10-FY12NMA160SH01-M820F18 [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
10-FY12NMA160SH01-M820F18
型号: 10-FY12NMA160SH01-M820F18
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总26页 (文件大小:1025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10ꢀFY12NMA160SH01ꢀM820F18  
10ꢀPY12NMA160SH01ꢀM820F18Y  
datasheet  
flow MNPC 1  
1200 V / 160 A  
Features  
flow 1 12mm housing  
● mixed voltage NPC topology  
● reactive power capability  
● low inductance layout  
● Split output  
● enhanced LVRT capability  
Target Applications  
Schematic  
● solar inverter  
● UPS  
● Active frontend  
Types  
● 10ꢀFY12NMA160SH01ꢀM820F18  
● 10ꢀPY12NMA160SH01ꢀM820F18Y  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Halfbridge IGBT Inverse Diode  
Repetitive peak reverse voltage  
Forward current  
V RRM  
I FAV  
I FSM  
P tot  
1200  
V
A
Th=80°C  
Tc=80°C  
14  
19  
DC current  
tp=10ms  
Tj=25°C  
Repetitive peak forward current  
Power dissipation  
14  
A
Th=80°C  
Tc=80°C  
31  
47  
Tj=Tjmax  
W
°C  
T jmax  
Maximum Junction Temperature  
150  
Halfbridge IGBT  
V CES  
I C  
Collectorꢀemitter break down voltage  
DC collector current  
1200  
V
A
Th=80°C  
Tc=80°C  
117  
151  
Tj=Tjmax  
I CRM  
tp limited by Tjmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
480  
480  
A
Tj≤150°C  
VCE<=VCES  
A
Th=80°C  
Tc=80°C  
260  
394  
P tot  
V GE  
Tj=Tjmax  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
Tj≤150°C  
VGE=15V  
10  
µs  
V
V CC  
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
17 Apr. 2015 / Revision 2  
10ꢀFY12NMA160SH01ꢀM820F18  
10ꢀPY12NMA160SH01ꢀM820F18Y  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
NP Diode  
V RRM  
I F  
P tot  
T jmax  
Peak Repetitive Reverse Voltage  
DC forward current  
700  
V
A
Th=80°C  
Tc=80°C  
Th=80°C  
Tc=80°C  
53  
72  
63  
96  
Tj=Tjmax  
Tj=Tjmax  
Power dissipation  
W
°C  
Maximum Junction Temperature  
150  
NP IGBT  
V CES  
I C  
Collectorꢀemitter break down voltage  
DC collector current  
650  
V
A
Th=80°C  
Tc=80°C  
76  
Tj=Tjmax  
101  
I CRM  
tp limited by Tjmax  
Pulsed collector current  
Turn off safe operating area  
Power dissipation  
450  
450  
A
Tj≤150°C  
VCE<=VCES  
A
Th=80°C  
Tc=80°C  
96  
P tot  
V GE  
Tj=Tjmax  
W
V
145  
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
Tj≤150°C  
VGE=15V  
6
µs  
V
V CC  
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
NP Inverse Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
DC forward current  
650  
V
A
Th=80°C  
Tc=80°C  
15  
21  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
30  
A
Th=80°C  
Tc=80°C  
28  
42  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Halfbridge Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
DC forward current  
1200  
V
A
Th=80°C  
Tc=80°C  
31  
46  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation  
140  
A
Th=80°C  
Tc=80°C  
61  
92  
W
°C  
T jmax  
Maximum Junction Temperature  
150  
copyright Vincotech  
2
17 Apr. 2015 / Revision 2  
10ꢀFY12NMA160SH01ꢀM820F18  
10ꢀPY12NMA160SH01ꢀM820F18Y  
datasheet  
Maximum Ratings  
T j=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
DC link Capacitor  
V MAX  
Max.DC voltage  
Tc=25°C  
630  
V
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
Operation temperature under switching condition  
ꢀ40…+(Tjmax ꢀ 25)  
Insulation Properties  
Insulation voltage  
Creepage distance  
Clearance  
V is  
t=2s  
DC voltage  
4000  
V
min 12,7  
min 8,06  
mm  
mm  
copyright Vincotech  
3
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] or I C [A] or  
V GE [V] or  
V GS [V]  
V CE [V] or I F [A] or  
T j  
Min  
Max  
V DS [V]  
I D [A]  
Halfbridge IGBT Inverse Diode  
Forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1,97  
1,65  
2,7  
V F  
I r  
7
V
0,25  
Reverse current  
1200  
mA  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
2,24  
K/W  
Halfbridge IGBT  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
5
1
5,80  
6,5  
2,70  
0,25  
480  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
VCE=VGE  
0,006  
160  
V
V
2,02  
2,37  
15  
0
1200  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
127  
129  
26  
Rise time  
30  
ns  
219  
274  
45  
t d(off)  
t f  
Turnꢀoff delay time  
Rgoff=4 ꢁ  
Rgon=4 ꢁ  
±15  
350  
100  
Fall time  
59  
1,52  
2,60  
2,69  
4,19  
E on  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
9200  
600  
540  
740  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
±15  
960  
160  
150  
100  
nC  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
0,37  
K/W  
NP Diode  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
2,00  
1,88  
2,6  
50  
V F  
I r  
Diode forward voltage  
V
µA  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
700  
350  
86  
113  
57  
109  
2,93  
7,16  
3683  
1519  
0,53  
1,38  
I RRM  
t rr  
A
ns  
Q rr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
Rgon=4 ꢁ  
±15  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
1,11  
K/W  
copyright Vincotech  
4
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] or I C [A] or  
V GE [V] or  
V GS [V]  
V CE [V] or I F [A] or  
T j  
Min  
Max  
V DS [V]  
I D [A]  
NP IGBT  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
5
5,8  
6,5  
1,85  
0,05  
700  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
VCE=VGE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,008  
150  
V
V
1,05  
1,48  
1,62  
15  
0
650  
0
mA  
nA  
20  
none  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
170  
171  
29  
Rise time  
31  
ns  
235  
265  
54  
t d(off)  
t f  
Turnꢀoff delay time  
Rgoff=4 ꢁ  
Rgon=4 ꢁ  
±15  
350  
100  
Fall time  
71  
1,29  
1,70  
2,88  
3,95  
E on  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
E off  
C ies  
9240  
C oss  
C rss  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
276  
pF  
Reverse transfer capacitance  
274  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
0,99  
K/W  
NP Inverse Diode  
Tj=25°C  
Tj=125°C  
1,23  
1,89  
1,79  
2,20  
V F  
Diode forward voltage  
15  
V
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
3,43  
K/W  
Halfbridge Diode  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
2,46  
2,07  
3,5  
V F  
I r  
Diode forward voltage  
150  
100  
V
ꢂA  
200  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
350  
83  
116  
113  
I RRM  
t rr  
A
ns  
136  
6,17  
12,86  
2952  
3586  
1,66  
3,63  
Q rr  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
Rgon=4 ꢁ  
±15  
µC  
( di rf/dt )max  
A/µs  
mWs  
E rec  
Thermal grease  
thickness≤50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance chip to heatsink  
1,15  
K/W  
DC link Capacitor  
C value  
C
80  
100  
120  
nF  
Thermistor  
R
Δ R/R  
P
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
Bꢀvalue  
T=25°C  
T=100°C  
T=25°C  
T=25°C  
T=25°C  
T=25°C  
21511  
%
R100=1486 ꢁ  
ꢀ4,5  
+4,5  
210  
3,5  
mW  
mW/K  
K
B(25/50)  
3884  
3964  
Bꢀvalue  
B(25/100)  
K
Vincotech NTC Reference  
F
copyright Vincotech  
5
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 1  
IGBT  
Figure 2  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
T j  
=
=
t p  
T j  
=
=
250  
25  
ꢂs  
°C  
250  
125  
ꢂs  
°C  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
450  
375  
300  
225  
80  
60  
40  
20  
Tj = Tjmax-25°C  
150  
Tj = Tjmax-25°C  
75  
Tj = 25°C  
Tj = 25°C  
0
0
0
0
1
2
3
4
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
250  
10  
ꢂs  
V
250  
ꢂs  
V CE  
=
copyright Vincotech  
6
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Eon High T  
Eoff High T  
Eon High T  
Eon Low T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff Low T  
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
I
C (A)  
R
G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
±15  
V
R gon  
R goff  
=
=
I C =  
100  
A
4
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
2,5  
2
1,5  
1
Erec High T  
2
1,5  
1
Erec Low T  
Erec High T  
0,5  
0,5  
0
Erec Low T  
0
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
±15  
V
R gon  
=
I C =  
100  
A
copyright Vincotech  
7
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
0,10  
0,01  
0,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdon  
tdoff  
tdon  
tr  
tf  
tr  
tf  
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
125  
350  
±15  
4
°C  
V
125  
350  
±15  
100  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
V
R gon  
R goff  
=
=
I C =  
A
4
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,15  
0,12  
0,09  
0,06  
0,03  
0
0,25  
trr High T  
trr High T  
0,20  
0,15  
0,10  
0,05  
trr Low T  
trr Low T  
0,00  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
I C (A)  
R gon ( )  
At  
At  
T j  
=
T j  
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V R  
=
I F  
=
V
100  
A
=
V GE  
=
±15  
V
copyright Vincotech  
8
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
12  
10  
8
10  
Qrr High T  
8
6
4
2
Qrr High T  
6
Qrr Low T  
4
Qrr Low T  
2
0
0
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
I C (A)  
R gon ( )  
At  
At  
T j  
=
T j  
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V R  
=
I F  
=
V
100  
A
=
V GE  
=
±15  
V
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
150  
120  
90  
60  
30  
0
150  
IRRM High T  
120  
90  
IRRM Low T  
60  
IRRM High T  
IRRM Low T  
30  
0
0
0
50  
100  
150  
200  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
T j  
=
T j  
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V R  
I F  
=
V
100  
A
R gon  
=
V GE  
=
±15  
V
copyright Vincotech  
9
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
6000  
5000  
4000  
3000  
2000  
1000  
0
7500  
dIrec/dt T  
dIo/dt T  
dIrec/dt T  
dI0/dt T  
6000  
4500  
3000  
1500  
0
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
I C (A)  
R gon ( )  
At  
T j  
At  
T j  
=
=
=
25/125  
350  
±15  
4
°C  
25/125  
°C  
V CE  
V GE  
=
=
V R  
V
V
350  
100  
±15  
V
A
V
I F  
=
R gon  
=
V GE  
=
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
10-1  
10-1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
102  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
D =  
R thJH  
At  
t p / T  
t p / T  
D =  
R thJH  
=
=
0,37  
K/W  
1,11  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W)  
R (K/W) Tau (s)  
R (K/W)  
0,06  
0,15  
0,12  
0,03  
0,01  
2,4E+00  
4,0Eꢀ01  
1,0Eꢀ01  
1,3Eꢀ02  
8,4Eꢀ04  
0,07  
0,25  
0,57  
0,12  
0,06  
0,03  
6,8E+00  
1,2E+00  
2,8Eꢀ01  
6,0Eꢀ02  
1,3Eꢀ02  
1,1Eꢀ03  
copyright Vincotech  
10  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T h)  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
500  
400  
300  
200  
100  
0
200  
160  
120  
80  
40  
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
0
50  
100  
150  
200  
At  
At  
T j  
=
T j  
=
175  
°C  
175  
15  
°C  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
150  
125  
100  
75  
100  
80  
60  
40  
20  
0
50  
25  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j  
=
T j  
=
150  
°C  
150  
°C  
copyright Vincotech  
11  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
Figure 25  
IGBT  
Figure 26  
IGBT  
Safe operating area as a function  
of collectorꢀemitter voltage  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
103  
16  
14  
12  
10  
8
100uS  
240V  
10mS  
1mS  
100mS  
102  
960V  
DC  
101  
100  
6
4
10-1  
2
0
0
100  
200  
300  
400  
500  
600  
700  
800  
Q g (nC)  
100  
103  
VCE (V)  
102  
101  
At  
D =  
At  
I C  
single pulse  
=
160  
A
T h  
V GE  
T j  
=
80  
ºC  
=
=
±15  
T jmax  
V
ºC  
copyright Vincotech  
12  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 1  
IGBT  
Figure 2  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
400  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
t p  
T j  
=
=
t p  
T j  
=
=
250  
25  
ꢂs  
°C  
250  
125  
ꢂs  
°C  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
140  
120  
100  
80  
180  
150  
120  
90  
60  
60  
Tj = 25°C  
40  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
30  
20  
Tj = 25°C  
0
0
0
0
1
2
3
4
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
At  
At  
t p  
=
t p  
=
250  
10  
ꢂs  
V
250  
ꢂs  
V CE  
=
copyright Vincotech  
13  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Eon High T  
Eoff High T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff Low T  
Eon High T  
Eon Low T  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
R G ( )  
I
C (A)  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
±15  
V
R gon  
R goff  
=
=
I C =  
100  
A
4
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
5
4
3
2
1
0
4
3
2
1
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
±15  
V
R gon  
=
I C =  
100  
A
copyright Vincotech  
14  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tdoff  
tdon  
0,1  
0,1  
tr  
tf  
tf  
tr  
0,01  
0,01  
0,001  
0,001  
0
50  
100  
150  
200  
I
C (A)  
0
4
8
12  
16  
R G  
(
)
20  
With an inductive load at  
With an inductive load at  
T j  
=
T j =  
125  
350  
±15  
4
°C  
V
125  
350  
±15  
100  
°C  
V
V CE  
V GE  
=
=
V CE  
V GE  
=
=
V
V
R gon  
R goff  
=
=
I C =  
A
4
Figure 11  
FWD  
Figure 12  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,20  
0,15  
0,10  
0,05  
0,00  
0,8  
trr High T  
trr High T  
0,6  
0,4  
0,2  
trr Low T  
trr Low T  
0,0  
0
0
50  
100  
150  
200  
I C (A)  
4
8
12  
16  
R gon ( )  
20  
At  
At  
T j  
=
T j  
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
=
=
V R  
I F  
=
V
100  
A
R gon  
=
V GE  
=
±15  
V
copyright Vincotech  
15  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
20  
15  
10  
5
20  
Qrr High T  
15  
10  
5
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
I
C (A)  
R gon ( )  
At  
T j  
At  
T j  
=
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V R  
=
I F  
=
V
100  
A
=
V GE  
=
±15  
V
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
150  
125  
100  
75  
150  
IRRM High T  
125  
100  
75  
IRRM Low T  
IRRM High T  
50  
50  
IRRM Low T  
25  
25  
0
0
0
0
50  
100  
150  
200  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
T j  
=
T j  
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
V GE  
R gon  
=
V R  
=
I F  
=
V
100  
A
=
V GE  
=
±15  
V
copyright Vincotech  
16  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
6000  
9000  
dIrec/dt T  
dIrec/dt T  
dI0/dt T  
di0/dt T  
5000  
7500  
6000  
4500  
3000  
1500  
0
4000  
3000  
2000  
1000  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
I C (A)  
200  
0
4
8
12  
16  
20  
R gon ( )  
At  
T j  
At  
T j  
=
=
=
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V CE  
V GE  
=
=
V R  
V
A
V
I F  
=
V
100  
R gon  
=
V GE  
=
±15  
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
101  
101  
100  
100  
D = 0,5  
D = 0,5  
0,2  
10-1  
10-1  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
At  
At  
t p / T  
t p / T  
D =  
D =  
R thJH  
=
R thJH =  
0,99  
K/W  
1,15  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,08  
0,24  
0,52  
0,09  
0,05  
0,02  
6,3E+00  
1,1E+00  
2,8Eꢀ01  
6,6Eꢀ02  
1,3Eꢀ02  
1,2Eꢀ03  
0,05  
0,13  
0,59  
0,22  
0,10  
0,07  
4,9E+00  
8,2Eꢀ01  
1,8Eꢀ01  
4,7Eꢀ02  
7,8Eꢀ03  
9,8Eꢀ04  
copyright Vincotech  
17  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T h)  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T h  
(
At  
At  
T j  
=
T j  
=
175  
ºC  
175  
15  
ºC  
V
V GE  
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
150  
125  
100  
75  
75  
60  
45  
30  
15  
0
50  
25  
0
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Th  
(
At  
At  
T j  
=
T j  
=
150  
ºC  
150  
ºC  
copyright Vincotech  
18  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
NP IGBT Inverse Diode  
Figure 25  
NP IGBT Inverse Diode  
Figure 26  
NP IGBT Inverse Diode  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
101  
100  
10-1  
10-2  
60  
50  
40  
30  
20  
10  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
1
2
3
4
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
At  
At  
t p / T  
t p  
=
250  
ꢂs  
D =  
R thJH  
=
3,43  
K/W  
Figure 27  
Power dissipation as a  
NP IGBT Inverse Diode  
Figure 28  
Forward current as a  
NP IGBT Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Th  
(
At  
At  
T j  
=
T j  
=
175  
ºC  
175  
ºC  
copyright Vincotech  
19  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Half Bridge Inverse Diode  
Figure 1  
Half Bridge Inverse Diode  
Figure 2  
Half Bridge Inverse Diode  
Typical diode forward current as  
a function of forward voltage  
I F= f(V F)  
Diode transient thermal impedance  
as a function of pulse width  
Z thJH = f(t p)  
101  
100  
10-1  
10-2  
25  
20  
15  
D = 0,5  
0,2  
10  
Tj = Tjmax-25°C  
0,1  
Tj = 25°C  
0,05  
0,02  
0,01  
0,005  
0.000  
5
0
0
0,5  
1
1,5  
2
2,5  
3
3,5  
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
t p  
=
250  
ꢂs  
D =  
R thJH  
=
2,24  
K/W  
Figure 3  
Power dissipation as a  
Half Bridge Inverse Diode  
Figure 4  
Forward current as a  
Half Bridge Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
80  
60  
40  
20  
0
25  
20  
15  
10  
5
0
o C)  
0
50  
100  
150  
T h  
(
o C)  
200  
0
50  
100  
150  
200  
T h  
(
At  
At  
T j  
=
T j  
=
150  
ºC  
150  
ºC  
copyright Vincotech  
20  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R T = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
T (°C)  
125  
copyright Vincotech  
21  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Switching Definitions Half Bridge  
General conditions  
T j  
=
=
=
125 °C  
4 ꢁ  
4 ꢁ  
R gon  
R goff  
Figure 1  
Half Bridge IGBT  
Figure 2  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
%
%
tdoff  
IC  
100  
200  
150  
100  
VGE 90%  
IC  
75  
50  
25  
0
VGE  
VCE 90%  
VCE  
VGE  
tEoff  
tdon  
VCE  
50  
IC 1%  
VCE 3%  
IC 10%  
VGE 10%  
0
tEon  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
2,9  
3
3,1  
3,2  
3,3  
time (us)  
time(us)  
V GE (0%) =  
ꢀ15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
700  
100  
0,27  
0,64  
V
700  
100  
0,13  
0,28  
V
A
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
Figure 3  
Half Bridge IGBT  
Figure 4  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
125  
250  
fitted  
%
%
IC  
IC  
100  
200  
150  
IC 90%  
75  
VCE  
IC 60%  
100  
50  
IC 90%  
IC 40%  
tr  
VCE  
50  
25  
IC10%  
IC 10%  
0
0
tf  
-50  
-25  
3,1  
3,15  
3,2  
3,25  
3,3  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
700  
100  
0,06  
V
V C (100%) =  
I C (100%) =  
700  
100  
0,03  
V
A
A
t f  
=
ꢂs  
t r  
=
ꢂs  
copyright Vincotech  
22  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Switching Definitions Half Bridge  
Figure 5  
Half Bridge IGBT  
Figure 6  
Half Bridge IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
IC 1%  
%
Eon  
Eoff  
100  
100  
75  
75  
50  
25  
0
50  
Poff  
Pon  
25  
VGE 90%  
VCE 3%  
VGE 10%  
0
tEoff  
tEon  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
70,11  
kW  
P on (100%) =  
E on (100%) =  
70,11  
kW  
mJ  
ꢂs  
4,19  
0,64  
mJ  
ꢂs  
2,60  
0,28  
t E off  
=
t E on =  
Figure 7  
NP FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
-50  
IRRM 10%  
-100  
-150  
IRRM 90%  
IRRM 100%  
3,1  
3,15  
3,2  
3,25  
3,3  
3,35  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
700  
V
100  
A
ꢀ113  
0,11  
A
t rr  
=
ꢂs  
copyright Vincotech  
23  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Switching Definitions Half Bridge  
Figure 8  
NP FWD  
Figure 9  
NP FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
125  
%
Qrr  
Id  
Erec  
100  
100  
tQrr  
tErec  
50  
75  
50  
25  
0
0
-50  
Prec  
-100  
-150  
-25  
3,1  
3,2  
3,3  
3,4  
3,5  
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
100  
A
P rec (100%) =  
E rec (100%) =  
70,11  
1,38  
0,22  
kW  
mJ  
ꢂs  
7,16  
0,22  
ꢂC  
ꢂs  
t Q rr  
=
t E rec =  
Measurement circuits  
Figure 10  
BUCK stage switching measurement circuit  
copyright Vincotech  
24  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
Ordering Code and Marking ꢀ Outline ꢀ Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as in packaging barcode as  
without thermal paste with solder pins  
without thermal paste with pressfit pins  
10ꢀFY12NMA160SH01ꢀM820F18  
10ꢀPY12NMA160SH01ꢀM820F18Y  
M820F  
M820FY  
M820ꢀF  
M820ꢀFY  
Outline  
Pinout  
copyright Vincotech  
25  
17 Apr. 2015 / Revision 2  
10-FY12NMA160SH01-M820F18  
10-PY12NMA160SH01-M820F18Y  
datasheet  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured  
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further  
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising  
out of the application or use of any product or circuit described herein; neither does it convey any license under its  
patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the  
express written approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use  
provided in labelling can be reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
26  
17 Apr. 2015 / Revision 2  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY