10-PZ07NMA100SM-M265F58Y [VINCOTECH]

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge;
10-PZ07NMA100SM-M265F58Y
型号: 10-PZ07NMA100SM-M265F58Y
厂家: VINCOTECH    VINCOTECH
描述:

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge

文件: 总29页 (文件大小:2211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
flow MNPC 0  
650 V / 100 A  
Features  
flow 0 12mm housing  
● Mixed voltage NPC topology  
● Reactive power capability  
● Low inductance layout  
● Common collector neutral connection  
Pressꢀfit pins  
Solder pins  
Target Applications  
Schematic  
● Solar Inverter  
● UPS  
Types  
● 10ꢀFZ07NMA100SMꢀM265F58  
● 10ꢀPZ07NMA100SMꢀM265F58Y  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Switch  
V CES  
I C  
Collectorꢀemitter breakdown voltage  
650  
79  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
300  
300  
136  
±20  
175  
A
T j ≤ 150 °C  
V CE<=V CES  
A
P tot  
V GE  
T j = T jmax  
T s = 80 °C  
W
V
Gateꢀemitter peak voltage  
Maximum Junction Temperature  
T jmax  
°C  
Buck Diode  
V RRM  
I FAV  
Peak Repetitive Reverse Voltage  
600  
50  
V
A
T j = T jmax  
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
Mean forward current  
Power dissipation  
P tot  
69  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
1
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Boost Switch  
V CES  
I C  
Collectorꢀemitter breakdown voltage  
600  
57  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
225  
225  
82  
A
T j ≤ 150 °C  
V CE<=V CES  
A
P tot  
V GE  
T j = T jmax  
T s = 80 °C  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
±20  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
Boost Diode  
V RRM  
Peak Repetitive Reverse Voltage  
650  
V
I FAV  
I FSM  
I FRM  
T j = T jmax  
T s = 80 °C  
Mean forward current  
47  
A
A
A
t p = 10 ms  
Surge (nonꢀrepetitive) forward current  
Repetitive peak forward current  
100  
100  
t p limited by T jmax  
P tot  
T j = T jmax  
T s = 80 °C  
Power dissipation  
70  
W
T jmax  
Maximum Junction Temperature  
175  
°C  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
ꢀ40…+(T jmax ꢀ 25)  
Operation temperature under switching condition  
Isolation Properties  
Isolation voltage  
t
= 2 s  
DC Test Voltage*  
4000  
min >12,7  
9 / 9,15  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Pressꢀfit pins / Solder pins  
Pressꢀfit pins / Solder pins  
Comparative Tracking Index  
CTI  
*100% tested in production  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
2
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Buck Switch  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,0005  
100  
25  
3,3  
1
4
4,7  
2,4  
V
V
25  
125  
1,63  
1,78  
15  
0
650  
0
25  
25  
0,07  
400  
mA  
nA  
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
70  
71  
18  
21  
78  
94  
13  
22  
0,14  
0,27  
0,18  
0,32  
Rise time  
ns  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 4 ꢁ  
R gon = 4 ꢁ  
±15  
150  
50  
Fall time  
E on  
Turnꢀon energy loss  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turnꢀoff energy loss  
125  
Input capacitance  
6000  
100  
22  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
±15  
520  
100  
240  
nC  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
0,7  
K/W  
Buck Diode  
25  
125  
1,80  
1,58  
3
V F  
Diode forward voltage  
60  
V
µA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
600  
150  
25  
10  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
41  
59  
33  
A
t rr  
ns  
113  
1,00  
3,10  
4239  
2404  
0,084  
0,306  
Q rr  
R gon = 4 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
50  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,38  
K/W  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
3
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V CE [V] I F [A]  
V GS [V]  
T j [°C]  
Min  
Max  
V DS [V] I D [A]  
Boost Switch  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0012  
75  
25  
5
5,8  
6,5  
V
V
25  
125  
1,05  
1,44  
1,58  
1,85  
15  
0
600  
0
25  
25  
0,03  
700  
mA  
nA  
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
93  
94  
14  
Rise time  
17  
ns  
138  
156  
74  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 4 ꢁ  
R gon = 4 ꢁ  
±15  
150  
50  
Fall time  
97  
0,13  
0,25  
0,70  
0,95  
E on  
Turnꢀon energy loss  
Turnꢀoff energy loss  
Input capacitance  
mWs  
E off  
C ies  
C oss  
C rss  
Q G  
125  
4620  
288  
137  
470  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
pF  
Reverse transfer capacitance  
Gate charge  
15  
480  
75  
nC  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,16  
K/W  
Boost Diode  
25  
125  
1
1,62  
1,53  
2
V F  
Diode forward voltage  
50  
60  
V
ꢂA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
650  
150  
25  
27  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
37  
43  
144  
290  
1,98  
4,21  
2751  
1443  
0,24  
0,52  
A
t rr  
ns  
Q rr  
R gon = 4 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
λ paste = 3,4 W/mK  
(PSX)  
R th(j-s)  
Thermal resistance junction to sink  
1,36  
K/W  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
Bꢀvalue  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
%
R 100 = 1486 ꢁ  
ꢀ12  
+14  
200  
2
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
3950  
3998  
Bꢀvalue  
B(25/100) Tol. ±3%  
K
Vincotech NTC Reference  
B
17 Jan. 2019 / Revision 4  
copyright Vincotech  
4
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 1.  
Typical output characteristics  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢂs  
°C  
250  
125  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
5 V to 15 V in steps of 1 V  
5 V to 15 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
240  
200  
160  
120  
80  
80  
60  
40  
20  
40  
0
0
0
0
1
2
3
4
2
4
6
8
VGE (V)  
VF (V)  
At  
At  
T j =  
T j =  
25/125  
250  
°C  
ꢂs  
V
25/125  
250  
°C  
ꢂs  
t p  
=
t p =  
V CE  
=
10  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
5
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
Eoff High T  
Eon High T  
Eon High T  
Eoff Low T  
Eoff Low T  
Eon Low T  
Eoff High T  
Eon Low T  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
50  
V
=
I C =  
A
=
4
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,4  
0,3  
0,2  
0,1  
0
0,4  
0,3  
0,2  
0,1  
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
50  
V
=
I C =  
A
17 Jan. 2019 / Revision 4  
copyright Vincotech  
6
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
0,10  
0,01  
0,00  
tdoff  
tdoff  
tdon  
tr  
tf  
0,10  
tdon  
tf  
0,01  
tr  
0,00  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
150  
±15  
4
°C  
V
125  
150  
±15  
50  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
4
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,15  
0,12  
0,09  
0,06  
0,03  
0
0,15  
trr High T  
trr High T  
0,12  
0,09  
0,06  
0,03  
trr Low T  
trr Low T  
0
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
17 Jan. 2019 / Revision 4  
copyright Vincotech  
7
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
5
4
3
2
1
0
5
Qrr High T  
4
3
2
1
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
0
25  
50  
75  
100  
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
70  
60  
50  
40  
30  
20  
10  
0
70  
IRRM High T  
60  
50  
40  
30  
20  
10  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
25  
50  
75  
100  
4
8
12  
16  
20  
I
C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
17 Jan. 2019 / Revision 4  
copyright Vincotech  
8
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
6000  
6000  
dIrec/dt T  
dIrec/dt T  
dIo/dt T  
dI0/dt T  
5000  
5000  
4000  
3000  
2000  
1000  
0
4000  
3000  
2000  
1000  
0
0
25  
50  
75  
100  
0
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
10-1  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,005  
0,000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,70  
K/W  
1,38  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
6,67Eꢀ02 1,43E+00  
1,15Eꢀ01 2,44Eꢀ01  
2,87Eꢀ01 6,53Eꢀ02  
1,30Eꢀ01 1,67Eꢀ02  
5,73Eꢀ02 4,56Eꢀ03  
R (K/W) Tau (s)  
8,16Eꢀ02 3,99E+00  
2,02Eꢀ01 6,32Eꢀ01  
7,09Eꢀ01 1,11Eꢀ01  
2,16Eꢀ01 3,68Eꢀ02  
9,74Eꢀ02 5,31Eꢀ03  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
9
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
250  
200  
150  
100  
50  
125  
100  
75  
50  
25  
0
0
T s  
(
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
150  
125  
100  
75  
80  
60  
40  
20  
0
50  
25  
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
10  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck  
Buck Switch IGBT and Buck Diode FWD  
figure 25.  
IGBT  
figure 26.  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
V GE = f(Q g)  
103  
15  
130 V  
10uS  
100uS  
1mS  
102  
12  
9
10mS  
520 V  
100mS  
DC  
101  
6
100  
3
10-1  
0
0
40  
80  
120  
160  
200  
240  
Q g (nC)  
100  
VCE (V)  
103  
102  
101  
At  
At  
D =  
single pulse  
I C  
=
100  
A
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
ºC  
figure 27.  
Reverse bias safe operating area  
IGBT  
I C = f(V CE  
)
250  
IC MAX  
200  
150  
100  
50  
0
0
100  
200  
300  
400  
500  
600  
700  
VCE (V)  
At  
T j =  
125 °C  
R gon  
R goff  
=
=
4
4
17 Jan. 2019 / Revision 4  
copyright Vincotech  
11  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 1.  
IGBT  
figure 2.  
Typical output characteristics  
IGBT  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢂs  
°C  
250  
125  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical diode forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
75  
200  
150  
100  
50  
60  
45  
30  
15  
0
0
0
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
3
VGE (V)  
VF (V)  
At  
At  
T j =  
T j =  
25/125  
250  
°C  
25/125  
250  
°C  
ꢂs  
t p  
=
t p =  
ꢂs  
V
V CE  
=
10  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
12  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
1,5  
1,2  
0,9  
0,6  
0,3  
0
1,5  
1,2  
0,9  
0,6  
0,3  
0
Eoff High T  
Eoff Low T  
Eoff High T  
Eoff Low T  
Eon High T  
Eon Low T  
Eon High T  
Eon Low T  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
50  
V
=
I C =  
A
=
4
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
0,75  
0,75  
Erec High T  
0,6  
0,6  
Erec High T  
0,45  
0,3  
0,45  
0,3  
Erec Low T  
Erec Low T  
0,15  
0,15  
0
0
0
25  
50  
75  
100  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
50  
V
=
I C =  
A
17 Jan. 2019 / Revision 4  
copyright Vincotech  
13  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1
1
tdoff  
tdon  
tf  
tdoff  
tdon  
tf  
tr  
0,1  
0,1  
tr  
0,01  
0,01  
0,001  
0,001  
0
25  
50  
75  
100  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
150  
±15  
4
°C  
V
125  
150  
±15  
50  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
A
=
4
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,4  
0,3  
0,2  
0,1  
0,0  
0,4  
trr High T  
trr High T  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
17 Jan. 2019 / Revision 4  
copyright Vincotech  
14  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
6
5
4
3
2
1
0
6
Qrr High T  
5
4
3
2
1
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I
C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
=
=
V
50  
A
R gon  
=
V GE =  
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
60  
50  
40  
30  
20  
10  
0
60  
IRRM High T  
50  
40  
30  
20  
10  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
4
8
12  
16  
20  
0
25  
50  
75  
100  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
150  
°C  
V
V CE  
V GE  
R gon  
=
=
V
50  
A
=
V GE =  
±15  
V
17 Jan. 2019 / Revision 4  
copyright Vincotech  
15  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
7500  
7500  
dIrec/dt T  
dIrec/dt T  
di0/dt T  
dI0/dt T  
6000  
6000  
4500  
3000  
1500  
0
4500  
3000  
1500  
0
0
25  
50  
75  
100  
0
4
8
12  
16  
20  
I C (A)  
R gon ( )  
At  
At  
T j =  
T j =  
V R =  
I F =  
25/125  
150  
±15  
4
°C  
V
25/125  
°C  
V
V CE  
V GE  
R gon  
=
150  
50  
=
V
A
=
V GE  
=
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
D = 0,5  
D = 0,5  
0,2  
10-1  
10-1  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-2  
10-2  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
1,16  
K/W  
1,36  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
5,64Eꢀ02 4,97E+00  
1,45Eꢀ01 9,35Eꢀ01  
4,55Eꢀ01 1,51Eꢀ01  
3,75Eꢀ01 4,97Eꢀ02  
7,15Eꢀ02 5,37Eꢀ03  
5,72Eꢀ02 3,97Eꢀ04  
6,09Eꢀ02 2,36E+00  
1,41Eꢀ01 3,82Eꢀ01  
6,52Eꢀ01 6,81Eꢀ02  
2,75Eꢀ01 2,04Eꢀ02  
1,29Eꢀ01 4,50Eꢀ03  
1,02Eꢀ01 6,56Eꢀ04  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
16  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost  
Boost Switch IGBT and Boost Diode FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
175  
150  
125  
100  
75  
100  
80  
60  
40  
20  
0
50  
25  
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
150  
125  
100  
75  
80  
60  
40  
20  
0
50  
25  
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
17  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
18  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
4 ꢁ  
4 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
250  
%
125  
%
tdoff  
IC  
200  
150  
100  
100  
IC  
VGE 90%  
75  
50  
25  
0
VCE  
VGE  
VGE  
tEoff  
VCE 90%  
tdon  
VCE  
50  
IC 1%  
VCE 3%  
IC 10%  
VGE 10%  
tEon  
0
-25  
-50  
-0,05  
0
0,05  
0,1  
0,15  
0,2  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time (us)  
time(us)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
150  
50  
V
150  
50  
V
A
A
t doff  
=
=
0,094  
0,171  
ꢂs  
ꢂs  
t don  
=
=
0,071  
0,151  
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
125  
250  
fitted  
%
%
IC  
IC  
100  
200  
150  
IC 90%  
VCE  
75  
50  
25  
0
IC 60%  
100  
IC 90%  
tr  
IC 40%  
VCE  
50  
IC10%  
IC 10%  
0
tf  
-25  
-50  
0
0,03  
0,06  
0,09  
0,12  
0,15  
3,05  
3,08  
3,11  
3,14  
3,17  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
150  
50  
V
V C (100%) =  
I C (100%) =  
t r =  
150  
50  
V
A
A
0,022  
ꢂs  
0,021  
ꢂs  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
19  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck Switching Definitions  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
%
125  
%
Eon  
Eoff  
100  
75  
50  
25  
0
100  
75  
Poff  
50  
Pon  
IC 1%  
25  
VGE 90%  
VCE 3%  
VGE 10%  
0
tEoff  
tEon  
-25  
-25  
2,95  
3
3,05  
3,1  
3,15  
3,2  
-0,1  
-0,05  
0
0,05  
0,1  
0,15  
0,2  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
7,49  
0,32  
0,171  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
7,49  
0,27  
0,151  
kW  
mJ  
ꢂs  
t E off  
=
t E on =  
figure 7.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
IRRM 10%  
-50  
-100  
IRRM 90%  
IRRM 100%  
-150  
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
150  
50  
V
A
ꢀ59  
A
t rr  
=
0,113  
ꢂs  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
20  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Buck Switching Definitions  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Erec  
Qrr  
Id  
100  
100  
75  
tQrr  
tErec  
50  
0
-50  
50  
Prec  
25  
-100  
-150  
0
-25  
3
3,1  
3,2  
3,3  
3,4  
3
3,1  
3,2  
3,3  
3,4  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
50  
A
P rec (100%) =  
E rec (100%) =  
7,49  
0,31  
0,227  
kW  
mJ  
ꢂs  
3,10  
0,227  
ꢂC  
ꢂs  
t Q rr  
=
t E rec =  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
21  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Measurement circuits  
figure 10.  
Buck stage switching measurement circuit  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
22  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost Switching Definitions  
General conditions  
T j  
=
=
=
125 °C  
4 ꢁ  
4 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
200  
125  
%
tdoff  
%
IC  
VCE  
100  
150  
VCE 90%  
VGE 90%  
75  
50  
25  
0
VCE  
IC  
100  
VGE  
tdon  
tEoff  
50  
VCE 3%  
VGE 10%  
IC 1%  
IC 10%  
tEon  
VGE  
0
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
2,9  
3
3,1  
3,2  
3,3  
time (us)  
time(us)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
150  
50  
V
150  
50  
V
A
A
t doff  
=
=
0,156  
0,676  
ꢂs  
ꢂs  
t don  
=
=
0,094  
0,217  
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
125  
200  
IC  
fitted  
%
%
VCE  
IC  
100  
150  
IC 90%  
75  
50  
25  
0
VCE  
100  
IC 60%  
IC 90%  
tr  
IC 40%  
50  
IC 10%  
IC10%  
0
tf  
-25  
-50  
0,05  
0,1  
0,15  
0,2  
0,25  
0,3  
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
150  
50  
V
V C (100%) =  
I C (100%) =  
t r =  
150  
50  
V
A
A
0,097  
ꢂs  
0,017  
ꢂs  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
23  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost Switching Definitions  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
%
Eon  
Eoff  
100  
100  
Poff  
75  
75  
50  
50  
Pon  
IC 1%  
25  
25  
0
VGE 90%  
VGE 10%  
VCE 3%  
0
tEon  
tEoff  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
7,56  
0,95  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
7,56  
kW  
mJ  
ꢂs  
0,25  
t E off  
=
0,676  
t E on  
=
0,217  
figure 7.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
IRRM 10%  
0
-50  
IRRM 90%  
IRRM 100%  
-100  
-150  
3
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
150  
50  
V
A
ꢀ43  
A
t rr  
=
0,290  
ꢂs  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
24  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Boost Switching Definitions  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Id  
Erec  
Qrr  
100  
100  
tErec  
75  
tQrr  
50  
50  
0
-50  
25  
Prec  
0
-100  
-25  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
50  
A
P rec (100%) =  
E rec (100%) =  
7,56  
0,52  
1,00  
kW  
mJ  
ꢂs  
4,21  
1,00  
ꢂC  
ꢂs  
t Q rr  
=
t E rec =  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
25  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Measurement circuits  
figure 10.  
Boost stage switching measurement circuit  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
26  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Ordering Code & Marking  
Version  
Ordering Code  
without thermal paste 12 mm housing with solder pins  
with thermal paste 12 mm housing with solder pins  
without thermal paste 12 mm housing with pressꢀfit pins  
with thermal paste 12 mm housing with pressꢀfit pins  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀFZ07NMA100SMꢀM265F58ꢀ/3/  
10ꢀPZ07NMA100SMꢀM265F58Y  
10ꢀPZ07NMA100SMꢀM265F58Yꢀ/3/  
Name  
Text  
Date code  
UL & VIN  
Lot  
Serial  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
NNꢀNNNNNNNNNNNNNNꢀTTTTTTVV  
WWYY  
UL VIN  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
WWYY  
Outline  
Pin table [mm]  
Solder pins  
Pin  
1
X
33,6  
30,8  
22  
Y
Function  
S2  
0
2
0
G2  
3
0
ꢀDC  
ꢀDC  
GND  
S4  
4
19,2  
10,1  
2,8  
0
0
5
0
6
0
7
0
G4  
8
0
7,1  
9,9  
12,7  
15,5  
22,6  
22,6  
22,6  
22,6  
22,6  
22,6  
22,6  
14,8  
8,2  
Line  
Line  
Line  
Line  
G3  
9
0
Pressꢀfit pins  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
0
0
0
2,8  
10,1  
19,2  
22  
S3  
GND  
+DC  
+DC  
G1  
30,8  
33,6  
33,6  
33,6  
S1  
NTC1  
NTC2  
Not assembled  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
27  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Pinout  
T1  
T2  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1, T2  
D4, D3  
T4, T3  
D1, D2  
NTC  
IGBT  
FWD  
IGBT  
FWD  
NTC  
650 V  
600 V  
600 V  
650 V  
100 A  
60 A  
75 A  
50 A  
Buck Switch  
Buck Diode  
Boost Switch  
Boost Diode  
Thermistor  
17 Jan. 2019 / Revision 4  
copyright Vincotech  
28  
10ꢀFZ07NMA100SMꢀM265F58  
10ꢀPZ07NMA100SMꢀM265F58Y  
Datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
135  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data  
Package data for flow 0 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
27  
Correct NTC coordinates  
10ꢀxZ07NMA100SMꢀM265F58xꢀD4ꢀ14  
17 Jan. 2019  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
29  
17 Jan. 2019 / Revision 4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY