SI9140 [VISHAY]

SMP Controller For High Performance Process Power Supplies; SMP控制器为高性能处理电源
SI9140
型号: SI9140
厂家: VISHAY    VISHAY
描述:

SMP Controller For High Performance Process Power Supplies
SMP控制器为高性能处理电源

控制器
文件: 总15页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si9140  
Vishay Siliconix  
SMP Controller For High Performance Process Power Supplies  
FEATURES  
• Runs on 3.3- or 5-V Supplies  
• Adjustable, High Precision Output Voltage  
• High Frequency Operation (>1 MHz)  
• High Efficiency Synchronous Switching  
• Full Set of Protection Circuitry  
• 2000-V ESD Rating (Si9140CQ/DQ)  
DES CRIPTION  
Siliconix’ Si9140 Buck converter IC is a high-performance,  
surface-mount switchmode controller made to power the new  
generation of low-voltage, high-performance micro-  
processors. The Si9140 has an input voltage range of 3 to  
6.5 V to simplify power supply designs in desktop PCs. Its  
high-frequency switching capability and wide bandwidth  
feedback loop provide tight, absolute static and transient load  
regulation. Circuits using the Si9140 can be implemented with  
low-profile, inexpensive inductors, and will dramatically  
minimize power supply output and processor decoupling  
capacitance. The Si9140 is designed to meet the stringent  
regulation requirements of new and future high-frequency  
microprocessors, while improving the overall efficiency in new  
“green” systems.  
are current requirements, but operating voltages are going  
down. These simultaneous changes have made dedicated,  
high-frequency, point-of-use buck converters an essential part  
of any system design. These point-of-use converters must  
operate at higher frequencies and provide wider feedback  
bandwidths than existing converters, which typically operate  
at less than 250 kHz and have feedback bandwidths of less  
than 50 kHz. The Si9140’s 100-kHz feedback loop bandwidth  
ensures a minimum improvement of one-half the required  
output/decoupling capacitance, resulting in a tremendous  
reduction in board size and cost of implementation.  
With the microprocessing power of any PC representing an  
investment of hundreds of dollars, designers need to ensure  
that the reliable operation of the processor will not be affected  
by the power supply. The Si9140 provides this assurance. A  
demo board, the Si9140DB, is available.  
Today’s state-of-the-art microprocessors run at frequencies  
over 100 MHz. Processor clock speeds are going up and so  
AP P LICATION CIRCUIT  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
1
Si9140  
Vishay Siliconix  
ABS OLUTE MAXIMUM RATINGS  
Voltages Referenced to GND.  
Thermal Impedance (Θ )  
JA  
16-Pin SOIC (Y Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140°C/W  
16-Pin TSSOP (Q Suffix). . . . . . . . . . . . . . . . . . . . . . . . . . . . 135°C/W  
V
P
V
, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
DD  
GND  
S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±0.3 V  
Operating Temperature  
C Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to 70°C  
D Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40° to 85°C  
to V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V  
DD  
S
Linear Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 V to V +0.3 V  
DD  
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 V to V +0.3 V  
Notes  
DD  
Peak Output Drive Current . . . . . . . . . . . . . . . . . . . . . . . . . . .350 mA  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65 to 150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
a. Device mounted with all leads soldered or welded to PC board.  
b. Derate 7.2 mW/°C above 25°C.  
c. Derate 7.4 mW/°C above 25°C.  
a
Power Dissipation (Package)  
b
16-Pin SOIC (Y Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 mW  
16-Pin TSSOP (Q Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 mW  
c
* Exposure to Absolute Maximum rating conditions for extended periods may affect device reliability. Stresses above Absolute Maximum rating may cause  
permanent damage. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be  
applied at any one time.  
RECOMMENDED OP ERATING RANGE  
Voltages Referenced to GND.  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 6.5 V  
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 pF to 200 pF  
OSC  
DD  
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 6.5 V  
Linear Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to V  
S
DD  
DD  
f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 kHz to 2 MHz  
OSC  
R
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 kto 250 kΩ  
V
Load Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >150 kΩ  
OSC  
REF  
S P ECIFICATIONS  
Limits  
Test Conditions  
C Suffix 0 to 70°C  
D Suffix -40 to 85°C  
Unless Otherwise Specifieda  
3 V V 6.5 V, V = V  
DD  
DD  
GND  
S
Parameter  
Reference  
Symbol  
Minb  
Typ  
Maxb  
Unit  
GND = P  
I
= -10 µA  
1.455  
1.477  
1.545  
1.523  
REF  
Output Voltage  
V
V
REF  
T = 25°C  
1.50  
A
Oscillator  
c
Maximum Frequency  
f
f
V
= 5 V, C  
= 47 pF, R = 5.0 kΩ  
OSC  
2.0  
MAX  
OSC  
DD  
OSC  
MHz  
V
= 5 V  
DD  
Accuracy  
0.85  
1.0  
1.0  
1.15  
8
C
= 100 pF, R  
= 7.50 k, T = 25°C  
OSC  
OSC A  
R
Voltage  
V
V
OSC  
ROSC  
c
Voltage Stability  
Temperature Stability  
4 V V 6 V, Ref to 5 V, T = 25°C  
-8  
DD  
A
f/f  
%
c
Referenced to 25°C  
±5  
Error Amplifier (COSC = GND, OSC Disabled)  
Input Bias Current  
Open Loop Voltage Gain  
Offset Voltage  
I
V
= V  
, V = 1.0 V  
-1.0  
47  
1.0  
15  
µA  
dB  
FB  
NI  
REF  
FB  
A
55  
0
VOL  
V
V
= V  
REF  
-15  
mV  
MHz  
OS  
NI  
c
Unity Gain Bandwidth  
BW  
10  
-2.0  
0.8  
60  
Source (V = 1 V, NI = V  
)
REF  
-1.0  
FB  
Output Current  
I
mA  
dB  
EA  
Sink (V = 2 V, NI = V  
)
REF  
0.4  
FB  
c
Power Supply Rejection  
P
3 V < V < 6.5 V  
DD  
SRR  
S-58034—Rev. G, 15-Mar-99  
2
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
 
 
 
Si9140  
Vishay Siliconix  
S P ECIFICATIONS  
Limits  
C Suffix 0 to 70°C  
D Suffix -40 to 85°C  
Test Conditions  
Unless Otherwise Specifieda  
3 V V 6.5 V, V = V  
DD  
DD  
GND  
S
Parameter  
Symbol  
Minb  
Typ  
Maxb  
Unit  
GND = P  
UVLOSET Voltage Monitor  
V
V
UVLO  
UVLO  
High to Low  
Low to High  
0.85  
1.0  
1.2  
1.15  
100  
UVLOHL  
SET  
SET  
Under Voltage Lockout  
V
UVLOLH  
Hysteresis  
V
V
V
UVLOLH - UVLOHL  
175  
mV  
nA  
HYS  
UVLO(SET)  
UVLO Input Current  
Output Drive (DR AND DS)  
Output High Voltage  
Output Low Voltage  
Peak Output Current  
Peak Output Current  
Break-Before-Make  
Logic  
I
V
= 0 to V  
-100  
4.7  
UVLO  
DD  
V
V
= V = 5 V, I  
= -10 mA  
= V = 5 V, I = 10 mA  
OUT  
4.8  
0.2  
OH  
S
DD  
OUT  
V
V
V
0.3  
OL  
SOURCE  
S
DD  
I
V
V
= V = 5 V, V  
= 0 V  
= 5 V  
-380  
300  
40  
-260  
S
S
DD  
OUT  
OUT  
mA  
nS  
I
= V = 5 V, V  
200  
SINK  
DD  
t
V
= 6.5 V  
BBM  
DD  
ENABLE Turn-On Delay  
ENABLE Logic Low  
ENABLE Logic High  
ENABLE Input Current  
t
ENABLE Delay to Output, EN , V = 5 V  
1.5  
µs  
V
dEN  
LH  
DD  
V
0.2 V  
DD  
ENL  
ENH  
V
0.8 V  
DD  
I
ENABLE = 0 to V  
-1.0  
1.0  
45  
1
µA  
EN  
DD  
VGOOD Comparator (Voltage-Good Comparator)  
Input Offset Voltage  
Input Hysteresis  
V
-45  
0
10  
0
OS  
V
Common Mode Voltage = V , V = 5 V  
mV  
IN  
REF DD  
V
INHYS  
BMON  
Input Bias Current  
Output Sink I  
I
V
= V , V = 5 V  
-1  
6
µA  
mA  
mV  
IN  
REF DD  
I
V
= 5 V, V = 5 V  
9
SINK  
OUT  
DD  
Output Low Voltage  
Supply  
V
I
= 2 mA, V = 5 V  
350  
500  
OL  
OUT  
DD  
Supply Current-Normal Mode  
Supply Current-Standby Mode  
f
= 1 MHz, R  
= 7.50 kΩ  
OSC  
1.6  
2.3  
mA  
µA  
OSC  
I
DD  
ENABLE < 0.4 V  
250  
330  
Notes  
a. 100 pF includes C  
on C  
.
OSC  
STRAY  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
c. Guaranteed by design, not subject to production testing.  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
3
Si9140  
Vishay Siliconix  
TYP ICAL CHARACTERIS TICS (2 5 °C UNLES S OTHERWIS E NOTED)  
S-58034—Rev. G, 15-Mar-99  
4
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
Si9140  
Vishay Siliconix  
TYP ICAL CHARACTERIS TICS (2 5 °C UNLES S OTHERWIS E NOTED)  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
5
Si9140  
Vishay Siliconix  
TYP ICAL CHARACTERIS TICS (2 5 °C UNLES S OTHERWIS E NOTED)  
S-58034—Rev. G, 15-Mar-99  
6
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
Si9140  
Vishay Siliconix  
P IN CONFIGURATIONS  
ORDERING INFORMATION  
ORDERING INFORMATION  
Temperature Range  
Part Number  
Temperature Range  
Part Number  
0° to 70°C  
Si9140CY  
Si9140DY  
0° to 70°C  
Si9140CQ  
Si9140DQ  
-40° to 85°C  
-40° to 85°C  
P IN DES CRIP TION  
Pin 1: VDD  
Pin 5: FB  
The inverting input of the error amplifier. An external resistor  
divider is connected to this pin to set the regulated output  
voltage. The compensation network is also connected to this  
pin.  
The positive power supply for all functional blocks except  
output driver. A bypass capacitor of 0.1 µF (minimum) is  
recommended.  
Pin 2: MON  
Pin 6: NI  
Non-inverting input of a comparator. Inverting input is tied  
internally to reference voltage. This comparator is typically  
used to monitor the output voltage and to flag the processor  
when the output voltage falls out of regulation.  
The non-inverting input of the error amplifier. In normal  
operation it is externally connected to VREF or an external  
reference.  
Pin 7: VREF  
Pin 3: VGOOD  
This pin supplies a 1.5-V reference.  
This is an open drain output. It will be held at ground when  
the voltage at MON (Pin 2) is less than the internal reference.  
An external pull-up resistor will pull this pin high if the MON  
Pin 8: GND (Ground)  
pin (Pin 2) is higher than the VREF  
.
(Refer to Pin 2  
description.)  
Pin 9: ENABLE  
A logic high on this pin allows normal operation. A logic low  
places the chip in the standby mode. In standby mode normal  
operation is disabled, supply current is reduced, the oscillator  
stops and DS goes high while DR goes low.  
Pin 4: COMP  
This pin is the output of the error amplifier. A compensation  
network is connected from this pin to the FB pin to stabilize  
the system. This pin drives one input of the internal pulse  
width modulation comparator.  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
7
Si9140  
Vishay Siliconix  
Pin 10: ROSC  
Pin 13: PGND  
A resistor connected from this pin to ground sets the  
oscillator’s capacitor COSC, charge and discharge current.  
See the oscillator section of the description of operation.  
The negative return for the VS supply.  
Pin 14: DS  
This CMOS push-pull output pin drives the external p-channel  
Pin 11: COSC  
MOSFET. This pin will be high in the standby mode.  
break-before-make function between DS and DR is built-in.  
A
An external capacitor is connected to this pin to set the  
oscillator frequency.  
Pin 15: DR  
0.75  
OSC × COSC  
-----------------------------------  
fOSC  
(at VDD = 5.0 V)  
R
This CMOS push-pull output pin drives the external n-channel  
MOSFET. This pin will be low in the standby mode.  
A
break-before-make function between the DS and DR is built-in.  
Pin 12: UVLOSET  
Pin 16: VS  
This pin will place the chip in the standby mode if the  
UVLOSET voltage drops below 1.2 V. Once the UVLOSET  
voltage exceeds 1.2 V, the chip operates normally. There is a  
built-in hysteresis of 165 mV.  
The positive terminal of the power supply which powers the  
CMOS output drivers. A bypass capacitor is required.  
FUNCTIONAL BLOCK DIAGRAM  
S-58034—Rev. G, 15-Mar-99  
8
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
Si9140  
Vishay Siliconix  
TIMING WAVEFORMS  
DES CRIPTION OF OP ERATION  
Schematics of the Si9140 dc-to-dc conversion solutions for  
high-performance PC microprocessors are shown in Figure 1  
and 2 respectively. These solutions are geared to meet the  
extremely demanding transient regulation and power  
requirements of these new microprocessors at minimal cost  
and with a minimal parts count. The two solutions are nearly  
identical, except for slight variations in output voltage, load  
transient amplitude, and specified power. Figure 3 is a  
schematic diagram for a 3.3-V logic converter.  
FIGURE 1. 2.9 V @ 10 A  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
9
 
Si9140  
Vishay Siliconix  
FIGURE 2. 2.5 V @ 8.5 A  
FIGURE 3. 3.3 V @ 5 A  
S-58034—Rev. G, 15-Mar-99  
10  
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
 
 
Si9140  
Vishay Siliconix  
FIGURE 4. 1.5-V Converter for GTL+ Bus @ 5 A  
Figure 4 is a schematic diagram of a converter which  
produces 1.5 V for a GTL bus.  
(first-order RC system). Current mode has the advantage of  
providing an inherently good line regulation. But the  
situations where line voltage is fixed, as in the point-of-use  
conversion for microprocessors, this feature is wasted.  
Current mode control also provides automatic pulse-to-pulse  
current limiting. This feature requires a current sense resistor  
as stated above. These characteristics make voltage mode  
control ideal for high-end microprocessor power supplies.  
Each of these dc-to-dc converters has four major sections:  
• PWM Controller-regulates the output voltage  
• Switch and Synchronous Rectification MOSFETs-delivers  
the power to the load  
• Inductor-filters and stores the energy  
• Input/Output Capacitor-filters the ripple  
The functions of each circuit are explained in detail below.  
Design equations are provided to optimize each application  
circuit.  
P WM CONTROLLER  
There are generally two types of controllers, voltage mode or  
current mode. In voltage mode control, an error voltage is  
generated by comparing the output voltage to the reference  
voltage. The error voltage is then compared to an artificial  
ramp, and the result is the duty cycle necessary to regulate  
the output voltage. In current mode, an actual inductor  
current is used, in place of the artificial ramp, to sense the  
voltage across the current sense resistor.  
The logic and timing sequence for voltage mode control is  
shown in Figure 5. The Si9140 offers voltage mode control,  
which is better suited for applications requiring both fast  
transient response and high output current.  
FIGURE 5. Voltage Mode Logic and Timing Diagram  
The error amplifier of the PWM controller plays a major role in  
determining the output voltage, stability, and the transient  
Current mode control requires a current sense resistor to  
monitor the inductor current. A 10-msense resistor in a 10-A  
design will dissipate 1 W, decreasing efficiency by 3.5%.  
Such a design would require a 2-W resistor to satisfy derating  
criteria, besides requiring additional board space. Voltage  
mode control is a second-order LC system and has a faster  
natural transient response compared to current mode control  
response of the power supply.  
In the Si9140, the  
non-inverting input of the error amplifier is available for use  
with an external precision reference for tighter tolerance  
regulation. With a two-pair lead-lag compensation network, it  
is easy to create a stable 100-kHz closed loop converter with  
the Si9140 error amplifier.  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
11  
 
 
Si9140  
Vishay Siliconix  
The Si9140 achieves the 5-µS transient response by  
generating a 100-kHz closed-loop bandwidth. This is possible  
only by switching above 400 kHz and utilizing an error  
amplifier with at least a 10-MHz bandwidth. The Si9140  
controller has a 25-MHz unity gain bandwidth error amplifier.  
The switching frequency must be at least four times greater  
than the desired closed-loop bandwidth to prevent oscillation.  
To respond to the stimuli, the error amplifier bandwidth needs  
to be at least 10 times larger than the desired bandwidth.  
Figure 7 is the measured transient response (time domain) for  
the 10-A step response. The measured transient response  
shows the processor voltage regulating to 70 mV, well within  
the 0.145-V regulation.  
The Si9140’s switching frequency is determined by the  
external ROSC and COSC values, allowing designers to set the  
switching frequency of their choice. For applications where  
space is the main constraint, the switching frequency can be  
set as high as 2 MHz to minimize inductor and output  
capacitor size. In applications where efficiency is the main  
concern, the switching frequency can be set low to maximize  
battery life. The switching frequency for high-performance  
processors applications circuits are set for 400 kHz. The  
equation for switching frequency is:  
0.75  
OSC × COSC  
-----------------------------------  
fOSC  
(at VDD = 5.0 V)  
R
The precision reference is set at 1.5 V ± 1.5%. The reference  
is capable of sourcing up to 1 mA. The combination of 1.5%  
reference and 3.5% transient load regulation safely complies  
with the ±5% regulation requirement. If additional margin is  
desired, an external precision reference can be used in place  
of the internal 1.5-V reference.  
FIGURE 6. 100-kHz BW Synchronous Buck Converter  
S WITCHING AND S YNCHRONOUS  
RECTIFICATION MOS FETS  
The Si9140 solution requires only three 330-µF OS-CON  
capacitors on the output of power supply to meet the 10-A  
transient requirement. Other converter solutions on the  
market with 20- to 50-kHz closed loop bandwidths typically  
require two to five times the output capacitance specified  
above to match the Si9140’s performance.  
The synchronous gate drive outputs of Si9140 PWM controller  
drive the high-side p-channel switch MOSFET and the  
low-side n-channel synchronous rectifier MOSFET. The  
physical difference between the non-synchronous to  
synchronous rectification requires an additional MOSFET  
across the free-wheeling diode (D1). The inductor current will  
reach 0 A if the peak-to-peak inductor current equals twice the  
output current. In synchronous rectification mode, current is  
allowed to flow backwards from the inductor (L1) through the  
synchronous MOSFET (Q3) and to the output capacitors (C2)  
once the current reaches 0 A. Refer to schematic on  
Figure 1. In non-synchronous rectification, the diode (D1)  
prevents the current from flowing in the reverse direction. This  
minor difference has a drastic affect on the performance of a  
power supply. By allowing the current to flow in the reverse  
direction, it preserves the continuous inductor current mode,  
maintaining the wide converter bandwidth and improving  
efficiency. Also, maintaining the continuous current mode  
during light load to full load guarantees consistent transient  
response throughout a wide range of load conditions.  
The theoretical issues and analytical steps involved in  
compensating a feedback network are beyond the scope of  
this application note. However, to ease the converter design  
for today’s high-performance microprocessors, typical  
component values for the feedback network are provided in  
Table 1 for various combinations of output capacitance.  
Figure 6 shows the Bode plot (frequency domain) of the 2.9-V  
converter shown schematically in Figure 1.  
TABLE 1. Feedback Network Component Values  
Total Output and  
Decoupling Capacitance  
C4  
C5  
R5  
3 x 330 µFa . . . . . . . . . . .Os-con  
6 x 100 µFb . . . . . . . . . . .Tantalum  
25 x 1 µFb . . . . . . . . . . . .Ceramic  
5.6 pF  
180 pF  
240 k  
2 x 330 µFa . . . . . . . . . . .Os-con  
4 x 100 µFb . . . . . . . . . . .Tantalum  
25 x 1 µFb . . . . . . . . . . . .Ceramic  
10 pF  
10 pF  
220 pF  
100 pF  
200 k  
100 k  
3 x 330 µFa . . . . . . . . . . .Tantalum  
4 x 100 µFb . . . . . . . . . . .Tantalum  
25 x 1 µFb . . . . . . . . . . . .Ceramic  
Notes:  
a. Power supply output capacitance.  
b. µprocessor decoupling capacitance.  
S-58034—Rev. G, 15-Mar-99  
12  
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
 
 
 
Si9140  
Vishay Siliconix  
The transition from stop clock and auto halt to active mode is  
a perfect example. The microprocessor current can vary from  
0.5 A to 10 A or greater during these transitions. If the  
converter were to operate in discontinuous current mode  
during the stop clock and auto halt modes, the transfer  
function of the converter would be different compared to  
operation in the active mode. In discontinuous current mode,  
the converter bandwidth can be 10 to 15 times lower than the  
continuous current mode (Figure 8). Therefore, the response  
time will also be 10 to 15 times slower, violating the  
microprocessor’s regulator requirements. This could result in  
unreliable operation of the microprocessor.  
FIGURE 7.  
For these reasons, synchronous rectification is a must in  
today’s microprocessors power supply design. Pulse-  
skipping modes are undesirable in high-performance  
microprocessor power supplies, especially when the minimum  
load current is as high as 500 mA. This pulse-skipping mode  
disables the synchronous rectification during light load and  
generates a random noise spectrum which may produce EMI  
problems.  
Siliconix’ TrenchFET™ technology has resulted in 20-mΩ  
n-channel (Si4410DY) and 35-mp-channel (Si4435DY)  
MOSFETs in the SO-8 surface-mount package. These  
LITTLE FOOT® products totally eliminate the need for an  
external heatsink.  
FIGURE 8. Non-Synchronous Converter BW  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
13  
 
Si9140  
Vishay Siliconix  
Worst case current of 10 A can be handled with two paralleled  
Si4435DY and two paralleled Si4410DY MOSFETs, which  
results in the efficiency levels shown in Figure 9.  
Good electrical designs must provide an adequate margin for  
the specification, but they should not be grossly overdesigned  
to lower costs. LITTLE FOOT power MOSFETs allow  
designers to balance cost and performance considerations  
without sacrificing either. If the design requires only an 8.5-A  
continuous current, for example, one Si4410DY can be  
eliminated. Table 2 shows the number of MOSFETs required  
to handle the various output current levels of today’s high-  
performance microprocessors. For other output power levels,  
the equations below should be used to calculate the power  
handling capability of the MOSFET.  
FIGURE 9. Efficiency  
TABLE 2. Converter Requirements Figure 1, 2, and 3)  
IO (A)  
Maximum  
Quantity High-side  
P-Channel SI4435DY  
Quantity Low-side  
N-Channel SI4410DY  
Quantity Input (C1-C3)  
Capacitor OS-CON 220 µF  
5 A  
8.5 A  
10 A  
1
2
2
3
1
1
2
2
1
2
2
3
14.5 A  
S-58034—Rev. G, 15-Mar-99  
14  
FaxBack 408-970-5600, request 70026  
www.siliconix.com  
 
Si9140  
Vishay Siliconix  
Q
SW × VIN × fOSC  
I
PP × VO × τC × fOSC  
PDissipation in switch = IRMS SW2 × RSW + --------------------------------------------- + ----------------------------------------------------  
2
2
VO  
(IPEAK2 + IPP2 + IPEAK × IPP) ×  
------------------  
IRMS SW  
=
3 × VIN  
Q
RECT × VIN × fOSC  
PDissipation in synchronous rectification = IRMS RECT2 × RRECT + ---------------------------------------------------  
2
V
IN VO  
(IPEAK2 + IPP2 + IPEAK × IPP) ×  
----------------------  
IRMS RECT  
=
3 × VIN  
IPP = IPEAK + I  
I
R
I
R
Q
Q
V
V
I
f
η
=
=
=
=
=
=
=
=
=
=
=
=
Switch rms current  
Switch on resistance  
RMSSW  
SW  
Synchronous rectifier rms current  
Synchronous rectifier on resistance  
Total gate charge of switch  
Total gate charge of synchronous rectifier  
Input voltage  
Output voltage  
Output current  
Switching frequency  
efficiency  
2
RMSRECT  
VO  
I = ------------------------------------  
L × fOSC × VIN  
RECT  
SW  
RECT  
IN  
P
IN (0.5 × VO × ∆I)  
IPEAK = -----------------------------------------------------  
O
VO  
O
OSC  
V
O × IO  
PIN = ------------------  
τ
Crossover time  
C
η
Current  
I
O
I
PP  
I
PEAK  
0 A  
time  
frequency, but the core size is fairly large. If the power supply  
is designed on the motherboard and space is not a critical  
issue, ferrite is a better choice.  
INDUCTOR  
The size and value of the inductor are critical in meeting  
overall circuit dimensional requirements and in assuring  
proper transient voltage regulation. The size of the core is  
determined by the output power, the material of the core, and  
the operating frequency. To handle higher output power, the  
core must be larger. Luckily, a higher switching frequency will  
lower the inductance value, decreasing the core size.  
However, a higher switching frequency can also mean greater  
core loss.  
The higher switching frequency reduces the core size by  
decreasing the amount of energy that must be stored between  
switching periods. It also accelerates the transient response  
to the load by decreasing the inductance value. The  
inductance is calculated with following equation:  
2
VO  
L = --------------------------------------  
V
IN × ∆I × fOSC  
In applications where the dc flux density is high and the ac  
flux density swing is only 100 to 200 gauss, the core loss will  
be negligible compared to the wire loss. Kool Mu is the best  
material to use at 500 kHz to deliver 30 W in the minimum  
volume. Ferrite has a lower core cost and loss at this  
I = desired output current ripple. Typically I = 25% of  
maximum output current.  
FaxBack 408-970-5600, request 70026  
S-58034—Rev. G, 15-Mar-99  
www.siliconix.com  
15  

相关型号:

SI9140CQ

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140CQ-T1

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140CQ-T1-E3

SWITCHING MODE POWER SUPPLY CONTROLLER - Tape and Reel
VISHAY

SI9140CY

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140CY-E3

SWITCHING MODE PWR SUPPLY CONTR-LEAD FRE - Tape and Reel
VISHAY

SI9140CY-T1

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140CY-T1-E3

SWITCHING MODE POWER SUPPLY CONTR-LEAD F - Tape and Reel
VISHAY

SI9140DQ

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140DQ-T1

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140DQ-T1-E3

MP Controller For High Performance Process Power Supplies
VISHAY

SI9140DY

SMP Controller For High Performance Process Power Supplies
VISHAY

SI9140DY-T1

IC 0.35 A SWITCHING CONTROLLER, 2000 kHz SWITCHING FREQ-MAX, PDSO16, SOIC-16, Switching Regulator or Controller
VISHAY