10-F0122PA150SC-P990F09 [VINCOTECH]

Insulated Gate Bipolar Transistor;
10-F0122PA150SC-P990F09
型号: 10-F0122PA150SC-P990F09
厂家: VINCOTECH    VINCOTECH
描述:

Insulated Gate Bipolar Transistor

文件: 总15页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FZ12 / F0122PA150SC  
preliminary datasheet  
flowPHASE0  
1200V/150A  
Features  
flow0 housing  
Trench Fieldstop IGBT4 technology  
2-clip housing in 12mm and 17mm height  
Compact and low inductance design  
Target Applications  
Schematic  
Motor Drive  
UPS  
Types  
FZ122PA150SC  
F0122PA150SC  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Inverter Transistor  
VCE  
IC  
ICpulse  
Ptot  
Collector-emitter break down voltage  
DC collector current  
1200  
V
A
Th=80°C  
92  
Tj=Tjmax  
Tc=80°C  
119  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
450  
A
Th=80°C  
Tc=80°C  
172  
260  
W
V
VGE  
±20  
tSC  
Tj150°C  
10  
μs  
VCC  
VGE=15V  
800  
V
Tjmax  
Maximum Junction Temperature  
175  
°C  
Inverter Diode  
Tj=25°C  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
1200  
V
A
Th=80°C  
Tc=80°C  
75  
Tj=Tjmax  
101  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
300  
A
Th=80°C  
Tc=80°C  
106  
160  
W
°C  
Tjmax  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
copyright Vincotech  
1
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
copyright Vincotech  
2
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
V
CE [V] or  
DS [V]  
Tj  
Min  
Max  
V
GS [V]  
V
Inverter Transistor  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,4  
VGE(th) VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,006  
150  
V
V
1,4  
1,98  
2,43  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,05  
700  
1200  
0
mA  
nA  
20  
5
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
185  
204  
28,2  
37,2  
305  
387  
79  
116  
8,89  
14,15  
9,11  
14,92  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
Rgoff=2  
Rgon=2 Ω  
±15  
600  
150  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
RthJH  
RthJC  
9300  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
580  
Reverse transfer capacitance  
Gate charge  
510  
±15  
960  
150  
579  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
0,553  
K/W  
Inverter Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1
1,91  
1,91  
183,3  
209,5  
127  
2,4  
VF  
IRRM  
trr  
Diode forward voltage  
150  
150  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
298  
13,9  
26,6  
3265  
2538  
5,21  
10,45  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
Rgon=2 Ω  
±15  
600  
μC  
di(rec)max  
/dt  
A/μs  
mWs  
Erec  
RthJH  
RthJC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
0,90  
K/W  
copyright Vincotech  
3
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Typical output characteristics  
Typical output characteristics  
I
C = f(VCE  
)
IC = f(VCE)  
450  
375  
300  
225  
150  
75  
450  
375  
300  
225  
150  
75  
0
0
0
V
CE (V)  
VCE (V)  
0
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
Tj =  
tp =  
350  
25  
μs  
350  
150  
μs  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
Typical transfer characteristics  
Output inverter IGBT  
Figure 4  
Output inverter FRED  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
150  
450  
375  
300  
225  
150  
75  
Tj = 25°C  
120  
90  
Tj = Tjmax-25°C  
60  
Tj = Tjmax-25°C  
30  
Tj = 25°C  
0
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
0
0,8  
1,6  
2,4  
3,2  
4
At  
At  
tp =  
tp =  
350  
10  
μs  
350  
μs  
VCE  
=
V
copyright Vincotech  
4
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Eon High T  
Eon High T  
Eoff High T  
Eoff Low T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
0
0
I
C (A)  
R G ( Ω )  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
°C  
V
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
600  
±15  
2
V
V
600  
±15  
150  
V
Rgon  
Rgoff  
=
=
A
2
Figure 7  
Output inverter IGBT  
Figure 8  
Output inverter IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
Erec = f(IC)  
15  
15  
Erec  
12  
9
12  
Erec  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
9
6
3
0
Tj = 25°C  
Erec  
6
Tj = 25°C  
Erec  
3
0
0
I C (A)  
R G ( Ω )  
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
600  
±15  
2
°C  
V
25/150  
600  
°C  
V
=
=
=
=
V
±15  
V
Rgon  
=
150  
A
copyright Vincotech  
5
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 9  
Output inverter IGBT  
Figure 10  
Output inverter IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdoff  
tdon  
tf  
tdon  
0,1  
0,1  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
I C (A)  
R G ( Ω )  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
600  
±15  
2
°C  
150  
600  
±15  
150  
°C  
V
=
=
=
=
V
V
V
Rgon  
Rgoff  
=
=
A
2
Figure 11  
Output inverter FRED  
Figure 12  
Output inverter FRED  
Typical reverse recovery time as a  
function of collector current  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(IC)  
trr = f(Rgon)  
0,5  
0,5  
trr  
0,4  
0,3  
0,2  
0,1  
0,4  
0,3  
0,2  
0,1  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
trr  
Tj = 25°C  
Tj = 25°C  
trr  
trr  
0
0
0
0
I C (A)  
2
4
6
8
R g on ( Ω )  
10  
50  
100  
150  
200  
250  
300  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
±15  
2
°C  
25/150  
°C  
=
=
V
V
600  
150  
±15  
V
A
V
Rgon  
=
VGE =  
copyright Vincotech  
6
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 13  
Output inverter FRED  
Figure 14  
Output inverter FRED  
Typical reverse recovery charge as a  
function of collector current  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q
rr = f(IC)  
Qrr = f(Rgon)  
40  
40  
Qrr  
32  
24  
16  
8
32  
24  
16  
8
Qrr  
Tj = Tjmax -25°C  
Tj = Tjmax -25°C  
Qrr  
Qrr  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
I C (A)  
R g on ( Ω)  
50  
100  
150  
200  
250  
300  
2
4
6
8
10  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
±15  
2
°C  
V
25/150  
°C  
V
=
=
600  
150  
±15  
V
A
Rgon  
=
VGE =  
V
Figure 15  
Output inverter FRED  
Figure 16  
Output inverter FRED  
Typical reverse recovery current as a  
function of collector current  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(IC)  
IRRM = f(Rgon)  
300  
250  
200  
150  
100  
50  
300  
IRRM  
250  
200  
IRRM  
Tj = Tjmax -25°C  
Tj = Tjmax - 25°C  
IRRM  
IRRM  
Tj = 25°C  
150  
100  
50  
Tj = 25°C  
0
0
I
C (A)  
R gon ( Ω )  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
±15  
2
°C  
V
25/150  
600  
°C  
V
=
=
V
150  
A
Rgon  
=
VGE =  
±15  
V
copyright Vincotech  
7
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 17  
Output inverter FRED  
Figure 18  
Output inverter FRED  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(IC)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
10000  
10000  
dI0/dt  
μ
dI0/dt  
dIrec/dt  
dIrec/dt  
8000  
8000  
6000  
4000  
2000  
dIo/dtLow T  
6000  
Tj = 25°C  
di0/dtHigh T  
dIrec/dtLow T  
4000  
2000  
Tj = Tjmax - 25°C  
dIrec/dtHigh T  
dIrec/dtHigh T  
0
0
I C (A)  
R gon ( Ω )  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
VR =  
IF =  
25/150  
600  
±15  
2
°C  
V
25/150  
600  
°C  
V
=
=
V
150  
A
Rgon  
=
VGE =  
±15  
V
Figure 19  
Output inverter IGBT  
Figure 20  
Output inverter FRED  
IGBT transient thermal impedance  
as a function of pulse width  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
ZthJH = f(tp)  
100  
100  
10-1  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
t p (s)  
t p (s)  
1
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
tp / T  
0,55  
tp / T  
0,90  
D =  
RthJH  
D =  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
FRED thermal model values  
R (C/W)  
0,04  
Tau (s)  
5,0E+00  
9,8E-01  
2,3E-01  
3,1E-02  
4,1E-03  
3,6E-04  
R (C/W)  
0,03  
Tau (s)  
9,4E+00  
1,1E+00  
1,9E-01  
3,8E-02  
6,6E-03  
4,3E-04  
0,13  
0,16  
0,31  
0,50  
0,06  
0,14  
0,01  
0,04  
0,01  
0,03  
copyright Vincotech  
8
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 21  
Output inverter IGBT  
Figure 22  
Output inverter IGBT  
Power dissipation as a  
function of heatsink temperature  
Collector current as a  
function of heatsink temperature  
Ptot = f(Th)  
IC = f(Th)  
400  
150  
120  
90  
60  
30  
0
320  
240  
160  
80  
0
0
T h  
(
o C)  
T h (  
o C)  
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Output inverter FRED  
Figure 24  
Forward current as a  
Output inverter FRED  
Power dissipation as a  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
200  
120  
100  
80  
60  
40  
20  
0
160  
120  
80  
40  
0
0
T h  
(
o C)  
T h (  
o C)  
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright Vincotech  
9
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Output Inverter  
Figure 25  
Output inverter IGBT  
Figure 26  
Output inverter IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(QGE  
)
103  
16  
10uS  
14  
12  
10  
8
100uS  
102  
240V  
960V  
1mS  
10mS  
DC  
100mS  
101  
100  
6
4
10-1  
2
0
0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750  
Q g (nC)  
100  
101  
102  
103  
VCE (V)  
At  
At  
IC  
=
D =  
Th =  
150  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
copyright Vincotech  
10  
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Switching Definitions Output Inverter  
General conditions  
Tj  
=
=
=
150 °C  
2  
Rgon  
Rgoff  
2 Ω  
Figure 1  
Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
250  
%
140  
%
IC  
120  
tdoff  
VCE  
210  
170  
100  
VGE 90%  
VCE 90%  
80  
60  
40  
20  
0
130  
IC  
VCE  
tEoff  
90  
VGE  
tdon  
50  
IC 1%  
VGE  
IC10%  
VCE 3%  
VGE10%  
10  
-20  
tEon  
-40  
-30  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
1
2,8  
2,95  
3,1  
3,25  
3,4  
3,55  
3,7  
time(us)  
time (us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
-15  
V
V
GE (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
15  
V
VC (100%) =  
IC (100%) =  
600  
150  
0,39  
0,78  
V
600  
150  
0,20  
0,52  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
μs  
μs  
μs  
μs  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
140  
250  
%
fitted  
IC  
%
120  
210  
170  
VCE  
100  
80  
60  
40  
20  
0
IC 90%  
130  
VCE  
IC  
60%  
IC90%  
90  
50  
IC 40%  
tr  
IC10%  
Ic  
tf  
10  
IC10%  
-20  
-30  
0,25  
0,3  
0,35  
0,4  
0,45  
0,5  
0,55  
time (us)  
2,95  
3,1  
3,25  
3,4  
3,55  
3,7  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
600  
150  
0,12  
V
600  
V
A
150  
A
μs  
0,04  
μs  
copyright Vincotech  
11  
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
180  
%
%
Pon  
Eoff  
Poff  
100  
150  
120  
90  
80  
60  
40  
Eon  
60  
30  
20  
VGE 10%  
VCE  
3%  
VGE 90%  
0
0
tEon  
tEoff  
IC 1%  
-30  
-20  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
time(us)  
-0,2  
-0,05  
0,1  
0,25  
0,4  
0,55  
0,7  
0,85  
time (us)  
Poff (100%) =  
off (100%) =  
tEoff  
Pon (100%) =  
Eon (100%) =  
90,25  
kW  
mJ  
μs  
90,25  
kW  
mJ  
μs  
E
14,92  
0,78  
14,15  
0,52  
=
tEon =  
Figure 7  
Output inverter FRED  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
120  
%
15  
10  
5
Id  
80  
40  
trr  
0
Vd  
0
IRRM10%  
-40  
-80  
-120  
-160  
-5  
-10  
-15  
-20  
IRRM90%  
fitted  
IRRM100%  
3,1  
3,25  
3,4  
3,55  
3,7  
3,85  
-250  
0
250  
500  
750  
1000  
time(us)  
Qg (nC)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
15  
V
600  
150  
-210  
0,30  
V
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
600  
150  
V
A
trr  
=
A
μs  
8359,90  
nC  
copyright Vincotech  
12  
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Switching Definitions Output Inverter  
Figure 9  
Output inverter FRED  
Figure 10  
Output inverter FRED  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
%
Erec  
%
Qrr  
100  
100  
Id  
80  
60  
40  
20  
0
50  
tQrr  
tErec  
0
-50  
Prec  
-100  
-150  
-20  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
4,4  
time(us)  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
4,4  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
150  
A
90,25  
kW  
mJ  
μs  
Qrr (100%) =  
26,55  
0,88  
μC  
μs  
10,45  
0,88  
tQrr  
=
tErec =  
copyright Vincotech  
13  
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
in packaging barcode as  
without thermal paste 12mm housing  
without thermal paste 17mm housing  
10-FZ122PA150SC-P990F08  
10-F0122PA150SC-P990F09  
P990F08  
P990F09  
P990F08  
P990F09  
Outline  
Pinout  
copyright Vincotech  
14  
Revision: 1  
FZ12 / F0122PA150SC  
preliminary datasheet  
PRODUCT STATUS DEFINITIONS  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice. The data contained is exclusively  
intended for technically trained staff.  
Target  
Formative or In Design  
First Production  
This datasheet contains preliminary data, and  
supplementary data may be published at a later date.  
Vincotech reserves the right to make changes at any time  
without notice in order to improve design. The data  
contained is exclusively intended for technically trained  
staff.  
Preliminary  
This datasheet contains final specifications. Vincotech  
reserves the right to make changes at any time without  
notice in order to improve design. The data contained is  
exclusively intended for technically trained staff.  
Final  
Full Production  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
15  
Revision: 1  

相关型号:

10-F0122PB100SC02-M819F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-F0122PB100SC03-M819F19

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-F0127PA008SC-L156E09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-F0127PA025SC-L159E09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-F012NME080SH-M910F09

Mixed voltage component topology
VINCOTECH

10-F012NME080SH-M910F09Y

Mixed voltage component topology
VINCOTECH

10-F012PMA005M7-P848A29

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F012PMA010M7-P849A29

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F012PMA015M7-P840A29

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F012PNA005M7-P848C29

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F012PNA015M7-P840C29

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F0186RA040RW-L617H09

High inrush current capability
VINCOTECH