70-W624N3A1K2SC-L400FP [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
70-W624N3A1K2SC-L400FP
型号: 70-W624N3A1K2SC-L400FP
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总28页 (文件大小:1844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
VINcoNPC X12  
Features  
1500 V / 1200 A  
VINco X12 housing  
1500V NPCꢀtopology  
● Low inductive  
● High power screw interface  
Target Applications  
● Solar inverter  
● Wind Power  
● Motor Drive  
Schematic  
Types  
● 70ꢀW624N3A1K2SCꢀL400FP  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Switch  
V CE  
Collectorꢀemitter break down voltage  
1200  
940  
V
A
I C  
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
3600  
2400  
A
A
V CE ≤ 1200V, T j T op max  
T j = T jmax  
Turn off safe operating area  
P tot  
V GE  
T s = 80 °C  
Power dissipation  
2470  
±20  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Buck Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
744  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p=10ms, sin 180°  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
2400  
1490  
175  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Boost Switch  
V CE  
Collectorꢀemitter break down voltage  
1200  
922  
V
A
I C  
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Pulsed collector current  
3600  
2400  
A
A
V CE ≤ 1200V, T j T op max  
Turn off safe operating area  
P tot  
V GE  
T j = T jmax  
T s = 80 °C  
Power dissipation  
2192  
±20  
W
V
Gateꢀemitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
Boost Inverse Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
634  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
1800  
1069  
175  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Boost Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
1200  
648  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Repetitive peak forward current  
Power dissipation  
1800  
1069  
175  
A
W
°C  
T jmax  
Maximum Junction Temperature  
copyright Vincotech  
2
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Module Properties  
Thermal Properties  
T stg  
T op  
Storage temperature  
ꢀ40…+125  
ꢀ40…+(T jmax ꢀ 25)  
125  
°C  
°C  
°C  
Operation temperature under switching condition  
Maximum allowed PCB temperature  
T PCB  
Insulation Properties  
t
t
= 2 s  
DC Test Voltage*  
AC Voltage  
4000  
2500  
V
V isol  
Insulation voltage  
= 1 min  
V
Creepage distance  
Clearance  
min 12,7  
min 12,7  
>200  
mm  
mm  
Competative Tracking Index  
CTI  
* 100 % Tested in production  
copyright Vincotech  
3
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V CE [V]  
V DS [V]  
I C [A]  
I F [A]  
I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Buck Switch  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff current incl. Diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,0408  
1200  
25  
5,2  
1,7  
5,8  
6,4  
2,4  
V
V
25  
125  
2,37  
2,78  
15  
0
1200  
0
25  
25  
0,024  
2880  
mA  
nA  
20  
0,166667  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
113  
115  
43  
Rise time  
45  
ns  
183  
229  
38  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 0,42 ꢁ  
R gon = 0,42 ꢁ  
ꢀ10/+15  
600  
1200  
Fall time  
68  
44,08  
48,91  
49,18  
86,78  
E on  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
125  
66480  
4560  
3840  
9120  
Output capacitance  
f = 1 MHz  
0
25  
25  
25  
Reverse transfer capacitance  
Gate charge  
±15  
960  
960  
nC  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,038  
K/W  
λ = 3,4 W/mK  
Buck Diode  
25  
125  
2,34  
2,38  
2,52  
V F  
I R  
Diode forward voltage  
1200  
1200  
V
µA  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
1440  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
1075  
1355  
169  
I RRM  
A
t rr  
ns  
214  
73,24  
136,71  
26252  
24254  
28,02  
61,41  
Q rr  
R gon = 0,42 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
ꢀ10/+15  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,06  
K/W  
λ = 3,4 W/mK  
copyright Vincotech  
4
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V CE [V]  
V DS [V]  
I C [A]  
I F [A]  
