592D476X96R3A8W [VISHAY]

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 47uF, SURFACE MOUNT, 1507, CHIP;
592D476X96R3A8W
型号: 592D476X96R3A8W
厂家: VISHAY    VISHAY
描述:

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 47uF, SURFACE MOUNT, 1507, CHIP

文件: 总11页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
592D  
Vishay Sprague  
Solid Tantalum Chip Capacitors  
®
TANTAMOUNT , Low Profile, Conformal Coated,  
Maximum CV  
FEATURES  
New extended range offerings.  
1.0mm to 2.5mm height.  
Terminations: Lead (Pb)-free (2) standard.  
Low Impedance  
8mm, 12mm and 24mm tape and reel packaging  
available per EIA-481-1 and reeling per IEC 286-3. 7”  
[178mm] standard.  
13[330mm] available.  
Case code compatibility with EIA 535BAAC and  
CECC 30801 molded chips.  
PERFORMANCE CHARACTERISTICS  
Capacitance Range: 1.0µF to 3300µF  
Capacitance Tolerance: ±10%, ±20% standard.  
Voltage Rating: 4 WVDC to 35 WVDC  
Operating Temperature: - 55°C to + 85°C. (To + 125°C  
with voltage derating.)  
ORDERING INFORMATION  
592D  
106  
X0  
T
010  
B
2
TYPE  
CAPACITANCE  
CAPACITANCE  
TOLERANCE  
REEL SIZE AND  
PACKAGING  
DC VOLTAGE RATING CASE CODE  
TERMINATION  
@ + 85°C  
This is expressed in  
This is expressed in volts. To  
complete the three-digit block,  
zeros precede the voltage rating.  
A decimal point is indicated by  
an "R" (6R3 = 6.3 volts).  
2 = 100% Tin  
See Ratings  
and Case  
Codes Table.  
T = Tape and Reel  
7" [178mm] Reel  
W = 13[330mm] Reel  
X0 = ±20%  
X9 = ± 10%  
picofarads. The first two  
digits are the significant  
figures. The third is the  
number of zeros to follow.  
4 = Gold Plated  
8 = Solder plated  
60/40 special  
order  
Note: Preferred Tolerance and reel sizes are in bold.  
We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size.  
Voltage substitutions will be marked with the higher voltage rating.  
DIMENSIONS in inches [millimeters]  
W
Tantalum Wire Nib  
Identifies Anode  
(+) Terminal  
L
B
J
J
D
A
H
CASE CODE  
L (Max.)  
0.146  
[3.7]  
0.158  
[4.0]  
0.281  
[7.1]  
0.298  
[7.5]  
0.285  
[7.2]  
0.126 ± 0.012  
[3.2 ± 0.3]  
0.158  
[4.0]  
W
H
A
B
D (Ref.)  
0.115  
[2.9]  
0.139  
[3.5]  
0.238  
[6.0]  
0.254  
[6.4]  
0.246  
[6.2]  
0.087  
[2.2]  
0.139  
[3.5]  
0.238  
[6.0]  
0.254  
[6.4]  
0.246  
[6.2]  
0.524  
[13.2]  
0.524  
[13.2]  
J (Max.)  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.004  
[0.1]  
0.072 ± 0.012  
[1.8 ± 0.3]  
0.110 + 0.012-0.016 0.047 ± 0.012  
[2.8 + 0.3-0.4]  
0.126 ± 0.012  
[3.2 ± 0.3]  
0.170 ± 0.012  
[4.3 ± 0.3]  
0.235 ± 0.012  
[6.0 ± 0.3]  
0.063 ± 0.012  
[1.6 ± 0.3]  
0.116 ± 0.012  
[2.8 ± 0.3]  
0.126 ± 0.012  
[3.2 ± 0.3]  
0.048 ± 0.012  
[1.2 ± 0.3]  
0.031 ± 0.012  
[0.80 ± 0.30]  
0.031 ± 0.012  
[0.80 ± 0.30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
0.031 ± 0.012  
[0.8 ± 0.3]  
0.031 ± 0.012  
[0.8 ± 0.3]  
0.051 ± 0.012  
[1.3 ± 0.3]  
0.051 ± 0.012  
[1.3 ± 0.3]  
0.051 ± 0.012  
[1.3 ± 0.3]  
0.087 ± 0.016  
[2.2 ± 0.4]  
0.097 ± 0.016  
[2.5 ± 0.4]  
0.180 ± 0.024  
[4.4 ± 0.6]  
0.180 ± 0.024  
[4.6 ± 0.6]  
0.180 ± 0.024  
[4.6 ± 0.6]  
0.079 ± 0.012  
[2.0 ± 0.3]  
0.097 ± 0.016  
[2.5 ± 0.4]  
0.180 ± 0.024  
[4.6 ± 0.6]  
0.180 ± 0.024  
[4.6 ± 0.6]  
A
B
C
D
R
S
T
[1.2 ± 0.3]  
0.047 ± 0.012  
[1.2 ± 0.3]  
0.047 ± 0.012  
[1.2 ± 0.3]  
0.047 ± 0.012  
[1.2 ± 0.3]  
0.040 ± 0.012  
[1.0 ± 0.3]  
0.079  
[2.0] Max.  
0.079  
0.281  
[7.1]  
0.298  
[7.5]  
0.285  
[7.2]  
0.575  
[14.5]  
0.575  
[14.5]  
U
V
W
X
Y
[2.0] Max.  
0.079  
0.170 ± 0.012  
[4.3 ± 0.3]  
[2.0] Max.  
0.079  
0.235 ± 0.012  
[6.0 ± 0.3]  
0.290 ± 0.010  
[7.37 ± 0.25]  
0.290 ± 0.010  
[7.37 ± 0.25]  
0.180 ± 0.024  
[4.6 ± 0.6]  
0.470 ± 0.024  
[11.9 ± 0.6]  
0.470 ± 0.024  
[11.9 ± 0.6]  
[2.0] Max.  
0.079  
0.050 ± 0.016  
[1.3 ± 0.4]  
0.051 ± 0.016  
[1.3 ± 0.4]  
[2.0] Max.  
0.098  
[2.5] Max.  
Note: The anode termination (D less B) will be a minimum of 0.012" [0.3mm].  
www.vishay.com  
74  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  
592D  
Vishay Sprague  
RATINGS AND CASE CODES  
µF  
4 V  
6.3 V  
10 V  
STD  
16 V  
STD  
20 V  
25 V  
35 V  
EXT  
STD  
EXT  
STD  
EXT  
EXT  
EXT  
STD  
EXT  
STD  
EXT  
STD  
B
1
A
1.5  
2.2  
3.3  
4.7  
6.8  
10  
15  
22  
33  
47  
B
C
D
R
B
C
C
D
R
A
B
B*  
C
A
A
B
B*  
C
C/D  
R/T*  
C*  
B
C
D
R
A
B
B
C
D
R
B
C
D
D/T  
R/T  
U
V
V
W
C
B/D  
R
R
D
R
B
A
B
A
A/B  
A/S  
U*  
U*/V*  
B
A
B
B*  
C
D/T*  
R/T  
D/R/U*  
D/U  
V
B
C
D
C/T  
R
U
R/U*/T  
V*  
B/C  
C/D  
D/T/R  
D/R  
D/U  
V
C
D
R/T  
D/R  
U/V  
V
A/B  
68  
B/C  
C/D  
C/T  
R
R/U  
D/U/V  
V/W  
W
B/C  
B/C/T  
R
D/R/U  
R/U/V  
V/U/W  
W
X/W  
X/Y  
X/Y*  
Y
R
100  
150  
220  
330  
470  
680  
1000  
1500  
2200  
3300  
C*/D/U  
D
V
V/W  
W
W
W
W
X
X/Y  
* Contact factory for availability  
STANDARD / EXTENDED RATINGS  
Max. DF  
@ + 25°C  
120 Hz  
(%)  
Max. ESR  
@ + 25°C  
100kHz  
Max. RIPPLE  
100kHz  
Irms  
Max. DCL  
CAPACITANCE  
CASE  
CODE  
@ + 25°C  
(µF)  
PART NUMBER  
(µA)  
(Ohms)  
(Amps)  
4 WVDC @ + 85°C, SURGE = 5.2 V . . . 2.7 WVDC @ + 125°C, SURGE = 3.4 V  
22  
22  
33  
47*  
47  
68  
A
B
592D226X_004A2T  
592D226X_004B2T  
592D336X_004B2T  
592D476X_004B2T*  
592D476X_004C2T  
592D686X_004B2T  
592D686X_004C2T  
592D686X_004D2T  
592D107X_004C2T  
592D107X_004D2T  
592D107X_004R2T  
592D107X_004T2T  
592D157X_004C2T  
592D157X_004D2T  
592D157X_004R2T  
592D157X_004T2T  
592D227X_004R2T  
592D227X_004V2T  
592D227X_004U2T  
592D337X_004R2T  
592D337X_004U2T  
592D337X_004V2T  
592D477X_004D2T  
592D477X_004U2T  
592D477X_004V2T  
592D477X_004W2T  
592D687X_004V2T  
592D687X_004W2T  
592D108X_004W2T  
592D158X_004X2T  
592D228X_004Y2T  
592D228X_004X2T  
0.9  
0.9  
1.3  
1.9*  
1.9  
2.7  
2.7  
2.7  
4
4
4
4
6
6
6
6
6*  
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10  
12  
12  
14  
20  
25  
25  
2.40  
1.60  
1.60  
1.5*  
0.16  
0.22  
0.22  
0.23*  
0.5  
B
B*  
C
B
C
D
C
D
R
T
C
D
R
T
R
V
U
R
U
V
D
U
V
W
V
W
W
X
0.40  
1.40  
0.35  
0.27  
0.35  
0.26  
0.20  
0.45  
0.36  
0.25  
0.20  
0.45  
0.20  
0.20  
0.19  
0.18  
0.15  
0.12  
0.14  
0.10  
0.10  
0.10  
0.10  
0.10  
0.200  
0.04  
0.04  
0.55  
0.24  
0.53  
0.68  
0.53  
0.69  
0.87  
0.42  
0.52  
0.71  
0.87  
0.42  
0.87  
0.78  
0.76  
0.91  
0.86  
1.08  
0.94  
1.05  
1.18  
1.32  
1.18  
1.32  
0.94  
2.1  
68  
68  
100  
100  
100  
100  
150  
150  
150  
150  
220  
220  
220  
330  
330  
330  
470  
470  
470  
470  
680  
680  
1000  
1500  
2200  
2200  
6
6
6
8.3  
8.3  
8.3  
13.2  
13.2  
13.2  
18.8  
18.8  
18.8  
18.8  
27.2  
27.2  
40  
60  
88  
88  
Y
X
2.3  
2.3  
*Preliminary values, contact factory for availability. For 10% tolerance, specify "9"; for 20% tolerance, change to "0". Extended range ratings are in bold print.  
For technical questions, contact tantalum@vishay.com  
Document Number 40004  
Revision 03-Dec-04  
www.vishay.com  
75  
592D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DF  
@ + 25°C  
120 Hz  
(%)  
Max. ESR  
@ + 25°C  
100kHz  
Max. RIPPLE  
100kHz  
Irms  
Max. DCL  
@ + 25°C  
(µA)  
CAPACITANCE  
CASE  
CODE  
(µF)  
PART NUMBER  
(Ohms)  
(Amps)  
6.3 WVDC @ + 85°C, SURGE = 8 V . . . 4 WVDC @ + 125°C, SURGE = 5 V  
15  
15  
A
B
A
A
B
A
B
C
S
S
A
B
C
D
B
B
C
D
R
T
592D156X_6R3A2T  
592D156X_6R3B2T  
592D226X_6R3A2T  
592D226X_6R3A2T13H**  
592D226X_6R3B2T  
592D336X_6R3A2T  
592D336X_6R3B2T  
592D336X_6R3C2T  
592D336X_6R3S2T  
592D336X_6R3S2T12H**  
592D476X_6R3A2T  
592D476X_6R3B2T  
592D476X_6R3C2T  
592D476X_6R3D2T  
592D686X_6R3B2T  
592D686X_6R3B2T13H**  
592D686X_6R3C2T  
592D686X_6R3D2T  
592D686X_6R3R2T  
592D686X_6R3T2T  
592D107X_6R3B2T15H**  
592D107X_6R3C2T  
592D107X_6R3D2T  
592D107X_6R3R2T  
592D107X_6R3T2T  
592D157X_6R3D2T  
592D157X_6R3R2T  
592D157X_6R3U2T  
592D227X_6R3D2T  
592D227X_6R3R2T  
592D227X_6R3U2T  
592D227X_6R3V2T  
592D337X_6R3C2T16H**  
592D337X_6R3R2T  
592D337X_6R3U2T  
592D337X_6R3V2T  
592D337X_6R3W2T  
592D477X_6R3U2T  
592D477X_6R3V2T  
592D477X_6R3W2T  
592D687X_6R3R2T16H**  
592D687X_6R3W2T  
592D108X_6R3W2T  
592D108X_6R3X2T  
592D158X_6R3Y2T  
592D158X_6R3X2T  
592D228X_6R3Y2T*  
592D228X_6R3X2T  
592D338X_6R3Y2T  
0.9  
0.9  
1.4  
1.4  
1.4  
2.1  
2.1  
2.1  
2.1  
2.1  
3
6
6
2.50  
1.70  
1.5  
0.15  
0.22  
0.23  
0.2  
0.23  
0.32  
0.24  
0.5  
0.28  
0.17  
0.21  
0.21  
0.5  
0.65  
0.46  
0.36  
0.51  
0.68  
0.87  
0.4  
22  
6
22  
6
1.5  
22  
6
1.5  
33  
6
1.70  
1.40  
0.40  
1.3  
33  
6
33  
6
33  
8
33  
10  
8
2.0  
47  
1.40  
1.40  
0.40  
0.30  
0.38  
0.60  
0.38  
0.27  
0.20  
0.50  
1.0  
47  
3
8
47  
3
3
6
47  
6
68  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
6.3  
9.5  
9.5  
9.5  
13.9  
13.9  
13.9  
13.9  
20.8  
20.8  
20.8  
20.8  
20.8  
29.6  
29.6  
29.6  
42.8  
42.8  
63  
6
68  
8
68  
6
68  
6
68  
6
68  
6
100  
100  
100  
100  
100  
150  
150  
150  
220  
220  
220  
220  
330  
330  
330  
330  
330  
470  
470  
470  
680  
680  
1000  
1000  
1500  
1500  
2200*  
2200  
3300  
B
C
D
R
T
10  
8
0.28  
0.51  
0.69  
0.87  
0.42  
0.71  
0.87  
0.76  
0.75  
0.91  
0.86  
1.08  
0.81  
0.91  
1.05  
1.18  
1.32  
1.05  
1.18  
1.32  
1.16  
1.32  
0.94  
2.1  
0.38  
0.26  
0.20  
0.45  
0.25  
0.20  
0.19  
0.22  
0.18  
0.15  
0.12  
0.15  
0.18  
0.10  
0.10  
0.10  
0.10  
0.10  
0.10  
0.13  
0.100  
0.2  
8
8
8
D
R
U
D
R
U
V
C
R
U
V
W
U
V
W
R
W
W
X
Y
X
Y*  
X
Y
8
8
8
8
8
8
8
10  
8
8
8
8
14  
10  
10  
14  
10  
20  
16  
20  
25  
35*  
35  
35  
63  
0.04  
0.035  
0.045  
0.055*  
0.055  
0.055  
95  
2.3  
95  
1.97  
1.80*  
1.80  
1.80  
139*  
139  
208  
10 WVDC @ + 85°C, SURGE = 13 V . . . 7 WVDC @ + 125°C, SURGE = 8 V  
10  
10  
A
B
592D106X_010A2T  
592D106X_010B2T  
592D226X_010B2T  
592D226X_010C2T  
592D336X_010C2T  
592D336X_010D2T  
592D336X_010T2T*  
592D476X_010D2T  
592D476X_010R2T  
592D476X_010T2T  
592D686X_010C2T  
592D686X_010D2T  
592D686X_010R2T  
592D686X_010T2T  
592D686X_010U2T*  
592D107X_010D2T  
592D107X_010U2T  
592D107X_010R2T  
592D157X_010U2T  
592D157X_010V2T  
592D227X_010V2T  
592D227X_010W2T  
592D337X_010V2T*  
592D337X_010W2T  
1
1
6
6
2.60  
1.70  
1.50  
0.40  
0.40  
0.30  
0.50*  
0.27  
0.20  
0.50  
0.40  
0.27  
0.20  
0.45  
0.25*  
0.10  
0.19  
0.22  
0.17  
0.14  
0.12  
0.10  
0.10*  
0.10  
0.15  
0.22  
0.23  
0.50  
0.50  
0.65  
0.40*  
0.68  
0.87  
0.40  
0.50  
0.68  
0.87  
0.42  
0.66*  
1.11  
0.76  
0.83  
0.80  
1.00  
1.08  
1.32  
1.18*  
1.32  
22  
B
C
C
D
T*  
D
R
T
2.2  
2.2  
3.3  
3.3  
3.3*  
4.7  
4.7  
4.7  
6.8  
6.8  
6.8  
6.8  
6.8*  
10  
6
22  
6
33  
6
6
33  
33*  
47  
6*  
6
47  
6
47  
6
68  
C
D
R
T
6
68  
6
68  
6
68  
6
68*  
100  
100  
100  
150  
150  
220  
220  
330*  
330  
U*  
D
U
R
U
V
6*  
8
10  
8
10.0  
15  
8
8
15  
8
V
22  
8
W
V*  
W
22  
8
33*  
33  
8*  
8
** xyH indicates maximum height in (mm), i.e., 1.5 max (H) = 15Hmm  
*Preliminary values, contact factory for availability. For 10% tolerance, specify "9"; for 20% tolerance, change to "0". Extended range ratings are in bold print.  
*Voltage range under development.  
www.vishay.com  
76  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  
592D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DF  
@ + 25°C  
120 Hz  
(%)  
Max. ESR  
Max. RIPPLE  
100kHz  
Irms  
Max. DCL  
@ + 25°C  
(µA)  
@ + 25°C  
100kHz  
(Ohms)  
CAPACITANCE  
CASE  
CODE  
(µF)  
PART NUMBER  
(Amps)  
16 WVDC @ + 85°C, SURGE = 20 V . . . 10 WVDC @ + 125°C, SURGE = 12 V  
4.7  
6.8  
6.8  
10  
10  
15*  
15  
22  
22  
22  
33  
33  
33  
33  
47  
47  
47  
68*  
68  
68  
A
A
B
B
C
B*  
D
C
D
T
C
D
R
T
R
T
U
C*  
U
V
C*  
D
U
V
592D475X_016A2T  
592D685X_016A2T  
592D685X_016B2T  
592D106X_016B2T  
592D106X_016C2T  
592D156X_016B2T*  
592D156X_016D2T  
592D226X_016C2T  
592D226X_016D2T  
592D226X_016T2T  
592D336X_016C2T  
592D336X_016D2T  
592D336X_016R2T  
592D336X_016T2T  
592D476X_016R2T  
592D476X_016T2T  
592D476X_016U2T  
592D686X_016C2T*  
592D686X_016U2T  
592D686X_016V2T  
592D107X_016C2T*  
592D107X_016D2T  
592D107X_016U2T  
592D107X_016V2T  
592D157X_016W2T  
592D227X_016W2T  
0.8  
1.1  
1.1  
1.6  
1.6  
2.4*  
2.4  
3.5  
3.5  
3.5  
5.3  
5.3  
5.3  
5.3  
7.5  
7.5  
7.5  
10.9*  
10.9  
10.9  
16*  
16  
6
6
6
6
6
6*  
6
6
6
6
6
6
6
6
6
6
6
6*  
6
6
8*  
8
8
8
8
8
3.50  
3.50  
1.80  
1.60  
1.00  
1.4*  
0.50  
0.50  
0.40  
0.6  
0.13  
0.13  
0.21  
0.22  
0.32  
0.24*  
0.50  
0.46  
0.60  
0.36  
0.66  
0.62  
0.75  
0.36  
0.77  
0.33  
0.66  
1.20*  
0.66  
0.91  
1.80*  
0.97  
0.97  
0.97  
1.32  
0.94  
0.25  
0.30  
0.27  
0.6  
0.25  
0.72  
0.25  
0.50*  
0.25  
0.17  
0.30*  
0.15  
0.15  
0.15  
0.1  
100*  
100  
100  
100  
150  
220  
16  
16  
24  
35.2  
W
W
0.2  
20 WVDC @ + 85°C, SURGE = 26 V . . . 13 WVDC @ + 125°C, SURGE = 16 V  
4.7  
4.7  
6.8  
6.8  
10  
10  
15  
15  
22  
22  
22  
22*  
33  
33*  
A
B
592D475X_020A2T  
592D475X_020B2T  
592D685X_020B2T  
592D685X_020C2T  
592D106X_020B2T  
592D106X_020D2T  
592D156X 020C2T  
592D156X_020R2T  
592D226X_020D2T  
592D226X_020R2T  
592D226X_020T2T  
592D226X_020U2T*  
592D336X_020R2T  
592D336X_020V2T*  
0.9  
0.9  
1.4  
1.4  
2
2
3
3
4.4  
4.4  
4.4  
4.4*  
6.6  
6.6*  
6
6
6
6
6
6
6
6
6
6
6
6*  
6
6*  
3.80  
3.20  
3.10  
1.10  
3.00  
0.50  
0.60  
0.40  
0.40  
0.28  
0.60  
0.30*  
0.28  
0.26*  
0.13  
0.16  
0.16  
0.30  
0.16  
0.48  
0.42  
0.65  
0.56  
0.73  
0.37  
0.61*  
0.73  
0.73*  
B
C
B
D
C
R
D
R
T
U*  
R
V*  
25 WVDC @ + 85°C, SURGE = 33 V . . . 17 WVDC @ + 125°C, SURGE = 20 V  
2.2  
2.2  
3.3  
3.3  
4.7  
6.8  
6.8  
10  
10  
10  
15  
15*  
22*  
22*  
68  
A
B
B
C
C
C
D
B
D
R
R
U*  
U*  
V*  
R
592D225X_025A2T  
592D225X_025B2T  
592D335X_025B2T  
592D335X_025C2T  
592D475X_025C2T  
592D685X_025C2T  
592D685X_025D2T  
592D106X_025B2T  
592D106X_025D2T  
592D106X_025R2T  
592D156X_025R2T  
592D156X_025U2T*  
592D226X_025U2T*  
592D226X_025V2T*  
592D686X_025R2T20H  
0.6  
0.6  
0.8  
0.8  
1.2  
1.7  
1.7  
2.5  
2.5  
2.5  
3.8  
3.8*  
5.5*  
5.5*  
17  
6
6
6
6
6
6
6
6
6
6
6
6*  
6*  
6*  
8
8.00  
6.00  
5.60  
2.00  
1.60  
1.50  
1.30  
2.00  
1.20  
0.48  
0.40  
0.40*  
0.30*  
0.30*  
0.23  
0.09  
0.12  
0.12  
0.22  
0.25  
0.26  
0.31  
0.115  
0.32  
0.56  
0.61  
0.52*  
0.68*  
0.68*  
0.87  
*Preliminary values, contact factory for availability. For 10% tolerance, specify "9"; for 20% tolerance, change to "0". Extended range ratings are in bold print.  
*Voltage range under development.  
For technical questions, contact tantalum@vishay.com  
Document Number 40004  
Revision 03-Dec-04  
www.vishay.com  
77  
592D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DF  
@ + 25°C  
120 Hz  
(%)  
Max. ESR  
@ + 25°C  
100kHz  
Max. RIPPLE  
100kHz  
Irms  
Max. DCL  
@ + 25°C  
(µA)  
CAPACITANCE  
CASE  
CODE  
(µF)  
PART NUMBER  
(Ohms)  
(Amps)  
35 WVDC @ + 85°C, SURGE = 46 V . . . 23 WVDC @ + 125°C, SURGE = 28 V  
1
A
B
592D105X_035A2T  
592D105X_035B2T  
592D155X_035B2T  
592D225X_035B2T*  
592D225X_035C2T  
592D335X_035C2T  
592D335X_035D2T  
592 D475X_035R2T  
592 D685X_035D2T  
592D685X_035R2T  
592D106X_035R2T  
0.5  
0.5  
0.5  
0.8*  
0.8  
1.2  
1.2  
1.6  
2.4  
2.4  
3.5  
4
4
4
6*  
6
6
6
6
6
6
6
10.0  
6.50  
4.2  
0.08  
0.11  
0.14  
0.12*  
0.17  
0.18  
0.24  
0.34  
0.31  
0.35  
0.35  
1
1.5  
2.2*  
2.2  
3.3  
3.3  
4.7  
6.8  
6.8  
10  
B
B*  
C
C
D
R
D
R
R
6.00*  
3.50  
3.20  
2.10  
1.30  
1.30  
1.20  
1.20  
TYPICAL CURVES OF ESR - AS A FUNCTION OF FREQUENCY  
"B" Case  
"A" Case  
IMPEDANCE  
1000  
100  
10  
1000  
100  
10  
IMPEDANCE  
ESR  
ESR  
4.7µF, 20 V  
1µF, 35  
15µF, 6.3  
1
1
10µF, 10 V  
100  
1K  
10K  
100K  
100  
1K  
10K  
100K  
1M  
0.1  
FREQUENCY IN HERTZ  
FREQUENCY IN HERTZ  
"D" Case  
"C" Case  
1000  
100  
10  
100  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
1
6.8µF, 25 V  
4.7µF, 25 V  
1
0.1  
0.01  
47µF, 6.3 V  
33µF, 6.3 V  
100  
0.1  
1K  
10K  
100K  
1M  
100  
1K  
10K  
FREQUENCY IN HERTZ  
100K  
1M  
FREQUENCY IN HERTZ  
www.vishay.com  
78  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  
592D  
Vishay Sprague  
TYPICAL CURVES @ + 25°C, IMPEDANCE AND ESR VS FREQUENCY  
"R" Case  
"S" Case  
100  
10  
100  
10  
IMPEDANCE  
ESR  
IMPEDANCE  
ESR  
33 - 6.3V  
1
1
10µF, 25 V  
0.1  
0.1  
100µF, 6.3 V  
1K  
0.01  
100  
0.01  
100  
10K  
100K  
1M  
1000  
10000  
100000  
1000000  
FREQUENCY IN HERTZ  
FREQUENCY IN HERTZ  
592D 1500-4V X CASE ESR/IMPEDANCE VS FREQUENCY  
592D 1500-6.3V Y CASE ESR/IMPEDANCE VS FREQUENCY  
10  
10.00  
ESR  
ESR  
IMPEDANCE  
IMPEDANCE  
1
1.00  
0.10  
0.01  
0.1  
0.01  
100  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
100  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
592D 1000-6.3V X CASE ESR/IMPEDANCE VS FREQUENCY  
592D 2200-4V Y CASE ESR/IMPEDANCE VS FREQUENCY  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
ESR  
ESR  
IMPEDANCE  
IMPEDANCE  
100  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
100  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
For technical questions, contact tantalum@vishay.com  
Document Number 40004  
Revision 03-Dec-04  
www.vishay.com  
79  
592D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS  
1.  
Operating Temperature: Capacitors are designed to  
operate over the temperature range - 55°C to + 85°C.  
- 55°C  
- 10%  
+ 85°C  
+ 10%  
+ 125°C  
+ 12%  
1.1  
Capacitors may be operated to + 125°C with  
voltage derating to two-thirds the + 85°C rating.  
6.  
Dissipation Factor: The dissipation factor,  
determined from the expression 2πfRC, shall not  
exceed values listed in the Standard Ratings Table.  
+ 85°C Rating  
+ 125°C Rating  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
6.1  
7.  
Measurements shall be made by the bridge method  
at, or referred to, a frequency of 120 Hz and a  
temperature of + 25°C.  
4
5.2  
8
2.7  
4
7
10  
13  
17  
23  
3.4  
5
8
12  
16  
20  
28  
6.3  
10  
16  
20  
25  
35  
13  
20  
26  
32  
46  
Leakage Current: Capacitors shall be stabilized at  
the rated temperature for 30 minutes. Rated voltage  
shall be applied to capacitors for 5 minutes using a  
steady source of power (such as a regulated power  
supply) with 1000 ohm resistor connected in series  
with the capacitor under test to limit the charging  
current. Leakage current shall then be measured.  
2.  
3.  
DC Working Voltage: The DC working voltage is the  
maximum operating voltage for continuous duty at the  
rated temperature.  
Note that the leakage current varies with temperature  
and applied voltage. See graph below for the  
appropriate adjustment factor.  
Surge Voltage: The surge DC rating is the maximum  
voltage to which the capacitors may be subjected  
under any conditions, including transients and peak  
ripple at the highest line voltage. 592D228X_6R3X2T  
and 592D338X_6R3V2T, not surge voltage tesed.  
TYPICAL LEAKAGE CURRENT FACTOR RANGE  
3.1  
3.2  
Surge Voltage Test: Capacitors shall withstand  
the surge voltage applied in series with a 33 ohm  
± 5% resistor at the rate of one-half minute on,  
one-half minute off, at + 85°C, for 1000 successive  
test cycles.  
100  
+ 125°C  
+ 85°C  
10  
Following the surge voltage test, the dissipation  
factor and the leakage current shall meet the initial  
requirements;thecapacitanceshallnothavechanged  
more than ± 10%.  
+ 55°C  
+ 25°C  
1.0  
4.  
Capacitance Tolerance: The capacitance of all  
capacitors shall be within the specified tolerance  
limits of the normal rating.  
0°C  
4.1  
Capacitance measurements shall be made by means  
of polarized capacitance bridge. The polarizing  
voltage shall be of such magnitude that there shall be  
no reversal of polarity due to the AC component. The  
maximum voltage applied to capacitors during  
measurement shall be 2 volts rms at 120 Hz at +25°C.  
If the AC voltage applied is less than one-half volt rms,  
no DC bias is required. Accuracy of the bridge shall  
be within ± 2%.  
0.1  
- 55°C  
0.01  
5.  
Capacitance Change With Temperature: The  
capacitancechangewithtemperatureshallnotexceed  
thefollowingpercentageofthecapacitancemeasured  
at + 25°C:  
0.001  
0
10 20  
30 40  
50 60 70 80  
90 100  
Percent of Rated Voltage  
www.vishay.com  
80  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  
592D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS (Continued)  
12.  
Resistance to Soldering Heat: Capacitors mounted  
on a substrate will withstand + 260°C for 5 seconds.  
7.1  
7.2  
7.3  
8.  
At + 25°C, the leakage current shall not exceed  
the value listed in the Standard Ratings Table.  
At + 85°C, the leakage current shall not exceed 10  
times the value listed in the Standard Ratings Table.  
12.1 Following the resistance to soldering heat test,  
capacitance, dissipation factor and DC leakage  
current shall meet the initial requirement.  
At + 125°C, the leakage current shall not exceed 12  
times the value listed in the Standard Ratings Table.  
13.  
Marking: The small body area of these capacitors  
does not allow elaborate marking schemes. All  
required information is present on the carton or  
package in which the parts are shipped; in addition,  
part number, quantity and data code are indicated on  
the reels.  
Equivalent Series Resistance: Measurements shall  
be made by the bridge method at, or referred to, a  
frequency of 100 KHz and a temperature of + 25°C.  
8.1  
9.  
TheEquivalentSeriesResistanceshallnotexceedthe  
value listed in the Standard Ratings Table.  
14.  
15.  
Terminal Strength: Per IEC-384-3, minimum of  
5N shear force.  
Life Test: Capacitors shall withstand rated DC  
voltage applied at + 85°C for 2000 hours or derated  
DC voltage applied at + 125°C for 1000 hours.  
Environmental: Mercury, CFC and ODS materials  
are not used in the manufacture of these capacitors.  
9.1  
10  
Following the life test, the dissipation factor and  
leakage shall meet the initial requirement; the  
capacitance change shall not exceed ± 10% of the  
initial value.  
16.  
17.  
Flammability: Encapsulant materials meet UL94 V0  
Capacitor Failure Mode: The predominant failure  
mode for solid tantalum capacitors is increased  
leakage current resulting in a shorted circuit. Capaci-  
tor failure may result from excess forward or reverse  
DC voltage, surge current, ripple current, thermal  
shock or excessive temperature.  
HumidityTest:Capacitorsshallwithstand1000hours  
at + 40°C, 90% to 95% relative humidity, with no  
voltage applied  
10.1 Following the humidity test, capacitance change shall  
not exceed ± 10% of the initial value, dissipation factor  
shall not exceed 150% of the initial requirement;  
leakage currrent shall not exceed 200% of the initial  
requirement at + 25°C  
The increase in leakage is caused by a breakdown of  
the Ta2O5 dielectric. For additional information on  
leakage failure of solid tantalum chip capacitors, refer  
to Vishay Sprague Technical Paper, Leakage Failure  
Mode in Solid Tantalum Chip Capacitors.”  
11.  
Solderability: Capacitors will meet the solderability  
requirements of ANSI/J-STD-002, test B category 1.  
GUIDE TO APPLICATION  
1.0  
Recommended rated working voltage guidelines:  
(-55°C to + 85°C)  
RESR = The capacitor Equivalent Series Resistance  
at the specified frequency.  
Application Voltage  
(V)  
Recommended  
Capacitor Voltage  
Rating (V)  
3.  
A-C Ripple Voltage: The maximum allowable ripple  
voltage shall be determined from the formula:  
2.5  
4
5
4
6.3  
8
10  
16  
20  
25  
35  
P
Vrms = Z  
RESR  
6
10  
12  
18  
24  
or, from the formula:  
Vrms = Irms x Z  
where,  
2.  
A-C Ripple Current: The maximum allowable ripple  
current shall be determined from the formula:  
P = Power Dissipation in Watts @ + 25°C as given in  
the table in Paragraph Number 6.0 (Power  
Dissipation).  
P
RESR = The capacitor Equivalent Series Resistance  
RESR  
Irms  
=
at the specified frequency.  
where,  
Z = The capacitor impedance at the specified  
frequency.  
P = Power Dissipation in Watts @ + 25°C as given  
in the table in Paragraph Number 6.0 (Power Dissipation)  
For technical questions, contact tantalum@vishay.com  
Document Number 40004  
Revision 03-Dec-04  
www.vishay.com  
81  
592D  
Vishay Sprague  
GUIDE TO APPLICATION (Continued)  
The Soldering Profile chart shows typical recomended  
time/temperature conditions for soldering. Attachment  
with a soldering iron is not recommended due to the  
difficulty of controlling temperature and time at  
temperature. The soldering iron must never come in  
contact with the capacitor.  
3.1  
3.2  
4.0  
The sum of the peak AC voltage plus the applied DC  
voltage shall not exceed the DC voltage rating of the  
capacitor.  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 10% of the DC working voltage at + 25°C.  
RECOMMENDED REFLOW SOLDERING PROFILE  
Reverse Voltage: These capacitors are capable of  
withstanding peak voltages in the reverse direction  
equal to 10% of the DC rating or 1 volt maximum at  
+25°C and 5% of the DC voltage rating or 0.5 volt  
maximum at + 85°C.  
250  
200  
150  
100  
50  
5.0  
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25°C, the  
permissible rms ripple current or voltage shall be  
calculated using the derating factors as shown:  
0
50  
100  
150  
200  
250  
300  
350  
Temperature  
+ 25°C  
+ 85°C  
+ 125°C  
Derating Factor  
TIME (SECONDS)  
1.0  
0.9  
0.4  
9.0 Recommended Mounting Pad Geometries: The  
nib must have sufficient clearance to avoid electrical  
contact with other components. The width dimension  
indicated is the same as the maximum width of the  
capacitor. This is to minimize lateral movement.  
6.0  
Power Dissipation: Power dissipation will be  
affected by the heat sinking capability of the mounting  
surface. Non-sinusoidal ripple current may produce  
heating effects which differ from those shown. It is  
important that the equivalent Irms value be  
established when calculating permissible operating  
levels. (Power dissipation calculated using + 25°C  
temperature rise.)  
REFLOW SOLDER PADS*  
in inches [millimeters]  
B
C
Maximum Permissible  
Power Dissipation  
@ + 25°C (Watts) in free air  
B
Case Code  
A
A
B
C
D
R
S
T
U
V
W
X
Y
CASE  
CODE  
A
WIDTH  
(A)  
0.082  
[2.1]  
0.120  
[3.5]  
0.130  
[3.5]  
0.180  
[4.6)  
2.45  
[8.3]  
0.067  
[1.7]  
0.120  
[3.5]  
0.136  
[3.5]  
0.180  
[4.6)  
0.245  
[8.3]  
0.310  
[7.9]  
PAD  
METALIZATION  
0.085  
[1.7]  
SEPARATION  
(C)  
0.060  
0.080  
0.100  
0.125  
0.150  
0.060  
0.080  
0.110  
0.140  
0.175  
0.175  
0.180  
0.050  
[1.3]  
0.065  
[1.7]  
0.120  
[3.1]  
0.145  
[3.7]  
0.145  
[3.7]  
0.043  
[1.1]  
0.065  
[1.7]  
0.120  
[3.1]  
0.145  
[3.7]  
0.145  
[3.7]  
0.360  
[9.2]  
0.360  
[9.2]  
B
C
D
R
S
T
0.065  
[1.7]  
0.080  
[2.3]  
0.080  
[2.3]  
0.090  
[2.3]  
0.032  
[0.8]  
0.065  
[1.7]  
0.090  
[2.3]  
0.090  
[2.3]  
7.0  
Printed Circuit Board Materials: The capacitors are  
compatible with most commonly used printed circuit  
board materials (alumina substrates, FR4, FR5,  
G10, PTFE-fluorocarbon and porcelanized steel). If  
your desired board material is not shown there please  
contact the Tantalum Marketing Department for  
assistance in determining compatibility.  
U
V
W
X
Y
0.090  
[2.3]  
0.120  
[3.0]  
0.120  
[3.0]  
8.  
Attachment:  
0.310  
[7.9]  
8.1  
Solder Paste: The recommended thickness of the  
solder paste after application is 0.007" ± .001"  
[.178mm ± .025mm]. Care should be exercised in  
selecting the solder paste. The metal purity should  
be as high as practical. The flux (in the paste) must  
be active enough to remove the oxides formed on the  
metallization prior to the exposure to soldering heat.  
* Pads for B, C and D case codes are otherwise pad compatible with  
* Type 293D, B, C and D case codes respectively.  
10.0 Cleaning (Flux Removal) After Soldering: The  
592D capacitors are compatible with all commonly  
used solvents such as TES, TMS, Prelete, Chlorethane,  
Terpene and aqueous cleaning media. Solvents  
containing methylene chloride or other epoxy solvents  
should be avoided since these will attack the epoxy  
encapsulation material.  
8.2 Soldering: Capacitors can be attached by  
conventional soldering techniques - convection,  
infrared reflow, wave soldering and hot plate methods.  
www.vishay.com  
82  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  
592D  
Vishay Sprague  
TAPE AND REEL PACKAGING in inches [millimeters]  
Top  
Cover  
Tape  
Thickness  
Standard orientation is with the  
cathode (-) nearest to the  
sprocket holes per EIA-481-1  
and IEC 286-3.  
Carrier  
Embossment  
R
Min.  
Bending Radius  
(Note 2)  
Units Per Reel  
Tape  
Width  
Component  
7" [178]  
Reel  
13" [330]  
Reel  
Case Code  
Pitch  
A
B
C
D
R
S
T
8mm  
12mm  
12mm  
12mm  
12mm  
8mm  
4mm  
4mm  
8mm  
8mm  
8mm  
4mm  
8mm  
8mm  
8mm  
8mm  
12mm  
12mm  
2500  
2000  
1000  
1000  
1000  
2500  
2000  
1000  
1000  
1000  
500  
10000  
8000  
4000  
4000  
4000  
10000  
8000  
4000  
4000  
2500  
12mm  
12mm  
12mm  
12mm  
24mm  
24mm  
U
V
W
X
Y
500  
For technical questions, contact tantalum@vishay.com  
Document Number 40004  
Revision 03-Dec-04  
www.vishay.com  
83  
592D  
Vishay Sprague  
TAPE AND REEL PACKAGING in inches [millimeters]  
Note: Metric dimensions will govern. Dimensions in inches are rounded and for reference only.  
.157 ± .004  
[4.0 ± 0.10]  
T2  
Max.  
10 Pitches Cumulative  
Tolerance on Tape  
± 0.008 [0.200]  
Deformation  
Between  
Embossments  
.059 + .004 - 0.0  
[1.5 + 0.10 - 0.0]  
Embossment  
.024  
[0.600]  
Max.  
.069 ± .004  
[1.75 ± 0.10]  
.079 ± .002  
[2.0 ± 0.05]  
Top  
Cover  
Tape  
20°  
A0  
.030 [0.75]  
Min. (Note 3)  
F
W
Maximum  
Component  
Rotation  
B1 Max.  
(Note 6)  
B0  
K0  
.030 [0.75]  
Min. (Note 4)  
Top  
Cover  
Tape  
(Side or Front Sectional View)  
P1  
Center Lines  
of Cavity  
For Tape Feeder  
Reference only  
including draft.  
Concentric around B0  
(Note 5)  
D1 Min. For Components  
.079 x .047 [2.0 x 1.2] and Larger.  
.004 [0.10]  
Max.  
USER DIRECTION OF FEED  
(Note 5)  
Maximum  
Cavity Size  
(Note 1)  
Cathode (-)  
Anode (+)  
DIRECTION OF FEED  
20° Maximum  
3.937 [100.0]  
Tape and Reel Specifications: All case sizes are available  
on plastic embossed tape per EIA-481-1. Tape reeling per  
IEC 286-3 is also available. Standard reel diameter is 7"  
[178mm]. 13" [330mm] reels are available and recommended  
as the most cost effective packaging method.  
Component Rotation  
.039 [1.0]  
Max.  
Typical  
Component  
Cavity  
Tape  
B0  
Center Line  
.039 [1.0] Max.  
The most efficient packaging quantities are full reel increments  
on a given reel diameter. The quantities shown allow for the  
sealed empty pockets required to be in conformance with  
EIA-481-1. Reel size and packaging orientation must be  
specified in the Vishay Sprague part number.  
Typical  
Component  
Center Line  
9.843 [250.0]  
Camber  
(Top View)  
Allowable Camber to be .039/3.937 [1/100]  
Non-Cumulative Over 9.843 [250.0]  
A0  
(Top View)  
TAPE  
SIZE  
8mm  
B1 (Max.)  
(Note 6)  
0.179  
[4.55]  
0.323  
[8.2]  
0.323  
[8.2]  
D1 (Min.)  
R (Min.)  
(Note 2)  
0.984  
[25.0]  
1.181  
[30.0]  
1.181  
[30.0]  
1.181  
[30.0]  
T2  
(Max.)  
0.098  
[2.5]  
0.256  
[6.5]  
0.256  
[6.5]  
0.103  
[2.6]  
A0 B0 K0  
(Note 5)  
0.039  
[1.0]  
0.059  
[1.5]  
0.059  
[1.5]  
0.059  
[1.5]  
F
P1  
W
0.315 + .012 - .004  
[8.0 + 0.3 - 0.1]  
0.472 ± 0.012  
[12.0 ± 0.30]  
0.472 ± 0.012  
[12.0 ± 0.30]  
0.945 ± 0.012  
[24.0 ± 0.03]  
0.138 ± 0.002  
[3.5 ± 0.05]  
0.217 ± 0.002  
[5.5 ± 0.05]  
0.217 ± 0.002  
[5.5 ± 0.05]  
0.453 ± 0.04  
[11.5 ± 0.03]  
0.157 ± 0.004  
[4.0 ± 0.10]  
0.157 ± 0.004  
[4.0 ± 0.10]  
0.315 ± 0.004  
[8.0 ± 0.10]  
0.472 ± 0.004  
[12.0 ± 0.10]  
(Note 1)  
12mm  
12mm  
Double Pitch  
24mm  
0.791  
[20.1]  
Notes:  
1. A0B0K are determined by the maximum dimensions to the ends of the terminals extending from the component body and/or the body  
dimen0sions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the  
cavity (A0B0K0) must be within .002" [0.05mm] minimum and .020" [0.50mm] maximum. The clearance allowed must also prevent  
rotation of the component within the cavity of not more than 20 degrees.  
2. Tape with components shall pass around radius "R" without damage. The minimum trailer length may require additional length to  
provide R minimum for 12mm embossed tape for reels with hub diameters approaching N minimum.  
3. This dimension is the flat area from the edge of the sprocket hole to either the outward deformation of the carrier tape between the  
embossed cavities or to the edge of the cavity whichever is less.  
4. This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the  
carrier tape between the embossed cavity or to the edge of the cavity whichever is less.  
5. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of  
embossment location and hole location shall be applied independent of each other.  
6. B1 dimension is a reference dimension for tape feeder clearance only.  
www.vishay.com  
84  
Document Number 40004  
Revision 03-Dec-04  
For technical questions, contact tantalum@vishay.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY