PI3583-00-QFYZ [VICOR]

30 – 60VIN Cool-Power ZVS Buck Regulator;
PI3583-00-QFYZ
型号: PI3583-00-QFYZ
厂家: VICOR CORPORATION    VICOR CORPORATION
描述:

30 – 60VIN Cool-Power ZVS Buck Regulator

文件: 总45页 (文件大小:1359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cool-Power®  
ZVS Switching Regulators  
PI358x-00  
30 – 60VIN Cool-Power ZVS Buck Regulator  
Product Description  
Features & Benefits  
The PI358x-00 is a family of high input voltage, wide-input-range  
DC-DC ZVS Buck regulators integrating controller and  
power switches within a high-density GQFN (UTAC's  
Grid-array QFN) package.  
High-Efficiency HV ZVS Buck Topology  
Wide input voltage range of 30 – 60V  
Power up into pre-biased load < 6V  
Parallel capable with single-wire current sharing  
Input Over/Undervoltage Lockout (OVLO/UVLO)  
Output Overvoltage Protection (OVP)  
Overtemperature Protection (OTP)  
The integration of a high-performance Zero-Voltage Switching  
(ZVS) topology, within the PI358x-00 series, increases point-of-load  
performance providing best-in-class power efficiency.  
Output Voltage  
Device  
IOUT Max  
Set  
3.3V  
5.0V  
12.0V  
Range  
Fast and slow current limits  
2.2 – 4.0V  
3.8 – 6.5V  
6.5 – 14V  
10A  
10A  
9A  
PI3583-00-QFYZ  
PI3585-00-QFYZ  
PI3586-00-QFYZ  
Differential amplifier for output remote sensing  
User adjustable soft start & tracking  
–20 to 120°C operating range (TINT  
)
Applications  
HV to PoL Buck Regulator Applications  
Computing, Communications, Industrial,  
Automotive Equipment  
Package Information  
37-Pin GQFN  
Cool-Power® ZVS Switching Regulators  
Page 1 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Contents  
Order Information  
3
3
Application Description  
Output Voltage Set Point  
Soft Start Adjust and Tracking  
Inductor Pairing  
37  
37  
37  
37  
38  
38  
39  
39  
40  
42  
43  
44  
45  
Thermal, Storage and Handling Information  
Absolute Maximum Ratings  
Functional Block Diagram  
3
4
Pin Description  
5
Parallel Operation  
Package Pinout  
6
Filter Considerations  
VDR Bias Regulator  
PI358x-00 Common Electrical Characteristics  
PI3583-00 (3.3VOUT) Electrical Characteristics  
PI3585-00 (5.0VOUT) Electrical Characteristics  
PI3586-00 (12.0VOUT) Electrical Characteristics  
Functional Description  
7
9
Additional System Design Considerations  
Layout Guidelines  
16  
23  
30  
30  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
36  
Recommended PCB Footprint  
Package Drawings  
Remote Sensing  
Revision History  
Soft Start  
Warranty  
Output Voltage Selection  
Output Current Limit Protection  
Input Undervoltage Lockout  
Input Overvoltage Lockout  
Output Overvoltage Protection  
Overtemperature Protection  
Pulse Skip Mode (PSM)  
Variable Frequency Operation  
Thermal Characteristics  
SiP Power Dissipation as Percentage of Total System Losses  
Cool-Power® ZVS Switching Regulators  
Page 2 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Order Information  
Product  
Rated IOUT  
10A  
Package  
Transport Media  
Nominal Output  
PI3583-00-QFYZ  
PI3585-00-QFYZ  
PI3586-00-QFYZ  
3.3V  
5.0V  
7 x 8mm GQFN  
7 x 8mm GQFN  
7 x 8mm GQFN  
TRAY  
TRAY  
TRAY  
10A  
12.0V  
9A  
Thermal, Storage and Handling Information  
Name  
Rating  
Storage Temperature  
–65 to 150°C  
–20 to 120°C  
260°C  
Internal Operating Temperature  
Soldering Temperature for 30 seconds  
MSL Rating  
MSL3  
ESD Rating, JESD22-A114F, JS-002-2014  
500V HBM; 200V CDM, respectively  
Absolute Maximum Ratings[a]  
Name  
VIN  
Rating  
–0.7 to 75V  
VS1  
VOUT  
CR  
6[b] to 75V  
–0.5 to 25V  
–0.7 to 25V  
CB  
–0.3 to 5.5V with respect to CR  
–0.3 to 5.5V with respect to VS1  
–0.7 to 75V  
Q1B  
VBS  
Q2G  
SGND  
TRK  
–0.5 to 5.5V  
100mA  
–0.3 to 5.5V, 30mA  
VDR, VCC, SYNCI, SYNCO, PWRGD, EN,  
CC, CSL, COMP, EAO, EAIN, VDIFF, VSN, VSP, TESTx  
–0.3 to 5.5V, 5mA  
[a] Stresses beyond these limits may cause permanent damage to the device. Operation at these conditions or conditions beyond those listed in the  
Electrical Specifications table is not guaranteed. All voltages are referenced to PGND unless otherwise noted.  
[b] Peak during switching transient.  
Cool-Power® ZVS Switching Regulators  
Page 3 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Functional Block Diagram  
Q1B  
VS1  
Q2G  
CSL  
CR  
CB  
VIN  
VBS  
VS1  
Q1  
Q2  
VOUT  
ZVS Control  
Power  
Control  
VDR  
VCC  
VSN  
VSP  
-
+
ZVS Buck Control  
and  
SYNCO  
SYNCI  
PWRGD  
EN  
VDIFF  
-
+
EAIN  
VREF  
Digital Parametric Trim  
EAO  
RZI  
COMP  
TRK  
PGND  
Simplified block diagram  
Cool-Power® ZVS Switching Regulators  
Page 4 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Pin Description  
Name  
PGND  
Location  
I/O  
Description  
1, 15, 37  
Power  
Power Ground: VIN and VOUT power returns  
Switching Node: and ZVS sense for power switches. Requires a schottky diode clamp with a low  
inductance connection in parallel with an RC snubber for 1nF and 0.3Ω.  
Refer to Table 1 for the recommended components.  
VS1  
VIN  
2
Power  
3
Power  
Power  
Input Voltage: for the power stage.  
14  
Input Voltage: and sense for UVLO, OVLO and feed forward ramp.  
ZVS control function node. Requires a 40V schottky diode clamp to PGND.  
Refer to Table 1 for the recommended component.  
CR  
CB  
4
5
6
Power  
Power  
Power  
ZVS control function node. Decouple with a 0.047µF capacitor between CB and CR.  
Refer to Table 1 for the recommended component.  
Q1 driver boost pin. Decouple with a 0.22µF capacitor in series with a 1.3Ω resistor  
between Q1B and VS1. Refer to Table 1 for the recommended components.  
Q1B  
CSL  
7
8
Power  
Power  
ZVS control function node. Connect to PGND.  
Q2 gate drive. Leave open.  
Q2G  
Gate Driver VCC: 5.1V gate driver bias supply. May be used as a bias supply for low power exter-  
nal loads. See Application Description for important considerations.  
VDR  
9
I/O  
N/C  
VBS  
10-12  
13  
I/O  
No Internal connection.  
Power  
Power  
Switching node for gate driver bias supply.  
VOUT  
16-19  
Output Voltage: Internal Clamp connection and sense for power switches and feed-forward ramp.  
Synchronization Input: Synchronize to the falling edge of external clock frequency. SYNCI is a  
high impedance digital input node and should always be connected to SGND when not in use. The  
PI358x-00 family is not optimized for external synchronization functionality.  
SYNCI  
20  
21  
I
Synchronization Output: Outputs a high signal at the start of each clock cycle for the longer of  
½ of the minimum period or the on time of the high-side power MOSFET.  
SYNCO  
O
TEST1  
TEST2  
TEST3  
22  
23  
24  
I/O  
I/O  
I/O  
Factory Test: Use only with factory guidance. Connect to SGND for proper operation.  
Factory Test: Use only with factory guidance. Connect to SGND for proper operation.  
Factory Test: Use only with factory guidance. Leave open.  
Signal Ground: Internal logic ground for EAO, EAIN, TRK, SYNCI, SYNCO communication returns.  
SGND and PGND are not connected inside the package. SGND should be connected to the large  
PGND island (controller paddle, pin 37) directly under the PI358x package. Sensitive analog nodes  
should be connected to the SGND side of the connection.  
SGND  
25  
I/O  
VCC  
EN  
26  
27  
I/O  
I/O  
Control Circuitry VCC: Analog & digital bias. Decouple with 2.2µF to SGND.  
Enable Input: Regulator enable control. Asserted high or left floating – regulator enabled;  
Asserted low – regulator output disabled.  
Soft Start and Track Input: An external capacitor with minimum capacitance of 47nF is required  
to be connected between TRK pin and SGND to control the rate of rise during soft start.  
TRK  
LGH  
28  
29  
30  
I
I/O  
O
For factory use only. Connect to SGND in application.  
Compensation Capacitor: Connect capacitor for control loop dominant pole.  
See Error Amplifier section for details. A default CCOMP of 4.7nF is used in the example.  
COMP  
EAO  
EAIN  
VSN  
31  
32  
33  
34  
35  
O
I
Error Amplifier Output: External connection for additional compensation and current sharing.  
Error Amplifier Inverting Input: Connection for the feedback divider tap.  
Independent Amplifier Inverting Input: If unused connect in unity gain.  
Independent Amplifier Non-Inverting Input: If unused connect to SGND.  
Independent Amplifier Output: Active only when module is enabled.  
I
VSP  
I
VDIFF  
O
Power Good: High impedance when regulator is operating and VOUT is in regulation.  
Otherwise pulls to SGND.  
PWRGD  
36  
O
Cool-Power® ZVS Switching Regulators  
Page 5 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Package Pinout  
PGD VDIFF VSP  
VSN EAIN EAO COMP LGH  
TRK  
28  
EN  
27  
VCC  
26  
34  
33  
32  
31  
30  
29  
36  
35  
25  
PGND  
SGND  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TEST3  
TEST2  
TEST1  
2
SYNCO  
SYNCI  
VOUT  
VOUT  
VOUT  
VOUT  
PGND  
VS1  
PGND  
37  
3
14  
13  
VIN  
VBS  
VIN  
5
6
7
8
9
10  
11  
12  
4
CR  
CB  
QIB  
CSL Q2G VDR N/C N/C N/C  
PI358x  
TOP THROUGH VIEW OF PRODUCT  
GQFN PACKAGE  
Cool-Power® ZVS Switching Regulators  
Page 6 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI358x-00 Common Electrical Characteristics  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Differential Amp  
[d]  
[d]  
Open Loop Gain  
96  
5
120  
7
140  
12  
1
dB  
MHz  
mV  
V
Small Signal Gain-Bandwidth  
Input Offset Error  
0.5  
Common-Mode Input Range  
Differential-Mode Input Range  
Input Bias Current  
–0.1  
2.5  
2
V
–1  
–1  
1
µA  
mA  
V
Sink/Source Current  
Maximum VOUT  
1
IVDIFF = –1mA  
4.85  
Minimum VOUT  
IVDIFF = –1mA  
20  
50  
mV  
pF  
[j]  
Capacitive Load Range for Stability  
Slew Rate  
0
11  
V/µs  
PWRGD  
VOUT Rising Threshold  
VPG_HI%  
78  
75  
84  
81  
90  
% VOUT_DC  
VOUT Falling Threshold  
PWRGD Output Low  
VPG_LO%  
VPG_SAT  
87  
% VOUT_DC  
V
Sink = 4mA  
0.4  
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 7 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI358x-00 Common Electrical Characteristics (Cont.)  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
VDR  
Min  
Typ  
Max  
Unit  
Voltage Set Point  
External Loading  
VVDR  
IVDR  
VIN_DC > 10V  
4.9  
0
5.05  
5.2  
2
V
See Application Description for details  
mA  
External required components for VDR,  
recommended to be an Inductor.  
Refer to Table 1 for the recommended component.  
External Inductor  
Between VDR and VBS  
LVBS  
10  
µH  
µF  
External required components for VDR,  
recommended to be a capacitor.  
Refer to Table 1 for the recommended component.  
External Capacitor  
Between VDR and PGND  
CVDR  
2.2  
Enable  
High Threshold  
Low Threshold  
VEN_HI  
VEN_LO  
VEN_HYS  
0.9  
0.7  
100  
1.0  
0.8  
200  
1.1  
0.9  
300  
V
V
Threshold Hysteresis  
mV  
Pull-Up Voltage Level for  
Source Current  
VEN_PU  
2
V
Pull-Up Current  
IEN_PU_POS  
50  
µA  
Reliability  
MIL-HDBK-217, 25ºC, Ground Benign: GB  
Telcordia SR-332, 25ºC, Ground Benign: GB  
22.7  
191  
MHrs  
MHrs  
MTBF  
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 8 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, full load  
Short at terminals  
0.77  
Input Current at Output Short  
(Fault Condition Duty Cycle)  
IIN_Short  
3
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
IQ_VIN  
IQ_VIN  
VIN_SR  
Disabled  
0.65  
1.8  
mA  
mA  
Enabled, no load, TCASE = 25°C  
[j]  
1
V/µs  
Output Specifications  
[d]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
2.2  
0.990  
3.3  
1.005  
4.0  
V
[d] [e]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 10% to 100% load  
0.10  
0.10  
53  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
Full load, COUT = 6 x 100µF, 20MHz BW [f]  
mVP-P  
[g]  
0
10  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 420nH inductor.  
11.5  
A
[d]  
Maximum Array Size  
Output Current, Array of 2  
Output Current, Array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [d] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [d] see applications section for details  
0
0
A
A
[i]  
[i]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Start Threshold  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27.0  
2.08  
1.25  
64.3  
1.17  
29.1  
2.50  
V
V
1.66  
µs  
V
[d]  
VOVLO_STOP  
[d]  
VOVLO_HYS  
VOVLO_START  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
V
[d]  
60.5  
4.8  
V
1.25  
20  
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
Above set VOUT  
%
Output Overvoltage Protection,  
Absolute  
VOVP_ABS  
5.3  
V
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 9 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
Switching Frequency  
Fault Restart Delay  
fs  
[h] While in DCM operating mode only, SYNCI grounded  
470  
500  
30  
530  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [e] and [h]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
250  
4.5  
550  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
1.4  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
V
40  
80  
50  
8.7  
mV  
mV  
µA  
mA  
nF  
TRK to EAIN Offset  
40  
30  
120  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, External  
Soft Start Time  
ITRK_DIS  
CTRK_EXT  
tSS  
VTRK = 0.5V  
47  
CTRK = 47nF  
0.94  
7.6  
ms  
mS  
V
[d]  
Error Amplifier Transconductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
ROUT  
[d]  
[d]  
[d]  
0.8  
Error Amplifier Output Impedance  
Internal Compensation Resistor  
1
MΩ  
kΩ  
RZI  
6
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 10 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
78  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 1 — System efficiency, nominal trim,  
Figure 4 — System power dissipation, nominal trim,  
board temperature = 25ºC  
board temperature = 25ºC  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
4
3
2
1
0
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 2 — System efficiency, low trim,  
Figure 5 — System power dissipation, low trim,  
board temperature = 25ºC  
board temperature = 25ºC  
5
4
3
2
1
94  
92  
90  
88  
86  
84  
82  
80  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 3 — System efficiency, high trim,  
Figure 6 — System power dissipation, high trim,  
board temperature = 25ºC  
board temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 11 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
5
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
78  
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 7 — System efficiency, nominal trim,  
Figure 10 — System power dissipation, nominal trim,  
board temperature = 90ºC  
board temperature = 90ºC  
5
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
78  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 8 — System efficiency, low Trim,  
Figure 11 — System power dissipation, low trim,  
board temperature = 90ºC  
board temperature = 90ºC  
6
5
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
78  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 9 — System efficiency, high trim,  
Figure 12 — System power dissipation, high trim,  
board temperature = 90ºC  
board temperature = 90ºC  
Cool-Power® ZVS Switching Regulators  
Page 12 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
78  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 13 — System efficiency, nominal trim,  
Figure 16 — System power dissipation, nominal trim,  
board temperature = –20ºC  
board temperature = –20ºC  
92  
90  
88  
86  
84  
82  
80  
3
2
1
0
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 14 — System efficiency, low trim,  
Figure 17 — System power dissipation, low trim,  
board temperature = –20ºC  
board temperature = –20ºC  
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
80  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 15 — System efficiency, high trim,  
Figure 18 — System power dissipation, high trim,  
board temperature = –20ºC  
board temperature = –20ºC  
Cool-Power® ZVS Switching Regulators  
Page 13 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
Figure 19 — Transient response: 50% to 100% load, at 1A/µs;  
nominal line, nominal trim,  
Figure 22 — Output short circuit, nominal line  
COUT = 6 x 100µF ceramic  
Figure 20 — Output voltage ripple: nominal line, nominal trim,  
Figure 23 — Output voltage ripple: nominal line, nominal trim,  
100% load, COUT = 6 x 100µF ceramic, 20MHz BW  
50% load, COUT = 6 x 100µF ceramic, 20MHz BW  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
12  
10  
8
Note:  
SiP is based on VIN and VS1 paths  
only. Inductor is based on base with  
6
inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity), and all leads.  
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
20  
40  
60  
80  
100  
120  
140  
Load Current (A)  
30V 48V  
Temperature of Isothermal SiP VIN and VS1 pins,  
and PCB at Inductor (ºC)  
VIN:  
60V  
Figure 21 — Switching frequency vs. load, nominal trim  
Figure 24 — System thermal specified operating area: max IOUT  
at nominal trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 14 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3583-00 (3.3VOUT) Electrical Characteristics (Cont.)  
10  
9
8
7
6
5
4
3
2
1
0.8  
1.3  
1.8  
2.3  
60V  
2.8  
EAO Voltage (V)  
VIN:  
30V  
48V  
Figure 25 — Output current vs. VEAO, nominal trim  
8
7
6
5
4
3
2
1
0
0.8  
1.3  
1.8  
2.3  
60V  
2.8  
EAO Voltage (V)  
VIN:  
30V  
48V  
Figure 26 — Small-signal modulator gain vs. VEAO, nominal trim  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0.8  
1.3  
1.8  
2.3  
60V  
2.8  
EAO Voltage (V)  
VIN:  
30V  
48V  
Figure 27 — rEQ_OUT vs VEAO, nominal trim  
Cool-Power® ZVS Switching Regulators  
Page 15 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, full load  
Short at terminals  
1.12  
Input Current at Output Short  
(Fault Condition Duty Cycle)  
IIN_Short  
1.8  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
IQ_VIN  
IQ_VIN  
VIN_SR  
Disabled  
0.65  
2
mA  
mA  
Enabled, no load, TCASE = 25°C  
[j]  
1
V/µs  
Output Specifications  
[d]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
3.8  
0.990  
5.0  
1.005  
6.5  
V
[d] [e]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 10% to 100% load  
0.10  
0.10  
60  
%
Load Regulation  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
Full load, COUT = 6 x 47µF, 20MHz BW [f]  
mVP-P  
[g]  
0
10  
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 420nH inductor.  
11.5  
A
[d]  
Maximum Array Size  
Output Current, Array of 2  
Output Current, Array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [d] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [d] see applications section for details  
0
0
A
A
[i]  
[i]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Start Threshold  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27.0  
2.08  
1.25  
64.3  
1.17  
29.1  
2.50  
V
V
1.66  
µs  
V
[d]  
VOVLO_STOP  
[d]  
VOVLO_HYS  
VOVLO_START  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
V
[d]  
60.5  
6.7  
V
1.25  
20  
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
Above set VOUT  
%
Output Overvoltage Protection,  
Absolute  
VOVP_ABS  
7.5  
V
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 16 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
Switching Frequency  
Fault Restart Delay  
fs  
[h] While in DCM operating mode only, SYNCI grounded  
564  
600  
30  
636  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [e] and [h]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
300  
4.5  
660  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
1.4  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
V
40  
80  
50  
8.7  
mV  
mV  
µA  
mA  
nF  
TRK to EAIN Offset  
40  
30  
120  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, External  
Soft Start Time  
ITRK_DIS  
CTRK_EXT  
tSS  
VTRK = 0.5V  
47  
CTRK = 47nF  
0.94  
7.6  
ms  
mS  
V
[d]  
Error Amplifier Transconductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
ROUT  
[d]  
[d]  
[d]  
0.8  
Error Amplifier Output Impedance  
Internal Compensation Resistor  
1
MΩ  
kΩ  
RZI  
6
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 17 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
5
4
3
2
1
3
4
5
6
7
8
8
8
9
9
9
10  
10  
10  
3
4
5
6
7
8
9
9
9
10  
10  
10  
2
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
60V  
60V  
60V  
Figure 28 — System efficiency, nominal trim,  
Figure 31 — System power dissipation, nominal trim,  
board temperature = 25ºC  
board temperature = 25ºC  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
4
3
2
1
0
3
4
5
6
7
3
4
5
6
7
8
2
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
Figure 29 — System efficiency, low trim,  
Figure 32 — System power dissipation, low trim,  
board temperature = 25ºC  
board temperature = 25ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
5
4
3
2
1
86  
85  
3
4
5
6
7
3
4
5
6
7
8
2
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
Figure 30 — System efficiency, high trim,  
Figure 33 — System power dissipation, high trim,  
board temperature = 25ºC  
board temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 18 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
6
5
4
3
2
1
3
4
5
6
7
8
8
8
9
9
9
10  
10  
10  
3
4
5
6
7
8
9
9
9
10  
10  
10  
2
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
60V  
60V  
60V  
Figure 34 — System efficiency, nominal trim,  
Figure 37 — System power dissipation, nominal trim,  
board temperature = 90ºC  
board temperature = 90ºC  
93  
92  
6
5
4
3
2
1
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
3
4
5
6
7
3
4
5
6
7
8
2
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
Figure 35 — System efficiency, low Trim,  
Figure 38 — System power dissipation, low trim,  
board temperature = 90ºC  
board temperature = 90ºC  
7
94  
93  
92  
91  
90  
89  
6
5
4
3
2
1
88  
87  
86  
85  
84  
3
4
5
6
7
2
3
4
5
6
7
8
2
Load Current (A)  
30V  
Load Current (A)  
30V  
VIN:  
48V  
VIN:  
48V  
60V  
Figure 36 — System efficiency, high trim,  
Figure 39 — System power dissipation, high trim,  
board temperature = 90ºC  
board temperature = 90ºC  
Cool-Power® ZVS Switching Regulators  
Page 19 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
96  
94  
92  
4.5  
4
3.5  
3
90  
88  
86  
84  
82  
80  
2.5  
2
1.5  
1
0.5  
0
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
2
3
4
5
6
7
8
9
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 40 — System efficiency, nominal trim,  
Figure 43 — System power dissipation, nominal trim,  
board temperature = –20ºC  
board temperature = –20ºC  
96  
94  
92  
4
3.5  
3
90  
88  
86  
84  
82  
80  
2.5  
2
1.5  
1
0.5  
0
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 41 — System efficiency, low trim,  
Figure 44 — System power dissipation, low trim,  
board temperature = –20ºC  
board temperature = –20ºC  
96  
94  
92  
6
5
4
3
2
1
0
90  
88  
86  
84  
82  
80  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
10  
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
Figure 42 — System efficiency, high trim,  
Figure 45 — System power dissipation, high trim,  
board temperature = –20ºC  
board temperature = –20ºC  
Cool-Power® ZVS Switching Regulators  
Page 20 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
Figure 46 — Transient response: 50% to 100% load, at 1A/µs;  
nominal line, nominal trim,  
Figure 49 — Output short circuit, nominal line  
COUT = 6 x 47µF ceramic  
Figure 47 — Output voltage ripple: nominal line, nominal trim,  
Figure 50 — Output voltage ripple: nominal line, nominal trim,  
100% load, COUT = 6 x 47µF ceramic, 20MHz BW  
50% load, COUT = 6 x 47µF ceramic, 20MHz BW  
600  
575  
550  
12  
10  
8
525  
500  
475  
450  
Note:  
SiP is based on VIN and VS1 paths  
only. Inductor is based on base with  
6
inclusion of GEL 30 interface  
resistance (0.15mm thick; 3.5W/m-K  
thermal conductivity), and all leads.  
4
2
0
425  
400  
3
4
5
6
7
8
9
10  
0
1
2
0
20  
40  
60  
80  
100  
120  
140  
Load Current (A)  
30V  
Temperature of Isothermal SiP VIN and VS1 pins,  
and PCB at Inductor (ºC)  
VIN:  
48V  
60V  
Figure 48 — Switching frequency vs. load, nominal trim  
Figure 51 — System thermal specified operating area: max IOUT  
at nominal trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 21 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3585-00 (5.0VOUT) Electrical Characteristics (Cont.)  
10  
9
8
7
6
5
4
3
2
1
0.8  
1.3  
1.8  
2.3  
2.8  
EAO Voltage (V)  
VIN:  
30V  
48V  
60V  
Figure 52 — Output current vs. VEAO, nominal trim  
10  
8
6
4
2
1
0.8  
1.3  
1.8  
2.3  
2.8  
EAO Voltage (V)  
48V  
VIN:  
30V  
60V  
Figure 53 — Small-signal modulator gain vs. VEAO, nominal trim  
35  
30  
25  
20  
15  
10  
5
0
0.8  
1
1.2 1.4 1.6  
1.8  
2
2.2 2.4 2.6 2.8  
60V  
EAO Voltage (V)  
VIN:  
30V  
48V  
Figure 54 — rEQ_OUT vs VEAO, nominal trim  
Cool-Power® ZVS Switching Regulators  
Page 22 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Specifications  
Input Voltage  
Input Current  
VIN_DC  
IIN_DC  
30  
48  
60  
V
A
VIN = 48V, TCASE = 25°C, full load  
Short at terminals  
2.35  
Input Current at Output Short  
(Fault Condition Duty Cycle)  
IIN_Short  
3.5  
mA  
Input Quiescent Current  
Input Quiescent Current  
Input Voltage Slew Rate  
IQ_VIN  
IQ_VIN  
VIN_SR  
Disabled  
0.65  
3
mA  
mA  
Enabled, no load, TCASE = 25°C  
[j]  
1
V/µs  
Output Specifications  
[d]  
EAIN Voltage Total Regulation  
Output Voltage Trim Range  
Line Regulation  
VEAIN  
0.975  
6.5  
0.990  
12.0  
0.1  
1.005  
14.0  
V
[d] [e]  
VOUT_DC  
V
ΔVOUT / ΔVIN @ 25°C, 30V < VIN < 60V  
ΔVOUT / ΔIOUT @ 25°C, 10% to 100% load  
%
Load Regulation  
0.1  
%
Output Voltage Ripple  
Output Current  
VOUT_AC  
IOUT_DC  
Full load, COUT = 6 x 10µF, 20MHz BW [f]  
115  
mVP-P  
[g]  
0
9
A
Current Limit  
IOUT_CL  
Typical current limit based on nominal 900nH inductor  
10.5  
A
[d]  
Maximum Array Size  
Output Current, Array of 2  
Output Current, Array of 3  
NPARALLEL  
3
Modules  
IOUT_DC_ARRAY2 Total array capability, [d] see applications section for details  
IOUT_DC_ARRAY3 Total array capability, [d] see applications section for details  
0
0
A
A
[i]  
[i]  
Protection  
Input UVLO Start Threshold  
Input UVLO Stop Hysteresis  
Input UVLO Response Time  
Input OVLO Stop Threshold  
Input OVLO Start Hysteresis  
Input OVLO Start Threshold  
Input OVLO Response Time  
VUVLO_START  
VUVLO_HYS  
27.0  
2.08  
1.25  
64.3  
1.17  
29.1  
2.50  
V
V
1.66  
µs  
V
[d]  
VOVLO_STOP  
[d]  
VOVLO_HYS  
VOVLO_START  
tf  
Hysteresis active when OVLO present for at least tFR_DLY  
V
[d]  
60.5  
14.7  
V
1.25  
20  
µs  
Output Overvoltage Protection,  
Relative  
VOVP_REL  
Above set VOUT  
%
Output Overvoltage Protection,  
Absolute  
VOVP_ABS  
15.8  
V
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 23 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
Specifications apply for –20°C < TINT < 120°C, VIN = 48V, EN = High, unless otherwise noted.[c]  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Timing  
Switching Frequency  
Fault Restart Delay  
fs  
[h] While in DCM operating mode only, SYNCI grounded  
658  
700  
30  
742  
kHz  
ms  
tFR_DLY  
Synchronization Input (SYNCI)  
–50% and +10% relative to set switching frequency (fS),  
while in DCM operating mode only. [e] and [h]  
Synchronization Frequency Range  
SYNCI Threshold  
fSYNCI  
350  
4.5  
770  
kHz  
V
VSYNCI  
2.5  
Synchronization Output (SYNCO)  
SYNCO High  
VSYNCO_HI  
VSYNCO_LO  
tSYNCO_RT  
tSYNCO_FT  
Source 1mA  
Sink 1mA  
20pF load  
20pF load  
V
V
SYNCO Low  
0.5  
1.4  
SYNCO Rise Time  
SYNCO Fall Time  
10  
10  
ns  
ns  
Soft Start, Tracking and Error Amplifier  
TRK Active Range (Nominal)  
TRK Enable Threshold  
VTRK  
VTRK_OV  
VEAIN_OV  
ITRK  
0
V
40  
80  
50  
8.7  
mV  
mV  
µA  
mA  
nF  
TRK to EAIN Offset  
40  
30  
120  
70  
Charge Current (Soft Start)  
Discharge Current (Fault)  
TRK Capacitance, External  
Soft Start Time  
ITRK_DIS  
CTRK_EXT  
tSS  
VTRK = 0.5V  
47  
CTRK = 47nF  
0.94  
7.6  
ms  
mS  
V
[d]  
Error Amplifier Transconductance  
PSM Skip Threshold  
GMEAO  
PSMSKIP  
ROUT  
[d]  
[d]  
[d]  
0.8  
Error Amplifier Output Impedance  
Internal Compensation Resistor  
1
MΩ  
kΩ  
RZI  
6
[c] All parameters reflect regulator and inductor system performance. Measurements were made using a standard PI358x evaluation board with 3 x 3in  
dimensions and 4 layer, 2oz copper. Refer to inductor pairing table within Application Description section for specific inductor manufacturer and value.  
[d] Regulator is assured to meet performance specifications by design, test correlation, characterization, and/or statistical process control.  
Output voltage is determined by an external feedback divider ratio.  
[e] Output current capability may be limited and other performance may vary from noted electrical characteristics when VOUT is not set to nominal.  
[f] Refer to Output Ripple plots.  
[g] Refer to Load Current vs. Ambient Temperature curves.  
[h] Refer to Switching Frequency vs. Load current curves.  
[i] Contact factory applications for array derating and layout best practices to minimize sharing errors.  
[j] Informational only.  
Cool-Power® ZVS Switching Regulators  
Page 24 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
100  
98  
96  
94  
92  
90  
88  
86  
84  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
2
3
4
5
6
7
8
9
2
3
4
5
6
7
7
7
8
8
8
9
9
9
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
60V  
60V  
Figure 55 — System efficiency, nominal trim,  
Figure 58 — System power dissipation, nominal trim,  
board temperature = 25ºC  
board temperature = 25ºC  
100  
95  
90  
85  
80  
75  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
2
3
4
5
6
7
8
9
2
3
4
5
6
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
Figure 56 — System efficiency, low trim,  
Figure 59 — System power dissipation, low trim,  
board temperature = 25ºC  
board temperature = 25ºC  
100  
95  
90  
85  
80  
75  
6
5
4
3
2
1
0
2
3
4
5
6
7
8
9
2
3
4
5
6
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
Figure 57 — System efficiency, high trim,  
Figure 60 — System power dissipation, high trim,  
board temperature = 25ºC  
board temperature = 25ºC  
Cool-Power® ZVS Switching Regulators  
Page 25 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
98  
97  
6
5
4
3
2
1
0
96  
95  
94  
93  
92  
91  
90  
2
3
4
5
6
7
8
9
2
3
4
5
6
7
7
7
8
8
8
9
9
9
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
VIN:  
60V  
60V  
60V  
Figure 61 — System efficiency, nominal trim,  
Figure 64 — System power dissipation, nominal trim,  
board temperature = 90ºC  
board temperature = 90ºC  
96  
95  
94  
93  
92  
91  
90  
89  
88  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
2
3
4
5
6
2
3
4
5
6
7
8
9
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
VIN:  
60V  
Figure 62 — System efficiency, low Trim,  
Figure 65 — System power dissipation, low trim,  
board temperature = 90ºC  
board temperature = 90ºC  
98  
97  
6
5
4
3
2
1
0
96  
95  
94  
93  
92  
2
3
4
5
6
2
3
4
5
6
7
8
9
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
VIN:  
60V  
Figure 63 — System efficiency, high trim,  
Figure 66 — System power dissipation, high trim,  
board temperature = 90ºC  
board temperature = 90ºC  
Cool-Power® ZVS Switching Regulators  
Page 26 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
98  
97  
5
4
3
2
1
0
96  
95  
94  
93  
92  
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
8
8
9
9
9
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
60V  
60V  
60V  
VIN:  
60V  
Figure 67 — System efficiency, nominal trim,  
Figure 70 — System power dissipation, nominal trim,  
board temperature = –20ºC  
board temperature = –20ºC  
98  
97  
4
3
2
1
0
96  
95  
94  
93  
92  
91  
90  
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
VIN:  
60V  
Figure 68 — System efficiency, low trim,  
Figure 71 — System power dissipation, low trim,  
board temperature = –20ºC  
board temperature = –20ºC  
98  
97.5  
97  
6
5
4
96.5  
96  
95.5  
95  
3
2
1
0
94.5  
94  
93.5  
93  
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
Load Current (A)  
30V 48V  
Load Current (A)  
30V 48V  
VIN:  
VIN:  
60V  
Figure 69 — System efficiency, high trim,  
Figure 72 — System power dissipation, high trim,  
board temperature = –20ºC  
board temperature = –20ºC  
Cool-Power® ZVS Switching Regulators  
Page 27 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
Figure 73 — Transient response: 50% to 100% load, at 1A/µs;  
nominal line, nominal trim,  
Figure 76 — Output short circuit, nominal line  
COUT = 6 x 47µF ceramic  
Figure 74 — Output voltage ripple: nominal line, nominal trim,  
Figure 77 — Output voltage ripple: nominal line, nominal trim,  
100% load, COUT = 6 x 47µF ceramic, 20MHz BW  
50% load, COUT = 6 x 47µF ceramic, 20MHz BW  
750  
700  
650  
600  
550  
500  
450  
400  
350  
10  
9
8
7
Notes:  
6
1. SiP is based on VIN and VS1 paths only.  
2. Inductor is based on two leads and base  
with inclusion of GEL 30 interface resistance  
(0.15mm thick; 3.5W/m-K thermal conductivity).  
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
0
20  
40  
60  
80  
100  
120  
140  
Load Current (A)  
30V 48V  
Temperature of Isothermal SiP VIN and VS1 pins,  
and PCB at Inductor (ºC)  
VIN:  
60V  
Figure 75 — Switching frequency vs. load, nominal trim  
Figure 78 — System thermal specified operating area: max IOUT  
at nominal trim vs. temperature at locations noted  
Cool-Power® ZVS Switching Regulators  
Page 28 of 45  
Rev 1.0  
10/2018  
PI358x-00  
PI3586-00 (12.0VOUT) Electrical Characteristics (Cont.)  
10  
9
8
7
6
5
4
3
2
1
0.8  
1
1.2  
1.4 1.6 1.8  
EAO Voltage (V)  
30V 48V  
2
2.2  
2.4 2.6 2.8  
VIN:  
60V  
Figure 79 — Output current vs. VEAO, nominal trim  
8
7
6
5
4
3
2
1
0
0.8  
1
1.2  
1.4 1.6 1.8  
EAO Voltage (V)  
30V 48V  
2
2.2  
2.4 2.6 2.8  
VIN:  
60V  
Figure 80 — Small-signal modulator gain vs. VEAO, nominal trim  
60  
50  
40  
30  
20  
10  
0
0.8  
1
1.2  
1.4 1.6 1.8  
EAO Voltage (V)  
30V 48V  
2
2.2  
2.4 2.6 2.8  
60V  
VIN:  
Figure 81 — rEQ_OUT vs VEAO, nominal trim  
Cool-Power® ZVS Switching Regulators  
Page 29 of 45  
Rev 1.0  
10/2018  
PI358x-00  
ENABLE (EN)  
Functional Description  
EN is the enable pin of the converter. The EN pin is referenced  
to SGND and permits the user to turn the regulator on or off.  
The EN default polarity is a positive logic assertion. If the EN pin  
is left floating or asserted high, the converter output is enabled.  
Pulling EN pin below VEN_LO with respect to SGND will disable the  
regulator output.  
The PI358x-00 is a family of highly integrated ZVS Buck regulators.  
The PI358x-00 has an output voltage that can be set within a  
prescribed range. Performance and maximum output current are  
characterized with a specific external power inductor (see Table 4).  
For basic operation, Figure 82 shows the connections and  
components required. No additional design or settings are required.  
Remote Sensing  
If the exact recommended part cannot be used, the description  
column of Table 1 serves as a guidance for an alternate part. Any  
substitute parts should be equal to or better than the original for  
all parameters.  
If remote sensing is required, the PI358x-00 product family is  
equipped with a general purpose op-amp. This amplifier can allow  
full differential remote sense by configuring it as a differential  
follower and connecting the VDIFF pin to the EAIN pin.  
Reasonable engineering judgment in making the choices for  
alternative components and a detailed verification of the  
performance would be highly recommended.  
Cool-Power® ZVS Switching Regulators  
Page 30 of 45  
Rev 1.0  
10/2018  
PI358x-00  
DCR  
CCR  
CQ1B RQ1B  
Q2G Q1B  
CSL CR  
CB  
L1  
VIN  
VIN  
VS1  
VOUT  
RVS1  
CVS1  
CIN  
CIN_HF  
PGND  
VBS  
DVS1  
COUT  
VOUT  
LVBS  
COUT_HF  
VDR  
VCC  
VSP  
VSN  
CVDR  
ZVS Buck  
REA1  
VDIFF  
CVCC  
EAIN  
SYNCO  
SYNCI  
PWRGD  
EN  
CEAIN  
EAO  
CHF  
CCOMP  
CTRK  
REA2  
COMP  
TRK  
Figure 82 — ZVS Buck with required components  
Reference Designation  
Manufacturer  
Part Number  
Value  
Description  
COUT  
CIN  
Refer to Table 6 – Recommended input and output capacitor components  
COUT_HF  
CIN_HF  
CQ1B  
Murata  
Murata  
TDK  
GRM21BR72A474KA73K  
GRM21BR72A474KA73K  
C1608X7R1C224K080AC  
ESR03EZPJ1R3  
0.47µF Capacitor, X7R Ceramic, 0.47uF, 100V, 10%, 0805  
0.47µF Capacitor, X7R Ceramic, 0.47µF, 100V, 10%, 0805  
0.22µF  
1.3Ω  
Capacitor, X7R, 0.22µF, 16V, 10%, 0603  
RES SMD 1.3Ω 5% 1/4W 0603  
RQ1B  
Rohm  
Diode, Schottky, PMEG4002EL  
Philips, 40V, 200mA, SOD882  
DCR  
CCR  
Nexperia  
Murata  
PMEG4002EL  
GCM188R71H473KA55D  
PMEG10010ELR  
47nF  
Capacitor, Ceramic, 47nF, 50V, 0603  
Diode, Schottky, 100V, 1A,  
low VF, low leakage current, SOD123W  
DVS1  
Nexperia  
CVS1  
RVS1  
TDK  
Samsung  
TDK  
C1608C0G2A102J080AA  
RUT1608FR300CS  
1nF  
Capacitor, C0G, 100V, 1nF, 5%, 0603  
RES SMD 300mΩ 1%1/8W 0603  
0.3Ω  
10µH  
2.2µF  
LVBS  
MLZ2012M100HT  
Inductor, 10µH 20%, 300mA, 2Mhz, 0805  
Capacitor, X7R Ceramic, 2.2µF, 10V, 0603  
CVDR, CVCC  
CEAIN  
CCOMP  
CHF  
Murata  
GRM188R71A225KE15D  
56pF  
4.7nF  
56pF  
CTRK  
47nF  
L1  
Refer to Inductor Pairing  
REA1  
REA2  
Refer to Application Description for Output Voltage Set Point  
Table 1 — List of recommended components  
Cool-Power® ZVS Switching Regulators  
Page 31 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Soft Start  
Output Overvoltage Protection  
The PI358x-00 requires an external soft-start capacitor from the  
TRK pin to SGND to control the rate of rise of the output voltage.  
Increasing the capacitance of this soft-start capacitor will increase  
the start-up ramp period. See, “Soft Start Adjustment and Track,”  
in the Applications Description section for more details.  
The PI358x-00 family is equipped with output Overvoltage  
Protection (OVP) to prevent damage to input voltage sensitive  
devices. If the output voltage exceeds VOVP-REL or VOVP-ABS, the  
regulator will complete the current cycle and stop switching. The  
system will resume operation once the output voltage falls below  
the OVP threshold and after Fault Restart Delay.  
Output Voltage Selection  
Overtemperature Protection  
The PI358x-00 output voltage can be set with REA1 and REA2  
as shown in Figure 82. Table 2 defines the allowable operational  
voltage ranges for the PI358x-00 family. Refer to the Output  
Voltage Set Point Application Description for details.  
The PI358x features an over temperature protection (OTP), which  
will not engage until after the product is operated above the  
maximum rated temperature. The OTP circuit is only designed to  
protect against catastrophic failure due to excessive temperatures  
and should not be relied upon to ensure the device stays within  
the recommended operating temperature range. Thermal  
shutdown terminates switching and discharges the soft-start  
capacitor. The PI358x will restart after the excessive temperature  
decreases by 30ºC.  
Output Voltage  
Device  
Nominal  
Range  
PI3583-00-QFYZ  
PI3585-00-QFYZ  
PI3586-00-QFYZ  
3.3V  
2.2 – 4.0V  
3.8 – 6.5V  
6.5 – 14V  
5.0V  
Pulse Skip Mode (PSM)  
12.0V  
PI358x-00 features a Pulse Skip Mode (PSM) to achieve high  
efficiency at light loads. The regulators are setup to skip pulses  
if EAO falls below a PSM threshold (PSMSKIP). Depending on  
conditions and component values, this may result in single pulses  
or several consecutive pulses followed by skipped pulses. Skipping  
cycles significantly reduces gate drive power and improves light  
load efficiency. The regulator will leave PSM once the EAO rises  
above the Pulse Skip Mode threshold.  
Table 2 — PI358x-00 family output voltage ranges  
Output Current Limit Protection  
The PI358x-00 has a current limit protection, which prevents  
the output from sourcing current higher than the regulator’s  
maximum rated current. If the output current exceeds the Current  
Limit (IOUT_CL) for 1024μs, a slow current limit fault is initiated and  
the regulator is shutdown which eliminates output current flow.  
After Fault Restart Delay (tFR_DLY), a soft-start cycle is initiated.  
This restart cycle will be repeated indefinitely until the excessive  
load is removed.  
Variable Frequency Operation  
Each PI358x-00 is preprogrammed to a base operating frequency,  
with respect to the power stage inductor (see Table 3), to operate  
at peak efficiency across line and load variations. At higher loads,  
the base operating frequency will decrease to accommodate  
storage of more energy in the main inductor. By increasing the  
switching period, ZVS operation is preserved throughout the total  
input line and output trim voltage ranges, maintaining optimum  
efficiency. The ZVS operation is preserved throughout the total  
input line voltage range therefore maintaining optimum efficiency.  
The PI358x-00 also has short circuit protection which can rapidly  
stop switching to protect against catastrophic failure of an external  
component such as a saturated inductor. If short circuit protection  
is triggered the PI358x-00 will complete the current cycle and stop  
switching. The module will attempt to soft start after Fault Restart  
Delay (tFR_DLY).  
Thermal Characteristics  
Input Undervoltage Lockout  
Figure 83(a) and 83(c) thermal impedance models that can predict  
the maximum temperature of the hottest component for a given  
operating condition. This model assumes that all customer PCB  
connections are at one temperature, which is PCB equivalent  
Temperature TPCB °C.  
If VIN falls below the input Undervoltage Lockout (UVLO) threshold,  
but remains high enough to power the bias supply, the PI358x-00  
will complete the current cycle and stop switching. The system  
will soft start once the input voltage is reestablished and after the  
Fault Restart Delay.  
The SiP model can be simplified as shown in Figure 83(b). which  
assumes all PCB nodes are at the same temperature.  
Input Overvoltage Lockout  
If VIN exceeds the input Overvoltage Lockout (OVLO) threshold  
(VOVLO), while the controller is running, the PI358x-00 will  
complete the current cycle and stop switching. If VIN remains above  
OVLO for at least tFR_DLY, then the input voltage is considered  
reestablished once VIN goes below VOVLO-VOVLO_HYS. If VIN goes  
below OVLO before tFR_DLY elapses, then the input voltage is  
considered reestablished once VIN goes below VOVLO. The system  
will soft start once the input voltage is reestablished and after the  
Fault Restart Delay.  
Cool-Power® ZVS Switching Regulators  
Page 32 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Maximum SiP Internal Temperature  
TINT ( oC )  
Thermal Resistance  
Thermal Resistances  
SiP PCB Pads  
θINT-VIN  
oC / W  
θINT-VS1  
oC / W  
θINT-PGND  
oC / W  
SiP Case Top  
SiP Power  
Dissipation  
PDSiP (W)  
θINT-TOP oC / W  
SiP Case Top  
Temperature  
TTOP oC  
TVS1  
oC  
TVIN  
oC  
TPGND  
oC  
SiP PCB Pad  
Temperatures  
(a)  
Maximum SiP Internal Temperature  
INT ( oC )  
T
Thermal Resistance  
SiP PCB Equivalent  
θINT-PCB oC / W  
Thermal Resistance  
SiP Case Top  
SiP Power  
Dissipation  
PDSiP (W)  
θINT-TOP oC / W  
Case Top  
Temperature  
TTOP oC  
SiP PCB Common  
Temperature  
TPCB oC  
(b)  
Maximum Inductor Internal Temperature  
INT ( oC )  
T
Thermal Resistance  
Inductor Case Top  
θINT-TOP oC / W  
Thermal Resistance  
Inductor Case Bottom  
θINT-BOTTOM oC / W  
Thermal Resistances  
Inductor PCB Pads  
θINT-TAB  
oC / W  
θINT-LEAD1  
oC / W  
θINT-LEAD2  
oC / W  
Inductor Power  
Dissipation  
PDIND (W)  
Inductor Case Top  
Temperature  
TTOP oC  
Inductor Case Bottom  
Temperature  
TVS1  
oC  
TVOUT  
oC  
Inductor PCB Pad  
Temperatures  
TTAB  
oC  
TBOTTOM oC  
(c)  
Figure 83 — PI358x-00 thermal model (a), SiP simplified version (b) and inductor thermal model (c)  
Cool-Power® ZVS Switching Regulators  
Page 33 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Where the symbol in Figure 83(a) and (b) is defined as the following:  
θINT-TOP  
θINT-PCB  
θINT-VIN  
θINT-VS1  
θINT-PGND  
the thermal impedance from the hottest component inside the SiP to the top side  
the thermal impedance from the hottest component inside the SiP to the customer PCB, assuming all pins are  
at one temperature.  
the thermal impedance from the hottest component inside the SiP to the circuit board VIN pads.  
the thermal impedance from the hottest component inside the SiP to the circuit board VS1 pads.  
the thermal impedance from the hottest component inside the SiP to the circuit board  
for PGND pin 1 and pin 37 combined.  
Where the symbol in Figure 83(c) is defined as the following:  
θINT-TOP the thermal impedance from the hot spot to the top surface of the core.  
θINT-BOT  
the thermal impedance from the hot spot to the bottom surface of the core.  
θINT-TAB  
the thermal impedance from the hot spot to the metal mounting tab on the core body.  
the thermal impedance from the hot spot to one of the mounting leads.  
Since the leads are the same thermal impedance, there is no need to specify by explicit pin number.  
θINT-LEAD1  
θINT-LEAD2  
the thermal impedance from the hot spot to the other mounting lead.  
The following equation can predict the junction temperature  
based on the heat load applied to the SiP and the known ambient  
conditions with the simplified thermal circuit model:  
TTOP  
TPCB  
PD +  
+
θINT-TOP θINT-PCB  
TINT  
=
(1)  
1
1
+
θINT-TOP θINT-PCB  
Cool-Power® ZVS Switching Regulators  
Page 34 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Thermal Characteristics (Cont.)  
Simplified SiP  
Thermal Impedances  
Detailed SiP Thermal Impedances  
Product  
System  
θINT-TOP  
θINT-PCB  
θINT-TOP  
θINT-VIN  
θINT-VS1  
θINT-PGND  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
(°C / W)  
PI3583-00  
PI3585-00  
PI3586-00  
44  
0.53  
0.64  
0.42  
44  
54  
29  
1.4  
2.6  
0.95  
0.92  
1.2  
7.7  
9.6  
2.2  
54  
29  
0.88  
Table 3 — PI358x-00 SiP thermal impedance  
Thermal Impedances  
Inductor Part  
Number  
Product  
System  
θINT-LEAD1, θINT-LEAD2  
θINT-TAB  
(°C / W)  
θINT-TOP  
θINT-BOTTOM  
(°C / W)  
(°C / W)  
(°C / W)  
PI3583-00  
PI3585-00  
PI3586-00  
HCV1206-R42-R  
HCV1206-R42-R  
HCV1206-R90-R  
68  
110  
13  
58  
16  
180  
140  
190  
21  
20  
58  
40  
Table 4 — Inductor thermal model parameters  
Cool-Power® ZVS Switching Regulators  
Page 35 of 45  
Rev 1.0  
10/2018  
PI358x-00  
SiP Power Dissipation as Percentage of Total System Losses  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
30  
35  
40  
45  
50  
55  
55  
55  
60  
60  
60  
VIN (V)  
IOUT % Rated Load:  
10%  
30%  
100%  
100%  
100%  
Figure 84 — PI3583-00-QFYZ  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
30  
35  
40  
45  
50  
VIN (V)  
IOUT % Rated Load:  
10%  
30%  
Figure 85 — PI3585-00-QFYZ  
100  
90  
80  
70  
60  
50  
40  
30  
30  
35  
40  
45  
50  
VIN (V)  
IOUT % Rated Load:  
10%  
30%  
Figure 86 — PI3586-00-QFYZ  
Cool-Power® ZVS Switching Regulators  
Page 36 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Application Description  
VOUT  
1
Output Voltage Set Point  
V
OUT 2  
The PI358x-00 family of Buck Regulators utilizes VREF, an internal  
reference for regulating the output voltage. The output voltage  
setting is accomplished using external resistors as shown in  
Figure 87. Select R2 to be at or around 1kΩ for best noise  
immunity. Use Equations 2 and 3 to determine the proper  
value based on the desired output voltage.  
(a)  
Master VOUT  
VOUT  
2
(b)  
t
VOUT  
Figure 88 — PI358x-00 tracking responses  
R1  
For Direct Tracking, choose the PI358x-00 with the highest output  
voltage as the master and connect the master to the TRK pin of the  
other PI358x-00 regulators through a divider (Figure 88) with the  
same ratio as the slave’s feedback divider.  
EAIN  
-
+
VREF  
R2  
EAO  
RZI  
COMP  
Master VOUT  
Figure 87 — External resistor divider network  
R1  
PI358x  
TRK  
R1 + R2  
VOUT = VREF  
(2)  
(3)  
Slave  
R2  
R2  
SGND  
VOUT – VREF  
VREF  
R1 = R2 •  
Figure 89 — Voltage divider connections for direct tracking  
Where:  
VREF = VEAIN  
All connected PI358x-00 regulator soft-start slopes will track  
with this method. Direct tracking timing is demonstrated in  
Figure 88(b). All tracking regulators should have their Enable (EN)  
pins connected together to work properly.  
Soft Start Adjust and Tracking  
The TRK pin offers a means to adjust the regulator’s soft-start  
time or to track with additional regulators. The soft-start slope  
is controlled by an external capacitor and a fixed charge current  
to provide a Soft-Start Time tSS for all PI358x-00 regulators. The  
following equation can be used to calculate the proper capacitor  
for a desired soft-start times:  
Inductor Pairing  
The PI358x-00 utilizes an external inductor. This inductor has  
been optimized for maximum efficiency performance. Table 5  
details the specific inductor value and part number utilized for  
each PI358x-00.  
CTRK = tTRK • ITRK  
(
(4)  
)
Max Operating  
Temperature  
Value  
(nH)  
Product  
System  
Mfr.  
Part Number  
TINT-IND  
(°C)  
where tTRK is the soft-start time and ITRK is a 50µA internal charge  
current (see Electrical Characteristics for limits).  
PI3583-00-QFYZ  
PI3585-00-QFYZ  
PI3586-00-QFYZ  
420  
420  
900  
Eaton HCV1206-R42-R  
Eaton HCV1206-R42-R  
125  
125  
125  
There is typically either proportional or direct tracking implemented  
within a design. For proportional tracking between several  
regulators at start up, simply connect all PI358x-00 device TRK pins  
together. This type of tracking will force all connected regulators to  
start up and reach regulation at the same time (see Figure 88(a)).  
Eaton  
HCV1206-R90-R  
Table 5 — PI358x-00 inductor pairing  
Cool-Power® ZVS Switching Regulators  
Page 37 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Parallel Operation  
Table 7 shows the recommended input and output capacitors  
to be used for the PI358x-00 as well as per capacitor RMS ripple  
current and the input and output ripple voltages. Table 6 lists the  
recommended input and output ceramic capacitors manufacturer  
and part numbers. It is very important to verify that the voltage  
supply source as well as the interconnecting lines are stable and  
do not oscillate.  
Multiple PI358x-00 can be connected in parallel to increase the  
output capability of a single output rail. When connecting modules  
in parallel, each EAO, TRK and EN pin should be connected  
together. EAIN pins should remain separated, each with a REA1  
and REA2, to reject noise differences between different modules'  
SGND pins. Current sharing will occur automatically in this manner  
so long as each inductor is the same value. Refer to the Electrical  
Characteristics table for maximum array size and array rated  
output current. Current sharing may be considered independent  
of synchronization and/or interleaving. Modules do not have to be  
interleaved or synchronized to share current.  
Input Filter Case 1 — Inductive source and local, external,  
input decoupling capacitance with negligible ESR  
(i.e.: ceramic type):  
The voltage source impedance can be modeled as a series  
RLINE LLINE circuit. The high performance ceramic decoupling  
capacitors will not significantly damp the network because of their  
low ESR; therefore in order to guarantee stability the following  
conditions must be verified:  
DCR_1 CCR_1  
CQ1B_1 RQ1B_1  
Q2G Q1B  
CSL CR  
VIN  
CB  
L1_1  
COUT_1  
RVS1_1  
VS1_1  
LLINE  
CIN • rEQ_IN  
VIN  
CIN_1  
VS1  
VOUT  
RLINE  
>
(5)  
CIN_HF_1  
PGND  
VBS  
DVS1_1  
C
|
|
VOUT  
LVBS_1  
CVDR_1  
COUT_HF_1  
VDR  
VCC  
VSP  
VSN  
ZVS Buck  
REA1_1  
REA2_1  
RLINE << rEQ_IN  
(6)  
|
|
VDIFF  
CVCC_1  
EAIN  
SYNCO  
SYNCI  
PWRGD  
EN  
EAO  
Where rEQ_IN can be calculated by dividing the lowest line voltage  
by the full load input current. It is critical that the line source  
impedance be at least an octave lower than the converter’s  
dynamic input resistance, Equation 6. However, RLINE cannot  
be made arbitrarily low otherwise Equation 5 is violated and  
the system will show instability, due to an under-damped  
RLC input network.  
EAO  
CHF_1  
EN  
COMP  
TRK  
CCOMP_1  
TRK  
CTRK_1  
DCR_2 CCR_2  
CQ1B_2 RQ1B_2  
Input Filter case 2 — Inductive source and local, external  
input decoupling capacitance with significant RCIN ESR  
(i.e., electrolytic type):  
CSL CR  
CB  
Q2G Q1B  
L1_2  
COUT_2  
VIN  
VIN  
CIN_2  
VS1  
VOUT  
RVS1_2  
CVS1_2  
CIN_HF_2  
PGND  
DVS1_2  
C
In order to simplify the analysis in this case, the voltage source  
VBS  
VOUT  
impedance can be modeled as a simple inductor LLINE  
.
LVBS_2  
CVDR_2  
OUT_HF_2  
VDR  
VCC  
VSP  
VSN  
ZVS Buck  
Notice that the high performance ceramic capacitors CIN_INT within  
the PI358x-00 should be included in the external electrolytic  
capacitance value for this purpose. The stability criteria will be:  
REA1_2  
REA2_2  
VDIFF  
C
VCC_2  
EAIN  
SYNCO  
SYNCI  
PWRGD  
EN  
EAO  
EAO  
CHF_2  
EN  
COMP  
TRK  
CCOMP_2  
rEQ_IN > RC  
(7)  
|
|
IN  
TRK  
CTRK_2  
LLINE  
CIN • RCIN  
< rEQ_IN  
(8)  
|
|
Figure 90 — PI358x-00 parallel operation  
Equation 8 shows that if the aggregate ESR is too small – for  
example by using very high quality input capacitors (CIN) – the  
Due to the high output current capability of a single module and  
CrCM occurring at approximately 50% rated load, interleaving  
is not supported.  
system will be under-damped and may even become destabilized.  
As noted, an octave of design margin in satisfying Equation 7  
should be considered the minimum. When applying an electrolytic  
capacitor for input filter damping the ESR value must be chosen to  
avoid loss of converter efficiency and excessive power dissipation in  
the electrolytic capacitor.  
Use of the PI358x-00 SYNCI pin is practical only under a limited  
set of conditions. Synchronizing to another converter or to a fixed  
external clock source can result in a significant reduction in output  
power capability or higher than expected ripple.  
Filter Considerations  
The PI358x-00 requires low impedance ceramic input capacitors  
(X7R/X5R or equivalent) to ensure proper start up and high  
frequency decoupling for the power stage. The PI358x-00 will  
draw nearly all of the high frequency current from the low  
impedance ceramic capacitors when the main high side MOSFET(s)  
are conducting. During the time the MOSFET(s) are off, the input  
capacitors are replenished from the source.  
Cool-Power® ZVS Switching Regulators  
Page 38 of 45  
Rev 1.0  
10/2018  
PI358x-00  
VDR Bias Regulator  
Additional System Design Considerations  
The VDR bias regulator is a ZVS switching regulator that is intended  
primarily to power the internal controller and driver circuitry. The  
power capability of this regulator is sized for the PI358x-00, with  
adequate reserve for the application it was intended for.  
1. Inductive loads: As with all power electronic applications,  
consideration must be given to driving inductive loads that  
may be exposed to a fault in the system which could result  
in consequences beyond the scope of the power supply  
primary protection mechanisms. An inductive load could be a  
filter, fan motor or even excessively long cables. Consider an  
instantaneous short circuit through an un-damped inductance  
that occurs when the output capacitors are already at an  
initial condition of fully charged. The only thing that limits the  
current is the inductance of the short circuit and any series  
resistance. Even if the power supply is off at the time of the  
short circuit, the current could ramp up in the external inductor  
and store considerable energy. The release of this energy will  
result in considerable ringing, with the possibility of ringing  
nodes connected to the output voltage below ground. The  
system designer should plan for this by considering the use of  
other external circuit protection such as load switches, fuses,  
and transient voltage protectors. The inductive filters should  
be critically damped to avoid excessive ringing or damaging  
voltages. Adding a high current Schottky diode from the output  
voltage to PGND close to the PI358x-00 is recommended for  
these applications.  
It may be used for as a pullup source for open collector applications  
and for other very low power uses with the following restrictions:  
1. The total external loading on VDR must be less than IVDR  
.
2.No direct connection is allowed. Any noise source that can  
disturb the VDR voltage can also affect the internal controller  
operation. A series impedance is required between the VDR pin  
and any external circuitry.  
3. All loads must be locally decoupled using a 0.1μF ceramic  
capacitor. This capacitor must be connected to the VDR output  
through a series resistor no smaller than 1kΩ, which forms a  
low-pass filter.  
2. Low voltage operation: There is no isolation from an SELV  
(Safety-Extra-Low-Voltage) power system. Powering low voltage  
loads from input voltages as high as 60V may require additional  
consideration to protect low voltage circuits from excessive  
voltage in the event of a short circuit from input to output. A  
fast TVS (transient voltage suppressor) gating an external load  
switch is an example of such protection.  
Input / Output  
Manufacturer  
Murata  
Part Number  
Value  
100µF  
47µF  
Description  
GRM32EC70J107ME15  
GRM32ER71A476KE15  
GRM32DR71E106KA12  
GRM32ER72A225KA35  
GRM32ER71K475KE14L  
100µF 6.3V 1210 X7S  
47μF 10V 1210 X7R  
10μF 25V 1210 X7R  
2.2μF 100V 1210 X7R  
4.7μF 80V 1210 X7R  
Output  
Murata  
Murata  
10µF  
Murata  
2.2µF  
4.7µF  
Input  
or Murata  
Table 6 — Recommended input and output capacitor components  
CIN  
Ripple  
Current  
COUT  
Ripple  
Current  
(ARMS)  
VOUT  
Recovery  
Time  
(µs)  
Load  
Current  
(A)  
VIN  
Ripple  
(mVP-P  
VOUT  
Ripple  
Load Step VOUT Droop  
Product  
CIN  
COUT  
(A)  
and Kick  
)
(mVP-P  
)
(1A/µs)  
(mVPP  
)
(ARMS  
)
6 x  
2.2µF  
PI3583  
PI3585  
PI3586  
10  
10  
10  
6 x 100µF  
6 x 47µF  
6 x 10µF  
3.3  
7.0  
430  
40  
5
5
160  
80  
80  
80  
6 x  
2.2µF  
4.3  
5
8.3  
6.0  
380  
60  
130  
6 x  
2.2µF  
600  
140  
4.5  
330  
Table 7 — Recommended input and output capacitor quantity and performance  
Cool-Power® ZVS Switching Regulators  
Page 39 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Layout Guidelines  
To optimize maximum efficiency and low noise performance  
from a PI358x-00 design, layout considerations are necessary.  
Reducing trace resistance and minimizing high current loop  
returns along with proper component placement will contribute to  
optimized performance.  
VIN  
CIN  
A typical buck converter circuit is shown in Figure 91. The potential  
areas of high parasitic inductance and resistance are the circuit  
return paths, shown as LR below.  
COUT  
Figure 93 — Current flow: Q2 closed  
VIN  
Figure 94 illustrates the tight path between CIN and COUT (and VIN  
and VOUT) for the high AC return current. The external CIN capacitor  
needs to be connected to the input of the SiP through a low  
inductance connection, which is especially important due to the  
lack of internal input capacitance. The PI358x-00 evaluation board  
uses a layout optimized for performance in this way.  
CIN  
COUT  
Figure 91 — Typical buck regulator  
The path between the COUT and CIN capacitors is of particular  
importance since the AC currents are flowing through both of  
them when Q1 is turned on. Figure 92, schematically, shows the  
reduced trace length between input and output capacitors. The  
shorter path lessens the effects that copper trace parasitics can  
have on the PI358x-00 performance.  
PGND  
Inductor  
VOUT  
VIN  
VS1  
PGND  
ZVS Buck  
SiP  
VIN  
CIN  
External Components  
COUT  
Figure 94 — Recommended layout for optimized AC current  
within the SiP, inductor, and ceramic input and  
output capacitors  
Figure 92 — Current flow: Q1 closed  
When Q1 is on and Q2 is off, the majority of CIN’s current is used  
to satisfy the output load and to recharge the COUT capacitors.  
When Q1 is off and Q2 is on, the load current is supplied by the  
inductor and the COUT capacitor as shown in Figure 93. During this  
period CIN is also being recharged by the VIN. Minimizing CIN loop  
inductance is important to reduce peak voltage excursions when  
Q1 turns off. Also, the difference in area between the CIN loop and  
COUT loop is vital to minimize switching and GND noise.  
Cool-Power® ZVS Switching Regulators  
Page 40 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Besides the critical power path involving the input/output of the  
converter, the input/output capacitors and the inductor, the routing  
of some powertrain supporting components are also sensitive  
to routing parasitics. For example, LVBS and CVDR are passive  
components for internal bias supply switcher; DVS1, CVS1 and RVS1  
are clamped to protect VS1, the main switching node. In either  
condition, a path with low inductance is required.  
CVS1  
ZVS Buck  
DCR  
SiP  
CCR  
CQ1B  
CVDR  
RQ1B  
LVBS  
Figure 95 — Example layout of external components on a PI358x  
evaluation board  
Here is a list of external components to the SiP which needs to have  
low inductance routes:  
COUT_HF, CIN_HF, CQ1B, RQ1B, DCR, CCR, DVS1, CVS1, RVS1, LVBS, CVDR  
,
CVCC. An example layout from the evaluation board is shown in  
Figure 95. These external components are placed locally to the  
SiP and connect to the relevant pin with wide traces. Some of  
them have the other end connecting through vias to the ground  
plane in the underneath layer. A similar practice is expected in  
customer applications.  
In many cases the powertrain or its related layout is critical and  
sensitive to routing parasitics. A direct copy of the Vicor reference  
PCB layout is recommended.  
Cool-Power® ZVS Switching Regulators  
Page 41 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Recommended PCB Footprint  
E1  
c1  
c
D1  
L
PI358x  
L1  
PCB LAND PATTERN  
GQFN PACKAGE  
DIMENSIONAL REFERENCES  
REF.  
C
MIN.  
.15  
NOM.  
.20  
MAX.  
.25  
C1  
D1  
E1  
L
.25  
.30  
.35  
6.80  
7.80  
.50  
L1  
.15  
.20  
.25  
Recommended receiving footprint for PI358x-00 7 x 8mm package.  
Cool-Power® ZVS Switching Regulators  
Page 42 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Package Drawings  
PIN 1 INDEX  
B
PI358X GQFN  
DIMENSIONAL REFERENCES  
REF.  
A
MIN.  
.80  
NOM.  
.85  
MAX.  
.90  
A1  
b
.00  
-
.05  
.10 REF  
.30 REF  
.50 REF  
.50 REF  
.95 REF  
.65 REF  
.75 REF  
.20 REF  
.60 REF  
.55 REF  
.20  
b1  
b2  
b3  
b4  
b5  
b6  
b7  
b8  
b9  
c
c1  
c2  
D
E
f
D
.15  
.25  
.25  
.35  
.30  
.40 BSC  
7.00 BSC  
8.00 BSC  
2.20  
2.15  
.85  
2.25  
.95  
f1  
.90  
f2  
f3  
f4  
f5  
f7  
f8  
f9  
.35  
.40  
2.35  
2.90  
2.55  
2.85  
4.90  
3.20  
.45  
2.30  
2.85  
2.50  
2.80  
4.85  
3.15  
2.40  
2.95  
2.60  
2.90  
4.95  
3.25  
A
E
TOP VIEW  
DETAIL A  
SIDE VIEW  
0.10  
C
NOTES:  
1. 'c2' REPRESENTS THE BASIC TERMINAL PITCH. SPECIFIES THE GEOMETRIC  
POSITION OF THE TERMINAL AXIS.  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
3. COPLANARITY SHALL NOT EXCEED 0.08 MM.  
4. WARPAGE SHALL NOT EXCEED 0.10 MM.  
A
5. PACKAGE LENGTH / PACKAGE WIDTH ARE CONSIDERD AS SPECIAL  
CHARACTERISTIC(S).  
6. EXPOSED METALLIZED PADS ARE CU PADS WITH SURFACE FINISH  
PROTECTION.  
36X  
0.08  
C
7. ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE SPECIFIED.  
8. RoHS COMPLIANT PER CST-0001LATEST REVISION.  
C
DETAIL DETAIL A  
SCALE 75 : 1  
A1  
b8  
f
b
f2  
b7  
b8  
b8  
26 27 28 29 30 31 32 33 34 35 36  
f1  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
f2  
1
2
b2  
b9  
c2  
f4  
b8  
f3  
b8  
b8  
b2  
f9  
f8  
b3  
b8  
c
b4  
b8  
f5  
3
f4  
14  
13  
b8  
b5  
f7  
12 11 10  
b1  
9
8
7
6
5
4
b7  
C
b6  
c1  
b
b
36X  
M
0.10  
A B  
BOTTOM VIEW  
Cool-Power® ZVS Switching Regulators  
Page 43 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Revision History  
Revision  
Date  
Description  
Page Number(s)  
1.0  
10/09/18  
Initial release  
n/a  
Cool-Power® ZVS Switching Regulators  
Page 44 of 45  
Rev 1.0  
10/2018  
PI358x-00  
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and  
accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom  
power systems.  
Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor  
makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves  
the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by  
Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies.  
Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
Specifications are subject to change without notice.  
Visit http://www.vicorpower.com/dc-dc-converters-board-mount/cool-power-pi33xx-and-pi34xx for the latest product information.  
Vicor’s Standard Terms and Conditions and Product Warranty  
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor’s webpage  
(http://www.vicorpower.com/termsconditionswarranty) or upon request.  
Life Support Policy  
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used  
herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to  
result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms  
and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies  
Vicor against all liability and damages.  
Intellectual Property Notice  
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the  
products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property  
rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.  
The products described on this data sheet are protected by U.S. Patents. Please see www.vicorpower.com/patents for the latest  
patent information.  
Contact Us: http://www.vicorpower.com/contact-us  
Vicor Corporation  
25 Frontage Road  
Andover, MA, USA 01810  
Tel: 800-735-6200  
Fax: 978-475-6715  
www.vicorpower.com  
email  
Customer Service: custserv@vicorpower.com  
Technical Support: apps@vicorpower.com  
©2018 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.  
All other trademarks, product names, logos and brands are property of their respective owners.  
Cool-Power® ZVS Switching Regulators  
Page 45 of 45  
Rev 1.0  
10/2018  

相关型号:

PI3585-00-QFYZ

30 – 60VIN Cool-Power ZVS Buck Regulator
VICOR

PI3586-00-QFYZ

30 – 60VIN Cool-Power ZVS Buck Regulator
VICOR

PI358X-00

30 – 60VIN Cool-Power ZVS Buck Regulator
VICOR

PI3740-00

8V – 60VIN , 10V – 50VOUT , 50 – 140W Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3740-00-BGIZ

8V – 60VIN , 10V – 50VOUT , 50 – 140W Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3740-00-LGIZ

8V – 60VIN , 10V – 50VOUT , 50 – 140W Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3740-00-XGIZ

8V – 60VIN , 10V – 50VOUT , 50 – 140W Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3740-00_18

8V – 60VIN , 10V – 50VOUT , 50 – 140W Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3741-00-LGIZ

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3741-01-LGIZ

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3741-0X

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator
VICOR

PI3741-0X_18

21V to 60VIN, 150W, Cool-Power ZVS Buck-Boost Regulator
VICOR