IL4116-X019 [VISHAY]

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, ROHS COMPLIANT, SMD, 6 PIN;
IL4116-X019
型号: IL4116-X019
厂家: VISHAY    VISHAY
描述:

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, ROHS COMPLIANT, SMD, 6 PIN

三端双向交流开关 输出元件 光电
文件: 总8页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IL4116, IL4117, IL4118  
Vishay Semiconductors  
Optocoupler, Phototriac Output, Zero Crossing,  
Very Low Input Current  
FEATURES  
1
6
5
4
MT2  
A
C
• High input sensitivity: IFT = 1.3 mA, PF = 1.0;  
FT = 3.5 mA, typical PF < 1.0  
2
3
NC  
I
• Zero voltage crossing  
ZCC*  
NC  
MT1  
• 600 V, 700 V, and 800 V blocking voltage  
• 300 mA on-state current  
*Zero crossing circuit  
i179030_4  
V
21842-1  
D
E
• High dV/dt 10 000 V/μs  
DESCRIPTION  
The IL4116, IL4117, and IL4118 consists of an AlGaAs IRLED  
optically coupled to a photosensitive zero crossing TRIAC  
network. The TRIAC consists of two inverse parallel connected  
monolithic SCRs. These three semiconductors devices are  
assembled in a six pin 300 mil dual in-line package.  
• Isolation test voltage 5300 VRMS  
• Very low leakage < 10 μA  
• Compliant to RoHS Directive 2002/95/EC and in  
accordance to WEEE 2002/96/EC  
High input sensitivity is achieved by using an emitter follower  
phototransistor and a cascaded SCR predriver resulting in an  
LED trigger current of less than 1.3 mA (DC).  
APPLICATIONS  
• Solid state relay  
The IL4116, IL4117, IL4118 uses zero cross line voltage  
detection circuit witch consists of two enhancement MOSFETs  
and a photodiode. The inhibit voltage of the network is  
determined by the enhancement voltage of the n-channel FET.  
The P-channel FET is enabled by a photocurrent source that  
permits the FET to conduct the main voltage to gate on the  
n-channel FET. Once the main voltage can enable the n-channel,  
it clamps the base of the phototransistor, disabling the first stage  
SCR predriver.  
• Lighting controls  
• Temperature controls  
• Solenoid/valte controls  
• AC motor drives/starters  
AGENCY APPROVALS  
• UL1577, file no. E52744 system code H or J, double  
protection  
The blocking voltage of up to 800 V permits control of off-line  
voltages up to 240 VAC, with a safety factor of more than two, and  
is sufficient for as much as 380 VAC. Current handling capability  
is up to 300 mA RMS continuous at 25 °C.  
• CSA 93751  
The IL4116, IL4117, IL4118 isolates low-voltage logic from  
120 VAC, 240 VAC, and 380 VAC lines to control resistive,  
inductive, or capacitive loads including motors, solenoids, high  
current thyristors or TRIAC and relays.  
Applications include solid-state relays, industrial controls, office  
equipment, and consumer appliances.  
• BSI IEC60950; IEC60065  
• DIN EN 60747-5-5 (VDE 0884) available with option 1  
• FIMKO  
ORDERING INFORMATION  
DIP  
Option 6  
I
L
4
1
1
#
-
X
0
#
#
T
10.16 mm  
Option 9  
7.62 mm  
Option 7  
PART NUMBER  
PACKAGE OPTION  
TAPEAND  
REEL  
> 0.1 mm  
> 0.7 mm  
AGENCY CERTIFIED/PACKAGE  
UL, cUL, BSI, FIMKO  
DIP-6  
BLOCKING VOLTAGE VDRM (V)  
600  
IL4116  
700  
800  
IL4118  
IL4117  
DIP-6, 400 mil, option 6  
SMD-6, option 7  
IL4116-X006  
IL4116-X007T (1)  
IL4116-X009T (1)  
600  
-
IL4118-X006  
IL4118-X007T (1)  
IL4118-X009T (1)  
800  
IL4117-X007  
SMD-6, option 9  
-
VDE, UL, cUL, BSI, FIMKO  
DIP-6  
700  
IL4116-X001  
IL4116-X016  
-
IL4117-X001  
IL4118-X001  
IL4118-X016  
IL4118-X017  
-
DIP-6, 400 mil, option 6  
SMD-6, option 7  
-
-
-
SMD-6, option 9  
IL4116-X019T (1)  
Note  
(1)  
Also available in tubes, do not put T on the end.  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
For technical questions, contact: optocoupleranswers@vishay.com  
www.vishay.com  
1
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
ABSOLUTE MAXIMUM RATINGS (1) (Tamb = 25 °C, unless otherwise specified)  
PARAMETER  
TEST CONDITION  
PART  
SYMBOL  
VALUE  
UNIT  
INPUT  
Reverse voltage  
Forward current  
Surge current  
VR  
IF  
6
V
mA  
60  
IFSM  
Pdiss  
2.5  
100  
1.33  
750  
A
Power dissipation  
Derate linearly from 25 °C  
Thermal resistance  
OUTPUT  
mW  
mW/°C  
°C/W  
Rth  
IL4116  
IL4117  
IL4118  
VDRM  
VDRM  
VDRM  
IDRM  
600  
700  
800  
300  
3
V
V
Peak off-state voltage  
V
RMS on-state current  
Single cycle surge  
Power dissipation  
Derate linearly from 25 °C  
Thermal resistance  
COUPLER  
mA  
A
Pdiss  
Rth  
500  
6.6  
150  
mW  
mW/°C  
°C/W  
Creepage distance  
Clearance distance  
Storage temperature  
Operating temperature  
Isolation test voltage  
7  
7  
mm  
mm  
°C  
Tstg  
Tamb  
VISO  
RIO  
- 55 to + 150  
- 55 to + 100  
5300  
°C  
VRMS  
Ω
V
IO = 500 V, Tamb = 25 °C  
1012  
1011  
Isolation resistance  
VIO = 500 V, Tamb = 100 °C  
RIO  
Ω
Lead soldering temperature (2)  
5 s  
Tsld  
260  
°C  
Notes  
(1)  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not  
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute  
maximum ratings for extended periods of the time can adversely affect reliability.  
Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through  
hole devices (DIP).  
(2)  
www.vishay.com  
2
For technical questions, contact: optocoupleranswers@vishay.com  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
ELECTRICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)  
PARAMETER  
TEST CONDITION  
PART  
SYMBOL  
MIN.  
TYP.  
MAX.  
1.5  
UNIT  
INPUT  
Forward voltage  
Breakdown voltage  
Reverse current  
Capacitance  
IF = 20 mA  
VF  
VBR  
IR  
1.3  
30  
V
V
I
R = 10 μA  
R = 6 V  
VF = 0 V, f = 1 MHz  
6
V
0.1  
40  
10  
μA  
CO  
RthjI  
pF  
Thermal resistance, junction to lead  
OUTPUT  
750  
°C/W  
IL4116  
IL4117  
IL4118  
IL4116  
IL4117  
IL4118  
VDRM  
VDRM  
VDRM  
VD(RMS)  
VD(RMS)  
VD(RMS)  
ID(RMS)  
VTM  
600  
700  
800  
424  
494  
565  
650  
750  
850  
460  
536  
613  
10  
V
V
Repetitive peak off-state voltage  
Off-state voltage  
IDRM = 100 μA  
V
V
ID(RMS) =70 μA  
V
V
Off-state current  
V
D = 600, Tamb = 100 °C  
IT = 300 mA  
100  
3
μA  
V
On-state voltage  
1.7  
On-state current  
PF = 1, VT(RMS) = 1.7 V  
f = 50 Hz  
ITM  
300  
3
mA  
A
Surge (non-repetitive, on-state current)  
Holding current  
ITSM  
VT = 3 V  
IH  
65  
200  
500  
1.3  
25  
μA  
μA  
mA  
V
Latching current  
VT = 2.2 V  
IL  
LED trigger current  
Zero cross inhibit voltage  
V
AK = 5 V  
IFT  
0.7  
15  
IF = rated IFT  
VIH  
V
RM, VDM = 400 VAC  
dV/dtcr  
10 000  
V/μs  
Critical rate of rise off-state voltage  
V
RM, VDM = 400 VAC,  
amb = 80 °C  
D = 230 VRMS  
D = 300 mARMS, TJ = 25 °C  
D = 230 VRMS  
D = 300 mARMS, TJ = 85 °C  
D = 230 VRMS  
D = 300 mARMS, TJ = 25 °C  
dV/dtcr  
dV/dtcrq  
dV/dtcrq  
2000  
V/μs  
V/μs  
V/μs  
T
V
,
8
7
I
I
I
Critical rate of rise of voltage at current  
commutation  
V
,
Critical rate of rise of on-state current  
commutation  
V
,
dV/dtcrq  
RthjI  
12  
A/ms  
°C/W  
Thermal resistance, junction to lead  
150  
COUPLER  
Critical state of rise of coupler  
input-output voltage  
IT = 0 A, VRM = VDM = 424 VAC  
f = 1 MHz, VIO = 0 V  
dV(IO)/dt  
10 000  
V/μs  
Capacitance (input to output)  
CIO  
0.8  
pF  
pF  
Common mode coupling capacitance  
CCM  
0.01  
Note  
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering  
evaluation. Typical values are for information only and are not part of the testing requirements.  
SWITCHING CHARACTERISTICS  
PARAMETER  
Turn-on time  
Turn-off time  
TEST CONDITION  
PART  
SYMBOL  
MIN.  
TYP.  
35  
MAX.  
UNIT  
μs  
V
RM = VDM = 424 VAC  
ton  
toff  
PF = 1, IT = 300 mA  
50  
μs  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
For technical questions, contact: optocoupleranswers@vishay.com  
www.vishay.com  
3
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)  
150  
100  
35  
30  
25  
20  
15  
10  
50  
5
0
0
- 60 - 40 - 20  
0
20 40 60 80 100  
1.0  
1.1  
1.2  
1.3  
1.4  
VF - LED Forward Voltage (V)  
T - Ambient Temperature (°C)  
iil4116_01  
A
iil4116_04  
Fig. 4 - Maximum LED Power Dissipation  
Fig. 1 - LED Forward Current vs. Forward Voltage  
500  
400  
300  
200  
1.4  
1.3  
TA = - 55 °C  
1.2  
T
= 25 °C  
100  
1.1  
1.0  
0.9  
A
0
- 100  
- 200  
- 300  
- 400  
- 500  
TA = 100 °C  
0.8  
0.7  
0.1  
1
10  
100  
- 3  
- 2  
- 1  
0
1
2
3
VT - On-State Voltage - V(RMS)  
IF - Forward Current (mA)  
iil4116_05  
iil4116_02  
Fig. 5 - On-State Terminal Voltage vs. Terminal Current  
Fig. 2 - Forward Voltage vs. Forward Current  
10 000  
300  
250  
200  
150  
τ
Duty Factor  
0.005  
0.01  
0.02  
1000  
100  
10  
t
0.05  
0.1  
0.2  
τ
DF = /t  
0.5  
100  
50  
0
10-6 10-5 10-4 10-3 10-2 10-1 100 101  
- 60 - 40 - 20  
0
20 40 60 80 100  
t - LED Pulse Duration (s)  
TA - Ambient Temperature (°C)  
Fig. 6 - Maximum Output Power Dissipation  
iil4116_03  
iil4116_06  
Fig. 3 - Peak LED Current vs. Duty Factor, τ  
www.vishay.com  
4
For technical questions, contact: optocoupleranswers@vishay.com  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
TRIGGER CURRENT VS. TEMPERATURE AND VOLTAGE  
The trigger current of the IL4116, IL4117, IL4118 has a  
positive temperature gradient and also is dependent on the  
terminal voltage as shown as the fig. 7.  
For the operating voltage 250 VRMS over the temperature  
range - 40 °C to 85 °C, the IF should be at least 2.3 x of the  
IFT1 (1.3 mA, max.).  
Considering - 30 % degradation over time, the trigger  
current minimum is IF = 1.3 x 2.3 x 130 % = 4 mA  
2.5  
100 °C  
2.0  
85 °C  
1.5  
25 °C  
1.0  
50 °C  
0.5  
0.0  
0
50  
100 150 200 250 300 350  
VRMS (V)  
21611  
Fig. 7 - Trigger Current vs.  
Temperature and Operating Voltage (50 Hz)  
INDUCTIVE AND RESISTIVE LOADS  
For inductive loads, there is phase shift between voltage and current, shown in the fig. 8.  
IF(on)  
IF(on)  
IF(off)  
IF(off)  
AC line  
voltage  
AC line  
voltage  
AC current  
through  
triac  
AC current  
through  
triac  
Commutating dV/dt  
Commutating dV/dt  
Voltage  
Voltage  
across triac  
across triac  
21607  
Resistive load  
Inductive load  
Fig. 8 - Waveforms of Resistive and Inductive Loads  
The voltage across the triac will rise rapidly at the time the  
current through the power handling triac falls below the  
holding current and the triac ceases to conduct. The rise  
rate of voltage at the current commutation is called  
commutating dV/dt. There would be two potential problems  
for ZC phototriac control if the commutating dV/dt is too  
high. One is lost control to turn off, another is failed to keep  
the triac on.  
In order to achieve control with certain inductive loads of  
power factors is less than 0.8, the rate of rise in voltage  
(dV/dt) must be limited by a series RC network placed in  
parallel with the power handling triac. The RC network is  
called snubber circuit. Note that the value of the capacitor  
increases as a function of the load current as shown in fig. 9.  
Failed to keep on  
As a zero-crossing phototriac, the commutating dV/dt  
spikes can inhibit one half of the TRIAC from keeping on If  
the spike potential exceeds the inhibit voltage of the zero  
cross detection circuit, even if the LED drive current IF is on.  
Lost control to turn off  
If the commutating dV/dt is too high, more than its critical  
rate (dV/dtcrq), the triac may resume conduction even if the  
LED drive current IF is off and control is lost.  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
For technical questions, contact: optocoupleranswers@vishay.com  
www.vishay.com  
5
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
This hold-off condition can be eliminated by using a snubber  
and also by providing a higher level of LED drive current. The  
higher LED drive provides a larger photocurrent which  
causes the triac to turn-on before the commutating spike  
has activated the zero cross detection circuit. Fig. 10 shows  
the relationship of the LED current for power factors of less  
than 1.0. The curve shows that if a device requires 1.5 mA  
for a resistive load, then 1.8 times (2.7 mA) that amount  
would be required to control an inductive load whose power  
factor is less than 0.3 without the snubber to dump the  
spike.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
IFth Normalized to IFth at PF = 1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1
PF - Power Factor  
CS (µF) = 0.0032 (µF) x 10 ^ (0.0066 IL (mA))  
iil4116_08  
Fig. 10 - Normalized LED Trigger Current  
0.1  
0.01  
PF = 0.3  
IF = 2.0 mA  
0.001  
100 150 200  
50  
300 350 400  
250  
0
IL - Load Current (mA)  
iil4116_07  
Fig. 9 - Shunt Capacitance vs. Load Current vs. Power Factor  
APPLICATIONS  
Direct switching operation:  
Indirect switching operation:  
The IL4116, IL4117, IL4118 isolated switch is mainly suited  
to control synchronous motors, valves, relays and  
solenoids. Fig. 11 shows a basic driving circuit. For resistive  
load the snubber circuit RS CS can be omitted due to the  
high static dV/dt characteristic.  
The IL4116, IL4117, IL4118 switch acts here as an isolated  
driver and thus enables the driving of power thyristors and  
power triacs by microprocessors. Fig. 12 shows a basic  
driving circuit of inductive load. The resister R1 limits the  
driving current pulse which should not exceed the maximum  
permissible surge current of the IL4116, IL4117, IL4118.  
The resister RG is needed only for very sensitive thyristors or  
triacs from being triggered by noise or the inhibit current.  
1
2
3
6
5
4
Hot  
Control  
RS  
R1  
360  
220/240  
VAC  
1
2
3
6
5
4
Hot  
CS  
ZC  
Control  
220/240  
VAC  
RS  
U1  
Inductive load  
ZC  
Nutral  
21608-1  
CS  
RG  
330  
U1  
Inductive load  
Nutral  
21609-1  
Fig. 11 - Basic Direct Load Driving Circuit  
Fig. 12 - Basic Power Triac Driver Circuit  
www.vishay.com  
6
For technical questions, contact: optocoupleranswers@vishay.com  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
IL4116, IL4117, IL4118  
Optocoupler, Phototriac Output, Zero  
Vishay Semiconductors  
Crossing, Very Low Input Current  
PACKAGE DIMENSIONS in millimeters  
Pin one ID  
2
1
3
6.4 0.1  
ISO method A  
7.62 typ.  
4
5
6
8.6 0.1  
0.5 0.05  
1 min.  
3.555 0.255  
18°  
4° typ.  
2.95 0.5  
0.8 min.  
0.25 typ.  
0.85 0.05  
3° to 9°  
0.5 0.05  
7.62 to 8.81  
i178004  
2.54 typ.  
Option 6  
Option 9  
Option 7  
10.36  
9.96  
9.53  
10.03  
7.62 typ.  
7.8  
7.4  
7.62 ref.  
0.7  
4.6  
4.1  
0.102  
0.249  
8 min.  
0.25 typ.  
0.51  
1.02  
0.35  
0.25  
15° max.  
8.4 min.  
10.3 max.  
8 min.  
10.16  
10.92  
18450  
Document Number: 83628  
Rev. 1.8, 20-Oct-10  
For technical questions, contact: optocoupleranswers@vishay.com  
www.vishay.com  
7
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY