SI3417DV-T1-GE3 [VISHAY]

Small Signal Field-Effect Transistor, 8A I(D), 30V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6;
SI3417DV-T1-GE3
型号: SI3417DV-T1-GE3
厂家: VISHAY    VISHAY
描述:

Small Signal Field-Effect Transistor, 8A I(D), 30V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6

开关 光电二极管 晶体管
文件: 总11页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3417DV  
Vishay Siliconix  
P-Channel 30 V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
TrenchFET® Power MOSFET  
VDS (V)  
RDS(on) () Max.  
Qg (Typ.)  
I
D (A)d,e  
100 % Rg and UIS Tested  
Material categorization:  
0.0252 at VGS = - 10 V  
0.0360 at VGS = - 4.5 V  
- 8  
- 8  
- 30  
15 nC  
For definitions of compliance please see  
www.vishay.com/doc?99912  
Available  
TSOP-6  
Top View  
APPLICATIONS  
Load Switches  
Adaptor Switch  
DC/DC Converter  
For Mobile Computing/Consumer  
D
D
D
S
1
2
3
6
5
S
3 mm  
D
G
G
4
Marking Code  
BH XX  
2.85 mm  
Lot Traceability  
and Date Code  
D
Part # Code  
Ordering Information:  
Si3417DV-T1-GE3 (Lead (Pb)-free and Halogen-free)  
P-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS (T = 25 °C, unless otherwise noted)  
A
Parameter  
Symbol  
VDS  
Limit  
- 30  
Unit  
Drain-Source Voltage  
Gate-Source Voltage  
V
VGS  
20  
- 8e  
- 8e  
- 7.3a, b  
- 5.8a, b  
- 50  
T
C = 25 °C  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
Continuous Drain Current (TJ = 150 °C)  
ID  
A
IDM  
IS  
Pulsed Drain Current (t = 100 µs)  
T
C = 25 °C  
A = 25 °C  
- 3.5  
- 1.7a, b  
- 20  
Continuous Source-Drain Diode Current  
T
IAS  
Avalanche Current  
L = 0.1 mH  
EAS  
Single-Pulse Avalanche Energy  
20  
mJ  
W
T
T
T
C = 25 °C  
C = 70 °C  
A = 25 °C  
4.2  
2.7  
PD  
Maximum Power Dissipation  
2a, b  
1.3a, b  
TA = 70 °C  
TJ, Tstg  
Operating Junction and Storage Temperature Range  
- 55 to 150  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
RthJA  
RthJF  
Typical  
40  
Maximum  
Unit  
Maximum Junction-to-Ambienta, c  
t 10 s  
Steady State  
62.5  
30  
°C/W  
Maximum Junction-to-Foot  
25  
Notes:  
a. Surface mounted on 1" x 1" FR4 board.  
b. t = 10 s.  
c. Maximum under steady state conditions is 110 °C/W.  
d. Based on TC = 25 °C.  
e. Package limited.  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
www.vishay.com  
1
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si3417DV  
Vishay Siliconix  
SPECIFICATIONS (T = 25 °C, unless otherwise noted)  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VDS  
VDS/TJ  
VGS(th)/TJ  
VGS(th)  
VGS = 0 V, ID = - 250 µA  
ID = - 250 µA  
Drain-Source Breakdown Voltage  
- 30  
V
V
DS Temperature Coefficient  
- 31  
4.5  
mV/°C  
VGS(th) Temperature Coefficient  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
VDS = VGS, ID = - 250 µA  
- 1  
- 3  
V
IGSS  
VDS = 0 V, VGS  
=
20 V  
100  
- 1  
nA  
VDS = - 30 V, VGS = 0 V  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
µA  
A
VDS = - 30 V, VGS = 0 V, TJ = 55 °C  
- 5  
VDS - 10 V, VGS = - 10 V  
VGS = - 10 V, ID = - 7.3 A  
- 30  
0.0210  
0.0300  
23  
0.0252  
0.0360  
Drain-Source On-State Resistancea  
S
V
GS = - 4.5 V, ID = - 6.1 A  
Forward Transconductancea  
Dynamicb  
VDS = - 10 V, ID = - 7.3 A  
Ciss  
Coss  
Crss  
Input Capacitance  
1350  
215  
185  
32  
15  
4
VDS = - 15 V, VGS = 0 V, f = 1 MHz  
DS = - 15 V, VGS = - 10 V, ID = - 7.3 A  
DS = - 15 V, VGS = - 4.5 V, ID = - 7.3 A  
f = 1 MHz  
Output Capacitance  
Reverse Transfer Capacitance  
pF  
V
V
50  
25  
Qg  
Total Gate Charge  
nC  
Qgs  
Qgd  
Rg  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
7.5  
5.8  
10  
8
1.2  
11.6  
15  
15  
70  
25  
70  
60  
70  
30  
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
V
DD = - 15 V, RL = 2.6   
ID - 5.8 A, VGEN = - 10 V, Rg = 1   
Turn-Off DelayTime  
Fall Time  
45  
12  
42  
35  
40  
16  
ns  
Turn-On Delay Time  
Rise Time  
V
DD = - 15 V, RL = 2.6   
ID - 5.8 A, VGEN = - 4.5 V, Rg = 1   
Turn-Off DelayTime  
Fall Time  
Drain-Source Body Diode Characteristics  
Continous Source-Drain Diode Current  
Pulse Diode Forward Current (t = 100 µs)  
Body Diode Voltage  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
- 3.5  
- 50  
- 1.2  
60  
A
IS = - 5.8 A, VGS = 0 V  
- 0.75  
34  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
ns  
nC  
Qrr  
ta  
22  
40  
IF = - 5.8 A, dI/dt = 100 A/µs,  
TJ = 25 °C  
11  
ns  
Reverse Recovery Rise Time  
tb  
23  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si3417DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
V
GS  
= 10 V thru 5 V  
TC = 25 °C  
V
= 4 V  
GS  
TC = 125 °C  
TC = - 55 °C  
V
= 3 V  
GS  
0
1
2
3
4
0.0  
0.5  
1.0  
1.5  
2.0  
VGS - Gate-to-Source Voltage (V)  
V
DS  
- Drain-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.042  
0.036  
0.030  
0.024  
0.018  
0.012  
2400  
1800  
1200  
600  
0
VGS = 4.5 V  
C
iss  
V
GS = 10 V  
C
oss  
C
rss  
0
10  
20  
30  
40  
50  
0
6
12  
18  
24  
30  
ID - Drain Current (A)  
V
- Drain-to-Source Voltage (V)  
DS  
On-Resistance vs. Drain Current  
Capacitance  
10  
8
1.8  
1.5  
1.2  
0.9  
0.6  
I
= 7.3 A  
D
I
= 7.3 A  
D
V
= 10 V  
GS  
V
DS  
= 15 V  
6
V
DS  
= 7.5 V  
V
= 22.5 V  
DS  
4
2
V
= 4.5 V  
GS  
0
0
0
9
18  
27  
36  
- 50 - 25  
25  
50  
75  
100 125 150  
T
J
- Junction Temperature (°C)  
Q
- Total Gate Charge (nC)  
g
Gate Charge  
On-Resistance vs. Junction Temperature  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
www.vishay.com  
3
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si3417DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
100  
10  
1
0.060  
0.045  
0.030  
0.015  
0.000  
ID = 7.3A  
T
J
= 150 °C  
T
= 25 °C  
J
TJ = 125 °C  
TJ = 25 °C  
0.1  
0.01  
T
J
= - 50 °C  
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
2
4
6
8
10  
V
- Source-to-Drain Voltage (V)  
VGS - Gate-to-Source Voltage (V)  
SD  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
50  
40  
30  
20  
0.6  
0.4  
I
= 250 µA  
D
0.2  
I
= 1 mA  
D
0.0  
10  
0
- 0.2  
-3  
-2  
10  
-1  
10  
- 50 - 25  
0
25  
50  
75  
100 125 150  
10  
1
10  
100  
600  
Time (s)  
T
J
- Temperature (°C)  
Threshold Voltage  
Single Pulse Power, Junction-to-Ambient  
100  
Limited by RDS(on)  
*
100 μs  
10  
1 ms  
1
10 ms  
100 ms  
0.1  
10s, 1 s  
DC,  
TA = 25 °C  
Single Pulse  
BVDSS Limited  
10  
0.01  
0.1  
1
100  
VDS - Drain-to-Source Voltage (V)  
* VGS > minimum VGS at which RDS(on) is specified  
Safe Operating Area  
www.vishay.com  
4
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si3417DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
12  
9
6
3
0
0
25  
50  
75  
100  
125  
150  
TC - Case Temperature (°C)  
Current Derating*  
5
4
3
2
1
0
1.4  
1.1  
0.7  
0.4  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
TC - Case Temperature (°C)  
TA - Ambient Temperature (°C)  
Power, Junction-to-Foot  
Power Derating, Junction-to-Ambient  
* The power dissipation PD is based on TJ(max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
www.vishay.com  
5
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Si3417DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
2
1
Duty Cycle = 0.5  
0.2  
Notes:  
0.1  
0.1  
P
DM  
0.05  
t
1
t
2
t
t
1
2
1. Duty Cycle, D =  
0.02  
2. Per Unit Base = R  
= 90 °C/W  
thJA  
(t)  
3. T  
JM  
-
T
A
= P  
Z
DM thJA  
4. Surface Mounted  
Single Pulse  
0.01  
-
10  
4
-
3
-
2
-1  
10  
10  
10  
1
10  
100  
600  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-
10  
4
-
3
-
2
- 1  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?62890.  
www.vishay.com  
6
For technical questions, contact: pmostechsupport@vishay.com  
This document is subject to change without notice.  
Document Number: 62890  
S13-1815-Rev. A, 12-Aug-13  
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
Package Information  
Vishay Siliconix  
TSOP: 5/6−LEAD  
JEDEC Part Number: MO-193C  
e1  
e1  
5
5
4
3
6
1
4
E
1
E
E
1
E
1
2
2
3
-B-  
-B-  
e
e
b
b
M
M
C
0.15  
C
B
A
0.15  
B A  
5-LEAD TSOP  
6-LEAD TSOP  
4x  
1
-A-  
D
0.17 Ref  
c
R
R
A
2
A
L
2
Gauge Plane  
Seating Plane  
Seating Plane  
L
0.08  
C
A
1
-C-  
(L )  
1
4x  
1
MILLIMETERS  
INCHES  
Dim  
A
A1  
A2  
b
c
D
E
E1  
e
Min  
Nom  
-
Max  
Min  
0.036  
0.0004  
0.035  
0.012  
0.004  
0.116  
0.106  
0.061  
Nom  
-
Max  
0.91  
0.01  
0.90  
0.30  
0.10  
2.95  
2.70  
1.55  
1.10  
0.10  
1.00  
0.45  
0.20  
3.10  
2.98  
1.70  
0.043  
0.004  
0.039  
0.018  
0.008  
0.122  
0.117  
0.067  
-
-
-
0.32  
0.15  
3.05  
2.85  
1.65  
0.95 BSC  
1.90  
-
0.038  
0.013  
0.006  
0.120  
0.112  
0.065  
0.0374 BSC  
0.075  
-
1.80  
2.00  
0.50  
0.071  
0.012  
0.079  
0.020  
e1  
L
0.32  
0.60 Ref  
0.25 BSC  
-
0.024 Ref  
0.010 BSC  
-
L1  
L2  
R
0.10  
0
-
0.004  
0
-
4
8
4
8
7
Nom  
7 Nom  
1
ECN: C-06593-Rev. I, 18-Dec-06  
DWG: 5540  
Document Number: 71200  
18-Dec-06  
www.vishay.com  
1
AN823  
Vishay Siliconix  
Mounting LITTLE FOOTR TSOP-6 Power MOSFETs  
Surface mounted power MOSFET packaging has been based on  
integrated circuit and small signal packages. Those packages  
have been modified to provide the improvements in heat transfer  
required by power MOSFETs. Leadframe materials and design,  
molding compounds, and die attach materials have been  
changed. What has remained the same is the footprint of the  
packages.  
Since surface mounted packages are small, and reflow soldering  
is the most common form of soldering for surface mount  
components, “thermal” connections from the planar copper to the  
pads have not been used. Even if additional planar copper area is  
used, there should be no problems in the soldering process. The  
actual solder connections are defined by the solder mask  
openings. By combining the basic footprint with the copper plane  
on the drain pins, the solder mask generation occurs automatically.  
The basis of the pad design for surface mounted power MOSFET  
is the basic footprint for the package. For the TSOP-6 package  
outline drawing see http://www.vishay.com/doc?71200 and see  
http://www.vishay.com/doc?72610 for the minimum pad footprint.  
In converting the footprint to the pad set for a power MOSFET, you  
must remember that not only do you want to make electrical  
connection to the package, but you must made thermal connection  
and provide a means to draw heat from the package, and move it  
away from the package.  
A final item to keep in mind is the width of the power traces. The  
absolute minimum power trace width must be determined by the  
amount of current it has to carry. For thermal reasons, this  
minimum width should be at least 0.020 inches. The use of wide  
traces connected to the drain plane provides a low impedance  
path for heat to move away from the device.  
REFLOW SOLDERING  
In the case of the TSOP-6 package, the electrical connections are  
very simple. Pins 1, 2, 5, and 6 are the drain of the MOSFET and  
are connected together. For a small signal device or integrated  
circuit, typical connections would be made with traces that are  
0.020 inches wide. Since the drain pins serve the additional  
function of providing the thermal connection to the package, this  
level of connection is inadequate. The total cross section of the  
copper may be adequate to carry the current required for the  
application, but it presents a large thermal impedance. Also, heat  
spreads in a circular fashion from the heat source. In this case the  
drain pins are the heat sources when looking at heat spread on the  
PC board.  
Vishay Siliconix surface-mount packages meet solder reflow  
reliability requirements. Devices are subjected to solder reflow as a  
test preconditioning and are then reliability-tested using  
temperature cycle, bias humidity, HAST, or pressure pot. The  
solder reflow temperature profile used, and the temperatures and  
time duration, are shown in Figures 2 and 3.  
Figure 1 shows the copper spreading recommended footprint for  
the TSOP-6 package. This pattern shows the starting point for  
utilizing the board area available for the heat spreading copper. To  
create this pattern, a plane of copper overlays the basic pattern on  
pins 1,2,5, and 6. The copper plane connects the drain pins  
electrically, but more importantly provides planar copper to draw  
heat from the drain leads and start the process of spreading the  
heat so it can be dissipated into the ambient air. Notice that the  
planar copper is shaped like a “T” to move heat away from the  
drain leads in all directions. This pattern uses all the available area  
underneath the body for this purpose.  
0.167  
4.25  
Ramp-Up Rate  
+6_C/Second Maximum  
120 Seconds Maximum  
70 180 Seconds  
240 +5/0_C  
0.074  
1.875  
Temperature @ 155 " 15_C  
Temperature Above 180_C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
0.014  
0.35  
0.122  
3.1  
0.026  
0.65  
20 40 Seconds  
+6_C/Second Maximum  
0.049  
1.25  
0.049  
1.25  
0.010  
0.25  
FIGURE 2. Solder Reflow Temperature Profile  
FIGURE 1. Recommended Copper Spreading Footprint  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
1
AN823  
Vishay Siliconix  
10 s (max)  
255 260_C  
1X4_C/s (max)  
3-6_C/s (max)  
217_C  
140 170_C  
60 s (max)  
3_C/s (max)  
60-120 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240_C is allowed.  
FIGURE 3. Solder Reflow Temperature and Time Durations  
THERMAL PERFORMANCE  
On-Resistance vs. Junction Temperature  
A basic measure of a device’s thermal performance is the  
junction-to-case thermal resistance, Rqjc, or the  
junction-to-foot thermal resistance, Rqjf. This parameter is  
measured for the device mounted to an infinite heat sink and  
is therefore a characterization of the device only, in other  
words, independent of the properties of the object to which the  
device is mounted. Table 1 shows the thermal performance  
of the TSOP-6.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 4.5 V  
GS  
I
D
= 6.1 A  
TABLE 1.  
Equivalent Steady State Performance—TSOP-6  
Thermal Resistance Rq  
30_C/W  
jf  
50 25  
0
25  
50  
75  
100 125 150  
SYSTEM AND ELECTRICAL IMPACT OF  
TSOP-6  
T
Junction Temperature (_C)  
J
FIGURE 4. Si3434DV  
In any design, one must take into account the change in  
MOSFET rDS(on) with temperature (Figure 4).  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
2
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR TSOP-6  
0.099  
(2.510)  
0.039  
0.020  
0.019  
(1.001)  
(0.508)  
(0.493)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
26  
Document Number: 72610  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

相关型号:

SI3420-TP

Small Signal Field-Effect Transistor,
MCC

SI3420-TP-HF

Small Signal Field-Effect Transistor,
MCC

SI3420A-TP

Power Field-Effect Transistor,
MCC

SI3420DV

N-Channel 200-V (D-S) MOSFET
VISHAY

SI3420DV-T1

N-Channel 200-V (D-S) MOSFET
VISHAY

SI3420DV-T1-E3

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

SI3421DV-T1-GE3

Small Signal Field-Effect Transistor, 8A I(D), 30V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6
VISHAY

SI3422DV

N-Channel 200-V (D-S) MOSFET
VISHAY

SI3422DV-E3

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY

SI3422DV-T1

Small Signal Field-Effect Transistor, 0.31A I(D), 200V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TSOP-6
VISHAY

SI3424BDV

N-Channel 30-V (D-S) MOSFET
VISHAY

SI3424BDV-T1-E3

N-Channel 30-V (D-S) MOSFET
VISHAY