10-F106NIA100SA-M135F [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
10-F106NIA100SA-M135F
型号: 10-F106NIA100SA-M135F
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总28页 (文件大小:1270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
flow NPC 1  
600 V / 100 A  
Features  
flow 1 housing  
● Neutral-point-Clamped inverter  
● Compact flow1 housing  
● Low Inductance Layout  
12mm height  
17mm height  
Target Applications  
Schematic  
● UPS  
● Motor Drive  
● Solar inverters  
Types  
● 10-F106NIA100SA-M135F  
● 10-P106NIA100SA-M135FY  
● 10-FY06NIA100SA-M135F08  
● 10-PY06NIA100SA-M135F08Y  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck IGBT  
V CE  
I C  
Collector-emitter break down voltage  
600  
V
A
T s = 80 °C  
T c = 80°C  
92  
T j = T jmax  
DC collector current  
121  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Pulsed collector current  
Power dissipation  
300  
A
T s = 80 °C  
T c = 80°C  
159  
206  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
Turn off safe operating area  
175  
200  
°C  
A
T j ≤ 150 °C  
V CE V CES  
Buck Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
V
A
T s = 80 °C  
T c = 80°C  
67  
88  
T j = T jmax  
DC forward current  
t p limited by T jmax  
T j = T jmax  
T c = 100 °C  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
300  
A
T s = 80 °C  
T c = 80°C  
74  
W
°C  
112  
T jmax  
175  
copyright Vincotech  
1
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost IGBT  
V CE  
I C  
Collector-emitter break down voltage  
600  
V
A
T s = 80 °C  
T c = 80°C  
92  
T j = T jmax  
DC collector current  
121  
I CRM  
P tot  
V GE  
t p limited by T jmax  
T j = T jmax  
Pulsed collector current  
Power dissipation  
300  
A
T s = 80 °C  
T c = 80°C  
159  
240  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
Turn off safe operating area  
175  
200  
°C  
A
T j ≤ 150°C  
V CE V CES  
Boost Sw. Prot. Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
V
A
T s = 80 °C  
T c = 80°C  
80  
T j = T jmax  
DC forward current  
106  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
200  
A
T s = 80 °C  
T c = 80°C  
119  
180  
W
°C  
T jmax  
175  
Boost Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
V
A
T s = 80 °C  
T c = 80°C  
80  
T j = T jmax  
DC forward current  
106  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
200  
A
T s = 80 °C  
T c = 80°C  
119  
180  
W
°C  
T jmax  
175  
Thermal Properties  
T stg  
T op  
Storage temperature  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
Isolation voltage  
V is  
t = 2s  
DC voltage  
4000  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
8,07 / 7,86  
mm  
17mm housing  
mm  
12mm housing solder pins / Press-fit pins  
copyright Vincotech  
2
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
I C [A]  
or  
V GE [V]  
or  
or  
V CE [V] I F [A]  
T j [°C]  
Min  
Max  
V GS [V]  
or or  
V DS [V] I D [A]  
Buck IGBT  
25  
150  
25  
150  
25  
150  
25  
5
5,8  
6,5  
1,85  
60  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0016  
V
V
1,05  
1,50  
1,73  
15  
0
100  
600  
0
µA  
µA  
Ω
1,4  
20  
150  
none  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
160  
189  
26  
31  
270  
296  
100  
123  
1,887  
2,405  
2,903  
3,808  
Rise time  
ns  
t d(off)  
t f  
Turn-off delay time  
R gon = 8 Ω  
R goff = 8 Ω  
±15  
350  
100  
Fall time  
E on  
Turn-on energy loss  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
Input capacitance  
150  
6280  
400  
186  
620  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
480  
100  
nC  
phase-change  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,60  
K/W  
λ = 3,4 W/mK  
Buck Diode  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
1,4  
1,70  
1,71  
86  
113  
127  
1,9  
V F  
I RRM  
Diode forward voltage  
100  
100  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
164  
5,072  
9,357  
3385  
1871  
1,154  
2,238  
Q rr  
R gon = 8 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
350  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
150  
phase-change  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
1,01  
K/W  
λ = 3,4 W/mK  
Note: All characteristic values are related to gates of paralell IGBTs connected together  
copyright Vincotech  
3
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
I C [A]  
or  
V GE [V]  
or  
or  
V CE [V] I F [A]  
T j [°C]  
Min  
Max  
V GS [V]  
or or  
V DS [V] I D [A]  
Boost IGBT  
25  
150  
25  
150  
25  
150  
25  
5
5,8  
6,5  
1,85  
60  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0016  
V
V
1,05  
1,5  
1,73  
15  
0
100  
600  
0
µA  
µA  
Ω
1,4  
20  
150  
none  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
164  
169  
29  
Rise time  
32  
ns  
273  
298  
97  
116  
1,93  
2,55  
3,22  
4,27  
t d(off)  
t f  
Turn-off delay time  
R gon = 8 Ω  
R goff = 8 Ω  
Fall time  
E on  
Turn-on energy loss  
Turn-off energy loss  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
150  
6280  
400  
186  
620  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
480  
100  
nC  
phase-change  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,60  
K/W  
λ = 3,4 W/mK  
Boost Sw. Prot. Diode  
25  
125  
1,2  
1,69  
1,65  
1,9  
V F  
Diode forward voltage  
100  
V
phase-change  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,80  
K/W  
λ = 3,4 W/mK  
Boost Diode  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
1,2  
1,68  
1,65  
1,9  
60  
V F  
Diode forward voltage  
100  
100  
V
μA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
600  
350  
71  
90  
130  
287  
4,4  
A
t rr  
ns  
Q rr  
R gon = 8 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
µC  
9,3  
2960  
551  
1,03  
2,37  
( di rf/dt )max  
E rec  
A/µs  
mWs  
phase-change  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,80  
K/W  
λ = 3,4 W/mK  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-12  
14  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
4
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 1  
Typical output characteristics  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
VCE (V)  
V
CE (V)  
1
2
3
4
5
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
150  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
250  
200  
150  
100  
80  
60  
40  
20  
Tj = Tjmax-25°C  
50  
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
3
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
250  
10  
μs  
V
250  
μs  
V CE  
=
copyright Vincotech  
5
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
10  
8
6
4
2
0
Eon High T  
Eon Low T  
Eoff High T  
8
Eoff Low T  
6
Eoff High T  
Eoff Low T  
4
Eon High T  
Eon Low T  
2
0
I
C (A)  
R
G ( Ω)  
0
8
16  
24  
32  
40  
0
50  
100  
150  
200  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/150  
350  
±15  
8
25/150  
350  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
Ω
Ω
100  
A
=
8
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
Erec  
High T  
Erec High T  
Erec Low T  
Erec Low T  
I
C (A)  
R G ( Ω)  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
Ω
100  
A
copyright Vincotech  
6
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdon  
µ
µ
µ
µ
µ
µ
µ
µ
tdoff  
tdon  
tf  
0,10  
0,01  
0,00  
0,10  
0,01  
0,00  
tf  
tr  
tr  
I
C (A)  
R G ( Ω)  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
150  
350  
±15  
8
°C  
V
150  
350  
±15  
100  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
8
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,20  
0,4  
trr Low T  
trr High T  
µ
µ
µ
µ
µ
µ
µ
µ
0,3  
0,2  
0,1  
0,0  
0,15  
0,10  
0,05  
0,00  
trr Low T  
trr Low T  
0
8
16  
24  
32  
40  
I C (A)  
R gon ( Ω)  
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
=
=
V
100  
A
R gon  
=
V GE =  
Ω
±15  
V
copyright Vincotech  
7
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
15  
12  
Qrr High T  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
12  
9
9
6
3
0
Qrr Low T  
6
Qrr Low T  
3
0
At  
I
C (A)  
R
gon ( Ω)  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
350  
±15  
8
=
V
100  
A
=
V GE =  
Ω
±15  
V
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
150  
120  
90  
60  
30  
0
200  
IRRM High T  
160  
120  
80  
IRRM Low T  
IRRM High T  
IRRM Low T  
40  
0
0
I C (A)  
R gon ( Ω)  
40  
0
50  
100  
150  
200  
8
16  
24  
32  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
350  
±15  
8
=
V
100  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
8
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward and reverse recovery current  
Typical rate of fall of forward and reverse recovery current  
as a function of collector current  
as a function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(I c)  
dI 0/dt ,dI rec/dt = f(R gon  
)
5000  
10000  
dIo/dt T  
dI0/dt T  
µ
µ
µ
µ
µ
µ
µ
µ
dIrec/dt T  
dIrec/dt T  
4000  
3000  
2000  
1000  
0
8000  
6000  
4000  
2000  
0
I
C (A)  
R gon (W)  
40  
0
8
16  
24  
32  
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
°C  
V
25/150  
°C  
V
V CE  
V GE  
R gon  
=
350  
±15  
8
350  
100  
±15  
=
V
A
=
V GE  
=
Ω
V
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
101  
100  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-5  
10-2  
t p (s)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,60  
K/W  
1,01  
K/W  
IGBT thermal model values  
R (K/W) Tau (s)  
FWD thermal model values  
R (K/W) Tau (s)  
4,52E-02 4,36E+00  
1,01E-01 9,48E-01  
2,76E-01 2,00E-01  
1,04E-01 6,20E-02  
5,77E-02 1,37E-02  
1,50E-02 2,79E-03  
6,88E-02 2,96E+00  
1,71E-01 4,07E-01  
5,09E-01 9,03E-02  
1,60E-01 2,01E-02  
6,67E-02 4,84E-03  
3,19E-02 5,60E-04  
copyright Vincotech  
9
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 21  
IGBT  
Figure 22  
Collector current as a  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
function of heatsink temperature  
I C = f(T s)  
300  
250  
200  
150  
100  
50  
150  
120  
90  
60  
30  
0
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
120  
200  
160  
120  
80  
100  
80  
60  
40  
20  
0
40  
0
T s  
(
o C)  
0
50  
100  
150  
200  
T s (  
o C)  
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
175  
°C  
175  
°C  
copyright Vincotech  
10  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Buck  
Figure 25  
IGBT  
Figure 26  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
103  
16  
10mS  
1mS  
100uS  
14  
12  
10  
8
100mS  
DC  
120V  
102  
480V  
101  
100  
6
4
10-1  
2
0
0
200  
400  
600  
800  
100  
VCE (V)  
Q g (nC)  
103  
102  
101  
At  
At  
D =  
single pulse  
I C  
=
100  
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
ºC  
copyright Vincotech  
11  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 1  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
t p  
=
t p =  
250  
25  
μs  
°C  
250  
150  
μs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
VGE (V)  
12  
VF (V)  
2
4
6
8
10  
At  
At  
t p  
=
t p  
=
250  
10  
μs  
V
250  
μs  
V CE  
=
copyright Vincotech  
12  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
8
6
4
2
0
10  
Eon High T  
Eoff High T  
Eon Low T  
8
Eoff Low T  
6
Eoff High T  
Eoff Low T  
Eon High T  
4
Eon Low T  
2
0
0
8
16  
24  
32  
40  
0
50  
100  
150  
200  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
Ω
Ω
101  
A
=
8
Figure 7  
IGBT  
Figure 8  
IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
4
3
2
1
0
3,5  
Erec High T  
3
2,5  
2
Erec High T  
Erec Low T  
1,5  
1
Erec Low T  
0,5  
0
0
50  
100  
150  
200  
R G ( )  
I C (A)  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
Ω
101  
A
copyright Vincotech  
13  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdon  
tdoff  
tdoff  
tdon  
tf  
0,1  
0,1  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
I C (A)  
R G ( )  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
150  
350  
±15  
8
°C  
V
150  
350  
±15  
101  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
Ω
Ω
A
=
8
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,4  
0,4  
trr High T  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
0,3  
0,2  
0,1  
0,0  
0,3  
0,2  
0,1  
0,0  
trr Low T  
trr Low T  
0
50  
100  
150  
200  
I C (A)  
R gon ( Ω)  
0
8
16  
24  
32  
40  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
101  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
14  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
15  
10  
Qrr High T  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
12  
9
8
6
4
2
0
Qrr Low T  
6
Qrr Low T  
3
0
I
C (A)  
R gon ( Ω)  
0
50  
100  
150  
200  
0
8
16  
24  
32  
40  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/150  
350  
±15  
8
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
=
V
101  
A
=
V GE =  
Ω
±15  
V
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
150  
150  
120  
90  
60  
30  
0
IRRM High T  
120  
90  
IRRM Low T  
60  
IRRM High T  
IRRM Low T  
30  
0
0
I C (A)  
R gon ( Ω)  
40  
8
16  
24  
32  
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
350  
±15  
8
=
V
101  
A
=
V GE =  
Ω
±15  
V
copyright Vincotech  
15  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward and reverse recovery current  
as a function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward and reverse recovery current  
as a function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
5000  
10000  
dI0/dt T  
dIo/dt T  
µ
µ
µ µ  
µ µ  
µ
µ
dIrec/dt T  
dIrec/dt T  
8000  
6000  
4000  
2000  
0
4000  
3000  
2000  
1000  
0
0
8
16  
24  
32  
40  
0
50  
100  
150  
200  
I C (A)  
R gon ( Ω)  
At  
T j =  
At  
T j =  
V R =  
I F =  
25/150  
°C  
V
25/150  
350  
°C  
V
V CE  
V GE  
R gon  
=
350  
±15  
8
=
V
101  
A
=
V GE  
=
Ω
±15  
V
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-1  
D = 0,5  
D = 0,5  
0,2  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,6  
K/W  
0,80  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
4,52E-02 4,36E+00  
1,01E-01 9,48E-01  
2,64E-01 2,00E-01  
1,04E-01 6,20E-02  
5,77E-02 1,37E-02  
1,50E-02 2,79E-03  
R (K/W) Tau (s)  
4,68E-02 4,82E+00  
1,19E-01 8,49E-01  
3,15E-01 1,49E-01  
1,67E-01 3,91E-02  
1,01E-01 9,01E-03  
4,79E-02 1,14E-03  
copyright Vincotech  
16  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 21  
IGBT  
Figure 22  
Collector current as a  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
function of heatsink temperature  
I C = f(T s)  
300  
250  
200  
150  
100  
50  
150  
120  
90  
60  
30  
0
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
240  
200  
160  
120  
80  
150  
120  
90  
60  
30  
0
40  
0
Ts  
(
o C)  
Ts (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
17  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Boost  
Figure 25  
Boost Inverse Diode  
Figure 26  
Boost Inverse Diode  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
250  
200  
150  
100  
100  
10-1  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
50  
Tj = Tjmax-25°C  
0,005  
0,000  
Tj = 25°C  
1,5  
0
10-2  
10-5  
0
0,5  
1
2
2,5  
3
10-4  
10-3  
10-2  
10-1  
100  
101  
VF (V)  
t p (s)  
At  
At  
t p / T  
t p  
=
250  
μs  
D =  
R th(j-s)  
=
0,80  
K/W  
Figure 27  
Power dissipation as a  
Boost Inverse Diode  
Figure 28  
Forward current as a  
Boost Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
240  
200  
160  
120  
80  
150  
120  
90  
60  
30  
0
40  
0
Ts (  
o C)  
Ts (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
18  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Figure 2  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
Typical NTC resistance values  
1
1
B25/100  
NTC-typical temperature characteristic  
R(T) = R25 e  
[ ]  
T
T25  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
19  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions BUCK  
General conditions  
T j  
=
=
=
150 °C  
8 Ω  
8 Ω  
R gon  
R goff  
Figure 1  
IGBT  
Figure 2  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
%
%
tdoff  
VCE  
IC  
100  
200  
VGE 90%  
VCE 90%  
VGE  
75  
50  
25  
0
150  
IC  
VCE  
100  
tEoff  
VGE  
tdon  
50  
VGE10%  
VCE  
3%  
IC 10%  
0
tEon  
IC 1%  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time (us)  
time(us)  
V GE (0%) =  
-15  
V
V GE (0%) =  
-15  
15  
V
V
V
A
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
350  
100  
0,30  
0,55  
V
350  
100  
0,19  
0,39  
A
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
Figure 3  
IGBT  
Figure 4  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
250  
fitted  
%
%
IC  
IC  
VCE  
100  
75  
50  
25  
0
200  
IC 90%  
150  
100  
50  
IC  
60%  
VCE  
IC 90%  
IC 40%  
tr  
IC10%  
IC 10%  
0
tf  
-50  
-25  
3,1  
3,2  
3,3  
3,4  
3,5  
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
100  
0,12  
V
A
V C (100%) =  
I C (100%) =  
t r =  
350  
100  
0,03  
V
A
μs  
μs  
copyright Vincotech  
20  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions BUCK  
Figure 5  
IGBT  
Figure 6  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
125  
%
%
100  
IC  
1%  
Eoff  
Eon  
Poff  
100  
Pon  
75  
50  
25  
75  
50  
25  
VG  
E90%  
VCE  
VGE 10%  
3%  
0
0
tEon  
tEoff  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
-0,2  
0
0,2  
0,4  
0,6  
time (us)  
P off (100%) =  
E off (100%) =  
34,85  
3,81  
0,55  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
34,85  
2,41  
0,39  
kW  
mJ  
μs  
t E off  
=
t E on =  
Figure 7  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
IRRM 10%  
0
-50  
-100  
-150  
IRRM 90%  
IRRM 100%  
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
350  
V
100  
A
-113  
0,16  
A
t rr  
=
μs  
copyright Vincotech  
21  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions BUCK  
Figure 8  
FWD  
Figure 9  
Turn-on Switching Waveforms & definition of t Erec  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Id  
Qrr  
100  
100  
Erec  
tQrr  
tErec  
50  
75  
0
-50  
50  
25  
0
Prec  
-100  
-150  
-25  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
time(us)  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(us)  
I d (100%) =  
100  
A
P rec (100%) =  
E rec (100%) =  
34,85  
kW  
mJ  
μs  
Q rr (100%) =  
t Q rr  
9,36  
0,33  
μC  
μs  
2,24  
0,33  
=
t E rec =  
Measurement circuit  
Figure 10  
BUCK stage switching measurement circuit  
copyright Vincotech  
22  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions Boost  
General conditions  
T j  
=
=
=
150 °C  
8 Ω  
8 Ω  
R gon  
R goff  
Figure 1  
IGBT  
Figure 2  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
%
%
tdoff  
VCE  
IC  
100  
200  
VGE 90%  
VCE 90%  
VGE  
75  
50  
25  
0
150  
IC  
VCE  
100  
tEoff  
VGE  
tdon  
50  
VGE10%  
VCE  
3%  
IC 10%  
0
tEon  
IC 1%  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time (us)  
time(us)  
V GE (0%) =  
-15  
V
V GE (0%) =  
-15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
350  
100  
0,30  
0,57  
V
350  
100  
0,17  
0,36  
V
A
A
t doff  
=
=
μs  
μs  
t don  
=
=
μs  
μs  
t E off  
t E on  
Figure 3  
IGBT  
Figure 4  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
250  
fitted  
%
VCE  
%
IC  
IC  
100  
200  
IC 90%  
150  
75  
IC  
60%  
VCE  
100  
50  
IC 90%  
IC 40%  
tr  
50  
25  
IC10%  
IC 10%  
0
0
tf  
-50  
-25  
3
3,1  
3,2  
3,3  
3,4  
3,5  
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
350  
100  
0,12  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
100  
0,03  
V
A
A
μs  
μs  
copyright Vincotech  
23  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions Boost  
Figure 5  
IGBT  
Figure 6  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
%
125  
%
Eon  
Eoff  
Poff  
100  
100  
Pon  
75  
50  
25  
75  
50  
25  
VG  
E90%  
VCE  
VGE 10%  
3%  
0
0
tEon  
tEoff  
IC  
1%  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
-0,2  
0
0,2  
0,4  
0,6  
time (us)  
P off (100%) =  
E off (100%) =  
35,15  
4,27  
0,57  
kW  
mJ  
μs  
P on (100%) =  
E on (100%) =  
35,15  
2,55  
0,36  
kW  
mJ  
μs  
t E off  
=
t E on =  
Figure 7  
FWD  
Turn-off Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
-50  
IRRM 10%  
IRRM 90%  
IRRM 100%  
-100  
-150  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
time(us)  
V d (100%) =  
I d (100%) =  
350  
100  
-90  
V
A
I RRM (100%) =  
t rr  
A
=
0,29  
μs  
copyright Vincotech  
24  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Switching Definitions Boost  
Figure 8  
FWD  
Figure 9  
Turn-on Switching Waveforms & definition of t Erec  
FWD  
Turn-on Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Erec  
Id  
Qrr  
100  
100  
tQrr  
tErec  
50  
75  
0
-50  
50  
25  
Prec  
-100  
-150  
0
-25  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
3,8  
3,9  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
3,8 3,9  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
100  
A
P rec (100%) =  
E rec (100%) =  
35,15  
2,37  
0,57  
kW  
mJ  
μs  
9,27  
0,57  
μC  
μs  
t Q rr  
=
t E rec =  
Measurement circuit  
Figure 10  
BOOST stage switching measurement circuit  
copyright Vincotech  
25  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
without thermal paste 17mm housing, solder pins  
with thermal paste 17mm housing, solder pins  
without thermal paste 17mm housing, Press-fit pins  
without thermal paste 12mm housing, solder pins  
with thermal paste 12mm housing, solder pins  
without thermal paste 12mm housing, Press-fit pins  
Ordering Code  
10-F106NIA100SA-M135F  
10-F106NIA100SA-M135F-/3/  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-FY06NIA100SA-M135F08-/3/  
10-PY06NIA100SA-M135F08Y  
Name  
Date Code  
WWYY  
UL & VIN  
UL VIN  
Lot  
LLLLL  
Serial  
SSSS  
Text  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
Type&Ver  
Lot number Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table [mm]  
Pin  
X
Y
Function  
17mm housing  
1
52,2  
52,2  
36,2  
33,2  
33,2  
9,2  
6,2  
6,2  
2,7  
0
6,9  
0
NTC1  
NTC2  
E37  
G3  
2
3
6,75  
7,9  
4
5
4,9  
G7  
6
5,75  
6,9  
E48  
G4  
7
8
3,9  
G8  
9
0
DC-  
DC-  
DC-  
DC-  
DC-  
DC-  
GND  
GND  
GND  
GND  
DC+  
DC+  
DC+  
DC+  
DC+  
DC+  
E15  
G5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
0
2,7  
0
2,7  
2,7  
12mm housing  
2,7  
0
5,4  
5,4  
2,7  
0
12,75  
12,75  
15,45  
15,45  
22,8  
22,8  
25,5  
25,5  
28,2  
28,2  
22,45  
21,3  
24,3  
22,15  
21  
2,7  
0
2,7  
0
2,7  
0
2,7  
0
18,3  
21,3  
21,3  
43  
G1  
E26  
G6  
46  
46  
24  
G2  
52,2  
49,5  
52,2  
49,5  
52,2  
49,5  
52,2  
20,1  
22,8  
22,8  
25,5  
25,5  
28,2  
28,2  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
copyright Vincotech  
26  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1T5, T4T8  
D9,D10  
IGBT  
FWD  
IGBT  
FWD  
FWD  
NTC  
600 V  
600 V  
600 V  
600 V  
600 V  
100 A  
100 A  
100 A  
100 A  
Buck Switch  
Buck Diode  
Boost Switch  
Boost Diode  
T2T6,T3T7  
D1D5,D4D8  
D2D6,D3D7  
NTC  
100 A  
Boost Sw. Prot. Diode  
Thermistor  
copyright Vincotech  
27  
17 May. 2016 / Revision 4  
10-F106NIA100SA-M135F  
10-P106NIA100SA-M135FY  
10-FY06NIA100SA-M135F08  
10-PY06NIA100SA-M135F08Y  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
100  
Handling instructions for flow 1 packages see vincotech.com website.  
Package data  
Package data for flow 1 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
all  
10-xx06NIA100SA-M135Fxx-D4-14  
17 May. 2016  
New brand, new subtype added, new Rth values with PCM  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
28  
17 May. 2016 / Revision 4  

相关型号:

10-F106NIA150SA-M136F

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

10-F106R6A030SB-M434E08

Very compact housing, easy to route
VINCOTECH

10-F106R6A030SB01-M434E18

Very compact housing, easy to route
VINCOTECH

10-F106R6A050SB-M435E08

Inverter, blocking diodes
VINCOTECH

10-F106R6A050SB01-M435E18

Inverter, blocking diodes
VINCOTECH

10-F107NIB150SG06-M136F39

High speed switching;Low EMI;Low turn-off losses;Low collector emitter saturation voltage
VINCOTECH

10-F1126PA025M7-L826F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F1126PA035M7-L827F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F1126PA050M7-L828F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F1126PA075M7-L829F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

10-F1126PA075SH-L829F49

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

10-F1126PA100M7-L820F09

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH