GS7660IP [VISHAY]

Switched-Capacitor Voltage Converter; 开关电容电压转换器
GS7660IP
型号: GS7660IP
厂家: VISHAY    VISHAY
描述:

Switched-Capacitor Voltage Converter
开关电容电压转换器

转换器 模拟IC 开关 信号电路 光电二极管
文件: 总9页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS7660  
New Product  
Vishay  
formerly General Semiconductor  
Switched-Capacitor Voltage Converter  
Description  
The GS7660 is a monolithic CMOS switched capacitor  
voltage converter, designed to be an improved direct  
replacement of the popular ICL7660, MAX1044 and  
LTC1044. They perform supply voltage conversions from  
positive to negative for an input voltage range of +1.5V to  
+6.0V to their negative complements of –1.5V to –6.0V.  
The input voltage can also be doubled (VOUT = 2VIN),  
halved (VOUT = VIN/2), or multiplied (VOUT = ± n.VIN).  
SO-8  
8 Pin Dip  
Features  
Low output impedance ( typical 35at VIN = 5V )  
Low quiescent current ( typical 36µA at VIN = 5V)  
High power conversion efficiency ( typical 98% )  
Contained on the chip are a series Power Supply regula-  
tor, Oscillator, control Circuitry and four Power MOS  
Switches. The oscillator, when unloaded, oscillates at a  
nominal frequency of 10 kHz, with an Input voltage of 5.0V.  
This frequency can be lowered by the addition of an external  
capacitor to the “Osc” terminal or overdriven by an external  
frequency source.  
Simple and accurate voltage conversion from  
positive to negative polarities  
Improved latch-up protection  
No external diodes required  
An Oscillator “boost” function is available to increase the  
oscillator frequency which will optimize performance of  
certain parameters. The Lv input can be connected to  
ground to improve low voltage operation (VIN 3V), or left  
open for input voltages greater than 3V to reduce power  
dissipation.  
Applications  
• – 5V supply from + 5V logic supply  
EIA/TIA 232E and EIA/TIA 562 power supplies  
Portable telephones  
The GS7660 provides superior performance over earlier  
designs by combining low output impedance and low qui-  
escent current with high efficiency and by eliminating diode  
voltage drop losses. The only external components  
required are two low cost electrolytic capacitors.  
Data acquisition systems  
Personal communications equipment  
Panel meters  
Handheld instruments  
Typical Application Circuit  
VIN (1.5V to 6V)  
1
2
3
5
6
7
Required for  
VIN 3V  
+
GS7660  
10µF  
C1  
VOUT = --VIN  
4
8
10µF  
C2  
+
Negative Voltage Converter  
Document Number 74819  
24-May-02  
www.vishay.com  
1
GS7660  
Vishay  
formerly General Semiconductor  
Ordering Information  
Order  
Number  
Pin Configuration  
GS7660x x  
Top View  
Package Outline  
P: Plastic Dip  
S: SO-8  
1
2
3
4
8
7
6
5
Boost  
Cap+  
GND  
Cap--  
V
IN  
OSC  
LV  
Operating Junction  
Temperature Range  
V
OUT  
+
I: 40°C to 125°C  
Top View  
1
2
3
4
8
V
Boost  
IN  
OSC  
LV  
Cap+  
GND  
Cap--  
7
6
5
V
OUT  
Test Circuit  
IS  
VIN  
BOOST  
VIN  
1
8
7
IL  
OSC  
2
CAP+  
GND  
External  
Oscillator  
+
GS7660  
COSC  
C1  
10 µF  
RL  
LV  
3
4
6
5
VOUT  
CAP-  
VOUT  
C2  
10µF  
+
www.vishay.com  
2
Document Number 74819  
24-May-02  
GS7660  
Vishay  
formerly General Semiconductor  
Maximum Ratings Ratings at 25°C ambient temperature unless otherwise specified.  
Parameter  
Symbol  
Value  
6.0  
Unit  
V
Supply Voltage (VIN to GND)  
Input Voltage (Pin 1, 6 and 7)  
LV Input Current  
VIN  
VIN  
–0.3V VIN (VIN, +0.3V)  
20  
V
LV1  
µA  
Output Short Circuit Duration  
Operating Junction Temperature Range  
Storage Temperature Range  
Continuous  
40 to +125  
65 to +150  
TJ  
°C  
°C  
TS  
Continuous Power Dissipation  
Plastic Dip (Derate 7.9mW/°C above 70°C)  
SO-8 (Derate 6mW/°C above 70°C)  
PD  
630  
480  
mW  
Note: (1) Stresses beyond those listed above may cause permanent damage to the device. Operating at the levels stated above may affect device reliabllity.  
Electrical Characteristics VIN = 5.0V LVPin = open, Oscillator free running, I load = 0mA, TA = 40°C to +125°C unless otherwise noted.  
Parameter  
Conditions  
Min  
Typ  
36  
Max  
Unit  
TA = 25°C  
70  
LV = Open  
Supply Current  
100  
µA  
Pin 1,7, VIN = 3V  
RL = 10K, LV Open  
RL = 10K, LV Gnd  
20  
3.0  
1.5  
6.0  
6.0  
Supply Voltage(1)  
V
TA = 25°C  
35  
70  
110  
250  
370  
IL = 20mA, FOSC = 10kHz  
LV = Open  
Output Resistance  
TA = 25°C  
IL = 3mA, FOSC = 1kHz  
VIN = 2V, LV to Gnd  
VIN = 5.0V  
5.0  
COSC = 0pF, LV to Gnd  
Pin 1 Open  
Oscillator Frequency  
kHz  
VIN = 2.0V  
2.0  
96  
98  
Power Efficiency  
RL = 5K, FOSC =10kHz, LV = Open  
98  
99.9  
%
%
Voltage Conversion Efficiency  
LV = Open  
TA = 25°C  
Pin 1 = 0V  
Pin 1 = VIN  
3.0  
20  
Oscillator Sink or  
Source Current  
VOSC = 0V or VIN  
LV = Open  
µA  
VIN = 2.0V  
1.0  
100  
mΩ  
kΩ  
Oscillator Impedance  
TA = 25°C  
VIN = 5.0V  
Note: (1) The GS7660 can operate with or without an external output diode over the full temperature and voltage range. Eliminating the diode reduces voltage  
drop losses.  
Document Number 74819  
24-May-02  
www.vishay.com  
3
GS7660  
Vishay  
formerly General Semiconductor  
Ratings and  
Characteristic Curves(TA = 25°C unless otherwise noted)  
Fig. 2 – Power Efficiency  
Fig. 1 – Supply Current  
vs. Supply Voltage  
vs. Load Current (V = 5V)  
IN  
100  
90  
50  
Boost = Open  
40  
Boost = Open  
LV = Open  
80  
70  
60  
50  
LV = Open  
30  
20  
LV = GND  
10  
0
1
2
3
4
5
6
0
10  
20  
30  
40  
50  
60  
70  
Supply Voltage (V)  
Load Current (mA)  
Fig. 3 – Output Voltage  
Fig. 4 – Output Voltage  
vs. Load Current (V = 5V)  
vs. Load Current (V = 2V)  
IN  
IN  
--2.5  
--3.0  
--3.5  
--4.0  
--4.5  
--5.0  
2
1
Boost = Open  
LV = Open  
Boost = Open  
LV = GND  
0
--1  
--2  
0
10  
20  
30  
40  
50  
60  
70  
--40  
--20  
0
20  
40  
60  
80  
100 120  
Load Current (mA)  
Load Current (mA)  
Fig. 5 – Oscillator Frequency  
vs. Supply Voltage  
Fig. 6 – Oscillator Frequency  
vs. Value of C  
OSC  
35  
30  
25  
20  
15  
Boost = Vin  
60  
50  
40  
30  
20  
LV = Open  
LV = GND  
Boost = VIN  
10  
5
LV = Open  
Boost = Open  
LV = GND  
10  
5
0
Boost = Open  
1
2
3
4
5
6
10  
100  
1000  
10000  
External Capacitor (Pin 7 to GND), COSC (pF)  
Supply Voltage, VIN (V)  
www.vishay.com  
4
Document Number 74819  
24-May-02  
GS7660  
Vishay  
formerly General Semiconductor  
Pin Description  
Pin  
Name  
Function  
BOOST  
Frequency Boost. Connecting BOOST to VIN increases the oscillator frequency by a factor of five.  
When the oscillator is driven externally, BOOST has no effect and should be left open.  
1
N.C.  
CAP+  
GND  
CAP–  
No Connection  
2
3
4
Connection to positive terminal of Charge-Pump Capacitor  
Ground. For most applications, the positive terminal of the reservoir capacitor is connected to this pin.  
Connection to negative terminal of Charge-Pump Capacitor  
Negative Voltage Output. For most applications, the negative terminal of the reservoir capacitor is  
connected to this pin.  
5
VOUT  
6
7
8
LV  
OSC  
VIN  
Low-Voltage Operation. Connect to ground for supply voltages below 3.5V.  
Oscillator Control Input. Connecting an external capacitor reduces the oscillator frequency.  
Power Supply Positive Voltage Input. (1.5V to 6V). VIN is also the substrate connection.  
Detailed Description  
The GS7660 is a charge-pump voltage converter. The  
basic operations is as follows: Switch pairs S1, S2 and S3,  
S4 (Fig.7) are alternately closed and opened at the rate of  
the oscillator frequency divided by two.  
S1  
S3  
S2  
VIN  
C1  
During the first half of the cycle, when S1 and S2 are  
closed and S3 and S4 are open, bucket capacitor C1 is  
charged by input voltage. During the second half of the  
cycle, when the switches assume the opposite state,  
capacitor C1 is connected in parallel with output capacitor  
C2 and any voltage differential causes a transfer of charge  
from C1 to C2. This process will continue until the voltage  
across C2 equals the VIN voltage.  
C2  
S4  
V
= -(VIN)  
OUT  
In normal operation, the output voltage will be less than  
VIN, since the switches have internal resistance and C2 is  
being discharged by the load.  
Fig. 7 Ideal Voltage Inverter  
Document Number 74819  
24-May-02  
www.vishay.com  
5
GS7660  
Vishay  
formerly General Semiconductor  
Design Information  
f
Low Voltage (LV) Pin  
VIN  
V
OUT  
Fig. 10 (below) shows a simplified circuit diagram of the  
GS7660.  
C1  
C2  
R
LOAD  
It shows a voltage regulator between the VIN and Gnd, in  
series with the Oscillator.  
Grounding the LV pin removes the regulator from this  
series path and improves low voltage performance down to  
1.5V. For supply voltages less than 3.0V, the LV pin should  
be connected to ground and left open for voltages above  
3.0V.  
Fig. 8 Switched Capacitor Model  
To better understand the theory of operation, a review of  
the basic switched capacitor building block is helpful (see  
Fig. 8). Referring to Fig. 8 and looking at one full cycle of  
operation, the charge being drained by the load is Qavg or  
IL x T (T being the time period of one full cycle).  
The LV pin can be left grounded over the total range of  
Input Voltages. This will improve low voltage operation and  
increase oscillator frequency. The disadvantage is  
increased quiescent current and reduced efficiency at  
higher voltages.  
All the charge (q) flowing into the output is being delivered  
by the input to C1 during only half the cycle. Under steady-  
state condition, C1 will charge to the level of the input voltage  
(VIN) and discharge to the peak level of the output voltage  
VIN  
CAP+  
pin 2  
(VOUT). Therefor the voltage change on C1 is VIN VOUT  
.
pin 8  
S2  
S1  
Qavg = q = C1(Vin Vout  
)
1M  
IL x T = C1(Vin Vout) or IL = f x C1(Vin Vout) f = 1/T  
BOOST  
Q
Q
(Vin Vout  
)
1
pin 1  
IL =  
and REQUIV  
=
(See fig. 9)  
÷ 2  
1
f x C1  
OSC  
pin 7  
f x C1  
S3  
S4  
V
OUT  
pin 5  
Where f is one-half the oscillator frequency.This resistance  
is a major component of the output resistance of switched  
capacitor circuits.  
GND  
pin 3  
CAP-  
pin 4  
LV  
pin 6  
With C1 = C2 = 10µF and Fosc = 10kHz, this resistance  
represents 20.  
Fig. 10 Functional Diagram  
Under the same conditions, the typical value in the  
Electrical Characteristicssection of the GS7660 is 35.  
R
EQUIV  
VIN  
V
OUT  
1
R
=
EQUIV  
f × C1  
C2  
R
LOAD  
Fig. 9 Equivalent Impedance  
www.vishay.com  
6
Document Number 74819  
24-May-02  
GS7660  
Vishay  
formerly General Semiconductor  
Oscillator Frequency Control  
For normal operation, the Boost, and Oscillator Pins  
should be left open. Connecting the Boost pin to the VIN  
supply will increase oscillator frequency by a factor of 5,  
resulting in lower Output Impedance, less ripple, smaller  
required capacitor values and moves the switching noise  
out of the audio band. Lower oscillator frequency reduces  
quiescent current.  
V
IN (1.5V to 6V)  
R1  
1N914  
IOUT  
2VIN  
(3.0V to 12V)  
1
2
3
4
8
7
6
5
200Ω  
+
GS7660  
+
C2  
10µF  
C1  
10µF  
500kΩ  
The oscillator frequency can be further controlled by driving  
the oscillator input from an external frequency source or  
lowered , by connecting an external capacitor to the oscil-  
lator input.  
Efficiency, Output Impedance and Output Ripple  
The power efficiency of a switched capacitor voltage con-  
verter is dependent on the internal losses.  
The total power loss is:  
VIN  
(1.5V to 9.0V)  
1
2
3
4
8
+
P outp. P switch P cap.  
7
Vd  
+
+
P loss =  
+ P conversion  
GS7660  
Vd  
VOUT  
2VIN–2VD  
=
Res.  
Res.  
Res.  
+
6
Required for  
V+ < 3.0V  
+
+
2
5
I
L
P outp.  
=
10µF  
10µF  
f = f osc/2  
f.C1  
Res.  
P switch P cap.  
2
+
= I  
(
8 R  
+ 4 Esr C1 + Esr C2  
)
L
SW  
Res.  
Res.  
P conversion =  
Figs. 11a and 11b Voltage Doubler  
1
f
1
2
2Vout2  
)
+
C2  
(
V ripple2 2 Vout. V ripple)]  
Voltage Doubling  
C1(  
V
in  
[
2
Figure 11 shows two methods of voltage doubling. In Fig.  
11a , R1 is added to ensure that doubling is not inhibited  
by a non-destructive latch-up at start-up.This condition can  
occur, since the ground pin (pin 3) is raised above the VIN  
pin ( pin 8) during start-up.  
f = f osc/2  
Vripple  
R1 increases output impedance and in higher current  
applications where the voltage drop across R1 exceeds a two  
diode drop, the doubling circuit of Fig 11b is recommended.  
1
f = f osc/2  
V ripple = I  
(
+ 2 Esr C2  
)
L
2. C2 .f  
The voltage doubler of Fig. 11a is more accurate at low  
load currents since the voltage drop across the diode is not  
reflected at the output.  
Document Number 74819  
24-May-02  
www.vishay.com  
7
GS7660  
Vishay  
formerly General Semiconductor  
Ultra Precision Voltage Divider  
(VIN)  
An ultra precision voltage divider is shown below in Fig. 12.  
To achieve the 0.002% accuracy, the load current has to be  
kept below 100nA. However with a slight loss in accuracy,  
the load current can be increased.  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
C1  
10µF  
C1  
10µF  
+
GS7660  
+
GS7660  
VOUT  
=
--(VIN)  
VIN (3.0V to 12V)  
1/4 CD4077  
1
2
3
4
8
7
6
5
C2  
20µF  
+
+
GS7660  
C1  
10µF  
Fig. 14 Paralleling for Lower Output Resistance  
VIN  
2
±0.002%  
+
C2  
10µF  
Paralleling For Lower Output Impedance  
Required for VIN < 3V  
IL 100nA  
Fig. 14 above shows two GS7660s connected in parallel to  
achieve a lower output resistance. If the output resistance  
is dominated by 1/ f C1, which is normally the case with the  
GS7660, increasing C1 offers a greater advantage than  
the paralleling of circuits.  
Fig. 12 Ultra Precision Voltage Divider  
Battery Splitter  
Fig. 13 shows a simple solution to obtain complementary +  
and supplies from a single power supply. The output volt-  
ages are + and half the supply voltage. Good accuracy  
requires low load currents.  
A disadvantage is the requirement of a floating input supply,  
which in the case of a battery is not an issue.  
+VB /2 (3.0V)  
1
2
3
4
8
7
6
5
+
VB  
(6V)  
Required for VB < 6V  
+
GS7660  
C1  
10µF  
VB /2 (3.0V)  
C2  
10µF  
+
Output Common  
Fig. 13 Battery Splitter  
www.vishay.com  
8
Document Number 74819  
24-May-02  
GS7660  
Vishay  
formerly General Semiconductor  
SO-8 Case Outline  
5.00  
4.80  
5
4
8
1
7
6
3
4.00  
3.80  
6.20  
5.80  
2
Dimensions in millimeters  
0.51  
0.33  
1.27 (typ.)  
0.25  
0.19  
1.75  
1.35  
0.25  
0.10  
1.27  
0.40  
8-Pin Dip Case Outline  
10.16  
9.01  
7.12  
6.09  
Dimensions in millimeters  
8.26  
7.62  
4.96  
2.92  
0.36  
0.20  
0.381  
(min.)  
3.81  
2.92  
10.92  
(max.)  
0.56  
0.35  
2.54 (Typ.)  
Document Number 74819  
24-May-02  
www.vishay.com  
9

相关型号:

GS7660IS

Switched-Capacitor Voltage Converter
VISHAY

GS78108AB

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-10

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-10I

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-10IT

Standard SRAM, 1MX8, 10ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FPBGA-119
GSI

GS78108AB-10T

Standard SRAM, 1MX8, 10ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FPBGA-119
GSI

GS78108AB-12

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-12I

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-12IT

Standard SRAM, 1MX8, 12ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FPBGA-119
GSI

GS78108AB-12T

Standard SRAM, 1MX8, 12ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FPBGA-119
GSI

GS78108AB-15I

1M x 8 8Mb Asynchronous SRAM
GSI

GS78108AB-15IT

Standard SRAM, 1MX8, 15ns, CMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, FPBGA-119
GSI