70-W212NMA400SC-M209P [VINCOTECH]

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;
70-W212NMA400SC-M209P
型号: 70-W212NMA400SC-M209P
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current

文件: 总28页 (文件大小:825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70-W212NMA400SC-M209P  
datasheet  
VINcoMNPC X4  
1200 V/400 A  
Features  
VINco X4 housing  
Mixed voltage NPC  
Low inductive  
High power screw interface  
Integrated DC-snubber capacitors  
Target Applications  
Solar inverter  
UPS  
Schematic  
High speed motor drive  
Types  
70-W212NMA400SC-M209P  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
half bridge IGBT ( T1 , T4 )  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
ICpulse  
Ptot  
1200  
V
A
Th=80°C  
Tc=80°C  
338  
439  
Tj=Tjmax  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
1200  
A
Th=80°C  
Tc=80°C  
729  
W
V
1104  
VGE  
±20  
tSC  
Tj150°C  
10  
µs  
V
Short circuit ratings  
VCC  
VGE=15V  
800  
VCE max = 1200V  
Tvj max= 150°C  
Icmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
800  
175  
A
Tjmax  
°C  
neutral point FWD ( D2 , D3 )  
Peak Repetitive Reverse Voltage  
DC forward current  
Tj=25°C  
VRRM  
IF  
600  
V
A
A
Th=80°C  
Tc=80°C  
309  
415  
Tj=Tjmax  
Surge forward current  
IFSM  
890  
3960  
800  
tp = 10 ms, sine halfwave  
Tvj < 150°C  
I2t  
A2s  
A
I2t-value  
IFRM  
tP = 1 ms  
Tj=Tjmax  
Tvj < 150°C  
Repetitive peak forward current  
Power dissipation per FWD  
Maximum Junction Temperature  
Th=80°C  
Tc=80°C  
421  
637  
Ptot  
W
°C  
Tjmax  
175  
copyright by Vincotech  
1
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Maximum Ratings  
Tj=25°C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
neutral point IGBT ( T2 , T3 )  
Collector-emitter break down voltage  
DC collector current  
VCE  
IC  
600  
V
A
Th=80°C  
Tc=80°C  
329  
430  
Tj=Tjmax  
ICpuls  
Ptot  
VGE  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
1200  
A
Th=80°C  
Tc=80°C  
574  
870  
W
V
±20  
tSC  
Tj150°C  
6
µs  
V
Short circuit ratings  
VCC  
VGE=15V  
360  
VCE max = 1200V  
Tvj max= 150°C  
Icmax  
Turn off safe operating area (RBSOA)  
Maximum Junction Temperature  
800  
175  
A
Tjmax  
°C  
half bridge FWD ( D1 , D4 )  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
Tj=25°C  
1200  
V
A
A
Th=80°C  
Tc=80°C  
270  
356  
Tj=Tjmax  
Surge forward current  
IFSM  
2200  
6052  
1200  
tp=10ms , sin 180°  
Tj=150°C  
I2t  
A2s  
A
I2t-value  
IFRM  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per FWD  
Maximum Junction Temperature  
Th=80°C  
Tc=80°C  
540  
818  
Ptot  
W
°C  
Tjmax  
175  
DC link Capacitor  
VMAX  
Max.DC voltage  
Tc=100°C  
630  
V
General Module Properties  
Material of module baseplate  
Material of internal isulation  
Cu  
Al2O3  
Thermal Properties  
Tstg  
Top  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
-40…+(Tjmax - 25)  
Insulation Properties  
Insulation voltage  
Vis  
t=2s  
DC voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright by Vincotech  
2
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VCE [V] or  
VDS [V]  
IC [A] or  
IF [A] or  
ID [A]  
VGE [V] or  
VGS [V]  
Tj  
Min  
Max  
half bridge IGBT ( T1 , T4 )  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. FWD  
Gate-emitter leakage current  
Integrated Gate resistor  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
5,8  
6,5  
2,4  
VGE(th) VCE=VGE  
0,0152  
400  
V
V
1,5  
1,97  
2,23  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,6  
1200  
0
mA  
nA  
3000  
20  
1,88  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
235  
247  
46  
Turn-on delay time  
Rise time  
55  
ns  
292  
354  
55  
td(off)  
tf  
Turn-off delay time  
Rgoff=1  
±15  
350  
400  
Rgon=1 ꢀ  
Fall time  
92  
7,95  
12,30  
13,25  
22,08  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
Eoff  
Cies  
Coss  
Crss  
QGate  
RthJH  
RthJC  
24600  
1620  
1380  
2030  
0,13  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
±15  
960  
400  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
K/W  
0,09  
neutral point FWD ( D2 , D3 )  
FWD forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1,2  
1,67  
1,56  
204  
262  
183  
295  
17  
2,2  
VF  
IRRM  
trr  
400  
400  
V
A
Peak reverse recovery current  
Reverse recovery time  
ns  
Qrr  
Reverse recovered charge  
Rgon=1 ꢀ  
±15  
350  
µC  
33  
di(rec)max  
/dt  
3129  
1705  
3,78  
7,44  
Peak rate of fall of recovery current  
Reverse recovered energy  
A/µs  
mWs  
Erec  
RthJH  
RthJC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
0,23  
K/W  
0,15  
neutral point IGBT ( T2 , T3 )  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl FWD  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
5
1
5,8  
6,5  
2,2  
VGE(th) VCE=VGE  
0,0064  
400  
V
V
1,56  
1,80  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
15  
0
0,1  
600  
0
mA  
nA  
3000  
20  
0,5  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
201  
204  
29  
Rise time  
32  
ns  
248  
272  
71  
td(off)  
Turn-off delay time  
Rgoff=1 ꢀ  
±15  
350  
400  
Rgon=1 ꢀ  
tf  
Fall time  
88  
3,93  
5,61  
10,49  
14,07  
Eon  
Eoff  
Cies  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
pF  
24640  
1536  
732  
Coss  
Crss  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
Reverse transfer capacitance  
Gate charge  
QGate  
RthJH  
RthJC  
±15  
480  
400  
2480  
0,17  
0,11  
nC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
K/W  
copyright by Vincotech  
3
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr [V] or  
VCE [V] or  
VDS [V]  
IC [A] or  
IF [A] or  
ID [A]  
VGE [V] or  
VGS [V]  
Tj  
Min  
Max  
half bridge FWD ( D1 , D4 )  
FWD forward voltage  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
Tj=25°C  
Tj=150°C  
1
2,29  
2,37  
3
VF  
Ir  
400  
400  
V
A  
480  
Reverse leakage current  
1200  
350  
410  
521  
63  
149  
24  
IRRM  
trr  
Peak reverse recovery current  
Reverse recovery time  
A
ns  
Qrr  
Reverse recovered charge  
Rgon=1 ꢀ  
±15  
µC  
49  
di(rec)max  
/dt  
18915  
15110  
5,79  
12,71  
Peak rate of fall of recovery current  
Reverse recovery energy  
A/µs  
mWs  
Erec  
RthJH  
RthJC  
Thermal grease  
thickness50um  
λ = 1 W/mK  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
0,18  
K/W  
0,12  
DC link Capacitor  
C value  
C
2 * 0,68  
26/2  
µF  
nH  
Stray inductance of on board capacitors  
Series resistance of on board capacitors  
ESL  
ESR  
14/2  
mꢀ  
Thermistor  
Rated resistance  
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R
Tj=25°C  
Tj=100°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
Tj=25°C  
22000  
%
R/R R100=1486 ꢀ  
-5  
5
P
200  
2
mW  
mW/K  
K
B(25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3996  
B(25/100)  
B-value  
K
Vincotech NTC Reference  
B
Module Properties  
LsCE  
LsCE  
Rcc'1+EE'  
M
Module inductance (from chips to PCB)  
5
3
nH  
nH  
mꢀ  
Nm  
Nm  
Nm  
g
Module inductance (from PCB to PCB using Intercon board)  
Tc=25°C, per switch  
Resistance of Intercon boards (from PCB to PCB using Intercon board)  
1,5  
Screw M4 - mounting according to valid application note  
FSWB1-4TY-M-*-HI  
Screw M5 - mounting according to valid application note  
FSWB1-4TY-M-*-HI  
Screw M6 - mounting according to valid application note  
FSWB1-4TY-M-*-HI  
Mounting torque  
Mounting torque  
Terminal connection torque  
Weight  
2
4
2,2  
6
M
M
2,5  
5
G
710  
copyright by Vincotech  
4
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 1  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
1600  
1600  
1400  
1200  
1000  
800  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
350  
25  
s  
350  
125  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
8 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
500  
1800  
1500  
1200  
900  
600  
300  
0
400  
300  
200  
100  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
Tj = 25°C  
0
0
0
0,5  
1
1,5  
2
2,5  
3
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
350  
10  
s  
350  
s  
VCE  
=
V
copyright by Vincotech  
5
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
Eon High T  
Eoff High T  
Eon Low T  
Eon High T  
Eoff Low T  
Eoff High T  
Eoff Low T  
Eon Low T  
0
200  
400  
600  
800  
0
2
4
6
8
10  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
°C  
V
°C  
V
V
A
25/125  
25/125  
VCE  
VGE  
=
=
VCE  
VGE  
IC =  
=
=
350  
±15  
1
350  
±15  
400  
V
Rgon  
Rgoff  
=
=
1
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
10  
10  
Erec High T  
8
8
6
6
Erec High T  
Erec Low T  
4
4
Erec Low T  
2
2
0
0
0
200  
400  
600  
800  
0
2
4
6
8
10  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V
A
=
=
=
=
V
±15  
Rgon  
=
400  
copyright by Vincotech  
6
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
tdoff  
tdon  
tdoff  
tdon  
tf  
tf  
0,10  
0,10  
0,01  
0,00  
tr  
tr  
0,01  
0,00  
0
2
4
6
8
10  
0
200  
400  
600  
800  
I
C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
IC =  
125  
350  
±15  
1,0  
°C  
V
125  
350  
±15  
400  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
1,0  
Figure 11  
FWD  
Figure 12  
FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,4  
0,3  
0,2  
0,1  
0,0  
0,5  
trr High T  
trr High T  
0,4  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0,0  
0
2
4
6
8
10  
0
200  
400  
600  
800  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
A
V
=
=
VR =  
IF =  
V
400  
Rgon  
=
VGE =  
±15  
copyright by Vincotech  
7
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
50  
40  
30  
20  
10  
0
40  
Qrr High T  
Qrr High T  
30  
20  
10  
Qrr Low T  
Qrr Low T  
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
I
C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
A
V
=
=
VR =  
IF =  
V
400  
Rgon  
=
VGE =  
±15  
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
350  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
IRRM High T  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
°C  
V
A
V
=
=
VR =  
350  
400  
±15  
IF =  
V
Rgon  
=
VGE =  
copyright by Vincotech  
8
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
10000  
12000  
dIrec/dt T  
dIrec/dt T  
dI0/dt T  
dI0/dt T  
10000  
8000  
6000  
4000  
2000  
8000  
6000  
4000  
2000  
0
0
0
0
200  
400  
600  
800  
2
4
6
8
10  
I
C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
A
V
=
=
VR =  
V
V
IF =  
VGE  
400  
Rgon  
=
=
±15  
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
100  
100  
10-1  
10-1  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-2  
10-2  
0,1  
0,1  
0,05  
0,05  
0,02  
0,01  
0,02  
0,01  
0,005  
0.000  
0,005  
0.000  
10-3  
10-3  
102  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
At  
At  
tp / T  
0,13  
tp / T  
0,23  
D =  
D =  
RthJH  
=
RthJH =  
K/W  
IGBT thermal model values  
K/W  
FWD thermal model values  
Thermal grease  
Thermal grease  
R (C/W)  
0,06  
Tau (s)  
2,5E+00  
R (C/W)  
0,05  
Tau (s)  
5,2E+00  
0,03  
4,7E-01  
3,9E-02  
1,2E-02  
1,2E-03  
0,07  
1,1E+00  
2,0E-01  
4,6E-02  
1,7E-02  
0,03  
0,02  
0,01  
0,06  
0,00  
0,02  
copyright by Vincotech  
9
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
1400  
1200  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
T h (  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
°C  
175  
15  
°C  
V
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
T h (  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
°C  
175  
°C  
copyright by Vincotech  
10  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Buck  
half bridge IGBT and neutral point FWD  
Figure 25  
IGBT  
Figure 26  
IGBT  
Gate voltage vs Gate charge  
Safe operating area as a function  
of collector-emitter voltage  
IC = f(VCE  
)
VGE = f(Qg)  
20  
18  
16  
14  
12  
10  
8
103  
240V  
960V  
102  
101  
100  
6
4
10-1  
2
0
0
400  
800  
A
1200  
1600  
2000  
2400  
Q g (nC)  
2800  
102  
103  
VCE (V)  
101  
100  
At  
At  
IC  
=
D =  
Th =  
400  
single pulse  
80  
ºC  
V
VGE  
Tj =  
=
±15  
Tjmax  
ºC  
Figure 27  
Reverse bias safe operating area  
IGBT  
IC = f(VCE  
1000  
)
ICMAX  
800  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
V
CE (V)  
At  
Tj =  
Tjmax-25  
ºC  
3 level switching  
Uccminus=Uccplus  
Switching mode :  
copyright by Vincotech  
11  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 1  
IGBT  
Figure 2  
Typical output characteristics  
IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
1800  
1800  
1500  
1200  
900  
1500  
1200  
900  
600  
600  
300  
300  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp =  
tp =  
350  
25  
s  
350  
125  
s  
Tj =  
Tj =  
°C  
°C  
VGE from  
VGE from  
8 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
Figure 3  
IGBT  
Figure 4  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
500  
1600  
1200  
800  
400  
0
Tj = 25°C  
400  
300  
200  
100  
Tj = Tjmax-25°C  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
2
4
6
8
10  
12  
0
1
2
3
4
5
VGE (V)  
VF (V)  
At  
At  
tp =  
tp =  
350  
0
s  
350  
s  
VCE  
=
V
copyright by Vincotech  
12  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 5  
IGBT  
Figure 6  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
Eon High T  
Eon Low T  
Eoff High T  
Eoff Low T  
Eoff High T  
Eoff Low T  
Eon High T  
Eon Low T  
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V
A
=
=
=
=
V
±15  
Rgon  
Rgoff  
=
=
IC =  
400  
1
Figure 7  
FWD  
Figure 8  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
20  
15  
10  
5
15  
12  
9
Erec High T  
Erec High T  
Erec Low T  
6
Erec Low T  
3
0
0
0
200  
400  
600  
800  
0
2
4
6
8
10  
R G ( )  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
25/125  
350  
±15  
1
°C  
V
25/125  
350  
°C  
V
V
A
=
=
=
=
V
±15  
Rgon  
=
IC =  
400  
copyright by Vincotech  
13  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 9  
IGBT  
Figure 10  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdon  
tdoff  
tdon  
tf  
0,1  
0,1  
tf  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
0
2
4
6
8
10  
0
200  
400  
600  
800  
I C (A)  
R G ( )  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
125  
350  
±15  
1
°C  
V
125  
350  
±15  
400  
°C  
V
V
A
=
=
=
=
V
Rgon  
Rgoff  
=
=
IC =  
1
Figure 11  
FWD  
Figure 12  
FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
trr = f(Rgon  
)
0,2  
0,2  
0,1  
0,1  
0,0  
0,8  
trr High T  
trr High T  
0,6  
0,4  
0,2  
trr Low T  
trr Low T  
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
°C  
V
A
V
=
=
VR =  
350  
400  
±15  
IF =  
V
Rgon  
=
VGE =  
copyright by Vincotech  
14  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 13  
FWD  
Figure 14  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
75  
60  
45  
30  
15  
0
60  
Qrr High T  
50  
40  
30  
20  
10  
Qrr High T  
Qrr Low T  
Qrr Low T  
0
0
0
200  
400  
600  
800  
2
4
6
8
10  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
°C  
V
A
V
=
VR =  
350  
400  
±15  
=
IF =  
V
Rgon  
=
VGE =  
Figure 15  
FWD  
Figure 16  
FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
600  
500  
400  
300  
200  
100  
0
600  
IRRM High T  
500  
400  
300  
200  
100  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
I
C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
V
25/125  
°C  
V
A
V
=
=
VR =  
350  
400  
±15  
IF =  
V
Rgon  
=
VGE =  
copyright by Vincotech  
15  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 17  
FWD  
Figure 18  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
25000  
25000  
dIrec/dt T  
dIrec/dt T  
dI0/dt T  
dI0/dt T  
20000  
20000  
15000  
10000  
5000  
15000  
10000  
5000  
0
0
0
2
4
6
8
10  
0
200  
400  
600  
800  
I C (A)  
R gon ( )  
At  
At  
Tj =  
VCE  
VGE  
Tj =  
25/125  
350  
±15  
1
°C  
25/125  
350  
°C  
V
A
V
=
=
VR =  
V
V
IF =  
VGE  
400  
Rgon  
=
=
±15  
Figure 19  
IGBT  
Figure 20  
FWD  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FWD transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
100  
100  
10-1  
10-1  
D = 0,5  
D = 0,5  
10-2  
10-2  
0,2  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-3  
10-3  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
At  
At  
D =  
tp / T  
0,17  
D =  
tp / T  
0,18  
RthJH  
=
RthJH =  
K/W  
K/W  
IGBT thermal model values  
IGBT thermal model values  
Tau (s)  
FWD thermal model values  
FWD thermal model values  
Tau (s)  
R (C/W)  
0,03  
R (C/W)  
0,02  
8,9E+00  
2,2E+00  
3,7E-01  
4,3E-02  
1,1E-02  
1,9E-03  
9,8E+00  
2,5E+00  
6,5E-01  
8,1E-02  
2,7E-02  
4,1E-03  
0,07  
0,05  
0,02  
0,03  
0,04  
0,03  
0,01  
0,03  
0,00  
0,01  
copyright by Vincotech  
16  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT and half bridge FWD  
Figure 21  
IGBT  
Figure 22  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
Collector current as a  
function of heatsink temperature  
IC = f(Th)  
1200  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
175  
ºC  
175  
15  
ºC  
V
=
Figure 23  
Power dissipation as a  
FWD  
Figure 24  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Th  
(
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright by Vincotech  
17  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Boost  
neutral point IGBT  
Figure 25  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
1400  
)
ICMAX  
1200  
1000  
800  
600  
400  
200  
0
0
100  
200  
ºC  
300  
400  
500  
600  
700  
VCE (V)  
At  
Tj =  
Tjmax-25  
Uccminus=Uccplus  
Switching mode :  
3 level switching  
copyright by Vincotech  
18  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Thermistor  
Figure 1  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright by Vincotech  
19  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions half bridge IGBT  
General conditions  
Tj  
=
=
=
125 °C  
1  
1 Ω  
Rgon  
Rgoff  
Figure 1  
half bridge IGBT  
Figure 2  
half bridge IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
200  
%
150  
%
IC  
VCE  
tdoff  
150  
100  
VGE 90%  
IC  
VCE  
100  
VGE  
50  
0
VCE 90%  
tEoff  
tdon  
50  
0
IC 1%  
VCE3%  
VGE 10%  
IC 10%  
VGE  
tEon  
-50  
-50  
-0,3  
0
0,3  
0,6  
0,9  
1,2  
3,9  
4,1  
4,3  
4,5  
4,7  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
-15  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
V
350  
400  
0,35  
1,12  
V
350  
400  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
s  
s  
0,25  
0,56  
s  
s  
Figure 3  
half bridge IGBT  
Figure 4  
half bridge IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
175  
fitted  
%
IC  
%
IC  
150  
100  
IC 90%  
125  
100  
75  
75  
VCE  
IC 90%  
IC  
60%  
50  
tr  
IC 40%  
50  
25  
0
VCE  
25  
IC10%  
IC 10%  
tf  
0
-25  
-25  
4,2  
4,25  
4,3  
4,35  
4,4  
4,45  
4,5  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
350  
400  
0,09  
V
350  
V
A
400  
A
s  
0,06  
s  
copyright by Vincotech  
20  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions half bridge IGBT  
Figure 5  
half bridge IGBT  
Figure 6  
half bridge IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
125  
%
125  
%
IC  
1%  
Eon  
Poff  
100  
100  
Eoff  
Pon  
75  
75  
50  
50  
25  
25  
VGE90%  
VGE 10%  
VCE 3%  
0
0
tEon  
tEoff  
-25  
-25  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
time (us)  
3,7  
3,9  
4,1  
4,3  
4,5  
4,7  
4,9  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
140,00  
kW  
mJ  
s  
140,00  
12,30  
0,56  
kW  
mJ  
s  
22,08  
1,12  
tEoff  
=
tEon =  
Figure 7  
half bridge IGBT  
Figure 8  
neutral point FWD  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
125  
20  
%
Id  
100  
75  
15  
10  
5
trr  
50  
25  
0
Vd  
fitted  
-5  
0
IRRM 10%  
-10  
-15  
-20  
-25  
-50  
IRRM 90%  
IRRM 100%  
-75  
-1000  
0
1000  
2000  
3000  
4000  
4,2  
4,3  
4,4  
4,5  
4,6  
4,7  
4,8  
Qg (nC)  
time(us)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
V
350  
V
15  
V
400  
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
350  
400  
3059  
V
-262  
0,30  
A
trr  
=
A
s  
nC  
copyright by Vincotech  
21  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions half bridge IGBT  
Figure 9  
neutral point FWD  
Figure 10  
neutral point FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr = integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
%
125  
%
Erec  
Qrr  
Id  
100  
75  
50  
25  
0
100  
tErec  
tQrr  
50  
0
-50  
Prec  
-100  
-25  
4,2  
4,4  
4,6  
4,8  
5
5,2  
4,2  
4,4  
4,6  
4,8  
5
5,2  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
400  
A
140,00  
kW  
mJ  
s  
Qrr (100%) =  
33,04  
0,64  
C  
s  
7,44  
0,64  
tQrr  
=
tErec =  
half bridge IGBT switching measurement circuit  
Figure 11  
copyright by Vincotech  
22  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions neutral point IGBT  
General conditions  
Tj  
=
=
=
125 °C  
1 Ω  
1 Ω  
Rgon  
Rgoff  
Figure 1  
neutral point IGBT  
Figure 2  
neutral point IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff  
Turn-on Switching Waveforms & definition of tdon, tEon  
(tEoff = integrating time for Eoff  
)
(tEon = integrating time for Eon)  
125  
250  
%
tdoff  
%
IC  
100  
200  
150  
100  
VGE 90%  
IC  
75  
VGE  
50  
VCE  
90%  
tEoff  
VGE  
tdon  
VCE  
25  
50  
VCE  
VCE 3%  
VGE 10%  
IC 10%  
0
0
tEon  
IC 1%  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
3,9  
4
4,1  
4,2  
4,3  
4,4  
4,5  
time (us)  
time(us)  
VGE (0%) =  
VGE (0%) =  
-15  
V
-15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
VGE (100%) =  
VC (100%) =  
IC (100%) =  
15  
V
15  
V
700  
400  
0,23  
0,58  
V
700  
400  
0,20  
0,38  
V
A
A
tdoff  
tEoff  
=
=
tdon  
tEon  
=
=
s  
s  
s  
s  
Figure 3  
neutral point IGBT  
Figure 4  
neutral point IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
125  
250  
%
%
Ic  
fitted  
IC  
200  
150  
100  
IC 90%  
75  
IC  
60%  
100  
50  
IC 90%  
IC 40%  
tr  
VCE  
50  
25  
IC 10%  
VCE  
IC 10%  
0
0
tf  
-50  
-25  
4,15  
4,20  
4,25  
4,30  
4,35  
0,1  
0,2  
0,3  
0,4  
0,5  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
VC (100%) =  
IC (100%) =  
tr =  
700  
V
700  
V
400  
A
400  
A
0,088  
s  
0,032  
s  
copyright by Vincotech  
23  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions neutral point IGBT  
Figure 5  
neutral point IGBT  
Figure 6  
neutral point IGBT  
Turn-off Switching Waveforms & definition of tEoff  
Turn-on Switching Waveforms & definition of tEon  
125  
%
125  
%
IC 1%  
Eon  
Eoff  
100  
75  
100  
75  
50  
50  
Pon  
Poff  
25  
25  
Uce 3%  
Uge 10%  
Uge 90%  
0
0
tEon  
tEoff  
-25  
-25  
3,9  
4
4,1  
4,2  
4,3  
4,4  
-0,2  
0
0,2  
0,4  
0,6  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
Pon (100%) =  
Eon (100%) =  
280,22  
14,07  
0,58  
kW  
mJ  
s  
280,2184 kW  
13,39  
0,38  
mJ  
tEoff  
=
tEon =  
s  
Figure 7  
neutral point IGBT  
Figure 8  
half bridge FWD  
Gate voltage vs Gate charge (measured)  
Turn-off Switching Waveforms & definition of trr  
20  
150  
%
15  
10  
5
Id  
100  
trr  
50  
Ud  
fitted  
0
0
IRRM 10%  
-5  
-50  
-10  
-15  
-20  
-100  
IRRM 90%  
IRRM 100%  
-150  
-1000  
0
1000  
2000  
3000  
Qg (nC)  
4,15  
4,2  
4,25  
4,3  
4,35  
4,4  
4,45  
time(us)  
VGEoff  
VGEon  
=
=
Vd (100%) =  
Id (100%) =  
-15  
V
700  
V
15  
V
400  
A
VC (100%) =  
IC (100%) =  
Qg =  
IRRM (100%) =  
700  
400  
3442  
V
-521  
0,15  
A
trr  
=
A
s  
nC  
copyright by Vincotech  
24  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Switching Definitions neutral point IGBT  
Figure 9  
half bridge FWD  
Figure 10  
half bridge FWD  
Turn-on Switching Waveforms & definition of tQrr  
(tQrr= integrating time for Qrr)  
Turn-on Switching Waveforms & definition of tErec  
(tErec= integrating time for Erec  
)
150  
%
125  
%
Erec  
Id  
100  
100  
75  
tQint  
tErec  
50  
Qrr  
0
50  
-50  
-100  
-150  
25  
Prec  
0
-25  
4
4,3  
4,6  
4,9  
5,2  
5,5  
4
4,3  
4,6  
4,9  
5,2  
5,5  
time(us)  
time(us)  
Id (100%) =  
Prec (100%) =  
Erec (100%) =  
400  
A
280,22  
kW  
mJ  
s  
Qrr (100%) =  
49,18  
0,33  
C  
s  
12,71  
0,33  
tQint  
=
tErec =  
neutral point IGBT switching measurement circuit  
Figure 11  
copyright by Vincotech  
25  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
M209P  
in packaging barcode as  
Standard  
70-W212NMA400SC-M209P  
M209P  
Outline  
copyright by Vincotech  
26  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Pinout  
copyright by Vincotech  
27  
Revision: 7  
70-W212NMA400SC-M209P  
datasheet  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
copyright by Vincotech  
28  
Revision: 7  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY