Low  
Powertrain Stopped  
Powertrain Stopped  
ENABLE falling edge,  
or OTP detected  
tPRI_UVLO+_DELAY  
expired  
Input OVLO or UVLO,  
Output OCP,  
ONE TIME DELAY  
Fault  
Auto-  
recovery  
INITIAL STARTUP  
or UTP detected  
ENABLE falling edge,  
or OTP detected  
FAULT  
SEQUENCE  
TM Low  
SUSTAINED  
OPERATION  
TM PWM  
Input OVLO or UVLO,  
Output OCP,  
EN High  
EN High  
or UTP detected  
VAUX Low  
VAUX High  
Powertrain Stopped  
Powertrain Active  
Short Circuit detected  
BCM® Bus Converter  
Page 17 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Application Characteristics  
Product is mounted and temperature controlled via top side cold plate, unless otherwise noted. All data presented in this section are collected data from  
primary sourced units processing power in forward direction.See associated figures for general trend data.  
17  
16  
15  
14  
13  
12  
11  
10  
9
98.0  
97.8  
97.5  
97.3  
97.0  
96.8  
96.5  
96.3  
96.0  
95.8  
95.5  
8
7
6
5
4
3
-40  
-20  
0
20  
40  
60  
80  
100  
260 275 290 305 320 335 350 365 380 395 410  
Primary Input Voltage (V)  
Case Temperature (ºC)  
TTOP SURFACE CASE  
:
-40°C  
25°C  
80°C  
VPRI:  
260V  
400V  
410V  
Figure 4 — No load power dissipation vs. VPRI_DC  
Figure 5 — Full load efficiency vs. temperature; VPRI_DC  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
88  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPRI  
:
260V  
400V  
410V  
VPRI  
:
260V  
400V  
410V  
Figure 6 — Efficiency at TCASE = -40°C  
Figure 7 — Power dissipation at TCASE = -40°C  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
72  
64  
56  
48  
40  
32  
24  
16  
8
0
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
Load Current (A)  
Load Current (A)  
260V  
400V  
410V  
VPRI  
:
260V  
400V  
410V  
VPRI  
:
Figure 8 — Efficiency at TCASE = 25°C  
Figure 9 — Power dissipation at TCASE = 25°C  
BCM® Bus Converter  
Page 18 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
72  
64  
56  
48  
40  
32  
24  
16  
8
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
0
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
Secondary Output Current (A)  
Secondary Output Current (A)  
VPRI  
:
260V  
400V  
410V  
VPRI  
:
260V  
400V  
410V  
Figure 10 — Efficiency at TCASE = 80°C  
Figure 11 — Power dissipation at TCASE = 80°C  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
0
-40  
-20  
0
20  
40  
60  
80  
100  
0.0 3.5 7.0 10.5 14.0 17.5 21.0 24.5 28.0 31.5 35.0  
Case Temperature (°C)  
Secondary Output Current (A)  
VPRI  
:
400V  
ISEC_OUT  
:
35A  
Figure 12 — RSEC vs. temperature; Nominal VPRI_DC  
Figure 13 — VSEC_OUT_PP vs. ISEC_DC ; No external CSEC_OUT_EXT  
.
ISEC_DC = 24A at TCASE = 80°C  
Board mounted module, scope setting:  
20MHz analog BW  
Figure 14 — Full load ripple, 270µF CPRI_IN_EXT; No external  
CSEC_OUT_EXT Board mounted module, scope setting:  
.
20MHz analog BW  
BCM® Bus Converter  
Page 19 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Figure 15 — 0A – 35A transient response:  
CPRI_IN_EXT = 270µF, no external CSEC_OUT_EXT  
Figure 16 — 35A – 0A transient response:  
CPRI_IN_EXT = 270µF, no external CSEC_OUT_EXT  
Figure 17 — Start up from application of VPRI_DC = 400V,  
Figure 18 — Start up from application of EN with pre-applied  
50% ISEC_DC, 100% CSEC_OUT_EXT  
VPRI_DC = 400V, 50% ISEC_DC, 100% CSEC_OUT_EXT  
BCM® Bus Converter  
Page 20 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
General Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; boldface specifications apply over the temperature range of  
-40°C TINTERNAL 125°C (T-Grade). All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Mechanical  
Min  
Typ  
Max  
Unit  
Length  
Width  
L
W
H
62.96 / [2.479] 63.34 / [2.494] 63.72 / [2.509] mm/[in]  
22.67 / [0.893] 22.80 / [0.898] 22.93 / [0.903] mm/[in]  
Height  
Volume  
Weight  
7.11 / [0.280] 7.21 / [0.284] 7.31 / [0.288]  
mm/[in]  
cm3/[in3]  
g/[oz]  
Vol  
W
Without Heatsink  
10.41 / [0.636]  
41 / [1.45]  
Nickel  
0.51  
0.02  
2.03  
0.15  
Lead Finish  
Palladium  
Gold  
µm  
0.003  
0.051  
Thermal  
BCM6123xD1E5135yzz (T-Grade)  
BCM6123xD1E5135yzz (M-Grade)  
-40  
-55  
125  
125  
°C  
°C  
Operating Temperature  
TINTERNAL  
Estimated thermal resistance to maximum  
temperature internal component from  
isothermal top  
Thermal Resistance Top Side  
Thermal Resistance Leads  
θINT-TOP  
1.33  
5.64  
°C/W  
°C/W  
Estimated thermal resistance to  
θINT-LEADS maximum temperature internal  
component from isothermal leads  
Estimated thermal resistance to  
θINT-BOTTOM maximum temperature internal  
component from isothermal bottom  
Thermal Resistance Bottom Side  
Thermal Capacity  
1.29  
34  
°C/W  
Ws/°C  
Assembly  
BCM6123xD1E5135yzz (T-Grade)  
-55  
-65  
125  
125  
°C  
°C  
Storage Temperature  
ESD Withstand  
BCM6123xD1E5135yzz (M-Grade)  
ESDHBM  
ESDCDM  
Human Body Model, “ESDA / JEDEC JDS-001-2012” Class I-C (1kV to < 2kV)  
Charge Device Model, “JESD 22-C101-E” Class II (200V to < 500V)  
BCM® Bus Converter  
Page 21 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
General Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of -40°C TINTERNAL  
125°C (T-Grade); All other specifications are at TINTERNAL = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Soldering[1]  
Min  
Typ  
Max  
Unit  
Peak Temperature Top Case  
135  
°C  
Safety  
PRIMARY to SECONDARY  
4,242  
2,121  
2,121  
620  
Isolation voltage / Dielectric test  
VHIPOT  
PRIMARY to CASE  
SECONDARY to CASE  
Unpowered Unit  
At 500VDC  
VDC  
Isolation Capacitance  
Insulation Resistance  
CPRI_SEC  
RPRI_SEC  
780  
940  
pF  
10  
MΩ  
MIL-HDBK-217Plus Parts Count - 25°C  
Ground Benign, Stationary, Indoors /  
Computer  
3.53  
3.90  
MHrs  
MHrs  
MTBF  
Telcordia Issue 2 - Method I Case III; 25°C  
Ground Benign, Controlled  
cTUVus EN 60950-1  
cURus UL 60950-1  
Agency Approvals / Standards  
CE Marked for Low Voltage Directive and RoHS Recast Directive, as applicable  
Previous Part Numbers  
BCM400x500y1K8A3z  
BCM400x500y1K8A31  
[1] Product is not intended for reflow solder attach.  
BCM® Bus Converter  
Page 22 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
PMBus™ System Diagram  
-OUT  
BCM  
EN Control  
3.3V, at least 20mA  
when using 4xDISO  
SCL  
Ref to Digital Isolator  
datasheet for more details  
Digital Isolator  
3 kΩ  
VDD  
3 kΩ  
BCM EN  
5V EXT  
VDDB  
SEC-IN-A  
SEC-IN-B  
PRI-OUT-A  
PRI-OUT-B  
PRI-IN-C  
SER-IN  
SER-OUT  
-IN BCM  
TXD1’  
RXD1  
RXD4  
RXD3  
RXD2  
RXD1  
TXD4  
TXD3  
SEC-OUT-C  
VDD  
NC  
CP  
D
VCC  
PRI-COM  
SEC-COM  
SD  
RD  
Q
D
D44TL1A0 NC  
Q
NC  
SSTOP  
Flip-flop  
VDD  
Host  
µc  
SGND  
SDA  
SCL  
74LVC1G74DC  
10 kΩ  
PMBus  
FDG6318P  
R1  
R2  
10 kΩ  
SGND  
The PMBus communication enabled bus converter provides accurate telemetry monitoring and reporting, threshold and warning  
limits adjustment, in addition to corresponding status flags.  
The BCM internal µC is referenced to primary ground. The Digital Isolator allows UART communication interface with the host Digital  
Supervisor at typical speed of 750kHz across the isolation barrier. One of the advantages of the Digital Isolator is its low power  
consumption. Each transmission channel is able to draw its internal bias circuitry directly from the input signal being transmitted to  
the output with minimal to no signal distortion.  
The Digital Supervisor provides the host system µC with access to an array of up to 4 BCMs. This array is constantly polled for status  
by the Digital Supervisor. Direct communication to individual BCM is enabled by a page command. For example, the page (0x00)  
prior to a telemetry inquiry points to the Digital Supervisor data and pages (0x01 – 0x04) prior to a telemetry inquiry points to the  
array of BCMs connected data. The Digital Supervisor constantly polls the BCM data through the UART interface.  
The Digital Supervisor enables the PMBus compatible host interface with an operating bus speed of up to 400kHz. The Digital  
Supervisor follows the PMBus command structure and specification.  
Please refer to the Digital Supervisor data sheet for more details.  
BCM® Bus Converter  
Page 23 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Sine Amplitude Converter™ Point of Load Conversion  
RSEC  
1.77nH  
24.2mΩ  
= 1.3nH  
ISEC
lSEC_OUT_LEADS  
= 6.7nH  
lPRI_IN_LEADS  
+
+
CPRI_INT_ESR  
21.5mΩ  
CSEC_INT_ESR  
510µΩ  
139mΩ  
V•I  
K
1/8 • ISEC  
1/8 • VPRI  
CPRI_INT  
0.37µF  
CSEC_INT  
25.6µF  
+
+
IN  
VSEC  
V
I
PRI  
PRI_Q  
25.8mA  
LPRI_INT = 0.56µH  
Figure 19 — BCM module AC model  
The Sine Amplitude Converter (SAC™) uses a high frequency  
resonant tank to move energy from Primary to secondary and  
vice versa. The resonant LC tank, operated at high frequency,  
is amplitude modulated as a function of primary voltage and  
secondary current. A small amount of capacitance embedded in  
Eq. (3) now becomes Eq. (1) and is essentially load independent,  
resistor R is now placed in series with VPRI  
.
the primary and secondary stages of the module is sufficient for full  
functionality and is key to achieving high power density.  
R
SAC™  
K = 1/8  
VSEC  
+
The BCM6123xD1E5135yzz SAC can be simplified into the  
preceeding model.  
VPRI  
At no load:  
(1)  
VSEC = VPRI • K  
Figure 20 — K = 1/8 Sine Amplitude Converter  
with series primary resistor  
K represents the “turns ratio” of the SAC.  
Rearranging Eq (1):  
The relationship between VPRI and VSEC becomes:  
VSEC  
(2)  
K =  
VPRI  
VSEC = VPRI – IPRI • R • K  
(5)  
(
)
In the presence of load, VSEC is represented by:  
Substituting the simplified version of Eq. (4)  
(IPRI_Q is assumed = 0A) into Eq. (5) yields:  
(3)  
VSEC = VPRI • K – ISEC • RSEC  
and ISEC is represented by:  
IPRI – IPRI_Q  
2
(6)  
VSEC = VPRI • K – ISEC • R • K  
This is similar in form to Eq. (3), where RSEC is used to represent the  
characteristic impedance of the SAC™. However, in this case a real  
R on the primary side of the SAC is effectively scaled by K2 with  
respect to the secondary.  
(4)  
ISEC  
=
K
RSEC represents the impedance of the SAC, and is a function of  
the RDSON of the primary and secondary MOSFETs and the winding  
resistance of the power transformer. IPRI_Q represents the quiescent  
current of the SAC control, gate drive circuitry, and core losses.  
Assuming that R = 1Ω, the effective R as seen from the secondary  
side is 16mΩ, with K = 1/8.  
The use of DC voltage transformation provides additional  
interesting attributes. Assuming that RSEC = 0Ω and IPRI_Q = 0A,  
BCM® Bus Converter  
Page 24 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
A similar exercise should be performed with the additon of  
a capacitor or shunt impedance at the primary input to the  
SAC. A switch in series with VPRI is added to the circuit. This is  
depicted in Figure 21.  
Low impedance is a key requirement for powering a high-  
current, low-voltage load efficiently. A switching regulation stage  
should have minimal impedance while simultaneously providing  
appropriate filtering for any switched current. The use of a SAC  
between the regulation stage and the point of load provides a  
dual benefit of scaling down series impedance leading back to  
the source and scaling up shunt capacitance or energy storage  
as a function of its K factor squared. However, the benefits are  
not useful if the series impedance of the SAC is too high. The  
impedance of the SAC must be low, i.e. well beyond the crossover  
frequency of the system.  
S
SAC™  
VSEC  
+
K = 1/8  
C
V
PRI  
A solution for keeping the impedance of the SAC low involves  
switching at a high frequency. This enables small magnetic  
components because magnetizing currents remain low. Small  
magnetics mean small path lengths for turns. Use of low loss core  
material at high frequencies also reduces core losses.  
Figure 21 — Sine Amplitude Converter with primary capacitor  
The two main terms of power loss in the BCM module are:  
A change in VPRI with the switch closed would result in a change in  
capacitor current according to the following equation:  
nNo load power dissipation (PPRI_NL): defined as the power  
used to power up the module with an enabled powertrain  
at no load.  
dVPRI  
(7)  
IC (t) = C  
nResistive loss (PRSEC): refers to the power loss across  
dt  
the BCM module modeled as pure resistive impedance.  
Assume that with the capacitor charged to VPRI, the switch is  
opened and the capacitor is discharged through the idealized  
SAC. In this case,  
(10)  
PDISSIPATED = PPRI_NL + PR  
SEC  
Therefore,  
(8)  
IC = ISEC • K  
(11)  
PSEC_OUT = PPRI_IN – PDISSIPATED = PPRI_IN – PPRI_NL – PR  
SEC  
substituting Eq. (1) and (8) into Eq. (7) reveals:  
The above relations can be combined to calculate the overall  
module efficiency:  
C
dVSEC  
dt  
ISEC(t) =  
(9)  
K2  
PSEC_OUT  
PPRI_IN  
PPRI_IN – PPRI_NL – PR  
PPRI_IN  
SEC  
(12)  
η =  
=
The equation in terms of the output has yielded a K2 scaling factor  
for C, specified in the denominator of the equation.  
A K factor less than unity results in an effectively larger capacitance  
on the secondary when expressed in terms of the primary. With a  
K = 1/8 as shown in Figure 21, C = 1µF would appear as  
2
VPRI • IPRI – PPRI_NL – I  
• RSEC  
(
)
SEC  
=
=
C = 64µF when viewed from the secondary.  
VPRI • IPRI  
2
PPRI_NL + I  
• RSEC  
(
)
SEC  
1 –  
( )  
VPRI • IPRI  
BCM® Bus Converter  
Page 25 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Input and Output Filter Design  
Thermal Considerations  
The ChiP package provides a high degree of flexibility in that it  
presents three pathways to remove heat from internal power  
dissipating components. Heat may be removed from the top  
surface, the bottom surface and the leads. The extent to which  
these three surfaces are cooled is a key component for determining  
the maximum current that is available from a ChiP, as can be  
seen from Figure 1.  
A major advantage of SAC™ systems versus conventional PWM  
converters is that the transformer based SAC does not require  
external filtering to function properly. The resonant LC tank,  
operated at extreme high frequency, is amplitude modulated as a  
function of primary voltage and secondary current and efficiently  
transfers charge through the isolation transformer. A small amount  
of capacitance embedded in the primary and secondary stages  
of the module is sufficient for full functionality and is key to  
achieving power density.  
Since the ChiP has a maximum internal temperature rating, it is  
necessary to estimate this internal temperature based on a real  
thermal solution. Given that there are three pathways to remove  
heat from the ChiP, it is helpful to simplify the thermal solution into  
a roughly equivalent circuit where power dissipation is modeled as  
a current source, isothermal surface temperatures are represented  
as voltage sources and the thermal resistances are represented as  
resistors. Figure 22 shows the “thermal circuit” for a 6123 BCM in  
an application where the top, bottom, and leads are cooled. In this  
case, the BCM power dissipation is PDTOTAL and the three surface  
This paradigm shift requires system design to carefully evaluate  
external filters in order to:  
nGuarantee low source impedance:  
To take full advantage of the BCM module’s dynamic response,  
the impedance presented to its primary terminals must be low  
from DC to approximately 5MHz. The connection of the bus  
converter module to its power source should be implemented  
with minimal distribution inductance. If the interconnect  
inductance exceeds 100nH, the input should be bypassed with a  
RC damper to retain low source impedance and stable operation.  
With an interconnect inductance of 200nH, the RC damper  
may be as high as 1µF in series with 0.3Ω. A single electrolytic  
or equivalent low-Q capacitor may be used in place of the  
series RC bypass.  
temperatures are represented as TCASE_TOP  
,
TCASE_BOTTOM, and TLEADS. This thermal system can now be very  
easily analyzed using a SPICE simulator with simple resistors,  
voltage sources, and a current source. The results of the simulation  
would provide an estimate of heat flow through the various  
pathways as well as internal temperature.  
nFurther reduce primary and/or secondary voltage ripple without  
Thermal Resistance Top  
MAX INTERNAL TEMP  
θINT-TOP  
sacrificing dynamic response:  
Thermal Resistance Bottom  
Given the wide bandwidth of the module, the source response  
is generally the limiting factor in the overall system response.  
Anomalies in the response of the primary source will appear at  
the secondary of the module multiplied by its K factor.  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
+
+
+
T
CASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
nProtect the module from overvoltage transients imposed by the  
system that would exceed maximum ratings and induce stresses:  
Figure 22 — Top case, Bottom case and leads thermal model  
The module primary/secondary voltage ranges shall not be  
exceeded. An internal overvoltage lockout function prevents  
operation outside of the normal operating primary range. Even  
when disabled, the powertrain is exposed to the applied voltage  
and power MOSFETs must withstand it.  
Alternatively, equations can be written around this circuit and  
analyzed algebraically:  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD2 • θINT-BOTTOM = TCASE_BOTTOM  
TINT – PD3 • θINT-LEADS = TLEADS  
PD
TOTAL
= PD
1
+ PD
2
+ PD
3  
Total load capacitance at the secondary of the BCM module shall  
not exceed the specified maximum. Owing to the wide bandwidth  
and low secondary impedance of the module, low-frequency  
bypass capacitance and significant energy storage may be more  
densely and efficiently provided by adding capacitance at the  
primary of the module. At frequencies <500kHz the module  
appears as an impedance of RSEC between the source and load.  
Where TINT represents the internal temperature and PD1, PD2, and  
PD3 represent the heat flow through the top side, bottom side, and  
leads respectively.  
Within this frequency range, capacitance at the primary appears as  
effective capacitance on the secondary per the relationship  
defined in Eq. (13).  
Thermal Resistance Top  
MAX INTERNAL TEMP  
CPRI_EXT  
θINT-TOP  
(13)  
CSEC_EXT  
=
K2  
Thermal Resistance Bottom  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
This enables a reduction in the size and number of capacitors used  
in a typical system.  
+
+
TCASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
Figure 23 — Top case and leads thermal model  
BCM® Bus Converter  
Page 26 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Figure 23 shows a scenario where there is no bottom side cooling.  
In this case, the heat flow path to the bottom is left open and the  
equations now simplify to:  
ZIN_EQ1  
ZOUT_EQ1  
BCM®1  
R0_1  
VPRI  
VSEC  
TINT – PD1 • θINT-TOP = TCASE_TOP  
TINT – PD3 • θINT-LEADS = TLEADS  
PDTOTAL = PD1+ PD3  
ZOUT_EQ2  
ZIN_EQ2  
BCM®2  
R0_2  
+
Load  
DC  
Thermal Resistance Top  
MAX INTERNAL TEMP  
θINT-TOP  
Thermal Resistance Bottom  
Thermal Resistance Leads  
θINT-BOTTOM  
θINT-LEADS  
ZOUT_EQn  
BCM®n  
R0_n  
ZIN_EQn  
+
T
CASE_BOTTOM(°C)  
TLEADS(°C)  
TCASE_TOP(°C)  
Power Dissipation (W)  
Figure 24 — Top case thermal model  
Figure 24 shows a scenario where there is no bottom side and  
leads cooling. In this case, the heat flow paths to the bottom and  
leads are left open and the equations now simplify to:  
Figure 25 — BCM module array  
Fuse Selection  
In order to provide flexibility in configuring power systems  
ChiP modules are not internally fused. Input line fusing  
of ChiP products is recommended at system level to provide  
thermal protection in case of catastrophic failure.  
TINT – PD1 • θINT-TOP = TCASE_TOP  
PDTOTAL = PD1  
The fuse shall be selected by closely matching system  
requirements with the following characteristics:  
Please note that Vicor has a suite of online tools, including a  
simulator and thermal estimator which greatly simplify the task of  
determining whether or not a BCM thermal configuration is valid  
for a given condition. These tools can be found at:  
nCurrent rating  
(usually greater than maximum current of BCM module)  
http://www.vicorpower.com/powerbench..  
nMaximum voltage rating  
(usually greater than the maximum possible input voltage)  
Current Sharing  
nAmbient temperature  
The performance of the SAC™ topology is based on efficient  
transfer of energy through a transformer without the need of  
closed loop control. For this reason, the transfer characteristic  
can be approximated by an ideal transformer with a positive  
temperature coefficient series resistance.  
nNominal melting I2t  
nRecommend fuse: See safety agency approvals.  
Reverse Operation  
This type of characteristic is close to the impedance characteristic  
of a DC power distribution system both in dynamic (AC) behavior  
and for steady state (DC) operation.  
BCM modules are capable of reverse power operation. Once the  
unit is started, energy will be transferred from the secondary back  
to the primary whenever the secondary voltage exceeds VPRI • K.  
The module will continue operation in this fashion for as long as  
no faults occur.  
When multiple BCM modules of a given part number are  
connected in an array they will inherently share the load current  
according to the equivalent impedance divider that the system  
implements from the power source to the point of load.  
Transient operation in reverse is expected in cases where there is  
significant energy storage on the output and transient voltages  
appear on the input.  
Some general recommendations to achieve matched array  
impedances include:  
The BCM6123xD1E5135y0R and BCM6123xD1E5135y0P are both  
qualified for continuous operation in reverse power condition. A  
primary voltage of VPRI_DC > VPRI_UVLO+_R must be applied first to  
allow the primary reference controller and power train to start.  
Continuous operation in reverse is then possible after a  
successful startup.  
nDedicate common copper planes within the PCB to deliver and  
return the current to the modules.  
nProvide as symmetric a PCB layout as possible among modules  
nAn input filter is required for an array of BCMs in order to pre-  
vent circulating currents.  
For further details see AN:016 Using BCM Bus Converters  
in High Power Arrays.  
BCM® Bus Converter  
Page 27 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
BCM Module Through Hole Package Mechanical Drawing and Recommended Land Pattern  
63.34 .38  
2.494 .ꢀ01  
00.43  
.41ꢀ  
30.67  
0.247  
0.12  
.ꢀ6ꢀ  
(2) PL.  
00.4ꢀ  
.449  
22.8ꢀ .03  
.898 .ꢀꢀ1  
0.12  
.ꢀ6ꢀ  
(4) PL.  
0.ꢀ2  
.ꢀ4ꢀ  
(3) PL.  
TOP VIEW (COMPONENT SIDE)  
.05 [.002]  
7.21 .10  
.284 .004  
SEATING  
.
PLANE  
.41  
.016  
4.17  
.164  
(9) PL.  
(9) PL.  
8.21  
.321  
8.ꢀꢀ  
.301  
2.71  
.0ꢀ8  
0.38  
.ꢀ14  
0
0.38  
.ꢀ14  
2.71  
.0ꢀ8  
4.03  
.062  
8.ꢀꢀ  
.301  
8.21  
.321  
BOTTOM VIEW  
1.52  
.060  
PLATED THRU  
.25 [.010]  
ANNULAR RING  
(3) PL.  
8.25 .08  
.325 .003  
8.00 .08  
.315 .003  
+VPRI  
+VSEC  
-VSEC  
+VSEC  
2.75 .08  
.108 .003  
1.38 .08  
.054 .003  
TM / SER-OUT  
EN  
0
1.38 .08  
.054 .003  
0
2.75 .08  
.108 .003  
4.13 .08  
VAUX / SER-IN  
.162 .003  
8.00 .08  
.315 .003  
8.25 .08  
.325 .003  
-VPRI  
-VSEC  
2.03  
.080  
2.03  
.080  
PLATED THRU  
.25 [.010]  
ANNULAR RING  
(2) PL.  
PLATED THRU  
.38 [.015]  
ANNULAR RING  
(4) PL.  
RECOMMENDED HOLE PATTERN  
(COMPONENT SIDE)  
NOTES:  
1- RoHS COMPLIANT PER CST-0001 LATEST REVISION.  
2- UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE MM / [INCH]  
BCM® Bus Converter  
Page 28 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Revision History  
Revision  
1.0  
Date  
Description  
Release of current data sheet with new part number  
Updated the output resistance in the reverse direction  
Updated height specification  
Page Number(s)  
08/4/16  
01/16/17  
08/04/17  
09/15/17  
10/10/17  
n/a  
1.1  
9
1.2  
1, 21, 28  
1.3  
Updated volume specification  
21  
9
1.4  
Updated secondary to primary output resistance  
BCM® Bus Converter  
Page 29 of 30  
Rev 1.4  
10/2017  
BCM6123xD1E5135yzz  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc/isolated-fixed-ratio/hv-bus-converter-module for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
6,911,848; 6,930,893; 6,934,166; 7,145,786; 7,782,639; 8,427,269 and for use under 6,975,098 and 6,984,965.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2017 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
BCM® Bus Converter  
Page 30 of 30  
Rev 1.4  
10/2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY