593D156X56R3A2T035 [VISHAY]

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 15uF, SURFACE MOUNT, 1206, CHIP;
593D156X56R3A2T035
型号: 593D156X56R3A2T035
厂家: VISHAY    VISHAY
描述:

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 15uF, SURFACE MOUNT, 1206, CHIP

文件: 总11页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
593D  
Vishay Sprague  
Solid Tantalum Chip Capacitors  
Tantamount® Commercial, Surface Mount  
for Switch Mode Power Supplies and Converters  
FEATURES  
Molded case available in five case codes.  
Compatible with "High Volume" automatic pick and place  
equipment.  
High Ripple Current carrying capability.  
Low ESR.  
Meets EIA 535BAAE and IEC Specification QC300801/  
US0001.  
PERFORMANCE/ELECTRICAL CHARACTERISTICS  
Capacitance Tolerance: ± 20%, ± 10% standard.  
Operating Temperature: - 55°C to + 85°C.  
(To +125°C with voltage derating.)  
Compliant Terminations  
100% Surge Current Tested (C, D, & E Case Sizes)  
Capacitance Range: 0.47µF to 680µF.  
Voltage Rating: 4 WVDC to 50 WVDC.  
ORDERING INFORMATION  
593D  
107  
X9  
010  
D
2
W
TYPE  
CAPACITANCE  
CAPACITANCE DC VOLTAGE RATING  
CASE CODE  
TERMINATION  
REEL SIZE AND  
PACKAGING  
TOLERANCE  
@ + 85°C  
This is expressed in  
volts. To complete the  
three-digit block, zeros  
precede the voltage  
rating. A decimal point is  
indicated by an "R"  
(6R3 = 6.3 volts).  
T
= Tape and reel*  
7" [178mm] reel  
2 = Solderable  
coating.  
X0  
X9  
X5  
=
=
=
± 20%  
± 10%  
± 5%  
See Ratings  
and Case  
Codes Table.  
This is expressed  
in picofarads. The first  
two digits are the  
significant figures. The  
third is the number of  
zeros to follow.  
W = 13" [330mm] reel  
*Cathode nearest  
sprocket hole.  
Standard.  
(Special Order)  
Note: Preferred Tolerance and reel sizes are in bold.  
We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage  
substitutions will be marked with the higher voltage rating.  
DIMENSIONS in inches [millimeters]  
L
W
H
TH MIN.  
P
Tw  
CASE  
CODE  
EIA  
SIZE  
L
W
H
P
Tw  
TH(MIN)  
A
B
C
D
E
3216  
3528  
6032  
7343  
7343H  
0.126 ± 0.008  
[3.2 ± 0.20]  
0.063 ± 0.008  
[1.6 ± 0.20]  
0.063 ± 0.008  
[1.6 ± 0.20]  
0.031 ± 0.012  
[0.80 ± 0.30]  
0.047 ± 0.004  
[1.2 ± 0.10]  
0.028  
[0.70]  
0.138 ± 0.008  
[3.5 ± 0.20]  
0.110 ± 0.008  
[2.8 ± 0.20]  
0.075 ± 0.008  
[1.9 ± .20]  
0.031 ± 0.012  
[0.80 ± 0.30]  
0.087 ± 0.004  
[2.2 ± 0.10]  
0.028  
[0.70]  
0.236 ± 0.012  
[6.0 ± 0.30]  
0.126 ± 0.012  
[3.2 ± 0.30]  
0.098 ± 0.012  
[2.5 ± 0.30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
0.087 ± 0.004  
[2.2 ± 0.10]  
0.039  
[1.0]  
0.287 ± 0.012  
[7.3 ± 0.30]  
0.170 ± 0.012  
[4.3 ± 0.30]  
0.110 ± 0.012  
[2.8 ± 0.30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
0.095 ± 0.004  
[2.4 ± 0.10]  
0.039  
[1.0]  
0.287 ± 0.012  
[7.3 ± 0.30]  
0.170 ± 0.012  
[4.3 ± 0.30]  
0.158 ± 0.012  
[4.0 ± .30]  
0.051 ± 0.012  
[1.3 ± 0.30]  
.095 ± 0.004  
[2.4 ± 0.10]  
0.039  
[1.0]  
www.vishay.com  
27  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  
593D  
Vishay Sprague  
RATINGS AND CASE CODES  
µF  
4V  
6.3V  
Ext.  
10V  
16V  
Ext.  
20V  
25V  
35V  
Ext.  
50V  
Ext.  
Std.  
Ext. Std.  
Std.  
Ext.  
Std.  
Std.  
Ext.  
Std.  
Ext.  
Std.  
Std.  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
A
A
A
B
B
A
A
A
A
B
B
B
C
C
C
B
B
D
D
D
C
C
A
A
B
C
A
B
C
A
C
A
A
B
C
A
C
C
C
C
E
A
B
D
D
D/E  
D/E  
A
A
C
C
A/B  
B
B
C
C
15  
A
A
A
A/B  
A/B  
B/C  
B/C  
B/C  
C
D
D
22  
A/B  
A*B  
B/C  
B/C  
B/C  
C/D  
D/E  
D/E  
D*/E  
E*  
B/C  
B/C  
C
D
D
D
D/E  
33  
A/B  
A*/B  
B/C  
D
D
C
D/E  
47  
D
D
D/E  
D/E  
E
68  
B*/C  
C*/D  
D/E  
D/E  
D*/E  
E*  
D
100  
150  
220  
330  
470  
680  
B/C  
B/C  
C/D  
D
D
E
D/E  
D*/E  
D
D/E  
D*/E  
*Preliminary values, contact factory for availability.  
CONSTRUCTION AND MARKING  
CONSTRUCTION  
MARKING  
Capacitance  
Voltage  
Capacitance Code,  
pF  
Polarity  
Band  
B, C, D, E  
22  
10  
Vishay  
Sprague  
Logo  
V 104  
2
XX  
Cathode  
Termination ( - )  
Voltage Code  
Vishay  
Sprague  
Logo  
“A” Case  
Polarity Band  
Date Code  
Polarity  
Stripe (+)  
Volts  
4
6.3  
10  
16  
20  
25  
35  
50  
Code  
G
J
Epoxy Case  
A
C
D
E
V
T
Anode Weld  
Tantalum  
Capacitor  
Element  
Positive  
Termination  
Marking:  
Capacitormarkingwillincludeananode(+)polarityband, capacitance  
inmicrofaradsandthevoltageratingof+85°C.'A'Casecapacitorsuse  
a letter code for the voltage and EIA capacitance code.  
The Sprague® trademark may be included if space permits.  
Units rated at 6.3 V shall be marked 6 V.  
A manufacturing date code is marked on all case codes.  
Call the factory for further explanation.  
For technical questions, contact tantalum@vishay.com  
Document Number 40005  
Revision 08-Nov-04  
www.vishay.com  
28  
593D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DC  
Leakage  
@ + 25°C  
(µA)  
Max. ESR  
@ + 25°  
100kHz  
Max. DF  
Max. RIPPLE  
100kHz  
Irms  
@ + 25°C  
CASE  
CODE  
CAPACITANCE  
120 Hz  
(%)  
PART NUMBER  
(µF)  
(Ohms)  
(Amps)  
4 WVDC @ + 85°C, SURGE = 5.2 V . . . 2.7 WVDC @ + 125°C, SURGE = 3.4 V  
15  
22  
33  
33  
47  
68  
68  
100  
100  
150  
150  
150  
220  
220  
330  
470  
470  
680*  
680  
A
A
A
B
B
B
C
B
C
B
C
D
C
D
D
D
E
593D156X_004A2_  
593D226X_004A2_  
593D336X_004A2_  
593D336X_004B2_  
593D476X_004B2_  
593D686X_004B2_  
593D686X_004C2_  
593D107X_004B2_  
593D107X_004C2_  
593D157X_004B2_  
593D157X_004C2_  
593D157X_004D2_  
593D227X_004C2_  
593D227X_004D2_  
593D337X_004D2_  
593D477X_004D2_  
593D477X_004E2_  
593D687X_004D2_*  
593D687X_004E2_  
0.6  
0.9  
1.3  
1.3  
1.9  
2.7  
2.7  
4.0  
4.0  
6.0  
6.0  
6.0  
8.8  
6
6
6
6
6
6
6
6
6
14  
8
8
8
8
1.500  
1.500  
1.500  
0.500  
0.500  
0.500  
0.275  
0.450  
0.225  
0.500  
0.250  
0.150  
0.200  
0.150  
0.150  
0.125  
0.100  
0.22  
0.22  
0.22  
0.41  
0.41  
0.41  
0.63  
0.43  
0.66  
0.41  
0.66  
1.00  
0.74  
1.00  
1.00  
1.10  
1.28  
8.8  
13.2  
18.8  
18.8  
27.2*  
27.2  
8
10  
10  
12*  
12  
D*  
E
0.100*  
0.100  
1.28*  
1.28  
6.3 WVDC @ + 85°C, SURGE = 8 V . . . 4 WVDC @ + 125°C, SURGE = 5 V  
10  
15  
15  
22  
22  
33  
47  
47  
A
A
A
A
B
B
B
C
B
C
B
C
D
C
D
E
D
E
D
E
E
E
593D106X_6R3A2  
593D156X_6R3A2_  
593D156X_6R3A2_035  
593D226X_6R3A2_  
593D226X_6R3B2_  
593D336X_6R3B2_  
593D476X_6R3B2_  
593D476X_6R3C2_  
593D686X_6R3B2_  
593D686X_6R3C2_  
593D107X_6R3B2_  
593D107X_6R3C2_  
593D107X_6R3D2_  
593D157X_6R3C2_  
593D157X_6R3D2_  
593D157X_6R3E2_  
593D227X_6R3D2_  
593D227X_6R3E2_  
593D337X_6R3D2_  
593D337X_6R3E2_  
593D477X_6R3E2_  
593D477X_6R3E2_035  
0.6  
0.9  
0.9  
1.3  
1.3  
2.0  
2.8  
2.8  
4.1  
4.1  
6.0  
6.0  
6.0  
9.0  
9.0  
9.0  
6
6
6
6
6
6
6
6
6
6
12  
6
6
8
8
8
8
8
2.000  
2.000  
1.000  
2.000  
0.600  
0.600  
0.550  
0.300  
0.550  
0.275  
0.500  
0.250  
0.140  
0.200  
0.125  
0.100  
0.100  
0.100  
0.125  
0.100  
0.100  
0.065  
0.19  
0.19  
0.27  
0.19  
0.38  
0.38  
0.39  
0.61  
0.39  
0.63  
0.41  
0.66  
1.04  
0.74  
1.10  
1.28  
1.22  
1.28  
1.10  
1.28  
1.28  
1.59  
68  
68  
100  
100  
100  
150  
150  
150  
220  
220  
330  
330  
470  
470  
13.2  
13.2  
19.8  
19.8  
28.2  
28.2  
8
8
10  
10  
10 WVDC @ + 85°C, SURGE = 13 V . . . 7 WVDC @ + 125°C, SURGE = 8 V  
4.7  
4.7  
6.8  
10  
15  
15  
15  
22  
22  
22  
33  
33  
47  
47  
A
A
A
A
A
A
B
A
B
C
B
C
B
C
593D475X_010A2  
593D475X_010A2_035  
593D685X_010A2_  
593D106X_010A2  
593D156X_010A2_  
593D156X_010A2_035  
593D156X_010B2_  
593D226X_010A2_  
593D226X_010B2_  
593D226X_010C2_  
593D336X_010B2_  
593D336X_010C2_  
593D476X_010B2_  
593D476X_010C2_  
0.5  
0.5  
0.7  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6
6
6
6
6
6
6
8
6
6
6
6
6
6
3.000  
1.500  
3.000  
2.000  
2.000  
1.000  
0.700  
1.500  
0.700  
0.345  
0.600  
0.300  
0.600  
0.300  
0.16  
0.22  
0.16  
0.19  
0.19  
0.27  
0.35  
0.22  
0.35  
0.56  
0.38  
0.61  
0.38  
0.61  
Preliminary values, contact factory for availability. For 10% tolerance, specify 9; for 20% tolerance, change to 0. Extended Ratings in bold print.  
www.vishay.com  
29  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  
593D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DC  
Leakage  
@ + 25°C  
(µA)  
Max. ESR  
@ + 25°  
100kHz  
Max. DF  
Max. RIPPLE  
100kHz  
Irms  
@ + 25°C  
CASE  
CODE  
CAPACITANCE  
120 Hz  
(%)  
PART NUMBER  
(µF)  
(Ohms)  
(Amps)  
10 WVDC @ + 85°C, SURGE = 13 V . . . 7 WVDC @ + 125°C, SURGE = 8 V  
47  
47  
47  
68  
D
D
D
C
D
C*  
D
D
D
E
593D476X_010D2_  
593D476X_010D2_035  
593D476X_010D2_044  
593D686X_010C2_  
593D686X_010D2_  
593D107X_010C2_*  
593D107X_010D2_  
593D107X_010D2_035  
593D157X_010D2_  
593D157X_010E2_  
593D227X_010D2_  
593D227X_010E2_  
593D337X_010E2_  
4.7  
4.7  
4.7  
6.8  
6.8  
10*  
10  
10  
15  
15  
22  
6
6
6
6
6
8*  
6
6
8
8
8
8
10  
0.200  
0.140  
0.100  
0.275  
0.150  
0.200*  
0.100  
0.080  
0.100  
0.100  
0.100  
0.100  
0.100  
0.87  
1.04  
1.22  
0.63  
1.00  
0.74*  
1.22  
1.37  
1.22  
1.28  
1.10  
1.28  
1.28  
68  
100*  
100  
100  
150  
150  
220  
220  
330  
D
E
E
22  
33  
16 WVDC @ + 85°C, SURGE = 20 V . . .10 WVDC @ + 125°C, SURGE = 12 V  
3.3  
4.7  
4.7  
6.8  
10  
10  
10  
15  
15  
22  
22  
33  
33  
33  
33  
47  
47  
A
A
B
A
A
B
C
B
C
B
C
B
C
D
D
C
D
D
D
E
E
593D335X_016A2_  
593D475X_016A2_  
593D475X_016B2_  
593D685X_016A2_  
593D106X_016A2_  
593D106X_016B2_  
593D106X_016C2_  
593D156X_016B2_  
593D156X_016C2_  
593D226X_016B2_  
593D226X_016C2_  
593D336X0016B2_  
593D336X_016C2_  
593D336X_016D2_  
593D336X_016D2_035  
593D476X_016C2_  
593D476X_016D2_  
593D686X_016D2_  
593D107X_016D2_  
593D107X_016E2_  
593D157X_016E2_  
0.5  
0.8  
0.8  
1.1  
1.6  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
4.4  
5.3  
4.2  
5.3  
7.5  
7.5  
10.9  
16  
6
6
6
6
6
6
6
6
6
6
6
6
6
4
6
6
6
6
8
8
8
3.500  
2.500  
1.500  
3.000  
1.700  
0.800  
0.450  
0.800  
0.400  
0.700  
0.350  
0.700  
0.300  
0.225  
0.150  
0.300  
0.150  
0.150  
0.125  
0.100  
0.100  
0.15  
0.17  
0.24  
0.16  
0.21  
0.33  
0.49  
0.33  
0.52  
0.35  
0.56  
0.35  
0.61  
0.82  
1.00  
0.61  
1.00  
1.00  
1.10  
1.28  
1.28  
68  
100  
100  
150  
16  
24  
20 WVDC @ + 85°C, SURGE = 26 V . . . 13 WVDC @ + 125°C, SURGE = 16 V  
1.0  
2.2  
3.3  
4.7  
4.7  
6.8  
10  
10  
15  
15  
22  
22  
33  
33  
47  
47  
68  
68  
100  
A
A
A
A
B
B
B
C
B
C
C
D
C
D
D
E
D
E
E
593D105X_020A2_  
593D225X_020A2_  
593D335X_020A2_  
593D475X_020A2_  
593D475X_020B2_  
593D685X_020B2_  
593D106X_020B2_  
593D106X_020C2_  
593D156X_020B2_  
593D156X_020C2_  
593D226X_020C2_  
593D226X_020D2_  
593D336X_020C2_  
593D336X_020D2_  
593D476X_020D2_  
593D476X_020E2_  
593D686X_020D2_  
593D686X_020E2_  
593D107X_020E2_  
0.5  
0.5  
0.7  
0.9  
0.9  
1.4  
2.0  
2.0  
3.0  
3.0  
4.4  
3.5  
6.6  
6.6  
9.4  
7.5  
13.6  
13.6  
20  
4
6
6
6
6
6
6
6
6
6
6
4
6
6
6
4
6
6
8
5.500  
4.000  
4.000  
3.500  
1.000  
1.000  
1.000  
0.450  
1.000  
0.400  
0.375  
0.225  
0.350  
0.200  
0.200  
0.150  
0.175  
0.150  
0.150  
0.12  
0.14  
0.14  
0.15  
0.29  
0.29  
0.29  
0.49  
0.29  
0.52  
0.54  
0.82  
0.56  
0.87  
0.87  
1.05  
0.93  
1.05  
1.05  
Preliminary values, contact factory for availability. For 10% tolerance, specify 9; for 20% tolerance, change to 0. Extended Ratings in bold print.  
For technical questions, contact tantalum@vishay.com  
Document Number 40005  
Revision 08-Nov-04  
www.vishay.com  
30  
593D  
Vishay Sprague  
STANDARD / EXTENDED RATINGS  
Max. DC  
Leakage  
@ + 25°C  
(µA)  
Max. ESR  
@ + 25°  
100kHz  
Max. DF  
Max. RIPPLE  
100kHz  
Irms  
@ + 25°C  
CASE  
CODE  
CAPACITANCE  
120 Hz  
(%)  
PART NUMBER  
(µF)  
(Ohms)  
(Amps)  
25 WVDC @ + 85°C, SURGE = 32 V . . . 17 WVDC @ + 125°C, SURGE = 20 V  
1.0  
1.5  
2.2  
2.2  
3.3  
4.7  
4.7  
6.8  
10  
A
A
A
B
B
B
C
C
C
C
D
D
D
E
E
593D105X_025A2_  
593D155X_025A2_  
593D225X_025A2_  
593D225X_025B2_  
593D335X_025B2_  
593D475X_025B2_  
593D475X_025C2_  
593D685X_025C2_  
593D106X_025C2_  
593D156X_025C2_  
593D156X_025D2_  
593D226X_025D2_  
593D336X_025D2_  
593D336X_025E2_  
593D336X_025E2_035  
0.5  
0.5  
0.5  
0.6  
0.8  
1.2  
1.2  
1.7  
2.5  
3.8  
3.8  
5.5  
8.3  
8.3  
6.6  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
4
4.000  
0.14  
0.14  
0.14  
0.24  
0.24  
0.24  
0.46  
0.47  
0.49  
0.51  
0.77  
0.87  
0.87  
0.91  
0.97  
4.000  
4.000  
1.500  
1.500  
1.500  
0.525  
0.500  
0.450  
0.425  
0.250  
0.200  
0.200  
0.200  
0.175  
15  
15  
22  
33  
33  
33  
35 WVDC @ + 85°C, SURGE = 46 V . . . 23 WVDC @ + 125°C, SURGE = 28 V  
0.47  
0.68  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
4.7  
6.8  
6.8  
10  
A
A
A
B
B
C
B
C
C
C
C
D
D
D
D
D
D
E
593D474X_035A2_  
593D684X_035A2_  
593D105X_035A2_  
593D105X_035B2_  
593D155X_035B2_  
593D155X_035C2_  
593D225X_035B2_  
593D225X_035C2_  
593D335X_035C2_  
593D475X_035C2_  
593D685X_035C2_  
593D685X_035D2_  
593D106X_035D2_  
593D106X_035D2_035  
593D156X_035D2_  
593D156X_035D2_035  
593D226X_035D2_  
593D226X_035E2_  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.2  
1.6  
2.4  
2.4  
3.5  
3.5  
5.3  
5.3  
7.7  
7.7  
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4.000  
4.000  
4.000  
2.000  
2.000  
0.900  
2.000  
0.900  
0.700  
0.500  
0.475  
0.300  
0.300  
0.250  
0.300  
0.260  
0.3  
0.14  
0.14  
0.14  
0.21  
0.21  
0.35  
0.21  
0.40  
0.45  
0.47  
0.48  
0.71  
0.71  
0.77  
0.71  
0.76  
0.71  
0.77  
10  
15  
15  
22  
22  
0.275  
50 WVDC @ + 85°C, SURGE = 65 V . . . 33 WVDC @ + 125°C, SURGE = 40 V  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
6.8  
6.8  
10  
B
C
C
B
C
D
C
D
D
D
E
D
E
D
E
593D105X_050B2_  
593D105X_050C22  
593D155X_050C2_  
593D155X_050B2_  
593D225X_050C2_  
593D225X_050D2_  
593D335X_050C2_  
593D335X_050D2_  
593D475X_050D2_  
593D475X_050D2_035  
593D475X_050E2_044  
593D685X_050D2_  
593D685X_050D2_  
593D106X_050D2_  
593D106X_050E2_  
0.8  
0.8  
0.8  
0.8  
1.1  
1.1  
1.7  
1.7  
2.4  
2.4  
1.9  
3.4  
3.4  
5.0  
5.0  
6
6
6
6
6
6
6
6
6
6
4
6
6
6
6
2.000  
1.600  
1.500  
2.000  
1.500  
2.000  
1.500  
0.800  
0.600  
0.300  
0.300  
0.600  
0.550  
0.550  
0.550  
0.21  
0.26  
0.27  
0.21  
0.27  
0.21  
0.27  
0.43  
0.50  
0.71  
0.74  
0.50  
0.55  
0.55  
0.55  
10  
Preliminary values, contact factory for availability. For 10% tolerance, specify 9; for 20% tolerance, change to 0. Extended Ratings in bold print.  
www.vishay.com  
31  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  
593D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS  
5.  
Capacitance Change With Temperature: The  
capacitancechangewithtemperatureshallnotexceed  
the following percentage of the capacitance measured  
at + 25°C:  
1.  
Operating Temperature: Capacitors are designed to  
operate over the temperature range - 55°C to + 85°C.  
1.1  
Capacitors may be operated to + 125°C with  
voltage derating to two-thirds the + 85°C rating.  
- 55°C  
+ 85°C  
+ 125°C  
+ 85°C Rating  
+ 125°C Rating  
- 10%  
+ 10%  
+ 12%  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
Working  
Voltage  
(V)  
Surge  
Voltage  
(V)  
6.  
Dissipation Factor: The dissipation factor,  
determined from the expression 2πfRC, shall not  
exceed values listed in the Standard Ratings Table.  
4
5.2  
8
2.7  
4
7
10  
13  
17  
23  
33  
3.4  
5
8
12  
16  
20  
28  
40  
6.3  
10  
16  
20  
25  
35  
50  
13  
20  
26  
32  
46  
65  
6.1  
7.  
Measurements shall be made by the bridge method  
at, or referred to, a frequency of 120 Hz and a  
temperature of + 25°C.  
Leakage Current: Capacitors shall be stabilized at  
the rated temperature for 30 minutes. Rated voltage  
shall be applied to capacitors for 5 minutes using a  
steady source of power (such as a regulated power  
supply) with 1000 ohm resistor connected in series  
with the capacitor under test to limit the charging  
current. Leakage current shall then be measured.  
2.  
3.  
DC Working Voltage: The DC working voltage is the  
maximum operating voltage for continuous duty at the  
rated temperature.  
Surge Voltage: The surge DC rating is the maximum  
voltage to which the capacitors may be subjected  
under any conditions, including transients and peak  
ripple at the highest line voltage.  
Note that the leakage current varies with temperature and  
applied voltage. See graph below for the appropriate  
adjustment factor.  
TYPICAL LEAKAGE CURRENT FACTOR RANGE  
3.1  
3.2  
Surge Voltage Test: Capacitors shall withstand  
the surge voltage applied in series with a 33 ohm  
± 5% resistor at the rate of one-half minute on,  
one-half minute off, at + 85°C, for 1000 successive  
test cycles.  
100  
+ 125°C  
+ 85°C  
10  
Following the surge voltage test, the dissipation  
factor and the leakage current shall meet the initial  
requirements; the capacitance shall not have changed  
more than ± 10%.  
+ 55°C  
+ 25°C  
1.0  
4.  
Capacitance Tolerance: The capacitance of all  
capacitors shall be within the specified tolerance  
limits of the normal rating.  
0°C  
0.1  
4.1  
Capacitance measurements shall be made by means  
of polarized capacitance bridge. The polarizing  
voltage shall be of such magnitude that there shall be  
no reversal of polarity due to the AC component. The  
maximum voltage applied to capacitors during  
measurement shall be 2 volts rms at 120 Hz at +25°C.  
If the AC voltage applied is less than one-half volt rms,  
no DC bias is required. Accuracy of the bridge shall  
be within ± 2%.  
- 55°C  
0.01  
0.001  
0
10 20  
30 40  
50 60 70 80  
90 100  
Percent of Rated Voltage  
For technical questions, contact tantalum@vishay.com  
Document Number 40005  
Revision 08-Nov-04  
www.vishay.com  
32  
593D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS (Continued)  
a simple harmonic motion having an amplitude of  
0.06" [1.52] ± 10% maximum total excursion or 20 g  
peak whichever is less.  
7.1  
7.2  
7.3  
At + 25°C, the leakage current shall not exceed  
the value listed in the Standard Ratings Table.  
At + 85°C, the leakage current shall not exceed 10  
10.3.1 Vibration frequency shall be varied logarithmically  
from 50 Hz to 2000 Hz and return to 50 Hz during  
a cycle period of 20 minutes.  
times the value listed in the Standard Ratings Table.  
At + 125°C, the leakage current shall not exceed  
12 times the value listed in the Standard Ratings  
Table.  
10.3.2 The vibration shall be applied for 4 hours in each of 2  
directions, parallel and perpendicular to the major axis  
of the capacitors.  
8.  
ESR  
10.3.3 Rated DC voltage shall be applied during the vibration  
8.1  
ESR (Equivalent Series Resistance) shall not  
exceed the values listed in the Ratings Table.  
Measurement shall be made by the bridge method  
at a frequency of 100kHz and a temperature of +25°C.  
cycling.  
10.3.4 An oscilloscope or other comparable means shall be  
used in determining electrical intermittency during the  
last cycle. The AC voltage applied shall not exceed 2  
volts rms.  
9.  
Life Test: Capacitors shall withstand rated DC  
voltage applied at + 85°C or two-thirds rated voltage  
applied at + 125°C for 2000 hours.  
10.3.5 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
9.1  
Following the life test, the dissipation factor shall  
meet the initial requirement; the capacitance change  
shall not exceed ± 10%; the leakage current shall not  
exceed 125% of the initial requirement.  
10.3.6 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
10.3.7 Following the high frequency vibration test, capacitors  
shall meet the original limits for capacitance,  
dissipation factor and leakage current.  
10.  
Vibration Tests: Capacitors shall be subjected to  
vibrationtests in accordance withthe followingcriteria.  
10.1 Capacitors shall be secured for test by means of a  
rigid mounting using suitable brackets.  
11.  
Acceleration Test:  
10.2 Low Frequency Vibration: Vibration shall consist  
of simple harmonic motion having an amplitude of  
0.03" [0.76mm] and a maximum total excursion of  
0.06" [1.52mm], in a direction perpendicular to the  
major axis of the capacitors.  
11.1 Capacitors shall be rigidly mounted by means of  
suitable brackets.  
11.2 Capacitors shall be subjected to a constant  
acceleration of 100 g for a period of 10 seconds in  
each of 2 mutually perpendicular planes.  
10.2.1 Vibration frequency shall be varied uniformly between  
the approximate limits of 10 Hz to 55 Hz during a  
period of approximately one minute, continuously for  
1.5 hours.  
11.2.1 The direction of motion shall be parallel to and per-  
pendicular to the longitudinal axis of the capacitors.  
11.3 Rated DC voltage shall be applied during acceleration  
test.  
10.2.2 An oscilloscope or other comparable means shall be  
used in determining electrical intermittency during the  
final 30 minutes of the test. The AC voltage applied  
shall not exceed 2 volts rms.  
11.3.1 An oscilloscope or other comparable means shall be  
usedindeterminingelectricalintermittencyduringtest.  
The AC voltage applied shall not exceed 2 volts rms.  
11.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
10.2.3 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
11.5 There shall be no mechancial damage to these  
10.2.4 Following the low frequency vibration test, capacitors  
shall meet the original requirements for capacitance,  
dissipation factor and leakage current.  
capacitors as a result of these tests.  
11.6 Following the acceleration test, capacitors shall  
meet the original limits for capacitance, dissipation  
factor and leakage current.  
10.3 High Frequency Vibration: Vibration shall consist of  
www.vishay.com  
33  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  
593D  
Vishay Sprague  
PERFORMANCE CHARACTERISTICS (Continued)  
+ 25°C (+10°C, - 5°C) for 5 minutes, then  
+ 125°C (+ 3°C, - 0°C) for 30 minutes, then  
+ 25°C (+ 10°C, - 5°C) for 5 minutes for 5 cycles.  
12.  
Shock Test:  
12.1 Capacitors shall be rigidly mounted by means of  
suitable brackets. The test load shall be distributed  
uniformly on the test platform to minimize the effects  
of unbalanced loads.  
14.3 Capacitors shall show no evidence of harmful or  
extensive corrosion, obliteration of marking or  
other visible damage.  
12.1.1 Test equipment shall be adjusted to produce a shock  
of 100 g peak with the duration of 6 mS and sawtooth  
waveform at a velocity change of 9.7 ft./sec.  
14.4 Following the thermal shock test, capacitors shall  
meet the original requirements for leakage current  
and dissipation factor. Capacitance change shall not  
exceed ± 5% of the original measured value.  
12.2 Capacitors shall be subjected to 3 shocks applied in  
each of 3 directions corresponding to the 3 mutually  
perpendicular axes of the capacitors.  
15.  
Soldering Compatibility:  
15.1 Resistance to Solder Heat: Capacitors will  
withstand exposure to + 260°C + 5°C for 10 seconds.  
12.3 Rated DC voltage shall be applied during test.  
12.3.1 An oscilloscope or other comparable means shall be  
used in determining electrical intermittency during  
tests. The replacement voltage applied shall not  
exceed 2 volts rms.  
15.1.1 Following the resistance to soldering heat test,  
capacitance, dissipation factor and DC leakage  
current shall meet the initial requirement.  
15.2 Solderability: Capacitors will meet the solderability  
requirements of ANSI/J-STD-002, Test B (MIL-STD-  
202, method and test S.)  
12.4 Electrical tests shall show no evidence of intermittent  
contacts, open circuits or short circuits during these  
tests.  
16.  
17.  
18.  
19.  
Terminal Strength: Per UEC-384-3, minimum of  
5N shear force.  
12.5 There shall be no mechanical damage to these  
capacitors as a result of these tests.  
Environmental: Mercury, CFC and ODS materials  
are not used in the manufacture of these capacitors.  
12.6 Following the shock test, capacitors shall meet the  
original limits for capacitance, dissipation factor and l  
leakage current.  
Flammability: Encapsulant materials meet UL94 V0  
with an oxygen index of 32%.  
13.  
Moisture Resistance:  
Capacitor Failure Mode: The predominant failure  
mode for solid tantalum capacitors is increased  
leakage current resulting in a shorted circuit. Capaci-  
tor failure may result from excess forward or reverse  
DC voltage, surge current, ripple current, thermal  
shock or excessive temperature.  
13.1 Capacitors shall be subjected to temperature cycling  
at 90% to 95% relative humidity, from + 25°C to  
+65°C to + 25°C (+ 10°C, - 2°C) over a period of 8  
hours per cycle for 1000 hours.  
13.2 Following the moisture resistance test, the leakage  
current and dissipation factor shall meet the initial  
requirements, and the change in capacitance shall  
not exceed ± 10%.  
The increase in leakage is caused by a breakdown of  
the Ta2O5 dielectric. For additional information on  
leakage failure of solid tantalum chip capacitors,  
refer to Vishay Sprague Technical Paper, Leakage  
Failure Mode in Solid Tantalum Chip Capacitors.”  
14.  
Thermal Shock:  
14.1 Capacitors shall be conditioned prior to temperature  
cycling for 15 minutes at + 25°C, at less than 50%  
relative humidity and a barometric pressure at 28 to 31"  
20.  
Surge Current: All C, D and E case code 593D  
capacitors are 100% surge current tested at + 25°C  
and rated voltage. The total series circuit resistance  
is 0.5 ohms. Each charge cycle of 0.10 seconds is  
followed by a discharge cycle of 0.10 seconds. Three  
surge cycles are applied. Each capacitor is tested  
individually to maximize the peak charging current.  
14.2 Capacitors shall be subjected to thermal shock in a  
cycle of exposure to ambient air at :  
- 55°C (+ 0°C,- 5°C) for 30 minutes, then  
For technical questions, contact tantalum@vishay.com  
Document Number 40005  
Revision 08-Nov-04  
www.vishay.com  
34  
593D  
Vishay Sprague  
GUIDE TO APPLICATION  
mounting surface. Non-sinusoidal ripple current may  
produce heating effects which differ from those shown.  
ItisimportantthattheequivalentIrmsvaluebeestablished  
when calculating permissible operating levels. (Power  
Dissipation calculated using + 25°C temperature rise.)  
1.  
A-C Ripple Current: The maximum allowable ripple  
current shall be determined from the formula:  
P
RESR  
Irms  
=
where,  
Maximum Permissible  
Power Dissipation  
@ + 25°C (Watts) in free air  
P
=
Power Dissipation in Watts @ + 25°C as given  
Case Code  
in the table in Paragraph Number 5 (Power  
Dissipation).  
A
B
C
D
E
0.075  
0.085  
0.110  
0.150  
0.165  
RESR = The capacitor Equivalent Series Resistance  
at the specified frequency.  
2.  
A-C Ripple Voltage: The maximum allowable ripple  
voltage shall be determined from the formula:  
6.  
Printed Circuit Board Materials: Type 593D  
capacitorsarecompatiblewithcommonlyusedprinted  
circuit board materials (alumina substrates, FR4,  
FR5, G10, PTFE-fluorocarbon and porcelanized  
steel).  
P
Vrms = Z  
RESR  
or, from the formula:  
Vrms = Irms x Z  
7.  
Attachment:  
7.1  
Solder Paste: The recommended thickness of the  
solder paste after application is .007" ± .001"  
[.178mm ± .025mm]. Care should be exercised in  
selecting the solder paste. The metal purity should  
be as high as practical. The flux (in the paste) must  
be active enough to remove the oxides formed on the  
metallization prior to the exposure to soldering heat. In  
practice this can be aided by extending the solder  
preheat time at temperatures below the liquidous state  
of the solder.  
where,  
P
=
Power Dissipation in Watts @ + 25°C as  
given in the table in Paragraph Number 5  
(Power Dissipation).  
R
Z
ESR = The capacitor Equivalent Series Resistance  
at the specified frequency.  
= The capacitor impedance at the specified  
frequency.  
2.1  
2.2  
3.  
The sum of the peak AC voltage plus the DC voltage  
shall not exceed the DC voltage rating of the  
capacitor.  
7.2  
Soldering: Capacitors can be attached by  
conventional soldering techniques - vapor phase,  
infrared reflow, wave soldering and hot plate methods.  
The Soldering Profile chart shows maximum  
recomended time/temperature conditions for solder-  
ing. Attachment with a soldering iron is not recom-  
mended due to the difficulty of controlling temperature  
and time at temperature.  
The sum of the negative peak AC voltage plus the  
applied DC voltage shall not allow a voltage reversal  
exceeding 10% of the DC rating at + 25°C.  
Reverse Voltage: These capacitors are capable of  
withstanding peak voltages in the reverse direction  
equal to 10% of the DC rating at + 25°C, 5% of the  
DC rating at + 85°C and 1% of the DC rating at +125°C.  
8.  
Cleaning (Flux Removal) After Soldering: The  
593D is compatible with all commonly used solvents  
such as TES, TMS, Prelete, Chlorethane, Terpene  
and aqueous cleaning media. However, CFC/ODS  
products are not used in the production of these  
devices and are not recommended. Solvents contain-  
ing methylene chloride or other epoxy solvents should  
be avoided since these will attack the epoxy  
encapsulation material.  
4.  
Temperature Derating: If these capacitors are to be  
operated at temperatures above + 25°C, the  
permissible rms ripple current or voltage shall be  
calculated using the derating factors as shown:  
Temperature  
Derating Factor  
+ 25°C  
+ 85°C  
+ 125°C  
1.0  
0.9  
0.4  
8.1  
When using ultrasonic cleaning, the board may  
resonate if the output power is too high. This vibration  
can cause cracking or a decrease in the adherence of  
the termination. DO NOT EXCEED 9W/l @ 40kHz  
for 2 minutes.  
5.  
Power Dissipation: Power dissipation will be  
affected by the heat sinking capability of the  
www.vishay.com  
35  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  
593D  
Vishay Sprague  
GUIDE TO APPLICATION (Continued)  
SOLDERING PROFILE  
Recommended Solder Profile — Wave Solder  
5 - 10 Sec.  
Recommended Solder Profile — Reflow  
300  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
300  
Max. Recommended  
260°C  
245°C Typical  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
130°C Typical  
130°C  
50  
0
0
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Time (Seconds)  
Time (Seconds)  
9.  
Recommended Mounting Pad Geometries: Proper mounting pad geometries are essential for successful solder  
connections. These dimensions are highly process sensitive and should be designed to minimize component rework  
due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for  
both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board  
designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and/or circuit board  
design.  
RECOMMENDED MOUNTING PAD GEOMETRIES Iin inches [millimeters]  
Wave Solder Pads  
D
Reflow Solder Pads  
D
E
C
B
C
B
E
A
A
Pad Dimensions  
Pad Dimensions  
Case  
Code  
A
(Min.)  
B
C
D
E
Case  
Code  
A
(Min.)  
B
C
D
E
(Nom.)  
(Nom.)  
(Nom.)  
(Nom.)  
(Nom.)  
(Nom.)  
(Nom.)  
(Nom.)  
A
B
C
D
E
0.048  
[1.23]  
0.034  
[0.87]  
0.085  
[2.15]  
0.053  
[1.35]  
0.048  
[1.23]  
0.071  
[1.80]  
0.085  
[2.15]  
0.053  
[1.35]  
0.222  
[5.65]  
A
B
C
D
E
0.222  
[5.65]  
0.061  
[1.54].  
0.085  
[2.15]  
0.048  
[1.23]  
0.065  
[1.65]  
0.048  
[1.23]  
0.110  
[2.80]  
0.085  
[2.15]  
0.065  
[1.65]  
0.234  
[5.95]  
0.234  
[5.95]  
061  
[1.54]  
0.106  
[2.70]  
0.050  
[1.28]  
0.124  
[3.15]  
0.050  
[1.28]  
0.110  
[2.80]  
0.106  
[2.70]  
0.124  
[3.15]  
0.337  
[8.55]  
0.337  
[8.55]  
0.050  
[1.28]  
0.066  
[1.68]  
0.106  
[2.70]  
0.175  
[4.45]  
0.050  
[1.28]  
0.118  
[3.00]  
0.106  
[2.70]  
0.175  
[4.45]  
0.388  
[9.85]  
0.388  
[9.85]  
0.066  
[1.68]  
0.106  
[2.70]  
0.050  
[1.28]  
0.175  
[4.45]  
0.050  
[1.28]  
0.118  
[3.00]  
0.106  
[2.70]  
0.175  
[4.45]  
0.388  
[9.85]  
0.388  
[9.85]  
For technical questions, contact tantalum@vishay.com  
Document Number 40005  
Revision 08-Nov-04  
www.vishay.com  
36  
593D  
Vishay Sprague  
TAPE AND REEL PACKAGING in inches [millimeters]  
0.157 ± 0.004  
[4.0 ± 0.10]  
K
Max.  
0.059 + 0.004 - 0.0  
[1.5 + 0.10 - 0.0]  
0.069 ± 0.004  
[1.75 ± 0.10]  
0.079 ± 0.002  
[2.0 ± .050]  
0.024  
[0.600]  
Max.  
A0  
F
W
B0  
K0  
B1 Max.  
P
Top Cover Tape  
D1 Min.  
Direction of Feed  
B
D1  
(Min.)  
K
(Max.)  
P
F
W
A0B0K0  
TAPE  
SIZE  
(Ma1x.)  
Notes: A0B0K0 aredeterminedbycomponentsize.  
The clearance between the component and the  
cavity must be within 0.002" [0.05mm] minimum to  
0.020"[0.50mm]maximumfor8mmtapeand0.002"  
[0.05mm] minimum to 0.026" [0.65mm] maximum  
for 12mm tape.  
0.094  
[2.4]  
0.039  
[1.0]  
0.165  
[4.2]  
0.138 ± 0.002  
[3.5 ± 0.05]  
0.157 ± 0.004 0.315 ± 0.012  
[4.0 ± 1.0] [8.0 ± 0.30]  
8mm  
0.177  
[4.5]  
0.059  
[1.5]  
0.323  
[8.2]  
0.217 ± 0.002  
[5.5 ± 0.05]  
0.315 ± 0.004 0.472 ± 0.012  
[8.0 ± 1.0] [12.0 ± 0.30]  
12mm  
TapeandReelSpecifications: Allcasecodesareavailable  
on plastic embossed tape per EIA-481-1. Tape reeling per  
IEC 286-3 is also available. Standard reel diameter is 13"  
[330mm]. 7" [178mm] reels are available.  
Standard orientation is with the  
cathode (-) nearest to the sprocket  
holes per EIA-481-1 and IEC 286-3.  
The most efficient packaging quantities are full reel  
increments on a given reel diameter. The quantities shown  
allow for the sealed empty pockets required to be in  
conformance with EIA-481-1. Reel size must be specified  
in the Vishay Sprague part number.  
Top Cover  
Tape Thickness  
Carrier  
Embossment  
Cathode (-)  
Units Per Reel  
Case  
Code  
Tape  
Width  
Component 7" [178]  
13" [330]  
Reel  
Pitch  
Reel  
A
B
C
D
E
8mm  
8mm  
4mm  
2000  
9000  
8000  
3000  
2500  
1500  
4mm  
8mm  
8mm  
8mm  
2000  
500  
500  
400  
Anode (+)  
12mm  
12mm  
12mm  
Direction of Feed  
www.vishay.com  
37  
Document Number 40005  
Revision 08-Nov-04  
For technical questions, contact tantalum@vishay.com  

相关型号:

593D156X9010A2T35

CAPACITOR, TANTALUM, SOLID, POLARIZED, 10V, 15uF, SURFACE MOUNT, 1206, CHIP
VISHAY

593D156X9016C2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 16 V, 15 uF, SURFACE MOUNT, 2412, CHIP, ROHS COMPLIANT
VISHAY

593D156X9020C2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 20 V, 15 uF, SURFACE MOUNT, 2412, CHIP, ROHS COMPLIANT
VISHAY

593D156X9025C2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 25 V, 15 uF, SURFACE MOUNT, 2412, CHIP, ROHS COMPLIANT
VISHAY

593D156X9025D2TE3

CAPACITOR, TANTALUM, SOLID, POLARIZED, 25 V, 15 uF, SURFACE MOUNT, 2917, CHIP, ROHS COMPLIANT
VISHAY

593D156X9035D2T5

CAPACITOR, TANTALUM, SOLID, POLARIZED, 35V, 15uF, SURFACE MOUNT, 2916, CHIP
VISHAY

593D1571010D2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D1571010E2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D1571016E2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D15716R3C2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D15716R3D2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY

593D15716R3E2

Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Low ESR
VISHAY