I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Boost Switch  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
Gate emitter threshold voltage  
Collectorꢀemitter saturation voltage  
Collectorꢀemitter cutꢀoff incl diode  
Gateꢀemitter leakage current  
Integrated Gate resistor  
Turnꢀon delay time  
0,0456  
1200  
25  
5
5,80  
6,5  
V
V
25  
125  
1,91  
2,14  
2,05  
15  
0
1200  
0
25  
25  
25  
0,0156  
1440  
mA  
nA  
20  
0,625  
158  
174  
64  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
Rise time  
66  
ns  
273  
342  
57  
t d(off)  
t f  
Turnꢀoff delay time  
R goff = 0,42 ꢁ  
R gon = 0,42 ꢁ  
ꢀ10/+15  
600  
1200  
Fall time  
92  
84,6  
104,7  
68,3  
120,0  
E on  
Turnꢀon energy loss per pulse  
Turnꢀoff energy loss per pulse  
Input capacitance  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
73800  
4860  
4140  
9600  
Output capacitance  
f = 1 MHz  
0
25  
1200  
1200  
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
nC  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,04  
K/W  
λ = 3,4 W/mK  
Boost Inverse Diode  
Diode forward voltage  
25  
125  
1,35  
1,90  
1,84  
2,05  
168  
V F  
I R  
900  
V
Reverse leakage current  
25  
ꢂA  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,09  
K/W  
λ = 3,4 W/mK  
Boost Diode  
25  
125  
1,35  
1,90  
1,84  
2,05  
168  
V F  
Diode forward voltage  
900  
V
ꢂA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
600  
25  
25  
125  
25  
125  
25  
125  
25  
125  
125  
125  
696  
903  
296  
451  
89  
A
t rr  
ns  
Q rr  
R gon = 0,42 ꢁ  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
ꢀ10/+15  
1200  
µC  
173  
5538  
4822  
31,66  
69,81  
( di rf/dt )max  
E rec  
A/µs  
mWs  
phaseꢀchange  
material  
R th(j-s)  
Thermal resistance chip to heatsink  
0,09  
K/W  
λ = 3,4 W/mK  
copyright Vincotech  
5
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V]  
V CE [V]  
V DS [V]  
I C [A]  
I F [A]  
I D [A]  
V GE [V]  
V GS [V]  
T j [°C]  
Min  
Max  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
Bꢀvalue  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
%
R 100 = 1484 ꢁ  
ꢀ5  
+5  
5
mW  
mW/K  
K
1,5  
B (25/50)  
Tol. ±1%  
Tol. ±1%  
3962  
4000  
B (25/100)  
Bꢀvalue  
K
Vincotech NTC Reference  
I
Module Properties  
Module inductance (from chips to PCB)  
Weight  
Buck  
Boost  
5
9
L sCE  
nH  
g
CꢀPCB  
m
1930  
copyright Vincotech  
6
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
2800  
2800  
2400  
2000  
1600  
1200  
800  
2400  
2000  
1600  
1200  
800  
400  
400  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
V
CE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25  
ꢂs  
°C  
350  
125  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
1000  
1000  
800  
600  
400  
200  
800  
600  
400  
Tj = 125°C  
Tj = 125°C  
Tj = 25°C  
200  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
VF (V)  
VGE (V)  
At  
At  
t p  
=
t p  
=
350  
10  
ꢂs  
V
350  
ꢂs  
V CE  
=
copyright Vincotech  
7
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 5.  
IGBT  
figure 6.  
FWD  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
125  
100  
75  
50  
25  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Eoff High T  
Erec High T  
Eoff Low T  
Eon High T  
Eon Low T  
Erec Low T  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I C (A)  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
°C  
V
°C  
V
600  
25/125  
25/125  
V CE  
=
V CE  
V GE  
R gon  
=
600  
V GE  
R gon  
R goff  
=
=
ꢀ10/+15  
0,42  
V
ꢀ10/+15  
0,42  
V
=
=
=
0,42  
figure 7.  
IGBT  
figure 8.  
FWD  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
1,00  
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
trr High T  
tdoff  
trr Low T  
tdon  
0,10  
tf  
tr  
0,01  
0,00  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I C (A)  
I C (A)  
With an inductive load at  
At  
T j =  
T j =  
125  
°C  
V
°C  
V
25/125  
V CE  
=
V CE  
V GE  
R gon  
=
600  
600  
V GE  
R gon  
R goff  
=
=
ꢀ10/+15  
0,42  
V
ꢀ10/+15  
0,42  
V
=
=
=
0,42  
copyright Vincotech  
8
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 9.  
FWD  
figure 10.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
200  
175  
150  
125  
100  
75  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
IRRM High T  
Qrr High T  
IRRM Low T  
Qrr Low T  
50  
25  
0
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I
C (A)  
I C (A)  
At  
At  
T j =  
T j =  
T j =  
25/125
°C  
V
#REF!  
°C  
°C  
V
25/125  
V CE  
V GE  
R gon  
=
V CE  
V GE  
R gon  
=
600  
600  
=
=
ꢀ10/+15  
0,42  
V
ꢀ10/+15  
0,42  
V
=
=
figure 11.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
40000  
dIrec/dt T  
dIo/dt T  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
0
0
500  
1000  
1500  
2000  
2500  
I C (A)  
At  
T j =  
°C  
V
25/125  
V CE  
V GE  
R gon  
=
600  
=
ꢀ10/+15  
0,42  
V
=
copyright Vincotech  
9
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 12.  
IGBT  
figure 13.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,05  
0,02  
0,01  
0,005  
0,000  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
D =  
At  
D =  
t p / T  
t p / T  
IGBT thermal model values with phaseꢀchange material  
FWD thermal model values with phaseꢀchange material  
R th(j-s)  
=
R th(j-s) =  
0,038  
K/W  
0,030  
K/W  
0,064  
K/W  
0,050  
K/W  
IGBT thermal model values  
FWD thermal model values  
With phase change material  
R (K/W) Tau (s)  
With phase change material  
R (K/W) Tau (s)  
1,56Eꢀ02 2,31E+00  
6,86Eꢀ03 3,15Eꢀ01  
8,33Eꢀ03 6,36Eꢀ02  
5,40Eꢀ03 1,92Eꢀ02  
1,08Eꢀ03 2,08Eꢀ03  
1,24Eꢀ03 5,82Eꢀ04  
1,54Eꢀ02 1,70E+00  
2,39Eꢀ02 1,27Eꢀ01  
1,70Eꢀ02 2,50Eꢀ02  
4,58Eꢀ03 1,61Eꢀ03  
2,91Eꢀ03 1,90Eꢀ04  
figure 14.  
IGBT  
figure 15.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
5000  
4000  
3000  
2000  
1400  
1200  
1000  
800  
600  
400  
1000  
200  
0
0
o C)  
T s (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
copyright Vincotech  
10  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 16.  
FWD  
figure 17.  
FWD  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Forward current as a  
function of heatsink temperature  
I F = f(T s)  
3000  
2500  
2000  
1500  
1000  
500  
1200  
1000  
800  
600  
400  
200  
0
0
T s (  
o C)  
0
50  
100  
150  
200  
T s (  
o C)  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
figure 18.  
IGBT  
Safe operating area as a function  
of collectorꢀemitter voltage  
I C = f(V CE  
)
10uS  
103  
100uS  
102  
1mS  
101  
10mS  
100mS  
DC  
100  
10-1  
103  
102  
VCE (V)  
101  
100  
At  
D =  
single pulse  
V GE  
=
15  
T jmax  
V
T s =  
T j =  
80  
ºC  
ºC  
copyright Vincotech  
11  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Buck  
Buck IGBT and Buck FWD  
figure 20.  
IGBT  
Reverse bias safe operating area  
I C = f(V CE  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
)
IC MAX  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
U ccminus=U ccplus  
Switching mode :  
3 level switching  
copyright Vincotech  
12  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
I C = f(V CE  
)
I C = f(V CE)  
2800  
2800  
2400  
2000  
1600  
1200  
800  
2400  
2000  
1600  
1200  
800  
400  
400  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
t p  
=
t p =  
350  
25  
ꢂs  
°C  
350  
125  
ꢂs  
°C  
T j =  
T j =  
V GE from  
V GE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
Typical transfer characteristics  
IGBT  
figure 4.  
FWD  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
I C = f(V GE  
)
1200  
2800  
2400  
2000  
1600  
1200  
800  
1000  
800  
600  
400  
200  
Tj = 125°C  
400  
Tj = 25°C  
Tj = 125°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
1
2
3
4
V
GE (V)  
VF (V)  
At  
At  
t p  
=
t p  
=
350  
10  
ꢂs  
V
350  
ꢂs  
V CE  
=
copyright Vincotech  
13  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 5.  
IGBT  
figure 6.  
FWD  
Typical switching energy losses  
as a function of collector current  
E = f(I C)  
Typical reverse recovery energy loss  
as a function of collector current  
E rec = f(I c)  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
Erec High T  
Eon High T  
Eon Low T  
Eoff High T  
Erec Low T  
Eoff Low T  
0
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I C (A)  
I C (A)  
With an inductive load at  
With an inductive load at  
T j =  
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
=
V CE  
V GE  
R gon  
=
V GE  
R gon  
R goff  
=
=
ꢀ10/ +15 V  
ꢀ10/ +15 V  
0,42 ꢁ  
=
=
0,42  
0,42  
=
figure 7.  
IGBT  
figure 8.  
FWD  
Typical switching times as a  
function of collector current  
t = f(I C)  
Typical reverse recovery time as a  
function of collector current  
t rr = f(I c)  
1
0,6  
0,5  
0,4  
0,3  
0,2  
0,1  
0,0  
tdoff  
trr High T  
tdon  
trr Low T  
0,1  
tf  
tr  
0,01  
0,001  
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I C (A)  
I C (A)  
With an inductive load at  
At  
T j =  
R gon  
R goff  
=
=
T j =  
125  
600  
°C  
V
0,42  
0,42  
25/125  
600  
°C  
V
V CE  
V GE  
=
V CE  
V GE  
R gon  
=
=
=
ꢀ10/ +15 V  
ꢀ10/ +15 V  
0,42  
=
copyright Vincotech  
14  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 9.  
FWD  
figure 10.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Q rr = f(I C)  
Typical reverse recovery current as a  
function of collector current  
I RRM = f(I C)  
225  
200  
175  
150  
125  
100  
75  
1000  
800  
600  
400  
200  
0
Qrr High T  
IRRM High T  
IRRM Low T  
Qrr Low T  
50  
25  
0
0
500  
1000  
1500  
2000  
2500  
0
500  
1000  
1500  
2000  
2500  
I C (A)  
I C (A)  
At  
At  
T j =  
T j =  
25/125  
600  
°C  
V
25/125  
600  
°C  
V
V CE  
V GE  
R gon  
=
V CE  
V GE  
R gon  
=
=
=
ꢀ10/ +15 V  
0,42  
ꢀ10/ +15 V  
0,42  
=
=
figure 11.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI 0/dt ,dI rec/dt = f(I c)  
25000  
dIrec/dt T  
di0/dt T  
20000  
15000  
10000  
5000  
0
0
500  
1000  
1500  
2000  
2500  
I C (A)  
At  
T j =  
25/125  
°C  
V
V CE  
V GE  
R gon  
=
600  
=
ꢀ10/ +15 V  
0,4  
=
copyright Vincotech  
15  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 12.  
IGBT  
figure 13.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Z th(j-s) = f(t p)  
Z th(j-s) = f(t p)  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
t p (s)  
t p (s)  
At  
D =  
At  
D =  
t p / T  
t p / T  
IGBT thermal model values with phaseꢀchange material  
FWD thermal model values with phaseꢀchange material  
R th(j-s)  
=
R th(j-s) =  
0,043  
K/W  
0,034  
0,089  
K/W  
0,069  
IGBT thermal model values  
FWD thermal model values  
With phaseꢀchange material  
R (K/W) Tau (s)  
With phaseꢀchange material  
R (K/W) Tau (s)  
1,98Eꢀ02 1,78E+00  
1,01Eꢀ02 1,66Eꢀ01  
1,07Eꢀ02 3,06Eꢀ02  
1,43Eꢀ03 2,59Eꢀ03  
1,32Eꢀ03 2,69Eꢀ04  
1,39Eꢀ02 5,78E+00  
1,77Eꢀ02 1,38E+00  
1,62Eꢀ02 2,57Eꢀ01  
2,22Eꢀ02 5,31Eꢀ02  
9,23Eꢀ03 1,60Eꢀ02  
3,35Eꢀ03 2,27Eꢀ03  
6,26Eꢀ03 2,74Eꢀ04  
figure 14.  
IGBT  
figure 15.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Collector current as a  
function of heatsink temperature  
I C = f(T s)  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
15  
ºC  
V
V GE  
=
copyright Vincotech  
16  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost  
Boost IGBT and Boost FWD  
figure 16.  
FWD  
figure 17.  
FWD  
Power dissipation as a  
function of heatsink temperature  
P tot = f(T s)  
Forward current as a  
function of heatsink temperature  
I F = f(T s)  
2000  
1500  
1000  
500  
0
1200  
1000  
800  
600  
400  
200  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
figure 18.  
Reverse bias safe operating area  
IGBT  
I C = f(V CE  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
)
IC MAX  
600  
400  
200  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
VCE (V)  
At  
U ccminus=U ccplus  
Switching mode :  
3 level switching  
copyright Vincotech  
17  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Boost Inverse Diode  
figure 19.  
Boost Inverse Diode  
figure 20.  
Boost Inverse Diode  
Typical FWD forward current as  
a function of forward voltage  
I F = f(V F)  
FWD transient thermal impedance  
as a function of pulse width  
Z th(j-s) = f(t p)  
100  
2800  
2400  
2000  
1600  
1200  
800  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0,000  
Tj = Tjmax-25°C  
400  
Tj = 25°C  
0
0
1
2
3
4
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
10110  
At  
At  
t p / T  
t p  
=
250  
ꢂs  
D =  
R th(j-s)  
=
0,09  
K/W  
figure 21.  
Power dissipation as a  
Boost Inverse Diode  
figure 22.  
Forward current as a  
Boost Inverse Diode  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T s)  
I F = f(T s)  
2000  
1500  
1000  
500  
0
1200  
1000  
800  
600  
400  
200  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T s  
(
o C)  
T s (  
o C)  
At  
At  
T j =  
T j =  
175  
ºC  
175  
ºC  
copyright Vincotech  
18  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R = f(T )  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
125  
T (°C)  
copyright Vincotech  
19  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Buck  
General conditions  
T j  
=
=
=
125 °C  
0,42 ꢁ  
0,42 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on  
)
150  
%
250  
%
VCE  
IC  
125  
100  
75  
200  
150  
100  
50  
tdoff  
VCE 90%  
VGE  
VGE  
VCE  
VGE 90%  
IC  
50  
tdon  
tEoff  
25  
VCE 3%  
VGE 10%  
IC 10%  
tEon  
IC 1%  
0
0
-50  
-25  
2,1  
2,2  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
time(us)  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
V GE (0%) =  
ꢀ10  
15  
V
V GE (0%) =  
ꢀ10  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
600  
V
600  
1201  
0,11  
0,29  
V
1201  
A
A
t doff  
=
=
0,23  
0,48  
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
%
250  
%
Ic  
125  
200  
fitted  
VCE  
IC  
100  
75  
50  
25  
0
150  
IC 90%  
VCE  
100  
IC 60%  
IC 90%  
tr  
IC 40%  
50  
IC 10%  
IC 10%  
0
tf  
-50  
-25  
2,3  
2,35  
2,4  
2,45  
2,5  
2,55  
2,6  
time(us)  
0
0,1  
0,2  
0,3  
0,4  
0,5  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
V
1201  
0,07  
A
1201  
0,04  
A
ꢂs  
ꢂs  
copyright Vincotech  
20  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Buck  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
%
Poff  
Eon  
Eoff  
100  
75  
100  
75  
IC  
1%  
Pon  
50  
50  
25  
25  
VCE 3%  
VGE90%  
VGE 10%  
0
0
tEon  
tEoff  
-25  
-25  
2,2  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
time(us)  
-0,1  
0
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
time (us)  
P off (100%) =  
E off (100%) =  
720,80  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
720,80  
48,91  
0,29  
kW  
mJ  
ꢂs  
86,78  
0,48  
t E off  
=
t E on =  
figure 7.  
FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
Vd  
fitted  
0
I
10%  
RRM  
-50  
-100  
-150  
IRRM 90%  
IRRM 100%  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
V
1201  
ꢀ1355  
0,21  
A
A
t rr  
=
ꢂs  
copyright Vincotech  
21  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Buck  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Q rr = integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
125  
%
%
Id  
Qrr  
Erec  
100  
100  
Prec  
tQrr  
75  
50  
25  
0
50  
tErec  
0
-50  
-100  
-150  
-25  
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
1201  
136,71  
0,42  
A
P rec (100%) =  
E rec (100%) =  
720,80  
kW  
mJ  
ꢂs  
ꢂC  
ꢂs  
61,41  
0,42  
t Q rr  
=
t E rec =  
copyright Vincotech  
22  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Boost  
General conditions  
T j  
=
=
=
125 °C  
0,42 ꢁ  
0,42 ꢁ  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t doff, t Eoff  
Turnꢀon Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on  
)
150  
%
200  
%
IC  
VCE  
125  
100  
75  
tdoff  
150  
VGE  
VCE  
VGE 90%  
90%  
VCE  
100  
IC  
tdon  
50  
50  
tEoff  
25  
VCE 3%  
VGE 10%  
IC 10%  
IC  
1%  
0
VGE  
tEon  
0
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
time (us)  
2,3  
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
3
time(us)  
V GE (0%) =  
ꢀ10  
V
V GE (0%) =  
ꢀ10  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
V GE (100%) =  
V C (100%) =  
I C (100%) =  
15  
V
600  
1200  
0,34  
0,70  
V
600  
V
A
1200  
0,17  
0,55  
A
t doff  
=
=
ꢂs  
ꢂs  
t don  
=
=
ꢂs  
ꢂs  
t E off  
t E on  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t f  
Turnꢀon Switching Waveforms & definition of t r  
150  
200  
%
%
Ic  
VCE  
125  
fitted  
150  
IC  
100  
Ic  
90%  
VCE  
100  
50  
0
75  
IC  
90%  
Ic  
tr  
60%  
50  
Ic  
40%  
25  
IC 10%  
Ic 10%  
tf  
0
-25  
-50  
0,1  
0,2  
0,3  
0,4  
0,5  
0,6  
0,7  
2,4  
2,5  
2,6  
2,7  
2,8  
2,9  
3
time (us)  
time(us)  
V C (100%) =  
I C (100%) =  
t f =  
600  
V
V C (100%) =  
I C (100%) =  
t r =  
600  
V
1200  
0,092  
A
1200  
A
ꢂs  
0,065  
ꢂs  
copyright Vincotech  
23  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Boost  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turnꢀoff Switching Waveforms & definition of t Eoff  
Turnꢀon Switching Waveforms & definition of t Eon  
125  
125  
%
%
Poff  
Eon  
Eoff  
100  
75  
100  
75  
50  
25  
0
Pon  
IC  
1%  
50  
25  
Uce 3%  
Uge 90%  
Uge 10%  
0
tEon  
tEoff  
-25  
-25  
2,2  
2,4  
2,6  
2,8  
3
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
P off (100%) =  
E off (100%) =  
719,72  
119,96  
0,70  
kW  
mJ  
ꢂs  
P on (100%) =  
E on (100%) =  
719,724 kW  
104,74  
0,55  
mJ  
ꢂs  
t E off  
=
t E on =  
figure 7.  
FWD  
Turnꢀoff Switching Waveforms & definition of t rr  
150  
%
Id  
100  
trr  
50  
fitted  
IRRM 10%  
Ud  
0
-50  
IRRM 90%  
IRRM 100%  
-100  
2,4  
2,6  
2,8  
3
3,2  
time(us)  
V d (100%) =  
I d (100%) =  
I RRM (100%) =  
600  
V
1200  
ꢀ903  
0,45  
A
A
t rr  
=
ꢂs  
copyright Vincotech  
24  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Switching Definitions Boost  
figure 8.  
FWD  
figure 9.  
FWD  
Turnꢀon Switching Waveforms & definition of t Qrr  
(t Qrr= integrating time for Q rr)  
Turnꢀon Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
125  
%
Erec  
Id  
Qrr  
100  
75  
50  
25  
0
100  
tErec  
tQint  
50  
0
-50  
Prec  
-100  
-25  
2,4  
2,6  
2,8  
3
3,2  
3,4  
3,6  
2,4  
2,6  
2,8  
3
3,2  
3,4  
3,6  
time(us)  
time(us)  
I d (100%) =  
Q rr (100%) =  
1200  
172,55  
0,90  
A
P rec (100%) =  
E rec (100%) =  
719,72  
69,81  
0,90  
kW  
mJ  
ꢂs  
ꢂC  
ꢂs  
t Qint  
=
t E rec =  
copyright Vincotech  
25  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Outline  
Outline  
Driver pins  
Y1  
Low current connections  
Pin  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
X1  
Function  
G11ꢀ1  
M6  
X2  
Y2  
Function  
screw  
ꢀ2,15  
ꢀ2,15  
46,15  
46,15  
19,45  
24,55  
ꢀ7,65  
ꢀ7,65  
51,65  
84,85  
81,95  
84,85  
81,95  
93,05  
93,05  
70,05  
67,15  
70,05  
67,15  
75,35  
75,35  
28  
E11ꢀ1  
G13ꢀ2  
2.1  
2.2  
0
0
PH  
PH  
22  
0
0
E13ꢀ2  
2.3  
44  
PH  
DC+desat  
DC+desat  
G13ꢀ1  
2.4  
0
110,4  
110,4  
110,4  
0
DC+  
GND  
DCꢀ  
PH  
2.5  
22  
2.6  
44  
E13ꢀ1  
2.7  
101  
123  
145  
G13ꢀ2  
2.8  
0
PH  
1.10 51,65  
1.11 16,75  
1.12 27,25  
1.13 ꢀ2,55  
1.14 ꢀ5,45  
1.15 46,55  
1.16 49,45  
E13ꢀ2  
2.9  
0
PH  
GND_desat  
GND_desat  
G14ꢀ1  
2.10  
2.11  
2.12  
2.13  
2.14  
2.15  
2.16  
2.17  
2.18  
101 110,4  
123 110,4  
145 110,4  
DC+  
GND  
DCꢀ  
PH  
28  
E14ꢀ1  
202  
224  
246  
0
0
0
28  
G14ꢀ2  
PH  
28  
E14ꢀ2  
PH  
1.17  
1.18  
1.19  
ꢀ4,8  
ꢀ1,6  
48,8  
50,85  
49,05  
50,85  
G12ꢀ1  
202 110,4  
224 110,4  
246 110,4  
DC+  
GND  
DCꢀ  
E12ꢀ1  
G12ꢀ2  
1.20  
45,6  
49,05  
89,8  
86,7  
E12ꢀ2  
1.21 67,65  
1.22 67,65  
Therm1ꢀ1  
Therm2ꢀ1  
1.23 98,85  
1.24 98,85  
84,85  
81,95  
G11ꢀ3  
E11ꢀ3  
1.25 147,15 84,85  
1.26 147,15 81,95  
1.27 120,45 93,05  
1.28 125,55 93,05  
G13ꢀ4  
E13ꢀ4  
DC+desat  
DC+desat  
1.29 93,35  
1.30 93,35  
70,05  
67,15  
G13ꢀ3  
E13ꢀ3  
1.31 152,65 70,05  
1.32 152,65 67,15  
1.33 117,75 75,35  
1.34 128,25 75,35  
G13ꢀ4  
E13ꢀ4  
GND_desat  
GND_desat  
G14ꢀ3  
1.35 98,45  
1.36 95,55  
1.37 147,55  
1.38 150,45  
28  
28  
E14ꢀ3  
28  
G14ꢀ4  
28  
E14ꢀ4  
1.39  
1.40  
96,2  
99,4  
50,85  
49,05  
50,85  
49,05  
89,8  
86,7  
G12ꢀ3  
E12ꢀ3  
1.41 149,8  
1.42 146,6  
1.43 168,65  
1.44 168,65  
G12ꢀ4  
E12ꢀ4  
Therm1ꢀ2  
Therm2ꢀ2  
G11ꢀ5  
1.45 199,85 84,85  
1.46 199,85 81,95  
1.47 248,15 84,85  
1.48 248,15 81,95  
E11ꢀ5  
G13ꢀ6  
E13ꢀ6  
1.49 221,45 93,05  
1.50 226,55 93,05  
DC+desat  
DC+desat  
1.51 194,35 70,05  
1.52 194,35 67,15  
1.53 253,65 70,05  
1.54 253,65 67,15  
1.55 218,75 75,35  
1.56 229,25 75,35  
G13ꢀ5  
E13ꢀ5  
G13ꢀ6  
E13ꢀ6  
GND_desat  
GND_desat  
G14ꢀ5  
1.57 199,45  
1.58 196,55  
28  
28  
E14ꢀ5  
1.59 248,55  
1.60 251,45  
1.61 197,2  
1.62 200,4  
1.63 250,8  
28  
G14ꢀ6  
E14ꢀ6  
G12ꢀ5  
E12ꢀ5  
G12ꢀ6  
Driver pins  
Y1  
28  
Pin  
X1  
Function  
E12ꢀ6  
50,85  
49,05  
50,85  
1.64  
1.65  
1.66  
247,6 49,05  
269,7 89,8  
269,7 86,7  
Therm1ꢀ3  
Therm2ꢀ3  
copyright Vincotech  
26  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Ordering Code and Marking ꢀ Outline ꢀ Pinout  
Ordering Code & Marking  
Version  
in DataMatrix as  
Standard  
70ꢀW624N3A1K2SCꢀL400FP  
70ꢀW624N3A1K2SCꢀL400FPꢀ/3/  
Standard with thermal paste  
Name  
Name  
NNꢀNNNNNNNNNNNNNNꢀNNNNNNNN  
Date code  
UL & Vinco  
Lot  
Serial  
Text  
Date code  
Lot  
Serial  
UL  
WWYY  
UL VIN  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Serial  
Date code  
Datamatrix  
TTTTꢀTTT  
LLLLL  
SSSS  
WWYY  
Vincotech  
Pinout  
Identification  
Current  
1200 A  
ID  
Component  
IGBT  
Voltage  
Function  
Buck Switch  
Comment  
T11, T12  
D11, D12  
T13, T14  
D13, D14  
D15, D16  
D41, D42  
D43, D44  
Rt  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
1200 V  
FWD  
1200 A  
Buck Diode  
IGBT  
1200 A  
Boost Switch  
Boost Diode  
FWD  
900 A  
FWD  
900 A  
Boost Inverse Diode  
FWD  
90 A  
Buck sw. Prot. Diode  
Boost sw. Prot. Diode  
Thermistor  
FWD  
90 A  
NTC  
copyright Vincotech  
27  
10 Jul. 2019 / Revision 3  
70ꢀW624N3A1K2SCꢀL400FP  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
4
Handling instructions for VINco X12 packages see vincotech.com website.  
Package data  
Package data for VINco X12 packages see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Marketing application voltage modified  
Pages  
10 Jul. 2019  
1
70ꢀW624N3A1K2SCꢀL400FPꢀD314  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
28  
10 Jul. 2019 / Revision 3  

相关型号:

70-W624N3A1K2SC01-L400FP1

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

70-W624NIA1K2M702-L400FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70-W624NIA1K8M701-LD00FP7

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

70.0000MHZMP2410/50/-10+60/8PF

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.0000MHZMP430/10/-10+60/SR

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, SMD, 4 PIN
EUROQUARTZ

70.000MHZ49USMX/30/30/-10+60/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELDED, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/10/-10+60/8PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/10/-10+60/SR/AT3

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/10/15/-40+85/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/30/10/-10+60/18PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/30/10/-10+60/32PF/AT3

Parallel - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ

70.000MHZ49USMXL25/30/10/-10+60/SR/AT3

Series - 3Rd Overtone Quartz Crystal, 70MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, RESISTANCE WELD, SMD, 2 PIN
EUROQUARTZ