SI3861BDV-T1-GE3 [VISHAY]

Buffer/Inverter Based Peripheral Driver, 1 Driver, MOS, PDSO6, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6;
SI3861BDV-T1-GE3
型号: SI3861BDV-T1-GE3
厂家: VISHAY    VISHAY
描述:

Buffer/Inverter Based Peripheral Driver, 1 Driver, MOS, PDSO6, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6

驱动 光电二极管 接口集成电路 驱动器
文件: 总10页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3861BDV  
Vishay Siliconix  
Load Switch with Level-Shift  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS2 (V)  
RDS(on) (Ω)  
ID (A)  
2.3  
Definition  
0.075 at VIN = 10 V  
0.120 at VIN = 5.0 V  
0.145 at VIN = 4.5 V  
4.5 V Rated  
4.5 to 20  
1.9  
ESD Protected: 3000 V  
105 mΩ Low RDS(on) TrenchFET®  
4.5 V to 20 V Input  
1.5 V to 8 V Logic Level Control  
Low Profile, Small Footprint TSOP-6 Package  
3000 V ESD Protection On Input Switch, VON/OFF  
Adjustable Slew-Rate  
1.7  
Compliant to RoHS Directive 2002/95/EC  
DESCRIPTION  
The Si3861BDV includes a P- and N-Channel MOSFET in a  
single TSOP-6 package. The low on-resistance P-Channel  
TrenchFET® is tailored for use as a load switch. The  
N-Channel, with an external resistor, can be used as a level-  
shift to drive the P-Channel load-switch. The N-Channel  
MOSFET has internal ESD protection and can be driven by  
logic signals as low as 1.5 V. The Si3861DV operates on  
supply lines from 4.5 to 20 V, and can drive loads up to 2.3 A.  
APPLICATION CIRCUITS  
Si3861BDV  
10  
t
f
2, 3  
8
6
4
2
0
4
V
OUT  
V
IN  
t
d(off)  
Q2  
R1  
C1  
6
5
6
t
r
ON/OFF  
I
= 1 A  
ON/OFF  
LOAD  
C
L
V
o
= 3 V  
Q1  
C = 10 µF  
o
i
C
t
= 1 µF  
d(on)  
C
i
1
0
2
4
6
8
10  
12  
R2 (kΩ)  
R2  
Note: For R2 switching variations with other V /R1  
IN  
GND  
combinations See Typical Characteristics  
R2  
The Si3861BDV is ideally suited for high-side load switching  
in portable applications. The integrated N-Channel level-shift  
device saves space by reducing external components. The  
slew rate is set externally so that rise-times can be tailored to  
different load types.  
COMPONENTS  
R1  
Pull-Up Resistor  
Typical 10 kΩ to 1 mΩ*  
Typical 0 to 100 kΩ*  
Typical 1000 pF  
R2  
Optional Slew-Rate Control  
Optional Slew-Rate Control  
C1  
Note:  
* Minimum R1 value should be at least 10 x R2 to ensure Q1 turn-on.  
Document Number: 73343  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
1
New Product  
Si3861BDV  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM  
Si3861BDV  
TSOP-6  
4
5
Top View  
2, 3  
6
D2  
S2  
Q2  
R2  
D2  
D2  
R1, C1  
1
2
3
6
5
R1, C1  
ON/OFF  
Q1  
S2  
ON/OFF  
4
1
Ordering Information:  
Si3861BDV-T1-E3 (Lead (Pb)-free)  
Si3861BDV-T1-GE3 (Lead (Pb)-free and Halogen-free)  
R2  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
Limit  
20  
Unit  
VIN  
Input Voltage  
ON/OFF Voltage  
V
VON/OFF  
8
Continuousa, b  
Pulsedb, c  
2.3  
IL  
Load Current  
4
A
Continuous Intrinsic Diode Conductiona  
Maximum Power Dissipationa  
IS  
PD  
- 1  
0.83  
- 55 to 150  
3
W
°C  
kV  
TJ, Tstg  
ESD  
Operating Junction and Storage Temperature Range  
ESD Rating, MIL-STD-883D Human Body Model (100 pF, 1500 Ω)  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Typical  
120  
Maximum  
150  
Unit  
Maximum Junction-to-Ambient (Continuous Current)a  
RthJA  
°C/W  
RthJF  
Maximum Junction-to-Foot (Q2)  
60  
80  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OFF Characteristics  
Reverse Leakage Current  
IFL  
VIN = 30 V, VON/OFF = 0 V  
IS = - 1 A  
1
µA  
VSD  
Diode Forward Voltage  
ON Characteristics  
Input Voltage Range  
- 0.8  
- 1  
V
VIN  
4.5  
20  
V
VIN = 10 V  
0.060  
0.096  
0.115  
0.075  
0.120  
0.145  
RDS(on)  
VON/OFF = 1.5 V, ID = 1 A  
V
V
IN = 5.0 V  
IN = 4.5 V  
On-Resistance (P-Channel) at 1 A  
On-State (P-Channel) Drain-Current  
Ω
VIN-OUT 0.2 V, VIN = 10 V, VON/OFF = 1.5 V  
VIN-OUT 0.3 V, VIN = 5 V, VON/OFF = 1.5 V  
1
1
ID(on)  
A
Notes:  
a. Surface Mounted on FR4 board.  
b. VIN = 12 V, VON/OFF = 8 V, TA = 25 °C.  
c. Pulse test: pulse width 300 µs, duty cycle 2 %.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 73343  
S09-2110-Rev. B, 12-Oct-09  
New Product  
Si3861BDV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.50  
V
= 1.5 V to 8 V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
ON/OFF  
V
= 1.5 V to 8 V  
ON/OFF  
T
= 125 C  
J
T
= 125 °C  
J
T
= 25 C  
J
T
3
= 25 °C  
J
0
1
2
4
5
6
0
1
2
3
4
5
6
I
L
- (A)  
I
L
- (A)  
VDROP vs. IL at VIN = 5 V  
VDROP vs. IL at VIN = 10 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 1 A  
ON/OFF  
L
V
V
= 1.5 V to 8 V  
ON/OFF  
= 1.5 V to 8 V  
T
= 125 °C  
J
T
= 25 °C  
J
T
= 125 °C  
J
T
= 25 C  
J
0
2
4
6
(V)  
8
10  
12  
0
1
2
3
4
5
6
I
L
- (A)  
V
IN  
VDROP vs. VIN at = 1 A  
VDROP vs. IL at VIN = 4.5 V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.08  
0.06  
I
= 1 A  
ON/OFF  
I
= 1 A  
ON/OFF  
L
V
L
V
= 1.5 V to 8 V  
= 1.5 V to 8 V  
0.04  
V
= 5 V  
IN  
0.02  
V
= 10 V  
IN  
T
= 125 C  
J
0.00  
- 0.02  
- 0.04  
T
= 25 °C  
2
J
0
4
6
(V)  
8
10  
12  
- 50 - 25  
0
25  
50  
75  
100 125 150  
V
IN  
T - Junction Temperature (°C)  
J
On-Resistance vs. Input Voltage  
VDROP Variance vs. Junction Temperature  
Document Number: 73343  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
3
New Product  
Si3861BDV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1.8  
18  
16  
14  
12  
10  
8
I
= 1 A  
ON/OFF  
L
V
i
= 3 V  
t
f
1.6  
V
= 10 V  
IN  
C = 10 µF  
C
= 1 µF  
o
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
IN  
= 5 V  
t
d(off)  
t
6
d(on)  
t
r
I
L
= 1 A  
4
V
= 1.5 V to 8 V  
ON/OFF  
2
0
- 100  
- 50  
0
50  
100  
150  
200  
0
2
4
6
8
10  
12  
T - Junction Temperature ( C)  
J
R2 (k )  
Normalized On-Resistance  
vs. Junction Temperature  
Switching Variation  
R2 at VIN = 10 V, R1 = 20 kΩ  
10  
8
14  
12  
10  
8
t
f
I
= 1 A  
ON/OFF  
L
V
i
= 3 V  
C = 10 µF  
C
t
r
= 1 µF  
o
t
d(off)  
6
t
f
t
r
6
t
4
d(off)  
t
d(on)  
t
d(on)  
4
I
= 1 A  
ON/OFF  
L
V
2
= 3 V  
2
C = 10 µF  
o
i
C
= 1 µF  
0
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
R2 (kΩ)  
R2 (kΩ)  
Switching Variation  
R2 at VIN = 5 V, R1 = 20 kΩ  
Switching Variation  
R2 at VIN = 4.5 V, R1 = 20 kΩ  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
t
d(off)  
t
d(off)  
t
f
I
= 1 A  
ON/OFF  
L
V
i
= 3 V  
C = 10 µF  
C
= 1 µF  
o
t
I
= 1 A  
ON/OFF  
f
L
V
i
= 3 V  
C = 10 µF  
C
t
d(on)  
= 1 µF  
o
t
r
t
r
t
d(on)  
0
0
20  
40  
60  
R2 (kΩ)  
Switching Variation  
R2 at VIN = 10 V, R1 = 300 kΩ  
80  
100  
120  
0
20  
40  
60  
R2 (kΩ)  
Switching Variation  
R2 at VIN = 5 V, R1 = 300 kΩ  
80  
100  
120  
www.vishay.com  
4
Document Number: 73343  
S09-2110-Rev. B, 12-Oct-09  
New Product  
Si3861BDV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
120  
t
f
100  
t
d(off)  
80  
60  
40  
20  
0
I
= 1 A  
ON/OFF  
L
V
i
= 3 V  
t
r
C = 10 µF  
C
= 1 µF  
o
t
d(on)  
0
20  
40  
60  
R2 (kΩ)  
Switching Variation  
80  
100  
120  
R2 at VIN = 4.5 V, R1 = 300 kΩ  
2
1
Duty Cycle = 0.5  
0.2  
Notes:  
0.1  
P
DM  
0.1  
0.05  
0.02  
t
1
t
2
t
t
1
2
1. Duty Cycle, D =  
2. Per Unit Base = R  
= 150 C/W  
thJA  
(t)  
3. T - T = P  
JM  
Z
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.01  
-1  
-4  
-3  
-2  
10  
10  
10  
10  
1
10  
100  
600  
Square Wave Pulse Dureation (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?73343.  
Document Number: 73343  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
5
Package Information  
Vishay Siliconix  
TSOP: 5/6−LEAD  
JEDEC Part Number: MO-193C  
e1  
e1  
5
5
4
3
6
1
4
E
1
E
E
1
E
1
2
2
3
-B-  
-B-  
e
e
b
b
M
M
C
0.15  
C
B
A
0.15  
B A  
5-LEAD TSOP  
6-LEAD TSOP  
4x  
1
-A-  
D
0.17 Ref  
c
R
R
A
2
A
L
2
Gauge Plane  
Seating Plane  
Seating Plane  
L
0.08  
C
A
1
-C-  
(L )  
1
4x  
1
MILLIMETERS  
INCHES  
Dim  
A
A1  
A2  
b
c
D
E
E1  
e
Min  
Nom  
-
Max  
Min  
0.036  
0.0004  
0.035  
0.012  
0.004  
0.116  
0.106  
0.061  
Nom  
-
Max  
0.91  
0.01  
0.90  
0.30  
0.10  
2.95  
2.70  
1.55  
1.10  
0.10  
1.00  
0.45  
0.20  
3.10  
2.98  
1.70  
0.043  
0.004  
0.039  
0.018  
0.008  
0.122  
0.117  
0.067  
-
-
-
0.32  
0.15  
3.05  
2.85  
1.65  
0.95 BSC  
1.90  
-
0.038  
0.013  
0.006  
0.120  
0.112  
0.065  
0.0374 BSC  
0.075  
-
1.80  
2.00  
0.50  
0.071  
0.012  
0.079  
0.020  
e1  
L
0.32  
0.60 Ref  
0.25 BSC  
-
0.024 Ref  
0.010 BSC  
-
L1  
L2  
R
0.10  
0
-
0.004  
0
-
4
8
4
8
7
Nom  
7 Nom  
1
ECN: C-06593-Rev. I, 18-Dec-06  
DWG: 5540  
Document Number: 71200  
18-Dec-06  
www.vishay.com  
1
AN823  
Vishay Siliconix  
Mounting LITTLE FOOTR TSOP-6 Power MOSFETs  
Surface mounted power MOSFET packaging has been based on  
integrated circuit and small signal packages. Those packages  
have been modified to provide the improvements in heat transfer  
required by power MOSFETs. Leadframe materials and design,  
molding compounds, and die attach materials have been  
changed. What has remained the same is the footprint of the  
packages.  
Since surface mounted packages are small, and reflow soldering  
is the most common form of soldering for surface mount  
components, “thermal” connections from the planar copper to the  
pads have not been used. Even if additional planar copper area is  
used, there should be no problems in the soldering process. The  
actual solder connections are defined by the solder mask  
openings. By combining the basic footprint with the copper plane  
on the drain pins, the solder mask generation occurs automatically.  
The basis of the pad design for surface mounted power MOSFET  
is the basic footprint for the package. For the TSOP-6 package  
outline drawing see http://www.vishay.com/doc?71200 and see  
http://www.vishay.com/doc?72610 for the minimum pad footprint.  
In converting the footprint to the pad set for a power MOSFET, you  
must remember that not only do you want to make electrical  
connection to the package, but you must made thermal connection  
and provide a means to draw heat from the package, and move it  
away from the package.  
A final item to keep in mind is the width of the power traces. The  
absolute minimum power trace width must be determined by the  
amount of current it has to carry. For thermal reasons, this  
minimum width should be at least 0.020 inches. The use of wide  
traces connected to the drain plane provides a low impedance  
path for heat to move away from the device.  
REFLOW SOLDERING  
In the case of the TSOP-6 package, the electrical connections are  
very simple. Pins 1, 2, 5, and 6 are the drain of the MOSFET and  
are connected together. For a small signal device or integrated  
circuit, typical connections would be made with traces that are  
0.020 inches wide. Since the drain pins serve the additional  
function of providing the thermal connection to the package, this  
level of connection is inadequate. The total cross section of the  
copper may be adequate to carry the current required for the  
application, but it presents a large thermal impedance. Also, heat  
spreads in a circular fashion from the heat source. In this case the  
drain pins are the heat sources when looking at heat spread on the  
PC board.  
Vishay Siliconix surface-mount packages meet solder reflow  
reliability requirements. Devices are subjected to solder reflow as a  
test preconditioning and are then reliability-tested using  
temperature cycle, bias humidity, HAST, or pressure pot. The  
solder reflow temperature profile used, and the temperatures and  
time duration, are shown in Figures 2 and 3.  
Figure 1 shows the copper spreading recommended footprint for  
the TSOP-6 package. This pattern shows the starting point for  
utilizing the board area available for the heat spreading copper. To  
create this pattern, a plane of copper overlays the basic pattern on  
pins 1,2,5, and 6. The copper plane connects the drain pins  
electrically, but more importantly provides planar copper to draw  
heat from the drain leads and start the process of spreading the  
heat so it can be dissipated into the ambient air. Notice that the  
planar copper is shaped like a “T” to move heat away from the  
drain leads in all directions. This pattern uses all the available area  
underneath the body for this purpose.  
0.167  
4.25  
Ramp-Up Rate  
+6_C/Second Maximum  
120 Seconds Maximum  
70 180 Seconds  
240 +5/0_C  
0.074  
1.875  
Temperature @ 155 " 15_C  
Temperature Above 180_C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
0.014  
0.35  
0.122  
3.1  
0.026  
0.65  
20 40 Seconds  
+6_C/Second Maximum  
0.049  
1.25  
0.049  
1.25  
0.010  
0.25  
FIGURE 2. Solder Reflow Temperature Profile  
FIGURE 1. Recommended Copper Spreading Footprint  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
1
AN823  
Vishay Siliconix  
10 s (max)  
255 260_C  
1X4_C/s (max)  
3-6_C/s (max)  
217_C  
140 170_C  
60 s (max)  
3_C/s (max)  
60-120 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240_C is allowed.  
FIGURE 3. Solder Reflow Temperature and Time Durations  
THERMAL PERFORMANCE  
On-Resistance vs. Junction Temperature  
A basic measure of a device’s thermal performance is the  
junction-to-case thermal resistance, Rqjc, or the  
junction-to-foot thermal resistance, Rqjf. This parameter is  
measured for the device mounted to an infinite heat sink and  
is therefore a characterization of the device only, in other  
words, independent of the properties of the object to which the  
device is mounted. Table 1 shows the thermal performance  
of the TSOP-6.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 4.5 V  
GS  
I
D
= 6.1 A  
TABLE 1.  
Equivalent Steady State Performance—TSOP-6  
Thermal Resistance Rq  
30_C/W  
jf  
50 25  
0
25  
50  
75  
100 125 150  
SYSTEM AND ELECTRICAL IMPACT OF  
TSOP-6  
T
Junction Temperature (_C)  
J
FIGURE 4. Si3434DV  
In any design, one must take into account the change in  
MOSFET rDS(on) with temperature (Figure 4).  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
2
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR TSOP-6  
0.099  
(2.510)  
0.039  
0.020  
0.019  
(1.001)  
(0.508)  
(0.493)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
26  
Document Number: 72610  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please  
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Material Category Policy  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the  
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council  
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment  
(EEE) - recast, unless otherwise specified as non-compliant.  
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that  
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.  
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free  
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference  
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21  
conform to JEDEC JS709A standards.  
Revision: 02-Oct-12  
Document Number: 91000  
1

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY