10-F106NIA150SA-M136F [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
10-F106NIA150SA-M136F
型号: 10-F106NIA150SA-M136F
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总27页 (文件大小:3292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-F106NIA150SA-M136F  
flowNPC 1  
600V/150A  
Features  
flow1 housing  
Neutral-point-Clamped inverter  
Compact flow1 housing  
Low Inductance Layout  
Target Applications  
Schematic  
UPS  
Motor Drive  
Solar inverters  
Types  
10-F106NIA150SA-M136F  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck IGBT  
VCE  
IC  
ICpulse  
Ptot  
Collector-emitter break down voltage  
DC collector current  
600  
V
A
Th=80°C  
Tc=80°C  
109  
144  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Pulsed collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
450  
A
Th=80°C  
Tc=80°C  
166  
251  
W
V
VGE  
±20  
tSC  
Tj150°C  
6
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
Turn off safe operating area  
175  
300  
°C  
A
Tj150°C  
VCE<=VCES  
Buck Diode  
Tj=25°C  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
V
A
Th=80°C  
Tc=80°C  
62  
82  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Tc=100°C  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
450  
A
Th=80°C  
Tc=80°C  
74  
W
°C  
112  
Tjmax  
175  
Copyright by Vincotech  
1
Revision: 5  
10-F106NIA150SA-M136F  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost IGBT  
VCE  
IC  
Collector-emitter break down voltage  
DC collector current  
600  
V
A
Th=80°C  
Tc=80°C  
100  
134  
Tj=Tjmax  
ICpuls  
Ptot  
VGE  
tp limited by Tjmax  
Tj=Tjmax  
Pulsed collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings  
450  
A
Th=80°C  
Tc=80°C  
151  
228  
W
V
±20  
tSC  
Tj150°C  
6
µs  
V
VCC  
VGE=15V  
360  
Tjmax  
Maximum Junction Temperature  
Turn off safe operating area  
175  
300  
°C  
A
Tj150°C  
VCE<=VCES  
Boost Inverse Diode  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
Tc=25°C  
600  
V
A
Th=80°C  
Tc=80°C  
91  
Tj=Tjmax  
121  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
300  
A
Th=80°C  
Tc=80°C  
123  
187  
W
°C  
Tjmax  
175  
Boost Diode  
Tj=25°C  
VRRM  
IF  
IFRM  
Ptot  
Peak Repetitive Reverse Voltage  
DC forward current  
600  
V
A
Th=80°C  
Tc=80°C  
98  
Tj=Tjmax  
129  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum Junction Temperature  
300  
A
Th=80°C  
Tc=80°C  
135  
205  
W
°C  
Tjmax  
175  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 12,7  
mm  
mm  
Copyright by Vincotech  
2
Revision: 5  
10-F106NIA150SA-M136F  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
Buck IGBT  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,85  
60  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
VCE=VGE  
0,0024  
150  
V
V
1,05  
1,57  
1,73  
15  
0
600  
0
µA  
µA  
1,4  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
161  
162  
24  
Rise time  
28  
ns  
221  
249  
82  
114  
1,01  
1,75  
4,10  
5,92  
td(off)  
tf  
Turn-off delay time  
Rgon=4 Ω  
Rgoff=4 Ω  
±15  
350  
150  
Fall time  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
9240  
576  
274  
940  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
15  
480  
150  
nC  
Thermal grease  
thickness50um  
λ = 0,81 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,574  
K/W  
Buck Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,2  
1,69  
1,75  
150  
178  
119  
1,9  
VF  
IRRM  
trr  
Diode forward voltage  
150  
150  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
148  
8,6  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgoff=4 Ω  
±15  
350  
µC  
13,7  
4704  
3013  
2,30  
3,63  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
Thermal grease  
thickness50um  
λ = 0,81 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
1,288  
K/W  
Note: All characteristic values are related to gates of paralell IGBTs connected together  
Copyright by Vincotech  
3
Revision: 5  
10-F106NIA150SA-M136F  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VGE [V] or  
IC [A] or  
IF [A] or  
ID [A]  
VCE [V] or  
Tj  
Min  
Max  
VGS [V]  
VDS [V]  
Boost IGBT  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
1,85  
60  
VGE(th) VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0024  
150  
V
V
1,05  
1,57  
1,73  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
600  
0
µA  
µA  
1,4  
20  
none  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
160  
159  
27  
Rise time  
30  
ns  
224  
248  
75  
td(off)  
tf  
Turn-off delay time  
Rgoff=4 Ω  
Rgon=4 Ω  
±15  
350  
150  
Fall time  
99  
1,08  
1,68  
4,35  
5,94  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
9240  
576  
274  
940  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
15  
480  
150  
nC  
Thermal grease  
thickness50um  
λ = 0,81 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,630  
K/W  
Boost Inverse Diode  
Tj=25°C  
Tj=125°C  
1,2  
1,68  
1,68  
1,9  
VF  
Diode forward voltage  
150  
V
Thermal grease  
thickness50um  
λ = 0,81 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,771  
K/W  
Boost Diode  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,2  
1,68  
1,68  
1,9  
60  
VF  
Ir  
Diode forward voltage  
150  
150  
V
µA  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
600  
350  
131  
166  
121  
151  
7,6  
14,4  
3810  
1668  
2,20  
4,14  
IRRM  
trr  
A
ns  
Qrr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
Rgon=4 Ω  
±15  
µC  
di(rec)max  
/dt  
A/µs  
mWs  
Erec  
Thermal grease  
thickness50um  
λ = 0,81 W/mK  
RthJH  
Thermal resistance chip to heatsink per chip  
0,701  
K/W  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
T=25°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
T=25°C  
22000  
%
R/R R100=1486 Ω  
-5  
5
P
200  
2
mW  
mW/K  
K
B(25/50) Tol. ±3%  
B(25/100) Tol. ±3%  
3950  
3996  
B-value  
K
Vincotech NTC Reference  
B
Copyright by Vincotech  
4
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 1  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
400  
400  
300  
200  
100  
300  
200  
100  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
250  
25  
µs  
250  
150  
µs  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FRED  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
125  
400,00  
300,00  
200,00  
100,00  
100  
75  
50  
25  
Tj = 25°C  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0,00  
0,00  
2,00  
4,00  
6,00  
8,00  
10,00  
12,00  
0,00  
0,50  
1,00  
1,50  
2,00  
2,50  
3,00  
VF (V)  
VGE (V)  
At  
At  
tp =  
tp =  
250  
10  
µs  
250  
µs  
VCE  
=
V
Copyright by Vincotech  
5
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
10  
10  
Eoff High T  
Eon High T  
8
8
Eoff Low T  
Eon Low T  
Eoff High T  
6
6
Eoff Low T  
4
4
Eon High T  
2
2
Eon Low T  
0
0
I C (A)  
R G ( )  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
250  
300  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
25/150  
25/150  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
175  
±15  
4
175  
±15  
150  
V
V
Rgon  
Rgoff  
=
=
A
4
Figure 7  
FRED  
Figure 8  
FRED  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
5
4
3
2
1
0
5
4
3
2
1
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
50  
100  
150  
200  
250  
300  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/150  
175  
±15  
4
°C  
V
25/150  
175  
°C  
V
=
=
=
=
V
±15  
V
Rgon  
=
150  
A
Copyright by Vincotech  
6
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
0,10  
0,01  
0,00  
1,00  
0,10  
0,01  
0,00  
tf  
tdon  
tdoff  
tdon  
tdoff  
tr  
tf  
tr  
I C (A)  
R G ( )  
0
50  
100  
150  
200  
250  
300  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
150  
175  
±15  
4
°C  
150  
175  
±15  
150  
°C  
V
=
=
=
=
V
V
V
Rgon  
Rgoff  
=
=
A
4
Figure 11  
FRED  
Figure 12  
FRED  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,20  
0,15  
0,10  
0,05  
0,00  
0,4  
trr High T  
trr High T  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
4
8
12  
16  
20  
I C (A)  
R gon ( )  
0
50  
100  
150  
200  
250  
300  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
175  
±15  
4
°C  
V
25/150  
°C  
V
=
=
VR =  
175  
150  
±15  
IF =  
V
A
Rgon  
=
VGE =  
V
Copyright by Vincotech  
7
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 13  
FRED  
Figure 14  
FRED  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
20  
15  
10  
5
20  
Qrr High T  
Qrr High T  
15  
10  
5
Qrr Low T  
Qrr Low T  
0
0
0
0
50  
100  
150  
200  
250  
300  
4
8
12  
16  
20  
I
C (A)  
R
gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
175  
±15  
4
°C  
25/150  
175  
°C  
V
=
VR =  
V
V
=
IF =  
150  
A
Rgon  
=
VGE =  
±15  
V
Figure 15  
FRED  
Figure 16  
FRED  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
250,00  
200,00  
150,00  
100,00  
50,00  
200,00  
IRRM High T  
150,00  
100,00  
50,00  
IRRM High T  
IRRM Low T  
IRRM Low T  
0,00  
0,00  
0
0
50  
100  
150  
200  
250  
300  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
175  
±15  
4
°C  
V
25/150  
°C  
V
=
=
VR =  
175  
150  
±15  
IF =  
V
A
Rgon  
=
VGE =  
V
Copyright by Vincotech  
8
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 17  
FRED  
Figure 18  
FRED  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
9000,00  
7500,00  
6000,00  
4500,00  
3000,00  
1500,00  
0,00  
12000,00  
dI0/dt T  
dIo/dt T  
dIrec/dt T  
dIrec/dt T  
10000,00  
8000,00  
6000,00  
4000,00  
2000,00  
0,00  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
250  
300  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
°C  
V
25/150  
175  
°C  
V
=
=
VR =  
175  
±15  
4
IF =  
VGE  
V
150  
A
Rgon  
=
=
±15  
V
Figure 19  
IGBT  
Figure 20  
FRED  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
100  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1012  
-435012  
1100  
At  
D =  
At  
tp / T  
tp / T  
D =  
R
thJH  
=
RthJH =  
0,574  
K/W  
1,288  
K/W  
IGBT thermal model values  
FRED thermal model values  
R (C/W)  
0,05  
Tau (s)  
R (C/W)  
0,07  
Tau (s)  
4,5E+00  
1,0E+00  
2,0E-01  
6,1E-02  
1,3E-02  
1,8E-03  
4,9E+00  
1,0E+00  
2,3E-01  
8,0E-02  
1,6E-02  
1,8E-03  
0,10  
0,20  
0,26  
0,60  
0,10  
0,28  
0,05  
0,12  
0,01  
0,03  
Copyright by Vincotech  
9
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 21  
IGBT  
Figure 22  
Collector current as a  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
function of heatsink temperature  
IC = f(Th)  
175  
150  
125  
100  
75  
350  
300  
250  
200  
150  
100  
50  
50  
25  
0
0
T h (  
o C)  
T h  
(
o C)  
0,00  
50,00  
100,00  
150,00  
200,00  
0,00  
50,00  
100,00  
150,00  
200,00  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
FRED  
Figure 24  
Forward current as a  
FRED  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
160  
120  
80  
100  
80  
60  
40  
20  
0
40  
0
T h  
(
o C)  
T h (  
o C)  
200,00  
0,00  
50,00  
100,00  
150,00  
200,00  
0,00  
50,00  
100,00  
150,00  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
Copyright by Vincotech  
10  
Revision: 5  
10-F106NIA150SA-M136F  
Buck  
Figure 25  
IGBT  
Figure 26  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(Qg)  
16  
103  
14  
12  
10  
8
100uS  
1mS  
102  
100mS  
120V  
10mS  
101  
480V  
DC  
100  
6
4
10-1  
2
0
0
200  
400  
600  
800  
1000  
100  
VCE (V)  
103  
Q g (nC)  
102  
101  
At  
At  
IC  
=
D =  
Th =  
150  
A
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
Copyright by Vincotech  
11  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 1  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
400  
400  
300  
200  
100  
300  
200  
100  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
250  
25  
µs  
°C  
250  
150  
µs  
°C  
Tj =  
Tj =  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FRED  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
125,00  
400  
300  
200  
100,00  
75,00  
50,00  
25,00  
100  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
0
0,00  
0,00  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
2,00  
4,00  
6,00  
8,00  
10,00  
12,00  
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
250  
10  
µs  
250  
µs  
VCE  
=
V
Copyright by Vincotech  
12  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
10,00  
8,00  
6,00  
4,00  
2,00  
0,00  
10,00  
8,00  
6,00  
4,00  
2,00  
0,00  
Eon High T  
Eoff High T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff Low T  
Eon High T  
Eon Low T  
0
50  
100  
150  
200  
250  
300  
0
4
8
12  
16  
20  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
25/150  
350  
±15  
4
°C  
V
25/150  
350  
°C  
V
=
=
=
=
V
±15  
V
Rgon  
Rgoff  
=
=
IC =  
149  
A
4
Figure 7  
IGBT  
Figure 8  
IGBT  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
5,00  
4,00  
3,00  
2,00  
1,00  
0,00  
5,00  
4,00  
3,00  
2,00  
1,00  
0,00  
Erec High T  
Erec Low T  
Erec High T  
Erec Low T  
0
50  
100  
150  
200  
250  
300  
R G ( )  
I C (A)  
0
4
8
12  
16  
20  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
25/150  
350  
±15  
4
°C  
V
25/150  
350  
°C  
V
=
=
=
=
V
±15  
V
Rgon  
=
IC =  
149  
A
Copyright by Vincotech  
13  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
0,10  
0,01  
0,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdon  
tdoff  
tdon  
tf  
tr  
tr  
tf  
0
50  
100  
150  
200  
250  
300  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
150  
350  
±15  
4
°C  
150  
350  
±15  
149  
°C  
V
=
=
=
=
V
V
V
Rgon  
Rgoff  
=
=
IC =  
A
4
Figure 11  
FRED  
Figure 12  
FRED  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,20  
0,15  
0,10  
0,05  
0,00  
0,4  
trr High T  
trr High T  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
4
8
12  
16  
20  
I C (A)  
R gon ( )  
0
50  
100  
150  
200  
250  
300  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
350  
±15  
4
°C  
25/150  
°C  
V
=
=
VR =  
V
V
350  
149  
±15  
IF =  
A
Rgon  
=
VGE =  
V
Copyright by Vincotech  
14  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 13  
FRED  
Figure 14  
FRED  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
20  
16  
12  
8
20,00  
Qrr High T  
16,00  
12,00  
8,00  
Qrr High T  
Qrr Low T  
Qrr Low T  
4
4,00  
0
0,00  
0
0
50  
100  
150  
200  
250  
300  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
350  
±15  
4
°C  
25/150  
350  
°C  
V
=
=
VR =  
V
V
IF =  
149  
A
Rgon  
=
VGE =  
±15  
V
Figure 15  
FRED  
Figure 16  
FRED  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
200,00  
150,00  
100,00  
50,00  
0,00  
200,00  
IRRM High T  
150,00  
100,00  
50,00  
IRRM Low T  
IRRM High T  
IRRM Low T  
0,00  
0
0
50  
100  
150  
200  
250  
300  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
350  
±15  
4
°C  
V
25/150  
°C  
V
=
=
VR =  
350  
149  
±15  
IF =  
V
A
Rgon  
=
VGE =  
V
Copyright by Vincotech  
15  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 17  
FRED  
Figure 18  
FRED  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
10000,00  
10000,00  
dI0/dt T  
dI0/dt T  
dIrec/dt T  
dIrec/dt T  
8000,00  
6000,00  
4000,00  
2000,00  
8000,00  
6000,00  
4000,00  
2000,00  
0,00  
0,00  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
250  
300  
C (A)  
I
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/150  
350  
±15  
4
°C  
V
25/150  
350  
°C  
V
=
=
VR =  
IF =  
VGE  
V
149  
A
Rgon  
=
=
±15  
V
Figure 19  
IGBT  
Figure 20  
FRED  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
100  
10-1  
D = 0,5  
D = 0,5  
0,2  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
1012  
0,005  
0.000  
t p (s)  
t p (s)  
100-12 10-5  
10-4  
10-3  
10-2  
10-1  
100 1012  
At  
At  
D =  
RthJH  
tp / T  
0,630  
D =  
RthJH  
tp / T  
=
=
K/W  
0,701  
K/W  
IGBT thermal model values  
FRED thermal model values  
R (C/W)  
0,06  
Tau (s)  
R (C/W)  
0,07  
Tau (s)  
3,3E+00  
4,3E-01  
9,8E-02  
1,4E-02  
1,2E-03  
4,3E+00  
1,1E+00  
2,2E-01  
6,2E-02  
1,2E-02  
1,3E-03  
0,10  
0,17  
0,31  
0,34  
0,10  
0,10  
0,05  
0,03  
0,02  
Copyright by Vincotech  
16  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 21  
IGBT  
Figure 22  
Collector current as a  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
function of heatsink temperature  
IC = f(Th)  
300  
250  
200  
150  
100  
50  
175  
150  
125  
100  
75  
50  
25  
0
0
T h  
(
o C)  
T h (  
o C)  
200,00  
0,00  
50,00  
100,00  
150,00  
200,00  
0,00  
50,00  
100,00  
150,00  
At  
At  
Tj =  
Tj =  
VGE  
175  
ºC  
175  
15  
ºC  
V
=
Figure 23  
Power dissipation as a  
FRED  
Figure 24  
Forward current as a  
FRED  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
280  
240  
200  
160  
120  
80  
150  
125  
100  
75  
50  
25  
40  
0
0
Th  
(
o C)  
Th (  
o C)  
0,00  
50,00  
100,00  
150,00  
200,00  
0,00  
50,00  
100,00  
150,00  
200,00  
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
Copyright by Vincotech  
17  
Revision: 5  
10-F106NIA150SA-M136F  
Boost  
Figure 25  
Boost Inverse Diode  
Figure 26  
Boost Inverse Diode  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
100  
400,00  
300,00  
200,00  
100,00  
10-1  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
Tj = Tjmax-25°C  
Tj = 25°C  
0,00  
10-2  
10-5  
0,00  
0,50  
1,00  
1,50  
2,00  
2,50  
3,00  
VF (V)  
t p (s)  
10-4  
10-3  
10-2  
10-1  
100  
1012  
At  
At  
tp =  
250  
µs  
D =  
tp / T  
RthJH  
=
0,771  
K/W  
Figure 27  
Power dissipation as a  
Boost Inverse Diode  
Figure 28  
Forward current as a  
Boost Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
250  
200  
150  
100  
50  
150  
125  
100  
75  
50  
25  
0
0
o C)  
Th (  
o C)  
0,00  
50,00  
100,00  
150,00  
200,00  
0,00  
50,00  
100,00  
150,00  
200,00  
Th  
(
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
Copyright by Vincotech  
18  
Revision: 5  
10-F106NIA150SA-M136F  
Thermistor  
Figure 1  
Thermistor  
Figure 2  
Typical NTC resistance values  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
1
1
B
25/100   
R(T) = R25 e  
[Ω  
]
T
T25  
NTC-typical temperature characteristic  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
Copyright by Vincotech  
19  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BUCK IGBT  
General conditions  
Tj  
=
=
=
150 °C  
4  
Rgon  
Rgoff  
4 Ω  
Figure 1  
10-F106NIA150SA-M136F Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
125  
250  
%
tdoff  
%
VCE  
IC  
100  
200  
VGE 90%  
VCE 90%  
75  
50  
25  
0
150  
IC  
VCE  
100  
VGE  
tEoff  
tdon  
50  
VGE  
VCE  
3%  
VGE 10%  
IC10%  
tEon  
0
IC 1%  
-50  
-25  
2,8  
3
3,2  
3,4  
3,6  
-0,2  
0
0,2  
0,4  
0,6  
time(us)  
time (us)  
VGE (0%) =  
VGE (0%) =  
-15  
15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
15  
V
350  
150  
V
350  
150  
0,16  
0,36  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
0,25  
0,63  
µs  
µs  
µs  
µs  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
250  
fitted  
%
%
VCE  
IC  
IC  
100  
200  
IC 90%  
75  
150  
IC 60%  
VCE  
50  
100  
IC  
90%  
IC 40%  
tr  
25  
50  
IC10%  
IC10%  
0
0
tf  
-25  
-50  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3
3,1  
3,2  
3,3  
3,4  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
350  
150  
0,11  
V
350  
150  
0,03  
V
A
A
µs  
µs  
Copyright by Vincotech  
20  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BUCK IGBT  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
125  
%
125  
%
IC  
1%  
Eoff  
100  
100  
Eon  
Poff  
75  
75  
50  
25  
50  
Pon  
25  
VGE  
VGE 10%  
90%  
VCE  
3%  
0
0
tEon  
tEoff  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
-0,2  
0
0,2  
0,4  
0,6  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
52,44  
5,92  
0,63  
kW  
mJ  
µs  
52,44  
1,75  
0,36  
kW  
mJ  
µs  
tEoff  
=
tEon =  
Figure 7  
Output inverter FRED  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
%
15  
10  
5
Id  
100  
trr  
50  
Vd  
fitted  
IRRM 10%  
0
0
-50  
-5  
-10  
-15  
-20  
-100  
-150  
IRRM 90%  
IRRM 100%  
3,1  
3,2  
3,3  
3,4  
3,5  
-200  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800  
Qg (nC)  
time(us)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
15  
V
350  
150  
-178  
0,15  
V
V
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
350  
150  
V
A
trr  
=
A
µs  
1585,43  
nC  
Copyright by Vincotech  
21  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BUCK IGBT  
Figure 9  
Output inverter FRED  
Figure 10  
Output inverter FRED  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
125  
%
%
Id  
Erec  
Qrr  
100  
75  
50  
25  
0
100  
Prec  
tQrr  
50  
tErec  
0
-50  
-100  
-150  
-25  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
150  
A
52,44  
3,63  
0,30  
kW  
mJ  
µs  
Qrr (100%) =  
13,73  
0,30  
µC  
µs  
tQrr  
=
tErec =  
Measurement circuit  
Figure 11  
BUCK stage switching measurement circuit  
Copyright by Vincotech  
22  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BOOST IGBT  
General conditions  
Tj  
=
=
=
150 °C  
4 Ω  
Rgon  
Rgoff  
4 Ω  
Figure 1  
10-F106NIA150SA-M136F Output inverter IGBT  
Figure 2  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
250  
140  
IC  
120  
100  
80  
tdoff  
200  
150  
VCE  
VGE 90%  
VCE 90%  
%
VCE  
%
IC  
60  
100  
tdon  
tEoff  
VGE  
40  
20  
0
50  
0
IC 1%  
VGE10%  
VCE3%  
IC10%  
VGE  
tEon  
-20  
-50  
-0,2  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
2,8  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
time(us)  
time (us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
15  
V
350  
150  
0,25  
0,49  
V
350  
150  
0,16  
0,34  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
µs  
µs  
µs  
µs  
Figure 3  
Output inverter IGBT  
Figure 4  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
250  
IC  
Ic  
100  
VCE  
200  
IC 90%  
75  
150  
IC 60%  
%
50  
%
100  
IC90%  
IC 40%  
tr  
25  
0
50  
0
IC10%  
VCE  
IC10%  
fitted  
tf  
-25  
-50  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3,05  
3,1  
3,15  
3,2  
3,25  
time(us)  
3,3  
3,35  
3,4  
time (us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
350  
150  
0,10  
V
350  
V
A
150  
A
µs  
0,03  
µs  
Copyright by Vincotech  
23  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BOOST IGBT  
Figure 5  
Output inverter IGBT  
Figure 6  
Output inverter IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
120  
120  
%
Eon  
Eoff  
%
Poff  
100  
80  
60  
40  
20  
0
100  
80  
60  
Pon  
40  
20  
VGE10%  
VCE3%  
0
tEoff  
VGE90%  
IC 1%  
tEon  
-20  
-20  
-0,2  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
52,38  
kW  
mJ  
µs  
52,38  
1,68  
0,34  
kW  
mJ  
µs  
5,94  
0,49  
tEoff  
=
tEon =  
Figure 7  
Output inverter FRED  
Figure 8  
Output inverter IGBT  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
Id  
15  
10  
5
100  
trr  
fitted  
50  
Vd  
%
0
0
IRRM10%  
-5  
-50  
-100  
-150  
-10  
-15  
-20  
IRRM90%  
IRRM100%  
-200  
0
200  
400  
600  
1200 1400 1600 1800  
3,1  
3,15  
3,2  
3,35  
3,4  
3,45  
Qg (nC)1000  
800  
time(us3),3  
3,25  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
V
350  
V
15  
V
150  
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
350  
150  
V
-166  
0,15  
A
trr  
=
A
µs  
1583,47  
nC  
Copyright by Vincotech  
24  
Revision: 5  
10-F106NIA150SA-M136F  
Switching Definitions BOOST IGBT  
Figure 9  
Output inverter FRED  
Figure 10  
Output inverter FRED  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
120  
Erec  
Id  
Qrr  
100  
80  
100  
tQrr  
50  
tEre  
60  
%
%
40  
20  
0
-50  
-100  
-150  
Prec  
-20  
3
3,1  
3,2  
3,3  
3,4  
3,5  
3,6  
3,7  
3,05  
3,15  
3,25  
3,35  
3,45  
3,55  
3,65  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
150  
A
52,38  
4,14  
0,31  
kW  
mJ  
µs  
Qrr (100%) =  
14,35  
0,31  
µC  
µs  
tQrr  
=
tErec =  
Measurement circuit  
Figure 11  
BOOST stage switching measurement circuit  
Copyright by Vincotech  
25  
Revision: 5  
10-F106NIA150SA-M136F  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
M136F  
in packaging barcode as  
without thermal paste 12mm housing  
10-F106NIA150SA-M136F  
M136F  
Outline  
Pinout  
Copyright by Vincotech  
26  
Revision: 5  
10-F106NIA150SA-M136F  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright by Vincotech  
27  
Revision: 5  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY