MVTM36BT015M080A00 [VICOR]

DC DC CONVERTER MIL-COTS;
MVTM36BT015M080A00
型号: MVTM36BT015M080A00
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

DC DC CONVERTER MIL-COTS

文件: 总31页 (文件大小:3991K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
VTM™ Current Multiplier  
MIL-COTS  
MVTM36 Series  
S
C
NRTL US  
High Efficiency, Sine Amplitude Converter™ (SAC™)  
Features  
Product Ratings  
Family of MIL-COTs current multipliers  
covering output voltages from 1 to 50 Vdc  
VIN = 26.0 V to 50.0 V  
POUT = up to 150 W  
IOUT = up to 80 A  
n Operating from MIL-COTs PRM® modules  
VOUT = 1.0 V to 50.0 V  
(various models)  
High efficiency reduces system power consumption  
High density provides isolated regulated system  
and saves space  
Product Description  
VI Chip® package enables surface mount or through hole,  
low impedance interconnect to system board  
The VI Chip® current multiplier is a high efficiency  
Sine Amplitude Converter™ (SAC™) operating from a  
26 to 50 Vdc primary bus to deliver an isolated output.  
The Sine Amplitude Converter offers a low AC impedance  
beyond the bandwidth of most downstream regulators, which  
means that capacitance normally at the load can be located  
at the input to the Sine Amplitude Converter. This allows for a  
reduction in point of load capacitance of typically >100x which  
results in a saving of board area, materials and  
Contains built-in protection features against:  
n Overvoltage  
n Overcurrent  
n Short Circuit  
n Overtemperature  
ZVS/ZCS resonant Sine Amplitude Converter topology  
Less than 50ºC temperature rise at full load  
in typical applications  
total system cost.  
The VTM current multiplier is provided in a VI Chip package  
compatible with standard pick-and-place and surface mount  
assembly processes. The co-molded VI Chip package provides  
enhanced thermal management due to large thermal interface  
area and superior thermal conductivity. With high conversion  
efficiency the VTM current multiplier increases overall system  
efficiency and lowers operating costs compared to  
Typical Applications  
Land/Air/Sea Unmanned Vehicles/Drones  
Scanning Equipment  
Radar  
conventional approaches.  
Mobile Weapons  
Hybrid Vehicles  
The VTM current multiplier enables the utilization of  
Factorized Power Architecture providing efficiency and size  
benefits by lowering conversion and distribution losses and  
promoting high density point of load conversion.  
VTM™ Current Multiplier  
Page 1 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Typical Application  
PRM AL  
RSC  
SC  
OS  
VH  
TM  
VC  
CSC  
ROS  
VTM  
VOUT  
VTM Start Up Pulse and Temperature Feedback  
CD  
IL  
VC  
TM  
PC  
+OUT  
RCD  
0.01µF  
PC  
PR  
RVC  
10K  
RDF  
SGND  
VIN  
+IN  
–IN  
+OUT  
–OUT  
+IN  
–IN  
16 V to 50 V  
LF  
F1  
1
CIN  
VF: 26 V to 50 V  
CF  
1
–OUT  
SGND  
SGND 1  
GND  
PRIMARY  
SECONDARY  
SEC_GND  
ISOLATION BOUNDRY  
Using the MIL-COTs PRM, the output of the VTM is regulated over the load current range with only a single interconnect  
between the PRM and VTM and without the need for isolation in the feedback path.  
VTM™ Current Multiplier  
Rev 1.4  
Page 2 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Pin Configuration (Full)  
TOP VIEW  
3
4
1
2
A’  
B’  
+OUT  
A
+IN  
-OUT  
TM  
VC  
PC  
B
C
D
C’  
+OUT  
-IN  
E
D’  
-OUT  
Full VIC SMD  
Pin Description (Full)  
Pin Number  
A1, A2  
Signal Name  
Type  
INPUT POWER Positive Input Power Terminal  
Function  
+IN  
TM  
VC  
PC  
B1, B2  
OUTPUT  
INPUT  
BIDIR  
Provides voltage proportional to internal VTM controller temperature. “Power Good” flag.  
Connect to 12 V source to power internal VTM control circuits.  
C1, C2  
D1, D2  
Enables power supply when allowed to float high. 5 V during normal operation.  
INPUT POWER  
RETURN  
E1, E2  
-IN  
Negative Input Power Terminal  
A’3, A’4, C’3, C’4  
B’3, B’4, D’3, D’4  
+OUT  
-OUT  
OUTPUT POWER Positive Output Power Terminal  
OUTPUT POWER  
Positive Output Power Terminal  
RETURN  
VTM™ Current Multiplier  
Rev 1.4  
Page 3 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Pin Configuration (Half)  
TOP VIEW  
3
4
1
2
A
B
+IN  
A’  
+OUT  
E
IM  
C TM  
E PC  
VC D  
B’  
-OUT  
-IN  
F
Half VIC  
Pin Description (Half)  
Pin Number  
Signal Name  
Type  
INPUT POWER Positive Input Power Terminal  
Function  
A1, A2  
B1  
+IN  
IM  
OUTPUT  
OUTPUT  
INPUT  
Provides voltage proportional to load current.  
C2  
TM  
VC  
PC  
Provides voltage proportional to internal VTM controller temperature. “Power Good” flag.  
Connect to 12 V source to power internal VTM control circuits.  
D1  
E2  
BIDIR  
Enables power supply when allowed to float high. 5 V during normal operation.  
INPUT POWER  
RETURN  
F1, F2  
A’3, A’4  
B’3, B’4  
-IN  
Negative Input Power Terminal  
+OUT  
-OUT  
OUTPUT POWER Positive Output Power Terminal  
OUTPUT POWER  
Positive Output Power Terminal  
RETURN  
VTM™ Current Multiplier  
Rev 1.4  
Page 4 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Part Ordering Information  
Input Voltage  
Output Voltage  
x 10  
Temperature  
Output  
Current  
Device  
Range  
Package Type  
Revision  
Version  
Grade  
VTM  
36B  
F
015  
M
080  
A
00  
F = Full VIC SMD  
T = Full VIC Through Hole  
H = Half VIC SMD  
VTM = VTM  
36B = 26.0 to 50.0 V  
015 = 1.5 V  
M = -55 to 125°C  
080 = 80 A  
A
00 = Standard  
All products shipped in JEDEC standard high profile (0.400” thick) trays (JEDEC Publication 95, Design Guide 4.10).  
Standard Models  
Part Number  
Package Size  
Status  
VIN  
K
VOUT  
Temperature  
Current  
MVTM36BF015M080A00  
MVTM36BT015M080A00  
MVTM36BF022M055A00  
MVTM36BT022M055A00  
MVTM36BF030M040B00  
MVTM36BT030M040B00  
MVTM36BF045M027A00  
MVTM36BT045M027A00  
MVTM36BF060M020A00  
MVTM36BT060M020A00  
MVTM36BF072M017A00  
MVTM36BT072M017A00  
MVTM36BF090M013A00  
MVTM36BT090M013A00  
MVTM36BF120M010A00  
MVTM36BT120M010A00  
MVTM36BF180M007A00  
MVTM36BT180M007A00  
MVTM36BF240M005A00  
MVTM36BT240M005A00  
MVTM36BF360M003A00  
MVTM36BT360M003A00  
MVTM36BH030M025A00  
MVTM36BH045M020A00  
MVTM36BH090M010A00  
Full VIC SMD  
Full VIC TH  
Active  
26.0 V to 50.0 V  
1/24  
1.50 V (1.08 V to 2.08 V)  
-55 to 125°C  
80 A  
Full VIC SMD  
Full VIC TH  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
1/16  
1/12  
1/8  
1/6  
1/5  
1/4  
1/3  
1/2  
2/3  
1
2.25 V (1.63 V to 3.13 V)  
3.00 V (2.17 V to 4.17 V)  
4.50 V (3.25 V to 6.25 V)  
6.00 V (4.33 V to 8.33 V)  
7.20 V (5.20 V to 10.0 V)  
9.00 V (6.50 V to 12.5 V)  
12.0 V (8.67 V to 16.7 V)  
18.0 V (13.0 V to 25.0 V)  
24.0 V (17.3 V to 33.3 V)  
36.0 V (26.0 V to 50.0 V)  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
55 A  
40 A  
27 A  
20 A  
17 A  
13 A  
10 A  
7 A  
End of Life  
Active  
Full VIC SMD  
Full VIC TH  
Full VIC SMD  
Full VIC TH  
Active  
Full VIC SMD  
Full VIC TH  
Active  
Full VIC SMD  
Full VIC TH  
Active  
Full VIC SMD  
Full VIC TH  
Active  
Full VIC SMD  
Full VIC TH  
Active  
Full VIC SMD  
Full VIC TH  
Active  
Active  
Active  
Full VIC SMD  
Full VIC TH  
5 A  
Full VIC SMD  
Full VIC TH  
3 A  
Half VIC SMD  
Half VIC SMD  
Half VIC SMD  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
26.0 V to 50.0 V  
1/12  
1/8  
3.00 V (1.63 V to 3.13 V)  
4.50 V (3.25 V to 6.25 V)  
9.00 V (6.50 V to 12.5 V)  
-55 to 125°C  
-55 to 125°C  
-55 to 125°C  
25 A  
20 A  
10 A  
Active  
Active  
Active  
1/4  
VTM™ Current Multiplier  
Rev 1.4  
Page 5 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Absolute Maximum Ratings  
The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.  
Parameter  
Comments  
Min  
Max  
Unit  
+IN to -IN  
-1.0  
60  
VDC  
PC to -IN  
TM to -IN  
-0.3  
-0.3  
20  
7
VDC  
VDC  
VC to -IN  
-0.3  
0
20  
VDC  
VDC  
VDC  
IM to -IN  
Half Chip only  
3.15  
2250  
+IN / -IN to +OUT / -OUT (hipot)  
General Electrical Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
No external VC applied  
Min  
26  
0
Typ  
Max  
50  
50  
1
Unit  
Input voltage range  
VIN  
VDC  
VC applied  
VIN slew rate  
dVIN/dt  
VOUT_PP  
V/µs  
Output voltage ripple  
COUT = 0 F, IOUT = Full Load, VIN = 48 V, 20 MHz BW  
Protection  
5
% VOUT  
Overvoltage lockout  
VIN_OVLO+  
tOVLO  
IOCP  
ISCP  
Module latched shutdown  
52.0  
56.0  
8
58.5  
V
Overvoltage lockout  
Effective internal RC filter  
µs  
response time constant  
Output overcurent trip  
120  
150  
% IOUT_AVG  
% IOUT_AVG  
Short circuit protection trip current  
Output overcurrent  
tOCP  
Effective internal RC filter (Integrative)  
3.8  
ms  
response time constant  
From detection to cessation of switching  
(Instantaneous)  
Short cicuit protection response time  
tSCP  
1
µs  
Thermal shutdown setpoint  
TJ_OTP  
125  
130  
135  
°C  
Reverse inrush current protection  
Reverse Inrush protection disabled for this product  
VTM™ Current Multiplier  
Rev 1.4  
Page 6 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/24  
91.3  
Max  
7.5  
Unit  
MVTM36BF015M080A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
80  
A
tPEAK < 10 ms, IOUT_AVG 80 A  
VIN = 36 V, IOUT = 80 A  
120  
A
90.0  
87.3  
0.40  
0.55  
0.65  
1.50  
3.00  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 80 A  
TC = -40°C, IOUT = 80 A  
TC = 25°C, IOUT = 80 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
0.76  
0.98  
1.18  
1.60  
3.20  
1.0  
1.4  
mΩ  
mΩ  
TC = 100°C, IOUT = 80 A  
1.5  
mΩ  
1.70  
3.40  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
5.0  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
6.7  
2
MHrs  
VC internal resistor  
MVTM36BF022M055A00  
No load power dissipation  
Transfer ratio  
RVC-INT  
kΩ  
PNL  
K
VIN = 26 V to 50 V  
8.6  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
1/16  
93.7  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
55  
82  
A
tPEAK < 10 ms, IOUT_AVG 55 A  
VIN = 36 V, IOUT = 55 A  
A
92.6  
88.8  
0.6  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 55 A  
TC = -40°C, IOUT = 55 A  
TC = 25°C, IOUT = 55 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
1.1  
1.4  
1.8  
1.9  
mΩ  
mΩ  
0.8  
TC = 100°C, IOUT = 55 A  
1.0  
1.7  
2.2  
mΩ  
1.36  
2.72  
1.43  
2.86  
1.50  
3.00  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
1.9  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
6.0  
1.0  
MHrs  
VC internal resistor  
RVC-INT  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 7 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/12  
94.0  
Max  
12.0  
Unit  
MVTM36BF030M040B00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
40  
60  
A
tPEAK < 10 ms, IOUT_AVG 40 A  
VIN = 36 V, IOUT = 40 A  
A
92.5  
90.2  
1.0  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 40 A  
TC = -40°C, IOUT = 40 A  
TC = 25°C, IOUT = 40 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
1.6  
2.2  
2.3  
3.0  
mΩ  
mΩ  
1.5  
TC = 100°C, IOUT = 40 A  
2.0  
2.6  
3.3  
mΩ  
1.36  
2.72  
1.43  
2.86  
1.50  
3.00  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
9.5  
1.0  
MHrs  
VC internal resistor  
MVTM36BF045M027A00  
No load power dissipation  
Transfer ratio  
RVC-INT  
kΩ  
PNL  
K
VIN = 26 V to 50 V  
7.0  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
1/8  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
27  
40  
A
tPEAK < 10 ms, IOUT_AVG 27 A  
VIN = 36 V, IOUT = 27 A  
A
93.0  
89.3  
2.5  
94.7  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 55 V, IOUT = 27 A  
TC = -40°C, IOUT = 27 A  
TC = 25°C, IOUT = 27 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
4.6  
6.0  
5.9  
7.8  
mΩ  
mΩ  
3.8  
TC = 100°C, IOUT = 27 A  
4.5  
7.1  
9.0  
mΩ  
1.10  
2.20  
1.21  
2.42  
1.30  
2.60  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
9.5  
1.0  
MHrs  
VC internal resistor  
RVC-INT  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 8 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/6  
Max  
14.0  
Unit  
MVTM36BF060M020A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
20  
30  
A
tPEAK < 10 ms, IOUT_AVG 20 A  
VIN = 36 V, IOUT = 20 A  
A
94.6  
92.0  
3.0  
95.5  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 20 A  
TC = -40°C, IOUT = 20 A  
TC = 25°C, IOUT = 20 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
7.0  
8.0  
9.0  
mΩ  
mΩ  
5.0  
10.0  
15.0  
1.57  
3.14  
TC = 100°C, IOUT = 20 A  
6.0  
12.0  
1.52  
3.04  
mΩ  
1.47  
7.94  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
4.3  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
9.5  
MHrs  
VC internal resistor  
MVTM36BF072M017A00  
No load power dissipation  
Transfer ratio  
RVC-INT  
0.56  
kΩ  
PNL  
K
VIN = 26 V to 50 V  
14.0  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
1/5  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
17  
25  
A
tPEAK < 10 ms, IOUT_AVG 17 A  
VIN = 36 V, IOUT = 17 A  
A
95.3  
92.0  
3.3  
95.9  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 55 V, IOUT = 17 A  
TC = -40°C, IOUT = 17 A  
TC = 25°C, IOUT = 17 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
5.6  
7.8  
7.8  
mΩ  
mΩ  
5.0  
10.0  
12.0  
1.60  
3.20  
TC = 100°C, IOUT = 17 A  
7.0  
9.1  
mΩ  
1.50  
3.00  
1.55  
3.10  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.5  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
5.5  
MHrs  
VC internal resistor  
RVC-INT  
0.56  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 9 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/4  
Max  
14.0  
Unit  
MVTM36BF090M013A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
13  
19  
A
tPEAK < 10 ms, IOUT_AVG 13 A  
VIN = 36 V, IOUT = 13 A  
A
93.8  
93.5  
2.0  
95.3  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 13 A  
TC = -40°C, IOUT = 13 A  
TC = 25°C, IOUT = 13 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
5.5  
8.9  
9.5  
mΩ  
mΩ  
3.9  
13.4  
15.9  
2.05  
4.10  
TC = 100°C, IOUT = 13 A  
5.0  
10.6  
1.95  
3.90  
mΩ  
1.85  
3.70  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
1.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
7.3  
MHrs  
VC internal resistor  
MVTM36BF120M010A00  
No load power dissipation  
Transfer ratio  
RVC-INT  
0.51  
kΩ  
PNL  
K
VIN = 26 V to 50 V  
10.5  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
1/3  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
10  
15  
A
tPEAK < 10 ms, IOUT_AVG 10 A  
VIN = 36 V, IOUT = 10 A  
A
94.2  
90.0  
12.8  
20.4  
23.1  
1.56  
3.12  
94.9  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 10 A  
TC = -40°C, IOUT = 10 A  
TC = 25°C, IOUT = 10 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
19.7  
26.5  
29.2  
1.65  
3.30  
26.5  
32.6  
35.2  
1.74  
3.48  
mΩ  
mΩ  
TC = 100°C, IOUT = 10 A  
mΩ  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
5.6  
2.0  
MHrs  
VC internal resistor  
RVC-INT  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 10 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/2  
Max  
13.5  
Unit  
MVTM36BF180M007A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
7
A
tPEAK < 10 ms, IOUT_AVG 7 A  
VIN = 36 V, IOUT = 7 A  
10  
A
93.0  
92.0  
19.7  
30.0  
35.0  
1.68  
3.36  
94.0  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 7 A  
TC = -40°C, IOUT = 7 A  
TC = 25°C, IOUT = 7 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
40.0  
55.0  
60.0  
1.77  
3.54  
60.7  
75.0  
90.0  
1.86  
3.72  
mΩ  
mΩ  
TC = 100°C, IOUT = 7 A  
mΩ  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
5.7  
MHrs  
VC internal resistor  
MVTM36BF240M005A00  
No load power dissipation  
Transfer ratio  
RVC-INT  
0.51  
kΩ  
PNL  
K
VIN = 26 V to 50 V  
8.5  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
2/3  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
5
A
tPEAK < 10 ms, IOUT_AVG 5 A  
VIN = 36 V, IOUT = 5 A  
7.5  
A
93.5  
93.0  
40.0  
64.0  
85.0  
1.57  
3.14  
96.0  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 5 A  
TC = -40°C, IOUT = 5 A  
TC = 25°C, IOUT = 5 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
51.4  
86.0  
102.0  
1.60  
3.20  
70.0  
120.0  
135  
mΩ  
mΩ  
TC = 100°C, IOUT = 5 A  
mΩ  
1.63  
3.26  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
5.6  
2.0  
MHrs  
VC internal resistor  
RVC-INT  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 11 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
9.0  
Unit  
MVTM36BF360M003A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
1
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
3
A
tPEAK < 10 ms, IOUT_AVG 3 A  
VIN = 36 V, IOUT = 3 A  
4.5  
A
95.3  
93.3  
96.0  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 3 A  
TC = -40°C, IOUT = 3 A  
TC = 25°C, IOUT = 3 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
55.0  
108.0  
140.0  
190.0  
1.67  
175.0  
168.0  
228.0  
1.70  
mΩ  
mΩ  
112.0  
152.0  
1.64  
TC = 100°C, IOUT = 3 A  
mΩ  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
3.28  
3.34  
3.40  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
3.8  
MHrs  
MTBF  
Telcordia Issue 2 - Method 1 Case 1;  
Ground Benign, Controlled  
5.6  
2.0  
MHrs  
VC internal resistor  
RVC-INT  
kΩ  
VTM™ Current Multiplier  
Rev 1.4  
Page 12 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/12  
90.8  
Max  
5.0  
Unit  
MVTM36BH030M025A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
25.0  
37.5  
A
tPEAK < 10 ms, IOUT_AVG 25 A  
VIN = 36 V, IOUT = 25 A  
A
88.5  
85.5  
2.0  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 25 A  
TC = -40°C, IOUT = 25 A  
TC = 25°C, IOUT = 25 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
5.3  
7.3  
8.5  
mΩ  
mΩ  
4.5  
10.0  
12.0  
1.80  
3.60  
TC = 100°C, IOUT = 25 A  
5.0  
8.0  
mΩ  
1.50  
3.00  
1.65  
3.30  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
MTBF  
4.5  
MHrs  
VC internal resistor  
RVC-INT  
8.87  
kΩ  
Current Monitor: IM  
• The IM pin provides a DC analog voltage proportional to the output current of the VTM.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
IM voltage (no load)  
IM voltage (50%)  
IM voltage (full load)  
IM gain  
SYMBOL CONDITIONS / NOTES  
MIN  
TYP  
MAX UNIT  
VIM_NL  
VIM_50%  
VIM_FL  
AIM  
TC = 25ºC, VIN = 42 V, IOUT = 0 A  
TC = 25ºC, VIN = 42 V, IOUT = 12.5 A  
TC = 25ºC, VIN = 42 V, IOUT = 25 A  
TC = 25ºC, VIN = 42 V, IOUT > 12.5 A  
0.30  
0.32  
0.94  
1.80  
69  
0.38  
V
V
ANALOG  
INPUT  
Steady  
V
mV/A  
MΩ  
IM resistance (external)  
RIM_EXT  
2.5  
VTM™ Current Multiplier  
Rev 1.4  
Page 13 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/8  
Max  
5.6  
Unit  
MVTM36BH045M020A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
20  
30  
A
tPEAK < 10 ms, IOUT_AVG 20 A  
VIN = 48 V, IOUT = 20 A  
A
91.0  
89.5  
5.0  
92.9  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 55 V, IOUT = 20 A  
TC = -40°C, IOUT = 20 A  
TC = 25°C, IOUT = 20 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
8.2  
13.0  
15.0  
18.0  
1.63  
3.26  
mΩ  
mΩ  
7.0  
10.8  
13.2  
1.50  
3.00  
TC = 100°C, IOUT = 20 A  
9.0  
mΩ  
1.37  
2.74  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
MTBF  
6.0  
MHrs  
VC internal resistor  
RVC-INT  
4.64  
kΩ  
Current Monitor: IM  
• The IM pin provides a DC analog voltage proportional to the output current of the VTM.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
IM voltage (no load)  
IM voltage (50%)  
IM voltage (full load)  
IM gain  
SYMBOL CONDITIONS / NOTES  
MIN  
TYP  
MAX UNIT  
VIM_NL  
VIM_50%  
VIM_FL  
AIM  
TC = 25ºC, VIN = 48 V, IOUT = 0 A  
TC = 25ºC, VIN = 48 V, IOUT = 10 A  
TC = 25ºC, VIN = 48 V, IOUT = 20 A  
TC = 25ºC, VIN = 48 V, IOUT > 10 A  
0.27  
0.33  
1.0  
0.37  
V
V
ANALOG  
INPUT  
Steady  
1.91  
91  
V
mV/A  
MΩ  
IM resistance (external)  
RIM_EXT  
2.5  
VTM™ Current Multiplier  
Rev 1.4  
Page 14 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Model Specific Electrical Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
1/4  
Max  
5.2  
Unit  
MVTM36BH090M010A00  
No load power dissipation  
Transfer ratio  
PNL  
K
VIN = 26 V to 50 V  
W
V/V  
V
K = VOUT / VIN, IOUT = 0 A  
VOUT = VIN • K - IOUT • ROUT  
Ouput voltage  
VOUT  
Output current (average)  
Output current (peak)  
IOUT_AVG  
IOUT_PK  
10  
15  
A
tPEAK < 10 ms, IOUT_AVG 10 A  
VIN = 36 V, IOUT = 10 A  
A
92.0  
90.0  
20.0  
28.0  
35.0  
1.60  
3.20  
93.6  
hAMB  
Efficiency (ambient)  
%
VIN = 26 V to 50 V, IOUT = 10 A  
TC = -40°C, IOUT = 10 A  
TC = 25°C, IOUT = 10 A  
Output resistance (cold)  
Output resistance (ambient)  
Output resistance (hot)  
Switching frequency  
ROUT_COLD  
ROUT_AMB  
ROUT_HOT  
fSW  
27.0  
36.2  
44.4  
1.75  
3.50  
35.0  
45.0  
55.0  
1.90  
3.80  
mΩ  
mΩ  
TC = 100°C, IOUT = 10 A  
mΩ  
MHz  
MHz  
Output ripple frequency  
fSW_RP  
MIL-HDBK-217 Plus Parts Count; 25°C Ground Benign,  
Stationary, Indoors / Computer Profile  
MTBF  
4.5  
MHrs  
VC internal resistor  
RVC-INT  
2.05  
kΩ  
Current Monitor: IM  
• The IM pin provides a DC analog voltage proportional to the output current of the VTM.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
IM voltage (no load)  
IM voltage (50%)  
IM voltage (full load)  
IM gain  
SYMBOL CONDITIONS / NOTES  
MIN  
TYP  
MAX UNIT  
VIM_NL  
VIM_50%  
VIM_FL  
AIM  
TC = 25ºC, VIN = 48 V, IOUT = 0 A  
TC = 25ºC, VIN = 48 V, IOUT = 5 A  
TC = 25ºC, VIN = 48 V, IOUT = 10 A  
TC = 25ºC, VIN = 48 V, IOUT > 5 A  
0.28  
0.35  
0.90  
1.68  
156  
0.42  
V
V
ANALOG  
INPUT  
Steady  
V
mV/A  
MΩ  
IM resistance (external)  
RIM_EXT  
2.5  
VTM™ Current Multiplier  
Rev 1.4  
Page 15 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Signal Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
VTM Control: VC  
• Used to wake up powertrain circuit.  
• A minimum of 12 V must be applied indefinitely for VIN 26 V to ensure normal operation.  
• VC slew rate must be within range for a successful start.  
• PRM® VC can be used as valid wake-up signal source.  
• VC voltage may be continuously applied; there will be minimal VC current drawn when VIN 26 V and VC 13.  
• Internal resistance used in adaptive loop compensation  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
External VC voltage  
SYMBOL CONDITIONS / NOTES  
Required for startup, and operation  
MIN  
12  
TYP  
MAX UNIT  
VVC_EXT  
16.5  
V
V
below 26 V.  
VC current draw threshold  
VVC_TH  
Low VC current draw for Vin >26 V  
VC = 13 V, VIN = 0 V  
13  
Steady  
150  
VC current draw  
IVC  
VC = 13 V, VIN > 26 V  
0
0
mA  
ANALOG  
INPUT  
VC = 16.5 V, VIN > 26 V  
Required for proper startup  
VC = 16.5 V, dVC/dt = 0.25 V/µs  
VC slew rate  
dVC/dt  
IINR_VC  
0.02  
0.25  
750  
V/µs  
mA  
Start Up  
VC inrush current  
VIN pre-applied, PC floating, VC  
VC output turn-on delay  
VC to PC delay  
tON  
500  
25  
µs  
µs  
enable; CPC = 0 µF, COUT = 4000 µF  
Transitional  
VC = 12 V to PC high, VIN = 0 V,  
dVC/dt = 0.25 V/µs  
tVC_PC  
10  
Primary Control: PC  
• The PC pin enables and disables the VTM. When held below 2 V, the VTM will be disabled.  
• PC pin outputs 5 V during normal operation. PC pin is equal to 2.5 V during fault mode given Vin 26 V and VC 12 V.  
• After successful start-up and under no fault condition, PC can be used as a 5 V regulated voltage source with a 2 mA maximum current.  
• Module will shutdown when pulled low with an impedance less than 400 .  
• In an array of VTMs, connect PC pin to synchronize startup.  
• PC pin cannot sink current and will not disable other modules during fault mode.  
SIGNAL TYPE  
STATE  
ATTRIBUTE  
PC voltage  
SYMBOL CONDITIONS / NOTES  
MIN  
4.7  
TYP  
MAX UNIT  
VPC  
5.0  
5.3  
2
V
mA  
kΩ  
µA  
pF  
kΩ  
V
Steady  
PC source current  
IPC_OP  
PC resistance (internal)  
PC source current  
RPC_INT  
IPC_EN  
Internal pull down resistor  
50  
50  
150  
100  
400  
300  
50  
ANALOG  
INPUT  
Start Up  
PC capacitance (internal)  
PC resistance (external)  
PC voltage (enable)  
PC voltage (disable)  
PC pull down current  
PC disable time  
CPC_INT  
RPC_EXT  
VPC_EN  
VPC_DIS  
IPC_PD  
60  
2
Enable  
Disable  
2.5  
3
2
V
DIGITAL  
INPUT / OUTPUT  
5.1  
mA  
µs  
tPC_DIS_T  
tFR_PC  
4
Transitional  
PC fault response time  
From fault to PC = 2 V  
100  
µs  
VTM™ Current Multiplier  
Rev 1.4  
Page 16 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Signal Characteristics (Cont.)  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Temperature Monitor: TM  
• The TM pin monitors the internal temperature of the VTM controller IC within an accuracy of 5°C.  
• Can be used as a "Power Good" flag to verify that the VTM is operating.  
• The TM pin has a room temperature setpoint of 3 V (@27°C) and approximate gain of 10 mV/ °C.  
SIGNAL TYPE  
STATE  
Steady  
ATTRIBUTE  
TM voltage  
SYMBOL CONDITIONS / NOTES  
MIN  
TYP  
MAX UNIT  
VTM_AMB  
ITM  
TJ controller = 27°C  
2.95  
3.00  
3.05  
V
µA  
ANALOG  
OUTPUT  
TM source current  
TM gain  
100  
ATM  
10  
0
mV/°C  
V
Disable  
TM voltage  
VTM_DIS  
RTM_INT  
CTM_EXT  
tFR_TM  
DIGITAL  
OUTPUT  
(FAULT FLAG)  
TM resistance (internal)  
TM capacitance (external)  
TM fault response time  
Internal pull down resistor  
From fault to TM = 1.5 V  
25  
40  
50  
50  
kΩ  
pF  
Transitional  
10  
µs  
VTM™ Current Multiplier  
Rev 1.4  
Page 17 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Timing diagram  
VTM™ Current Multiplier  
Rev 1.4  
Page 18 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
General Characteristics  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Mechanical  
(Full VIC)  
Length  
L
W
H
32.25 / [1.270] 32.5 / [1.280] 32.75 / [1.289] mm/[in]  
21.75 / [0.856] 22.0 / [0.866] 22.25 / [0.876] mm/[in]  
Width  
Height  
6.48 / [0.255] 6.73 / [0.265] 6.98 / [0.275]  
4.81 / [0.294]  
mm/[in]  
cm3/[in3]  
g/[oz]  
Volume  
Weight  
(Half VIC)  
Length  
Vol  
W
No heat sink  
15.0 / [0.53]  
L
W
H
21.7 / [0.85]  
16.4 / [0.64]  
22.0 / [0.87]  
16.5 / [0.65]  
22.3 / [0.88]  
16.6 / [0.66]  
mm/[in]  
mm/[in]  
mm/[in]  
cm3/[in3]  
g/[oz]  
Width  
Height  
6.48 / [0.255] 6.73 / [0.265] 6.98 / [0.275]  
Volume  
Weight  
Vol  
W
No heat sink  
2.44 / [0.150]  
8.0 / [0.28]  
Nickel  
0.51  
0.02  
2.03  
0.15  
Lead finish  
Palladium  
Gold  
µm  
0.003  
0.051  
Thermal  
Operating temperature  
TJ  
-55  
125  
°C  
Isothermal heat sink and isothermal  
internal PCB  
Thermal Resistance (Full VIC)  
ΦJC  
1
°C/W  
Isothermal heat sink and  
isothermal internal PCB  
Thermal Resistance (Half VIC)  
ΦJC  
2.2  
°C/W  
°C  
Assembly  
Storage temperature  
TST  
-65  
125  
Human Body Model Component Level  
ANSI/ESDA/JEDEC JS-001-2012,  
Class 1C 1000 to <2000 V  
ESDHBM  
1000  
ESD withstand  
VDC  
Field Induced Change Device Model  
JESD22-C101E, Class II 200 to <500 V  
ESDCDM  
200  
VTM™ Current Multiplier  
Rev 1.4  
Page 19 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
General Characteristics Cont.  
Specifications apply over all line and load conditions, unless otherwise noted; Boldface specifications apply over the temperature range of  
-55°C < TJ < 125°C (T-Grade); All other specifications are at TJ = 25ºC unless otherwise noted.  
Attribute  
Symbol  
Conditions / Notes  
Min  
Typ  
Max  
Unit  
Soldering  
Peak temperature during reflow  
Peak time above 217°C  
Peak heating rate during reflow  
Peak cooling rate post reflow  
Safety  
MSL 4 (Datecode 1528 and later)  
245  
90  
3
°C  
s
60  
1.5  
1.5  
°C/s  
°C/s  
6
Isolation voltage (hipot)  
Isolation resistance  
VHIPOT  
2250  
10  
VDC  
RIN_OUT  
MΩ  
cTUVus  
cURus  
Agency approvals / standards  
CE Marked for low voltage directive and RoHS recast directive, as applicable  
VTM™ Current Multiplier  
Rev 1.4  
Page 20 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Using the control signals VC, PC, TM, IM  
Startup behavior  
Depending on the sequencing of the VC with respect to the input  
voltage, the behavior during startup will vary as follows:  
The VTM Control (VC) pin is an input pin which powers the internal  
VCC circuitry when within the specified voltage range of 12 V to 16.5 V.  
This voltage is required in order for the VTM module to start, and must  
be applied as long as the input is below 26 V. In order to ensure a  
proper start, the slew rate of the applied voltage must be within the  
specified range.  
n Normal Operation (VC applied prior to Vin): In this case the  
controller is active prior to ramping the input. When the input  
voltage is applied, the VTM output voltage will track the input. The  
inrush current is determined by the input voltage rate of rise and  
output capacitance. If the VC voltage is removed prior to the input  
reaching 26 V, the VTM module may shut down.  
Some additional notes on the using the VC pin:  
n In most applications, the VTM module will be powered  
by an upstream PRM® which provides a 10 ms VC pulse  
during startup. In these applications the VC pins of the PRM  
and VTM should be tied together.  
n Stand Alone Operation (VC applied aꢀer Vin): In this case the  
module output will begin to rise upon the application of the VC  
voltage. A soꢀ-start circuit may vary the ouput rate of rise in order  
to limit the inrush current to it’s maximum level. When starting into  
high capacitance, or a short, the output current will be limited for a  
maximum of 900 μsec. Aꢀer this period, the adaptive soꢀ start  
circuit will time out and the module may shut down. No restart will  
be attempted until VC is re-applied, or PC is toggled. To ensure a  
successful start in this mode of operation, additional capacitance on  
the output of the VTM should be kept to a minimum.  
n The VC voltage can be applied indefinitely allowing for  
continuous operation down to 0 VIN  
.
n The fault response of the VTM module is latching.  
A positive edge on VC is required in order to restart the unit.  
If VC is continuously applied the PC pin may be toggled  
to restart the module.  
Primary Control (PC) pin can be used to accomplish the following  
functions:  
Thermal Considerations  
VI Chip® products are multi-chip modules whose temperature  
distribution varies greatly for each part number as well as with the  
input / output conditions, thermal management and environmental  
conditions. Maintaining the top of the VTM case to less than 100ºC will  
keep all junctions within the VI Chip below 125ºC for most  
applications.  
n Delayed start: Upon the application of VC, the PC pin will  
source a constant 100 μA current to the internal RC  
network. Adding an external capacitor will allow further  
delay in reaching the 2.5 V threshold for module start.  
n Auxiliary voltage source: Once enabled in regular  
operational conditions (no fault), each VTM PC provides a  
regulated 5 V, 2 mA voltage source.  
The percent of total heat dissipated through the top surface versus  
through the J-lead is entirely dependent on the particular mechanical  
and thermal environment. The heat dissipated through the top surface  
is typically 60%. The heat dissipated through the J-lead onto the PCB  
board surface is typically 40%. Use 100% top surface dissipation when  
designing for a conservative cooling solution.  
n Output disable: PC pin can be actively pulled down in order  
to disable the module. Pull down impedance shall be lower  
than 400 Ω.  
It is not recommended to use a VI Chip module for an extended period  
of time at full load without proper heat sinking  
n Fault detection flag: The PC 5 V voltage source is internally  
turned off as soon as a fault is detected. It is important to  
notice that PC doesn’t have current sink capability. Therefore,  
in an array, PC line will not be capable of disabling  
neighboring modules if a fault is detected.  
n Fault reset: PC may be toggled to restart the unit if VC  
is continuously applied.  
Temperature Monitor (TM) pin provides a voltage proportional to the  
absolute temperature of the converter control IC.  
It can be used to accomplish the following functions:  
n Monitor the control IC temperature: The temperature in  
Kelvin is equal to the voltage on the TM pin scaled  
by 100. (i.e. 3.0 V = 300 K = 27ºC). If a heat sink is applied,  
TM can be used to thermally protect the system.  
n Fault detection flag: The TM voltage source is internally  
turned off as soon as a fault is detected. For system  
monitoring purposes (microcontroller interface) faults are  
detected on falling edges of TM signal.  
Current Monitor (IM) (half chip models only) pin provides a voltage  
proportional to the output current of the VTM module. The nominal  
voltage will vary between VIM_NL to VIM_FL over the output current range  
of the module. The accuracy of the IM pin will be within 25% under all  
line and temperature conditions between 50% and 100% load.  
VTM™ Current Multiplier  
Page 21 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
150 pH  
II  
R
R
OUT  
LIN = 1.7 nH  
OUT  
LOUT = 600 pH  
+
+
6.2 mΩ  
RCOUT  
330 µΩ  
R
RCIN  
Ω
350 m  
6.3mΩ  
V•I  
K
1/12 • IOUT  
1/12 • V  
IN  
+
+
C
CC
C
900 nFI  
0.057 A  
68 µF  
IN  
OUT  
VOUT  
V
IQ  
IN  
Figure 1 — VI Chip® module AC model (MVTM48EH040M025A00 shown)  
Sine Amplitude Converter™  
Point of Load Conversion  
The Sine Amplitude Converter (SAC™) uses a high frequency resonant  
tank to move energy from input to output. The resonant LC tank,  
operated at high frequency, is amplitude modulated as function of  
input voltage and output current. A small amount of capacitance  
embedded in the input and output stages of the module is sufficient for  
full functionality and is key to achieving power density.  
R
SAC  
K = 1/32  
Vout  
+
Vin  
A typical SAC can be simplified into the model above.  
At no load:  
Figure 2 — K = 1/32 Sine Amplitude Converter™  
with series input resistor  
VOUT = VIN • K  
(1)  
The relationship between VIN and VOUT becomes:  
K represents the “turns ratio” of the SAC.  
Rearranging Eq (1):  
VOUT = (VIN – IIN • R) • K  
(5)  
Substituting the simplified version of Eq. (4)  
(IQ is assumed = 0 A) into Eq. (5) yields:  
K =  
VOUT  
VIN  
(2)  
VOUT = VIN • K – IOUT • R • K2  
(6)  
In the presence of load, Vout is represented by:  
This is similar in form to Eq. (3), where ROUT is used to represent the  
characteristic impedance of the SAC™. However, in this case a real R on  
the input side of the SAC is effectively scaled by K2 with respect  
to the output.  
VOUT = VIN • K – IOUT • ROUT  
(3)  
and Iout is represented by:  
Assuming that R = 1 Ω, the effective R as seen from the secondary side  
is 0.98 mΩ, with K = 1/32 as shown in Figure 2.  
IOUT  
=
IIN – IQ  
K
(4)  
A similar exercise should be performed with the additon of a capacitor,  
or shunt impedance, at the input to the SAC. A switch in series with VIN  
is added to the circuit. This is depicted in Figure 3.  
ROUT represents the impedance of the SAC, and is a function of the  
RDSON of the input and output MOSFETs and the winding resistance of  
the power transformer. Iq represents the quiescent current of the SAC  
control and gate drive circuitry.  
The use of DC voltage transformation provides additional interesting  
attributes. Assuming for the moment that ROUT = 0 Ω and IQ = 0 A, Eq.  
(3) now becomes Eq. (1) and is essentially load independent. A resistor  
R is now placed in series with VIN as shown in Figure 2.  
VTM™ Current Multiplier  
Page 22 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Therefore,  
P
OUT = PIN – PDISSIPATED = PIN – PNL – PROUT  
(11)  
S
SAC  
K = 1/32  
The above relations can be combined to calculate the overall module  
efficiency:  
Vout  
+
C
Vin  
POUT  
PIN  
=
PIN – PNL – PROUT  
PIN  
h =  
(12)  
Figure 3 — Sine Amplitude Converter™ with input capacitor  
VIN • IIN – PNL – (IOUT)2 • ROUT  
VIN • IIN  
=
A change in VIN with the switch closed would result in a change in  
capacitor current according to the following equation:  
dVin  
PNL + (IOUT)2 • ROUT  
1 –  
IC(t)  
=
C
(7)  
=
(
)
dt  
VIN • IIN  
Assume that with the capacitor charged to VIN, the switch is opened  
and the capacitor is discharged through the idealized SAC. In this case,  
Input and Output Filter Design  
A major advantage of a SAC™ system versus a conventional PWM  
converter is that the former does not require large functional filters.  
The resonant LC tank, operated at extreme high frequency, is amplitude  
modulated as a function of input voltage and output current and  
efficiently transfers charge through the isolation transformer. A small  
amount of capacitance embedded in the input and output stages of the  
module is sufficient for full functionality and is key to achieving high  
power density.  
IC  
=
IOUT • K  
(8)  
Substituting Eq. (1) and (8) into Eq. (7) reveals:  
C
dVOUT  
dt  
IOUT  
=
(9)  
K2  
This paradigm shiꢀ requires system design to carefully evaluate  
external filters in order to:  
Writing the equation in terms of the output has yielded a K2 scaling  
factor for C, this time in the denominator of the equation. For a K factor  
less than unity, this results in an effectively larger capacitance on the  
output when expressed in terms of the input. With a K = 1/32 as shown  
in Figure 3, C = 1 μF would effectively appear as C = 1024 μF when  
viewed from the output.  
1. Guarantee low source impedance.  
To take full advantage of the VTM module dynamic  
response, the impedance presented to its input terminals  
must be low from DC to approximately 5 MHz. Input  
capacitance may be added to improve transient  
performance or compensate for high source impedance.  
Low impedance is a key requirement for powering a high-current,  
low-voltage load efficiently. A switching regulation stage should have  
minimal impedance, while simultaneously providing appropriate  
filtering for any switched current. The use of a SAC between the  
regulation stage and the point of load provides a dual benefit, scaling  
down series impedance leading back to the source and scaling up shunt  
capacitance (or energy storage) as a function of its K factor squared.  
However, these benefits are not useful if the series impedance of the  
SAC is too high. The impedance of the SAC must be low well beyond  
the crossover frequency of the system.  
2. Further reduce input and/or output voltage ripple without  
sacrificing dynamic response.  
Given the wide bandwidth of the VTM module, the source  
response is generally the limiting factor in the overall  
system response. Anomalies in the response of the source  
will appear at the output of the module multiplied by its  
K factor.  
3. Protect the module from overvoltage transients imposed  
by the system that would exceed maximum ratings and  
cause failures.  
A solution for keeping the impedance of the SAC low involves  
switching at a high frequency. This enables magnetic components to be  
small since magnetizing currents remain low. Small magnetics mean  
small path lengths for turns. Use of low loss core material at high  
frequencies reduces core losses as well.  
The VI Chip® module input/output voltage ranges must  
not be exceeded. An internal overvoltage lockout function  
prevents operation outside of the normal operating input  
range. Even during this condition, the powertrain is  
exposed to the applied voltage and power MOSFETs must  
withstand it.  
The two main terms of power loss in the VTM module are:  
n No load power dissipation (Pnl): defined as the power used to power  
up the module with an enabled power train at no load.  
n Resistive loss (ROUT): refers to the power loss across the VTM current  
multiplier modeled as pure resistive impedance.  
PDISSIPATED  
=
PNL + PROUT  
(10)  
VTM™ Current Multiplier  
Page 23 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
When connected in an array with the same K factor, the VTM module  
will inherently share the load current with parallel units, according to  
the equivalent impedance divider that the system implements from the  
power source to the point of load.  
Capacitive Filtering Considerations  
for a Sine Amplitude Converter  
It is important to consider the impact of adding input and output  
capacitance to a Sine Amplitude Converter™ on the system as a whole.  
Both the capacitance value, and the effective impedance of the  
capacitor must be considered.  
Some general recommendations to achieve matched array impedances:  
n Dedicate common copper planes within the PCB  
to deliver and return the current to the modules.  
A Sine Amplitude Converter has a DC ROUT value which has already  
been discussed in the previous section. The AC ROUT of the SAC contains  
several terms:  
n Provide the PCB layout as symmetric as possible.  
n Apply same input / output filters (if present) to each unit.  
n Resonant tank impedance  
n Input lead inductance and internal capacitance  
n Output lead inductance and internal capacitance  
For further details see AN:016 Using BCM® Bus Converters  
in High Power Arrays.  
The values of these terms are shown in the behavioral model in the  
prior section. It is important to note on which side of the transformer  
these impedances appear and how they reflect across the transformer  
given the K factor.  
ZIN_EQ1  
ZOUT_EQ1  
VTM®1  
RO_1  
VIN  
VOUT  
The overall AC impedance varies from model to model but for most  
models it is dominated by DC Rout value from DC to beyond 500 KHz.  
ZIN_EQ2  
ZOUT_EQ2  
Any capacitors placed at the output of the VTM module reflect back to  
the input of the module by the square of the K factor (Eq. 9) with the  
impedance of the module appearing in series. It is very important to  
keep this in mind when using a PRM® regulator to power the VTM.  
Most PRM regulators have a limit on the maximum amount of  
capacitance that can be applied to the output. This capacitance includes  
both the regulator output capacitance and the current multiplier  
output capacitance reflected back to the input. In PRM regulator  
remote sense applications, it is important to consider the reflected  
value of VTM current multiplier output capacitance when designing  
and compensating the PRM regulator control loop.  
VTM®2  
RO_2  
+
Load  
DC  
ZIN_EQn  
ZOUT_EQn  
VTM®n  
RO_n  
Figure 4 — VTM module array  
Capacitance placed at the input of the VTM module appear to the load  
reflected by the K factor, with the impedance of the VTM module in  
series. In step-down VTM ratios, the effective capacitance is increased  
by the K factor. The effective ESR of the capacitor is decreased by the  
square of the K factor, but the impedance of the VTM module appears  
in series. Still, in most step-down VTM modules an electrolytic  
capacitor placed at the input of the module will have a lower effective  
impedance compared to an electrolytic capacitor placed at the output.  
This is important to consider when placing capacitors at the output of  
the current multiplier. Even though the capacitor may be placed at the  
output, the majority of the AC current will be sourced from the lower  
impedance, which in most cases will be the VTM current multiplier.  
This should be studied carefully in any system design using a VTM  
current multiplier. In most cases, it should be clear that electrolytic  
output capacitors are not necessary to design a stable,  
Fuse Selection  
In order to provide flexibility in configuring power systems VI Chip®  
products are not internally fused. Input line fusing of VI Chip products  
is recommended at system level to provide thermal protection in case  
of catastrophic failure.  
The fuse shall be selected by closely matching system  
requirements with the following characteristics:  
n Current rating (usually greater than maximum  
VTM module current)  
n Maximum voltage rating (usually greater than the maximum  
possible input voltage)  
well-bypassed system.  
n Ambient temperature  
n Nominal melting I2t  
Current Sharing  
The SAC™ topology bases its performance on efficient transfer of  
energy through a transformer without the need of closed loop control.  
For this reason, the transfer characteristic can be approximated by an  
ideal transformer with some resistive drop and positive  
temperature coefficient.  
Reverse Operation  
The MVTM is capable of reverse operation.  
If a voltage is present at the output which satisfies the condition VOUT  
VIN • K at the time the VC voltage is applied, or aꢀer the unit has  
>
started, then energy will be transferred from secondary to primary. The  
input to output ratio will be maintained. The MVTM will continue to  
operate in reverse as long as the input and output are within the  
specified limits. The MVTM has not been qualified for continuous  
operation (>10 ms) in the reverse direction.  
This type of characteristic is close to the impedance characteristic of a  
DC power distribution system, both in behavior (AC dynamic) and  
absolute value (DC dynamic).  
VTM™ Current Multiplier  
Page 24 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Product Outline & Recommended Land Pattern; Full VIC SMD, 18 pin  
VTM™ Current Multiplier  
Rev 1.4  
Page 25 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Product Outline & Recommended Land Pattern; Full VIC TH, 60 pin  
VTM™ Current Multiplier  
Rev 1.4  
Page 26 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Recommended Heat Sink Push Pin Location; Full  
(NO GROUNDING CLIPS)  
(WITH GROUNDING CLIPS)  
Notes:  
5. Unless otherwise specified:  
Dimensions are mm (inches)  
tolerances are:  
x.x (x.xx) = 0.3 (0.01)  
x.xx (x.xxx) = 0.13 (0.005)  
1. Maintain 3.50 (0.138) Dia. keep-out zone  
free of copper, all PCB layers.  
3. VI Chip® module land pattern shown for reference  
only; actual land pattern may differ.  
Dimensions from edges of land pattern  
to push–pin holes will be the same for  
all full-size VI Chip® products.  
2. (A) Minimum recommended pitch is 39.50 (1.555).  
This provides 7.00 (0.275) component  
edge-to-edge spacing, and 0.50 (0.020)  
clearance between Vicor heat sinks.  
(B) Minimum recommended pitch is 41.00 (1.614).  
This provides 8.50 (0.334) component  
edge-to-edge spacing, and 2.00 (0.079)  
clearance between Vicor heat sinks.  
4. RoHS compliant per CST–0001 latest revision.  
6. Plated through holes for grounding clips (33855)  
shown for reference, heat sink orientation and  
device pitch will dictate final grounding solution.  
VTM™ Current Multiplier  
Rev 1.4  
Page 27 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Mechanical Drawing; Half VIC SMT, 12 pin  
VTM™ Current Multiplier  
Rev 1.4  
Page 28 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Recommended Heat Sink Push Pin Location; Half  
(NO GROUNDING CLIPS)  
(WITH GROUNDING CLIPS)  
Notes:  
1. Maintain 3.50 (0.138) Dia. keep-out zone  
free of copper, all PCB layers.  
3. VI Chip® module land pattern shown  
for reference only, actual land pattern may differ.  
Dimensions from edges of land pattern  
to push–pin holes will be the same for  
all half size V•I Chip Products.  
5. Unless otherwise specified:  
Dimensions are mm (inches)  
tolerances are:  
2. (A) minimum recommended pitch is 24.00 (0.945)  
this provides 7.50 (0.295) component  
x.x (x.xx) = 0.13 (0.01)  
x.xx (x.xxx) = 0.13 (0.005)  
edge–to–edge spacing, and 0.50 (0.020)  
clearance between Vicor heat sinks.  
4. RoHS compliant per CST–0001 latest revision.  
6. Plated through holes for grounding clips (33855)  
shown for reference. Heat sink orientation and  
device pitch will dictate final grounding solution.  
(B) Minimum recommended pitch is 25.50 (1.004).  
This provides 9.00 (0.354) component  
edge–to–edge spacing, and 2.00 (0.079)  
clearance between Vicor heat sinks.  
VTM™ Current Multiplier  
Page 29 of 31  
Rev 1.4  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Revision History  
Page  
Revision  
Date  
Description  
Number(s)  
1.0  
1.1  
1.2  
1.3  
1.4  
3/2014  
11/25/2014  
1/07/2015  
07/17/15  
10/23/20  
Initial Release  
n/a  
12  
Typ value of VC Internal Resistor  
Updated 3 V part to B version  
5
MSL changes  
19 & 20  
12  
Revised ambient and hot output resistance specs for MVTM36BF360M003A00  
VTM™ Current Multiplier  
Rev 1.4  
Page 30 of 31  
10/2020  
Se le ct De vice s a re En d o f Life  
Re fe r t o p a g e 5  
MVTM36 Series  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc-converters-board-mount/vtm for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by the following U.S. Patents Numbers:  
5,945,130; 6,403,009; 6,710,257; 6,911,848; 6,930,893; 6,934,166; 6,940,013; 6,969,909; 7,038,917; 7,145,186; 7,166,898; 7,187,263;  
7,202,646; 7,361,844; D496,906; D505,114; D506,438; D509,472; and for use under 6,975,098 and 6,984,965.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2020 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
VTM™ Current Multiplier  
Rev 1.4  
Page 31 of 31  
10/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY