30-PT12NMA160SH02-M669F28Y [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
30-PT12NMA160SH02-M669F28Y
型号: 30-PT12NMA160SH02-M669F28Y
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总32页 (文件大小:1226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
flow 2 MNPC  
1200 V / 160 A  
Features  
flow 2 13mm housing  
● Mixed voltage NPC topology  
● Reactive power capability  
● Low inductance layout  
● Split output  
Pressꢀfit Pin  
Solder Pin  
● Common collector neutral connection  
Target Applications  
Schematic  
● Solar inverter  
● UPS  
● Active frontend  
Types  
● 30-FT12NMA160SH02-M669F28  
● 30-PT12NMA160SH02-M669F28Y  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Inverse Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I F  
1200  
17  
V
A
T j = T jmax  
t p = 10 ms  
T j = T jmax  
T s = 80 °C  
I FRM  
Maximum repetitive forward current  
14  
40  
A
I2tꢀvalue  
I 2  
t
A2s  
P tot  
T s = 80 °C  
Power dissipation  
40  
W
T jmax  
Maximum Junction Temperature  
150  
°C  
Buck Switch  
V CE  
I C  
Collectorꢀemitter breakdown voltage  
1200  
156  
480  
320  
398  
±20  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
A
V CEmax = 1200 V, T vj ≤ 150 °C  
T j = T jmax  
A
P tot  
V GE  
T s = 80 °C  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
04 Jun. 2021 / Revision 6  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Diode  
V RRM  
I F  
P tot  
T jmax  
Peak Repetitive Reverse Voltage  
650  
96  
V
A
T j = T jmax  
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
Power dissipation  
129  
175  
W
°C  
Maximum Junction Temperature  
Boost Switch  
V CE  
I C  
Collectorꢀemitter breakdown voltage  
650  
94  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operating area  
Power dissipation  
300  
300  
174  
±20  
A
V CE ≤ 600 V, T j ≤ 175 °C  
T j = T jmax  
A
P tot  
V GE  
T s = 80 °C  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
Boost Inverse Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
650  
38  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Maximum repetitive forward current  
Power dissipation  
60  
A
65  
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Boost Diode  
V RRM  
I F  
Peak Repetitive Reverse Voltage  
1200  
65  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
I FSM  
P tot  
T jmax  
t p = 8,3 ms Half sine wave 60 Hz  
T j = T jmax  
Nonrepetitive peak surge current  
Power dissipation  
650  
128  
175  
A
W
°C  
Maximum Junction Temperature  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
°C  
°C  
ꢀ40…+(T jmax ꢀ 25)  
Operation temperature under switching condition  
Isolation Properties  
DC Test Voltage*  
AC Voltage  
t p = 2 s  
4000  
2500  
V
V is  
Isolation voltage  
t p = 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
>200  
mm  
mm  
Comparative tracking index  
CTI  
* 100 % Tested in production  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
2
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V CE [V] I F [A]  
V DS [V] I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Buck Inverse Diode  
Forward voltage  
25  
125  
25  
125  
25  
125  
1
1,97  
1,65  
1,33  
1,01  
91  
3,4  
V F  
V to  
r t  
7
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
7
7
mꢁ  
mA  
91  
I r  
1200  
25  
0,25  
phaseꢀchange  
material  
λ = 3,4 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
1,57  
Buck Switch  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,006  
25  
5,3  
2
5,8  
6,3  
V
V
25  
125  
2,02  
2,37  
2,42  
15  
0
160  
1200  
0
25  
25  
0,02  
480  
mA  
nA  
K
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
134  
132  
29  
Rise time  
33  
ns  
199  
247  
36  
54,8  
1,82  
3,36  
3,39  
5,81  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 4 ꢁ  
R gon = 4 ꢁ  
±15  
350  
150  
Fall time  
E on  
Turnꢀon energy loss  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turnꢀoff energy loss  
125  
Input capacitance  
9320  
600  
520  
740  
Output capacitance  
f = 1 MHz  
0
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
160  
nC  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance junction to sink  
0,22  
K/W  
λ = 3,4 W/mK  
Buck Diode  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
2,28  
1,67  
92  
133  
30  
V F  
I RRM  
Diode forward voltage  
100  
150  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
115  
1,65  
6,41  
12559  
4726  
0,23  
1,25  
Q rr  
R gon = 4 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
350  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
phaseꢀchange  
material  
λ = 3,4 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
0,73  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
3
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V CE [V] I F [A]  
V DS [V] I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Boost Switch  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0016  
25  
5,1  
5,8  
6,4  
V
V
25  
125  
0,93  
1,58  
1,8  
1,77  
15  
0
100  
650  
0
25  
25  
0,0056  
300  
mA  
nA  
K
20  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
103  
103  
17  
Rise time  
19  
ns  
158  
179  
44  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 4 ꢁ  
R gon = 4 ꢁ  
±15  
350  
100  
Fall time  
64  
1,06  
1,52  
2,48  
3,32  
E on  
Turnꢀon energy loss  
Turnꢀoff energy loss  
Input capacitance  
µWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
6280  
400  
186  
620  
Output capacitance  
f = 1 MHz  
0
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
480  
100  
nC  
phaseꢀchange  
material  
λ = 3,4 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
0,48  
Boost Inverse Diode  
25  
125  
1,23  
1,64  
1,55  
1,87  
V F  
Diode forward voltage  
30  
V
phaseꢀchange  
material  
λ = 3,4 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
1,22  
Boost Diode  
25  
150  
1,50  
2,47  
2,11  
3,30  
200  
V F  
Diode forward voltage  
60  
V
ꢂA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
350  
25  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
107  
142  
51  
69  
6
A
t rr  
ns  
Q rr  
R gon = 4 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
100  
µC  
13  
5985  
2890  
1,71  
3,61  
( di rf/dt )max  
E rec  
A/µs  
mWs  
phaseꢀchange  
material  
λ = 3,4 W/mK  
K/W  
R th(j-s)  
Thermal resistance junction to sink  
0,68  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
Bꢀvalue  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
K
%
R 100 = 1486 ꢁ  
ꢀ12  
+12  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3998  
B (25/100)  
Bꢀvalue  
K
Vincotech NTC Reference  
B
04 Jun. 2021 / Revision 6  
copyright Vincotech  
4
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
240  
180  
120  
60  
240  
180  
120  
60  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢂs  
250  
125  
ꢂs  
T j =  
T j =  
°C  
°C  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
300  
240  
180  
120  
60  
80  
60  
40  
20  
0
0
0
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
3
3,5  
VGE (V)  
VF (V)  
At  
At  
25/125  
250  
T j =  
T j =  
°C  
25/125  
250  
°C  
t p  
V CE  
T j =  
=
t p =  
ꢂs  
V
ꢂs  
=
10  
25/125  
°C  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
5
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
12  
10  
8
12  
10  
8
Eon High T  
Eoff High T  
Eon Low  
T
Eon High T  
Eoff High T  
6
6
Eoff Low T  
Eoff Low T  
4
4
Eon Low T  
2
2
0
0
0
50  
100  
150  
200  
250  
300  
I C (A)  
0
4
8
12  
16  
20  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
K
150  
A
=
4
K
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
1,6  
1,2  
0,8  
0,4  
0
1,6  
1,2  
0,8  
0,4  
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
250  
300  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
K
150  
A
04 Jun. 2021 / Revision 6  
copyright Vincotech  
6
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdon  
µ
µ
µ
µ
µ
µ
µ
µ
tdoff  
tdon  
0,10  
0,01  
0,00  
0,10  
0,01  
0,00  
tr  
tf  
tf  
tr  
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
250  
300  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
4
°C  
V
125  
350  
±15  
150  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
K
A
=
4
K
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,14  
0,30  
µ
µ
µ
µ
µ
µ
µ
µ
trr High T  
0,12  
0,10  
0,08  
0,06  
0,04  
0,02  
0,00  
At  
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
trr High T  
trr Low T  
trr Low T  
0
4
8
12  
16  
20  
R gon ( )  
I C (A)  
0
50  
100  
150  
200  
250  
300  
At  
T j =  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
=
V
150  
A
=
V GE =  
K
±15  
V
04 Jun. 2021 / Revision 6  
copyright Vincotech  
7
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
10  
10  
µ
µ
µ µ  
µ µ  
µ
µ
8
6
4
2
0
8
6
4
2
0
Qrr High T  
Qrr High T  
Qrr Low T  
Qrr Low T  
0
4
8
12  
16  
20  
R gon ( )  
I C (A)  
300  
0
50  
100  
150  
200  
250  
At  
At  
T j =  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
=
V
150  
A
=
V GE =  
K
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
200  
180  
150  
120  
90  
IRRM High T  
160  
120  
80  
IRRM Low T  
60  
IRRM High T  
40  
30  
IRRM Low T  
0
0
0
0
50  
100  
150  
200  
250  
300  
I C (A)  
R gon ( )  
4
8
12  
16  
20  
At  
At  
T j =  
T j =  
°C  
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
V R =  
I F =  
V
V
K
=
150  
A
=
V GE =  
±15  
V
04 Jun. 2021 / Revision 6  
copyright Vincotech  
8
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
16000  
30000  
dI0/dt T  
µ
µ
µ
µ
dI0/dt T  
µ
µ
µ
µ
dIrec/dt T  
dIrec/dt T  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
25000  
20000  
15000  
10000  
5000  
0
0
50  
100  
150  
200  
250  
300  
0
4
8
12  
16  
20  
R gon ( )  
I C (A)  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
=
V
150  
A
=
V GE =  
K
±15  
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,22  
K/W  
0,73  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
8,1Eꢀ02 2,3E+00  
5,7Eꢀ02 2,9Eꢀ01  
7,2Eꢀ02 4,6Eꢀ02  
2,1Eꢀ02 1,3Eꢀ02  
8,0Eꢀ03 1,5Eꢀ03  
R (K/W) Tau (s)  
6,7Eꢀ02 4,1E+00  
7,9Eꢀ02 9,3Eꢀ01  
1,9Eꢀ01 1,4Eꢀ01  
2,8Eꢀ01 3,5Eꢀ02  
6,1Eꢀ02 6,8Eꢀ03  
5,6Eꢀ02 1,2Eꢀ03  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
9
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
800  
600  
400  
200  
0
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
T s (  
o C)  
0
50  
100  
150  
200  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
240  
210  
180  
150  
120  
90  
100  
80  
60  
40  
20  
0
60  
30  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
10  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 25.  
IGBT  
figure 26.  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
V GE = f(Q g)  
17,5  
15  
12,5  
10  
103  
240 V  
102  
100uS  
960 V  
101  
1mS  
7,5  
5
10mS  
100  
100mS  
DC  
2,5  
0
10-1  
0
100  
200  
300  
400  
500  
600  
700  
800  
100  
102  
103  
VCE (V)  
Q g (nC)  
101  
At  
At  
D =  
single pulse  
I C  
=
160  
25  
A
T s =  
80  
ºC  
T j=  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gateꢀemitter voltage  
Typical short circuit collector current as a function of  
gateꢀemitter voltage  
t sc = f(V GE  
)
I C(sc) = f(V GE)  
50  
1200  
1000  
800  
600  
400  
200  
40  
30  
20  
10  
0
0
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
VGE (V)  
V GE(V)  
At  
At  
V CE  
=
600  
175  
V
V CE  
600  
175  
V
T j ≤  
T j =  
ºC  
ºC  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
11  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Characteristics  
figure 29.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
)
400  
I C MAX  
300  
200  
100  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
T j =  
T jmaxꢀ25  
ºC  
V ccminus = V ccplus  
Switching mode :  
3 level switching  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
12  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
250  
25  
ꢂs  
°C  
250  
150  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
100  
180  
150  
120  
90  
80  
60  
40  
20  
60  
30  
0
0
0
2
4
6
8
10  
0
1
2
3
4
VGE (V)  
VF (V)  
At  
At  
T j =  
T j =  
25/150  
250  
°C  
ꢂs  
V
25/150  
250  
°C  
t p  
=
t p =  
ꢂs  
V CE  
=
10  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
13  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical switching energy losses  
as a function of gate resistor  
E = f(R G)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Eon High T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eoff High T  
Eoff Low T  
Eon High T  
Eon Low T  
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
350  
±15  
4
°C  
V
25/125  
350  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
±15  
V
=
I C =  
K
100  
A
=
4
K
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
Typical reverse recovery energy loss  
as a function of gate resistor  
E rec = f(R G)  
5
4
3
2
1
0
5
4
3
2
1
0
Erec High T  
Erec Low T  
Erec High T  
Erec Low T  
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
V CE  
V GE  
=
=
=
V
±15  
V
=
I C =  
K
100  
A
04 Jun. 2021 / Revision 6  
copyright Vincotech  
14  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical switching times as a  
function of gate resistor  
t = f(R G)  
1,00  
1,00  
tdoff  
tdon  
µ
µ
µ
µ
µ
µ
µ
µ
tdoff  
tdon  
tf  
0,10  
0,01  
0,00  
0,10  
0,01  
0,00  
tr  
tf  
tr  
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
125  
350  
±15  
4
°C  
V
125  
350  
±15  
100  
°C  
V
V CE  
=
V CE  
V GE  
=
V GE  
R gon  
R goff  
=
=
V
V
=
I C =  
K
A
=
4
K
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
t rr = f(R gon  
)
0,12  
0,7  
trr High T  
µ
µ
µ
µ
trr High T  
µ
µ
µ
µ
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0
0,09  
0,06  
0,03  
0,00  
trr Low T  
trr Low T  
0
4
8
12  
16  
20  
R gon ( )  
0
50  
100  
150  
200  
I C (A)  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
=
V
100  
A
=
V GE =  
K
±15  
V
04 Jun. 2021 / Revision 6  
copyright Vincotech  
15  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Q rr = f(R gon  
)
18  
15  
Qrr High T  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
15  
12  
9
12  
9
Qrr Low T  
6
Qrr Low T  
6
3
3
0
0
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
R gon ( )  
I C (A)  
At  
At  
T j =  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
=
V
100  
A
=
V GE =  
K
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
I RRM = f(R gon  
)
180  
150  
120  
90  
200  
IRRM High T  
160  
120  
80  
IRRM Low T  
IRRM High T  
IRRM Low T  
60  
40  
30  
0
0
0
4
8
12  
16  
20  
0
50  
100  
150  
200  
R gon ( )  
I C (A)  
At  
At  
T j =  
T j =  
°C  
V
°C  
V
25/125  
350  
±15  
4
25/125  
350  
V CE  
V GE  
R gon  
=
V R =  
I F =  
=
V
100  
A
=
V GE =  
K
±15  
V
04 Jun. 2021 / Revision 6  
copyright Vincotech  
16  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI 0/dt ,dI rec/dt = f(R gon  
)
10000  
18000  
dI0/dt T  
µ
µ
µ
µ
µ
µ
µ
µ
dI0/dt T  
dIrec/dt T  
dIrec/dt T  
15000  
12000  
9000  
6000  
3000  
0
8000  
6000  
4000  
2000  
0
0
50  
100  
150  
200  
0
4
8
12  
16  
20  
R gon ( )  
I C (A)  
At  
T j =  
At  
T j =  
V R =  
I F =  
°C  
V
°C  
V
25/125  
25/125  
V CE  
V GE  
R gon  
=
350  
±15  
4
350  
100  
±15  
=
V
A
=
V GE  
=
K
V
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
101  
101  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
D = 0,5  
0,2  
0,1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101 10  
At  
At  
t p / T  
t p / T  
D =  
D =  
R th(j-s)  
=
R th(j-s) =  
0,48  
K/W  
0,68  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
6,8Eꢀ02 3,7E+00  
1,0Eꢀ01 5,4Eꢀ01  
2,0Eꢀ01 9,8Eꢀ02  
2,6Eꢀ01 2,8Eꢀ02  
6,8Eꢀ02 4,9Eꢀ03  
1,1Eꢀ01  
8,8Eꢀ02  
1,2Eꢀ01  
1,7Eꢀ01  
3,0Eꢀ02  
2,9E+00  
4,6Eꢀ01  
9,5Eꢀ02  
2,5Eꢀ02  
4,4Eꢀ03  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
17  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
400  
350  
300  
250  
200  
150  
100  
50  
125  
100  
75  
50  
25  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
300  
250  
200  
150  
100  
50  
80  
60  
40  
20  
0
0
0
50  
100  
150  
200  
T s (  
o C)  
T s  
(
o C)  
0
50  
100  
150  
200  
At  
T j =  
At  
T j =  
175  
ºC  
175  
ºC  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
18  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 25.  
IGBT  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
103  
10uS  
102  
100uS  
101  
1mS  
10mS  
100  
100mS  
DC  
10-1  
100  
102  
101  
103  
VCE (V)  
At  
single pulse  
D =  
T s =  
80  
ºC  
V GE  
=
±15  
T jmax  
V
T j =  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
19  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Characteristics  
figure 25.  
IGBT  
figure 26.  
IGBT  
Reverse bias safe operating area  
Gate voltage vs Gate charge  
I C = f(V CE  
)
V GE = f(Q g)  
250  
16  
14  
12  
I C MAX  
200  
150  
100  
50  
480 V  
120 V  
10  
8
6
4
2
0
0
0
100  
200  
300  
400  
500  
600  
VCE (V)  
700  
0
50  
100  
150  
200  
250  
Q g (nC)  
At  
At  
T j =  
T jmaxꢀ25  
ºC  
3 level switching  
I C  
=
100  
25  
A
V ccminus = V ccplus  
T j=  
ºC  
Switching mode :  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gateꢀemitter voltage  
Typical short circuit collector current as a function of  
gateꢀemitter voltage  
t sc = f(V GE  
)
I C(sc) = f(V GE)  
14  
1600  
1400  
1200  
1000  
800  
12  
10  
8
6
600  
4
400  
2
200  
0
0
10  
11  
12  
13  
14  
15  
12  
14  
16  
18  
20  
VGE (V)  
V GE(V)  
At  
At  
V CE  
=
600  
150  
V
V CE  
400  
125  
V
T j ≤  
T j =  
ºC  
ºC  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
20  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Inverse Diode  
figure 25.  
FWD  
figure 26.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
90  
75  
60  
45  
30  
15  
0
101  
100  
10-1  
10-2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
t p (s)  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
3,0  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
VF (V)  
At  
At  
t p / T  
T j =  
°C  
ꢂs  
D =  
R th(j-s) =  
25/150  
250  
t p  
=
1,22  
K/W  
figure 27.  
Power dissipation as a  
FWD  
figure 28.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
150  
125  
100  
75  
50  
40  
30  
20  
10  
0
50  
25  
0
T s (  
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
21  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Inverse Diode  
figure 1.  
FWD  
figure 2.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F= f(V F)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
21  
18  
15  
12  
9
101  
100  
10-1  
10-2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
6
3
0
0
1
2
3
4
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
T j =  
°C  
D =  
R th(j-s) =  
25/125  
250  
t p  
=
ꢂs  
1,57  
K/W  
figure 3.  
Power dissipation as a  
FWD  
figure 4.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
120  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
T s (  
o C)  
T s (  
o C)  
0
25  
50  
75  
100  
125  
150  
At  
At  
T j =  
T j =  
150  
ºC  
150  
ºC  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
22  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
T (°C)  
125  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
23  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Switching Characteristics  
General conditions  
T j  
=
=
=
125 °C  
4 ꢁ  
4 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
150  
%
250  
%
tdoff  
200  
VCE  
IC  
100  
VGE 90%  
VGE  
VCE 90%  
IC  
150  
VCE  
100  
50  
0
VGE  
tdon  
tEoff  
50  
IC 1%  
VCE5%  
VGE10%  
IC10%  
0
tEon  
-50  
-50  
2,95  
3,05  
3,15  
3,25  
3,35  
3,45  
time(µs)  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (µs)  
V GE (0%) =  
ꢀ15  
V
V GE (0%) =  
ꢀ15  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V
A
350  
149  
0,25  
0,62  
V
350  
149  
0,13  
0,37  
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
%
250  
%
125  
200  
fitted  
VCE  
IC  
Ic  
100  
75  
50  
25  
0
150  
IC 90%  
VCE  
IC 60%  
100  
IC90%  
tr  
IC 40%  
50  
IC10%  
IC10%  
0
tf  
-25  
-50  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time (µs)  
time(µs)  
V C (100%) =  
I C (100%) =  
t f =  
350  
149  
0,06  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
149  
0,03  
V
A
A
ꢂs  
ꢂs  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
24  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
%
125  
%
Eon  
IC  
1%  
Eoff  
100  
100  
75  
75  
50  
50  
Pon  
Poff  
25  
25  
VCE  
3%  
VGE 90%  
VGE  
10%  
0
0
tEon  
tEoff  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (µs)  
time(µs)  
P off (100%) =  
E off (100%) =  
52,08  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
52,08  
kW  
mJ  
ꢂs  
5,81  
0,62  
3,36  
0,37  
t E off  
=
t E on =  
figure 7.  
FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
0
IRRM 10%  
-50  
fitted  
IRRM 90%  
IRRM 100%  
-100  
3,1  
3,15  
3,2  
3,25  
3,3  
3,35  
time(µs)  
3,4  
V d (100%) =  
I d (100%) =  
350  
V
149  
A
I RRM (100%) =  
t rr  
ꢀ133  
0,11  
A
=
ꢂs  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
25  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Buck Switching Characteristics  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
125  
%
Erec  
Id  
Qrr  
100  
100  
tErec  
75  
tQrr  
50  
50  
0
-50  
25  
Prec  
0
-25  
-100  
3,1  
3,15  
3,2  
3,25  
3,3  
3,35  
3,4  
3,45  
3,5  
3,1  
3,15  
3,2  
3,25  
3,3  
3,35  
3,4  
3,45  
3,5  
time(µs)  
time(µs)  
I d (100%) =  
Q rr (100%) =  
149  
A
P rec (100%) =  
E rec (100%) =  
52,08  
kW  
mJ  
ꢂs  
6,41  
0,23  
ꢂC  
ꢂs  
1,25  
0,23  
t Q rr  
=
t E rec =  
Buck switching measurement circuit  
figure 10.  
IGBT  
Vcc  
V
D2  
15V  
Q1  
DQ1  
DQ3  
D3  
OUT1  
Q3  
3*470uF  
3*470uF  
47kohm  
47kohm  
5nH  
5nH  
200uH  
Vdc  
700  
15V  
15V  
Vce  
V
Q4  
D4  
OUT2  
D1  
Vge  
V
Q2  
DQ4  
DQ2  
1mH  
L6  
Ic  
A
0.00001  
Q
0.000003  
Q
Rgon  
+15V  
Q
Q
Rgoff  
-15V  
Q
Q
04 Jun. 2021 / Revision 6  
copyright Vincotech  
26  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Switching Characteristics  
General conditions  
T j  
=
=
=
125 °C  
4 ꢁ  
4 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
tdoff  
%
%
IC  
VCE  
100  
200  
VCE 90%  
VGE 90%  
75  
50  
25  
0
150  
VGE  
IC  
VCE  
100  
VGE  
tEoff  
tdon  
50  
VCE 3%  
IC 1%  
VGE 10%  
IC 10%  
0
tEon  
-25  
-50  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
time (µs)  
0,5  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
time(µs)  
V GE (0%) =  
ꢀ15  
15  
V
V GE (0%) =  
ꢀ15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
350  
100  
0,18  
0,44  
V
350  
100  
0,10  
0,15  
V
A
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
125  
250  
fitted  
Ic  
%
%
IC  
100  
200  
Ic  
90%  
75  
150  
100  
50  
Ic  
60%  
VCE  
50  
IC 90%  
Ic  
40%  
tr  
25  
Ic 10%  
VCE  
IC 10%  
0
0
tf  
-25  
-50  
0,00  
0,05  
0,10  
0,15  
0,20  
0,25  
0,30  
3,05  
3,1  
3,15  
3,2  
time (µs)  
time(µs)  
V C (100%) =  
I C (100%) =  
t f =  
350  
V
V C (100%) =  
I C (100%) =  
t r =  
350  
100  
V
100  
A
A
0,064  
ꢂs  
0,019  
ꢂs  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
27  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
200  
%
%
Ic 1%  
Eoff  
Pon  
100  
75  
50  
25  
0
150  
100  
50  
Poff  
Eon  
Uge 10%  
Uge 90%  
Uce 3%  
0
tEoff  
tEon  
-50  
-25  
2,95  
3
3,05  
3,1  
3,15  
3,2  
3,25  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
time (µs)  
0,5  
time(µs)  
P off (100%) =  
E off (100%) =  
34,96  
3,32  
0,44  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
34,964  
1,52  
kW  
mJ  
ꢂs  
t E off  
=
t E on  
=
0,15  
figure 7.  
FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Ud  
fitted  
0
-50  
IRRM 10%  
-100  
-150  
IRRM 90%  
IRRM 100%  
3,05  
3,1  
3,15  
3,2  
3,25  
3,3  
time(µs)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
350  
V
100  
A
ꢀ142  
0,07  
A
t rr  
=
ꢂs  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
28  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Boost Switching Characteristics  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Qrr  
Id  
Erec  
100  
100  
75  
50  
25  
0
tQint  
50  
tErec  
0
-50  
Prec  
-100  
-150  
-25  
3
3,25  
3,5  
3,75  
4
4,25  
3
3,2  
3,4  
3,6  
3,8  
4
4,2  
time(µs)  
time(µs)  
I d (100%) =  
Q rr (100%) =  
100  
A
P rec (100%) =  
E rec (100%) =  
34,96  
3,61  
1,00  
kW  
mJ  
ꢂs  
12,71  
1,00  
ꢂC  
ꢂs  
t Qint  
=
t E rec =  
Boost switching measurement circuit  
figure 10.  
IGBT  
V
Vcc  
D2  
Q1  
15V  
DQ1  
Vce  
V
DQ3  
D3  
15V  
OUT1  
3*470uF  
3*470uF  
Q3  
47kohm  
47kohm  
5nH  
200uH  
VDC  
700  
5nH  
Q4  
D4  
OUT2  
D1  
15V  
DQ4  
Q2  
DQ2  
1mH  
L6  
I2  
A
+15V  
Rgon  
0.00001  
Q
0.000003  
Q
Vge  
Q
Q
V
Rgoff  
-15V  
Q
Q
04 Jun. 2021 / Revision 6  
copyright Vincotech  
29  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Ordering Code & Marking  
Version  
without thermal paste 13 mm housing with solder pins  
with thermal paste 13 mm housing with solder pins  
without thermal paste 13 mm housing with press-fit pins  
with thermal paste 13 mm housing with press-fit pins  
Ordering Code  
30-FT12NMA160SH02-M669F28  
30-FT12NMA160SH02-M669F28-/3/  
30-PT12NMA160SH02-M669F28Y  
30-PT12NMA160SH02-M669F28Y-/3/  
Name  
Date code  
WWYY  
Serial  
UL & VIN  
UL VIN  
Lot  
Serial  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
Text  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Date code  
WWYY  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
Outline  
Pin table  
Pin table  
Y
Pin  
X
Y
3
0
0
0
0
0
3
0
3
0
Pin  
X
Function  
C1  
Function  
K1  
70  
1
2
52  
53  
54  
55  
56  
52  
18,1  
70  
C1  
C1  
C1  
C1  
C1  
N1  
N1  
N1  
N1  
64,2  
70,6  
70  
36,6  
36,55  
18,9  
NTC1  
NTC2  
S1  
3
4
67,5  
65  
5
62,5  
60  
68,55  
15,9  
G1  
6
7
52,75  
52,75  
50,25  
50,25  
8
9
10  
11  
12  
13  
43  
43  
40,5  
3
0
3
E1  
E1  
E1  
14  
15  
16  
17  
18  
19  
20  
21  
22  
40,5  
38  
0
3
0
3
0
3
0
3
0
E1  
E1  
E1  
E2  
E2  
E2  
E2  
E2  
E2  
38  
32  
32  
29,5  
29,5  
27  
27  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
19,75  
17,25  
14,75  
12,25  
5
0
N2  
N2  
N2  
N2  
C2  
C2  
C2  
C2  
C2  
C2  
G4  
S4  
K2  
0
0
0
3
5
0
3
2,5  
2,5  
0
0
3
0
0
5,75  
5,75  
12,1  
19,45  
22,45  
22,7  
04 Jun. 2021 / Revision 6  
Copyright Vincotech  
30  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Pinout  
Identification  
ID  
Component  
Voltage  
Current  
Function  
Comment  
Q1, Q2  
DQ1, DQ2  
D3, D4  
Q3, Q4  
DQ3, DQ4  
D1, D2  
R1  
IGBT  
FWD  
FWD  
IGBT  
FWD  
FWD  
NTC  
1200 V  
1200 V  
650 V  
160 A  
7 A  
Buck Switch  
Buck Sw. Protection Diode  
Buck Diode  
100 A  
100 A  
60 A  
60 A  
650 V  
Boost Switch  
650 V  
Boost Sw. Protection Diode  
Boost Diode  
1200 V  
Thermistor  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
31  
30ꢀFT12NMA160SH02ꢀM669F28  
30ꢀPT12NMA160SH02ꢀM669F28Y  
datasheet  
Packaging instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
36  
Handling instruction  
Handling instructions for flow 2 packages see vincotech.com website.  
Package data  
Package data for flow 2 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
30  
30ꢀxT12NMA160SH02ꢀM669F28xꢀD6ꢀ14  
04 Jun. 2021  
Ordering Code and Marking corrected  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
04 Jun. 2021 / Revision 6  
copyright Vincotech  
32  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY