SI9185DMP-50-T1-E3 [VISHAY]

Regulator, 1 Output, CMOS, PDSO8,;
SI9185DMP-50-T1-E3
型号: SI9185DMP-50-T1-E3
厂家: VISHAY    VISHAY
描述:

Regulator, 1 Output, CMOS, PDSO8,

光电二极管
文件: 总13页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si9185  
Vishay Siliconix  
Micropower 500 mA CMOS LDO Regulator  
with Error Flag/Power-On-Reset  
DESCRIPTION  
FEATURES  
The Si9185 is a 500 mA CMOS LDO (low dropout) voltage  
regulator. The device features ultra low ground current and  
dropout voltage to prolong battery life in portable electronics.  
The Si9185 offers line/load transient response and ripple  
rejection superior to that of bipolar or BiCMOS LDO  
regulators, and is designed to drive lower cost ceramic, as  
well as tantalum, output capacitors. An external noise  
bypass capacitor connected to the device’s CNOISE pin will  
lower the LDO’s output noise for low noise applications. The  
Si9185 also includes an out-of-regulation error flag. If a  
capacitor is connected to the device’s delay pin, the error  
flag output pin will generate a delayed power-on-reset  
signal. The device is guaranteed stable from maximum load  
current down to 0 mA load.  
Input voltage 2 V to 6 V  
Low 150 mV dropout at 500 mA load  
Guaranteed 500 mA output current  
Uses low ESR ceramic output capacitor  
Fast load and line transient response  
Only 100 µVRMS noise with noise bypass capacitor  
1 µA maximum shutdown current  
Built-in short circuit and thermal protection  
Out-of-regulation error flag (power good or POR)  
Fixed 1.215 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V, 5.0 V, or  
adjustable output voltage options  
Other output voltages available by special order  
1.1 W power dissipation  
Thin, thermally enhanced MLP33 PowerPAK® package  
Compliant to RoHS directive 2002/95/EC  
The Si9185 is available in both standard and lead (Pb)-free  
MLP33 PowerPAK packages and is specified to operate  
over the industrial temperature range of - 40 °C to 85 °C.  
MLP33 PowerPAK packaging allows enhanced heat transfer  
to the PC board.  
APPLICATIONS  
Laptop and palm computers  
Desktop computers  
Cellular phones  
PDA, digital still cameras  
TYPICAL APPLICATIONS CIRCUITS  
1
8
7
6
5
1
2
3
4
8
7
6
5
C
SD  
ERROR  
GND SENSE/ADJ  
C
SD  
NOISE  
NOISE  
2
DELAY  
DELAY  
ERROR  
3
4
GND SENSE/ADJ  
V
OUT  
V
IN  
V
OUT  
V
IN  
V
IN  
V
OUT  
V
OUT  
V
IN  
2.2 µF  
GND  
2.2 µF  
2.2 µF  
GND  
2.2 µF  
Si9185  
Si9185  
Figure 1. Fixed Output  
Figure 2. Adjustable Output  
1
2
3
4
8
7
6
5
SD  
ON/OFF  
POR  
C
NOISE  
DELAY  
ERROR  
0.1  
F
0.1 µF  
1 MΩ  
GND SENSE/ADJ  
V
OUT  
V
IN  
V
OUT  
V
IN  
2.2 µF  
GND  
2.2 µF  
Si9185  
Figure 3. Low Noise, Full Features Application  
* Pb containing terminations are not RoHS compliant, exemptions may apply.  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
1
Si9185  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
6.5  
Unit  
Input Voltage, VIN  
V
SD Input Voltage, VSD  
- 0.3 to VIN  
Output Current, IOUT  
500 mA Continuous, Short Circuit Protected  
- 0.3 to VO(nom) + 0.3  
mA  
V
Output Voltage, VOUT  
Maximum Junction Temperature, TJ(max)  
Storage Temperature, TSTG  
ESD (Human Body Model)  
Power Dissipationa  
150  
°C  
- 55 to 150  
2
2.5  
50  
4
kV  
W
RΘJA  
RΘJC  
a
°C/W  
Thermal Resistance (ΘJA  
Notes:  
)
a. Device Mounted with all leads soldered or welded to PC board. (PC board - 2" x 2", 4-layer, FR4, 0.25 square inch spreading copper).  
b. Derate 20 mW/°C above TA = 25 °C.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
Parameter  
Limit  
Unit  
V
Input Voltage, VIN  
2 to 6  
Output Voltage, VOUT (Adjustable Version)  
1.215 to 5  
25 to 150  
- 40 to 85  
- 40 to 125  
R2  
kΩ  
°C  
Operating Ambient Temperature, TA  
Operating Junction Temperature, TJ  
Notes:  
C
C
IN = 2.2 µF, COUT = 2.2 µF (ceramic, X5R or X7R type), CNOISE = 0.1 µF (ceramic)  
OUTRange = 1 µF to 10 µF ( 10 ꢀ, x5R or x7R type)  
CIN COUT  
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
IN = VOUT(nom) + 1 V, IOUT = 1 mA,  
Limits  
- 40 °C to 85 °C  
V
Parameter  
Symbol  
Temp.a Min.b  
Typ.c Max.b  
Unit  
CIN = 2.2 µF, COUT = 2.2 µF, VSD = 1.5 V  
Output Voltage Range  
Adjustable Version  
Full  
Room  
Full  
1.215  
- 1.5  
5
V
VOUT  
1.5  
2.5  
Output Voltage Accuracy  
(Fixed Versions)  
1 mA IOUT 500 mA  
ꢀ VO(nom)  
- 2.5  
Room  
Full  
1.191  
1.179  
1.215  
1.239  
1.251  
Feedback Voltage  
(ADJ Version)  
VADJ  
V
From VIN = VOUT + 1 V  
to VOUT + 2 V  
Line Regulation  
(VADJ VOUT 4 V)  
Full  
- 0.18  
- 0.18  
0.18  
ΔVOUT x 100  
VIN x VOUT  
ꢀ/V  
Line Regulation  
(4 V VOUT 5 V)  
From VIN = 5.5 V to 6 V  
IOUT = 10 mA  
Full  
0.18  
20  
Room  
5
Dropout Voltaged  
(at VOUT(nom) 2 V)  
I
I
I
I
OUT = 200 mA  
OUT = 500 mA  
OUT = 200 mA  
OUT = 500 mA  
Room  
Room  
Full  
145  
320  
215  
480  
600  
175  
400  
480  
VIN - VOUT  
mV  
Room  
Room  
Full  
115  
250  
Dropout Voltaged  
(at VOUT(nom) 2.5 V)  
www.vishay.com  
2
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Si9185  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
IN = VOUT(nom) + 1 V, IOUT = 1 mA,  
Limits  
- 40 °C to 85 °C  
V
Parameter  
Symbol  
Temp.a Min.b Typ.c Max.b  
Unit  
CIN = 2.2 µF, COUT = 2.2 µF, VSD = 1.5 V  
IOUT = 200 mA  
IOUT = 500 mA  
IOUT = 200 mA  
Room  
Room  
Full  
90  
135  
300  
400  
100  
210  
300  
250  
625  
825  
Dropout Voltaged  
(at VOUT(nom) 3.3 V)  
VIN - VOUT  
200  
Room  
Room  
Full  
60  
Dropout Voltaged  
(at VOUT(nom) 5 V)  
VIN - VOUT  
mV  
150  
I
OUT = 500 mA  
IOUT = 200 mA  
Room  
Room  
Full  
170  
415  
Dropout Voltaged  
(at VOUT(nom) < 2 V, VIN 2 V)  
VIN - VOUT  
I
OUT = 500 mA  
IOUT = 0 mA  
Room  
Room  
Full  
150  
1000  
I
I
OUT = 200 mA  
IGND  
Ground Pin Current  
µA  
1500  
Room  
Full  
2500  
OUT = 500 mA  
4000  
1
IIN(off)  
IADJ  
VSD = 0 V  
Shutdown Supply Current  
ADJ Pin Current  
Room  
0.1  
5
µA  
nA  
ADJ = 1.2 V  
Room  
Room  
Room  
100  
IO(peak)  
VOUT 0.95 x VOUT(nom), tpw = 2 ms  
Peak Output current  
600  
mA  
w/o CNOISE  
200  
BW = 50 Hz to 100 kHz  
eN  
Output Noise Voltage  
µV(rms)  
I
OUT = 150 mA  
CNOISE = 0.1 µF  
Room  
Room  
Room  
Room  
100  
60  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
ΔVOUT/ΔVIN  
IOUT = 150 mA  
Ripple Rejection  
60  
dB  
40  
VIN : VOUT(nom) + 1 V to VOUT(nom) + 2 V  
tR/tF = 5 µs, IOUT = 500 mA  
ΔVO(line)  
ΔVO(load)  
Dynamic Line Regulation  
Dynamic Load Regulation  
Room  
10  
mV  
IOUT : 1 mA to 150 mA, tR/tF = 2 µs  
Room  
Room  
Room  
30  
5
w/o CNOISE Cap  
VIN = 4.3 V  
µs  
VOUT Turn-On Time  
tON  
VOUT = 3.3 V  
CNOISE = 0.1 µF  
2
mS  
Thermal Shutdown  
Thermal Shutdown Junction  
Temperature  
tJ(s/d)  
Room  
165  
°C  
tHYST  
ISC  
Thermal Hysteresis  
Short Circuit Current  
Shutdown Input  
Room  
Room  
20  
VOUT = 0 V  
800  
mA  
VIH  
VIL  
VIN  
0.4  
High = Regulator On (Rising)  
Low = Regulator Off (Falling)  
VSD = 0 V, Regulator OFF  
VSD = 6 V, Regulator ON  
Full  
Full  
1.5  
SD Input Voltage  
V
IIH  
Room  
Room  
Full  
0.01  
1.0  
SD Input Currente  
µA  
IIL  
VHYST  
Shutdown Hysteresis  
100  
mV  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
3
Si9185  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
IN = VOUT(nom) + 1 V, IOUT = 1 mA,  
Limits  
- 40 °C to 85 °C  
V
Parameter  
Symbol  
Temp.a Min.b Typ.c Max.b  
Unit  
CIN = 2.2 µF, COUT = 2.2 µF, VSD = 1.5 V  
Error Output  
IOFF  
VOL  
ERROR = VOUT(nom)  
ISINK = 2 mA  
Output High Leakage  
Full  
Full  
0.01  
2
µA  
Output Low Voltageg  
0.4  
Out-of-Regulation Error Flag  
Threshold Voltage (Rising)g  
0.93 x 0.95 x 0.97 x  
VOUT VOUT VOUT  
VTH  
Full  
V
2 ꢀ x  
VOUT  
Hysteresisg  
VHYST  
IDELAY  
Room  
Room  
Delay Pin Current Source  
Notes:  
1.2  
2.2  
3.0  
µA  
a. Room = 25 °C, Full = - 40 °C to 85 °C.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Typical values for dropout voltage at VOUT 2 V  
are measured at VOUT = 3.3 V, while typical values for dropout voltage at VOUT < 2 V are measured at VOUT = 1.8 V.  
d. Dropout voltage is defined as the input to output differential voltage at which the output voltage drops 2 ꢀ below the output voltage measured  
with a 1 V differential, provided that VIN does not drop below 2.0 V. When VOUT(nom) is less than 2.0 V, the output will be in regulation when  
2.0 V - VOUT(nom) is greater than the dropout voltage specified.  
e. The device’s shutdown pin includes a typical 6 MΩ internal pull-down resistor connected to ground.  
f. VOUT is defined as the output voltage of the DUT at 1 mA.  
g. The Error Output (Low) function is guaranteed for VIN 2.0 V.  
TIMING WAVEFORMS  
V
IN  
t
ON  
V
NOM  
0.95 V  
NOM  
V
OUT  
ERROR  
t
DELAY  
Figure 4. Timing Diagram for Power-Up  
www.vishay.com  
4
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Si9185  
Vishay Siliconix  
PIN CONFIGURATION  
MLP33 PowerPAK  
MLP33 PowerPAK  
SD  
ERROR  
8
7
6
5
1
2
3
4
C
NOISE  
C
1
2
3
4
8
SD  
NOISE  
DELAY  
GND  
DELAY  
GND  
7
6
5
ERROR  
SENSE or ADJ  
SENSE or ADJ  
V
OUT  
V
IN  
V
IN  
V
OUT  
Exposed Pad  
Bottom View  
Top View  
PIN DESCRIPTION  
Pin Number  
Name  
Function  
Noise bypass pin. For low noise applications, a 0.01 µF or larger ceramic capacitor should be connected  
from this pin to ground.  
CNOISE  
1
Capacitor connected from this pin to ground will allow a delayed power-on-reset signal at the ERROR (Pin 7)  
output. Refer to Figure 4.  
2
DELAY  
Ground pin. Local ground for CNOISE and COUT  
.
3
4
5
GND  
VIN  
Input supply pin. Bypass this pin with a 2.2 µF ceramic or tantalum capacitor to ground.  
Output voltage. Connect COUT between this pin and ground.  
VOUT  
For fixed output voltage versions, this pin should be connected to VOUT (Pin 5). For adjustable output  
voltage version, this voltage feedback pin sets the output voltage via an external resistor divider.  
This open drain output is an error flag output which goes low when VOUT drops 5 ꢀ below its nominal  
voltage. This pin also provides a power-on-reset signal if a capacitor is connected to the DELAY pin.  
By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to VIN if unused.  
6
SENSE or ADJ  
ERROR  
7
8
SD  
Exposed Pad  
The die substrate is attached to the exposed pad and must be electrically connected to GND.  
ORDERING INFORMATION  
Standard  
Part Number  
Lead (Pb)-free  
Part Number  
Marking  
Voltage  
Temperature  
Package  
Si9185DMP-12-T1  
Si9185DMP-18-T1  
Si9185DMP-25-T1  
Si9185DMP-28-T1  
Si9185DMP-30-T1  
Si9185DMP-33-T1  
Si9185DMP-50-T1  
Si9185DMP-AD-T1  
Si9185DMP-12-T1-E3  
Si9185DMP-18-T1-E3  
Si9185DMP-25-T1-E3  
Si9185DMP-28-T1-E3  
Si9185DMP-30-T1-E3  
Si9185DMP-33-T1-E3  
Si9185DMP-50-T1-E3  
Si9185DMP-AD-T1-E3  
8512  
8518  
8525  
8528  
8530  
8533  
8550  
85AD  
1.215 V  
1.80 V  
2.50 V  
2.80 V  
MLP33  
PowerPak  
- 40 °C to 85 °C  
3.00 V  
3.30 V  
5.00 V  
Adjustable  
Additional voltage options are available.  
Eval Kit  
Temperature Range  
Board Type  
Surface Mount  
Si9185DB  
- 40 to 85 °C  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
5
Si9185  
Vishay Siliconix  
TYPICAL CHARACTERISTICS Internally Regulated, 25 °C, unless otherwise noted  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
OUT  
= 3.0 V  
R
LOAD  
= 16.5 Ω  
0
0
100  
200  
300  
(mA)  
400  
500  
600  
0
1
2
3
4
5
6
I
V
(V)  
LOAD  
IN  
Dropout Characteristic  
Dropout Voltage vs. Load Current  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 500 mA  
OUT  
V
OUT  
= 3.0 V  
I
= 500 mA  
OUT  
I
= 200 mA  
= 10 mA  
OUT  
I
= 200 mA  
OUT  
I
OUT  
I
= 10 mA  
OUT  
0
0
I
= 0 mA  
OUT  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
- 50 - 25  
0
25  
50  
75  
100 125 150  
V
OUT  
Junction Temperature (°C)  
Dropout Voltage vs. Temperature  
Dropout Voltage vs. VOUT  
0.30  
0.15  
0.2  
I
= 1 mA  
OUT  
0.0  
- 0.2  
- 0.4  
- 0.6  
- 0.8  
- 1.0  
0.00  
- 0.15  
- 0.30  
- 0.45  
- 0.60  
- 0.75  
I
= 200 mA  
OUT  
I
= 500 mA  
OUT  
0
50 100 150 200 250 300 350 400 450 500  
- 40 - 20  
0
20  
Junction Temperature (°C)  
Normalized VOUT vs. Temperature  
40  
60  
80 100 120 140  
Load Current (mA)  
Normalized Output Voltage vs. Load Current  
www.vishay.com  
6
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Si9185  
Vishay Siliconix  
TYPICAL CHARACTERISTICS Internally Regulated, 25 °C, unless otherwise noted  
300  
250  
200  
150  
100  
50  
0.0  
- 0.5  
- 1.0  
- 1.5  
- 2.0  
- 2.5  
V
OUT  
= 5 V  
85 °C  
25 °C  
25 °C  
- 40 °C  
0
0
1
2
3
4
5
6
7
0
50 100 150 200 250 300 350 400 450 500  
Load Current (mA)  
Input Voltage (V)  
No Load GND Pin Current vs. Input Voltage  
GND Current vs. Load Current  
0
- 20  
- 40  
- 60  
- 80  
2500  
2000  
1500  
1000  
500  
V
= 5 V  
OUT  
I
= 500 mA  
C
= 10 µF  
OUT  
IN  
C
= 2.2 µF  
OUT  
I
= 150 mA  
LOAD  
I
I
= 200 mA  
= 0 mA  
OUT  
OUT  
0
2
3
4
5
6
10  
10  
10  
Frequency (Hz)  
Power Supply Rejection  
10  
10  
10  
- 40 - 20  
0
20  
JunctionTemperature (°C)  
GND Pin Current vs. Temperature and Load  
40  
60  
80 100 120 140  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
7
Si9185  
Vishay Siliconix  
TYPICAL WAVEFORMS  
V
OUT  
10 mV/div  
V
OUT  
10 mV/div  
I
LOAD  
100 mA/div  
I
LOAD  
100 mA/div  
5.00 µs/div  
5.00 µs/div  
V
V
I
= 4.3 V, C = 2.2 µF  
IN  
V
V
I
= 4.3 V, C = 2.2 µF  
IN  
IN  
IN  
= 3.3 V, C  
= 2.2 µF  
= 3.3 V, C  
= 2.2 µF  
OUT  
OUT  
OUT  
OUT  
= 1 mA to 150 mA  
= 1 mA to 150 mA  
LOAD  
LOAD  
t
= 2 µs  
t
= 2 µs  
rise  
rise  
Load Transient Response-1  
Load Transient Response-2  
V
OUT  
10 mV/div  
V
OUT  
10 mV/div  
I
LOAD  
100 mA/div  
I
LOAD  
100 mA/div  
5.00 µs/div  
5.00 µs/div  
V
V
I
= 4.3 V, C = 2.2 µF  
IN  
V
V
I
= 4.3 V, C = 2.2 µF  
IN  
IN  
IN  
= 3.3 V, C  
= 1.0 µF  
= 3.3 V, C  
= 1.0 µF  
OUT  
OUT  
OUT  
OUT  
= 1 mA to 150 mA  
= 1 mA to 150 mA  
LOAD  
LOAD  
t
= 2 µs  
t
= 2 µs  
rise  
rise  
Load Transient Response-4  
Load Transient Response-3  
V
V
OUT  
20 mV/div  
OUT  
20 mV/div  
I
LOAD  
200 mA/div  
I
LOAD  
200 mA/div  
V
V
I
= 4.3 V, C = 10 µF  
IN  
IN  
V
V
I
= 4.3 V, C = 10 µF  
IN  
10 µs/div  
IN  
10 µs/div  
= 3.3 V, C  
= 10 µF  
OUT  
LOAD  
OUT  
= 3.3 V, C  
= 10 µF  
OUT  
LOAD  
OUT  
= 1 mA to 500 mA  
= 1 mA to 500 mA  
t
= 2 µs  
rise  
t
= 2 µs  
rise  
Load Transient Response-5  
Load Transient Response-6  
www.vishay.com  
8
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Si9185  
Vishay Siliconix  
TYPICAL WAVEFORMS  
V
OUT  
1 V/div  
V
IN  
2 V/div  
V
OUT  
10 mV/div  
5.00 µs/div  
5.00 µs/div  
V
V
= 4.3 V to 5.3 V  
V
OUT  
= 5.3 V to 4.3 V  
INSTEP  
INSTEP  
= 3.3 V  
V
= 3.3 V  
OUT  
C
IN  
= 2.2 µF  
C
IN  
= 2.2 µF  
OUT  
OUT  
C
= 10 µF  
C
= 10 µF  
I
t
= 500 mA  
I
t
= 500 mA  
LOAD  
LOAD  
= 5 µs  
= 5 µs  
rise  
fall  
Line Transient Response-2  
Line Transient Response-1  
V
IN  
CH-3 2 V/div  
V
2 V/div  
IN  
V
OUT  
CH-1 2 V/div  
V
2 V/div  
OUT  
C
C
delay  
2 V/div  
delay  
CH-4 2 V/div  
ERROR 2 V/div  
ERROR  
CH-2 2 V/div  
10.00 ms/div  
5.00 µs/div  
V
V
= 4.2 V  
OUT  
V
V
= 4.2 V  
OUT  
IN  
IN  
= 3.3 V  
= 3.3 V  
C
NOISE  
= 0.1 µF  
C
NOISE  
= 0.1 µF  
delay  
C
delay  
C
= 0.1 µF  
= 0.1 µF  
I
= 350 mA  
I
= 350 mA  
LOAD  
LOAD  
Turn-On Sequence  
Turn-Off Sequence  
10.0  
µV Hz  
500 µV/div  
0.01  
100 Hz  
1 MHz  
V
V
C
= 4.1 V  
1 ms/div  
IN  
OUT  
V
V
= 4.2 V  
IN  
= 3.3 V/10 mA  
= 0.1 µF  
= 3.3 V  
OUT  
NOISE  
I
= 150 mA  
OUT  
C
= 0.1 µF  
NOISE  
BW = 10 Hz to 1 MHz  
Noise Spectrum  
Output Noise  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
9
Si9185  
Vishay Siliconix  
BLOCK DIAGRAM  
SENSE  
C
1
NOISE  
6
4
V
IN  
8
SD  
+
-
RFB2  
To V  
IN  
5
V
OUT  
60 mV  
6 MΩ  
2 µA  
+
RFB1  
2
7
+
-
DELAY  
ERROR  
+
-
-
1.215 V  
+
V
REF  
3
GND  
Figure 5.  
DETAILED DESCRIPTION  
The Si9185 is a low drop out, low quiescent current, and very  
linear regulator family with very fast transient response. It is  
primarily designed for battery powered applications where  
battery run time is at a premium. The low quiescent current  
allows extended standby time while low drop out voltage  
enables the system to fully utilize battery power before  
recharge. The Si9185 is a very fast regulator with bandwidth  
exceeding 50 kHz while maintaining low quiescent current at  
light load conditions. With this bandwidth, the Si9185 is the  
fastest LDO available today. The Si9185 is stable with any  
output capacitor type from 1 µF to 10.0 µF. However, X5R or  
X7R ceramic capacitors are recommended for best output  
noise and transient performance.  
unknown, it is recommended that an input bypass capacitor  
be used of a value that is equal to or greater than the output  
capacitor.  
VOUT  
VOUT is the output voltage of the regulator. Connect a bypass  
capacitor from VOUT to ground. The output capacitor can be  
any value from 1.0 µF to 10.0 µF. A ceramic capacitor with  
X5R or X7R dielectric type is recommended for best output  
noise, line transient, and load transient performance.  
GND  
Ground is the common ground connection for VIN and VOUT  
.
It is also the local ground connection for CNOISE, DELAY,  
SENSE or ADJ, and SD.  
VIN  
VIN is the input supply pin. The bypass capacitor for this pin  
is not critical as long as the input supply has low enough  
source impedance. For practical circuits, a 1.0 µF or larger  
ceramic capacitor is recommended. When the source  
impedance is not low enough and/or the source is several  
inches from the Si9185, then a larger input bypass capacitor  
is needed. It is required that the equivalent impedance  
(source impedance, wire, and trace impedance in parallel  
with input bypass capacitor impedance) must be smaller  
than the input impedance of the Si9185 for stable operation.  
When the source impedance, wire, and trace impedance are  
www.vishay.com  
10  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Si9185  
Vishay Siliconix  
SENSE or ADJ  
Safe Operating Area  
SENSE is used to sense the output voltage. Connect SENSE  
to VOUT for the fixed voltage version. For the adjustable  
output version, use a resistor divider R1 and R2, connect R1  
from VOUT to ADJ and R2 from ADJ to ground. R2 should be  
in the 25 kΩ to 150 kΩ range for low power consumption,  
while maintaining adequate noise immunity.  
The ability of the Si9185 to supply current is ultimately  
dependent on the junction temperature of the pass device.  
Junction temperature is in turn dependent on power  
dissipation in the pass device, the thermal resistance of the  
package and the circuit board, and the ambient temperature.  
The power dissipation is defined as  
The formula below calculates the value of R1, given the  
desired output voltage and the R2 value,  
PD = (VIN - VOUT) * IOUT  
.
Junction temperature is defined as  
VOUT VADJ R2  
-
(1)  
R1  
TJ = TA + ((PD * (RθJC + RθCA)).  
VADJ  
To calculate the limits of performance, these equations must  
be rewritten.  
VADJ is nominally 1.215 V.  
Allowable power dissipation is calculated using the equation  
SHUTDOWN (SD)  
SD controls the turning on and off of the Si9185. VOUT is  
guaranteed to be on when the SD pin voltage equals or is  
greater than 1.5 V. VOUT is guaranteed to be off when the SD  
pin voltage equals or is less than 0.4 V. During shutdown  
mode, the Si9185 will draw less than 2 µA current from the  
source. To automatically turn on VOUT whenever the input is  
applied, tie the SD pin to VIN.  
PD = (TJ - TA )/ (RθJC + RθCA  
While allowable output current is calculated using the equation  
OUT = (TJ - TA )/ (RθJC + RθCA) * (VIN - VOUT).  
Ratings of the Si9185 that must be observed are  
)
I
ERROR  
T
Jmax = 125 °C, TAmax = 85 °C, (VIN - VOUT max  
)
= 5.3 V,  
RθJC = 4 °C/W.  
ERROR is an open drain output that goes low when VOUT is  
less than 5 ꢀ of its normal value. As with any open drain  
output, an external pull up resistor is needed. When a  
capacitor is connected from DELAY to GROUND, the error  
signal transition from low to high is delayed (see Delay  
section). This delayed error signal can be used as the power-  
on reset signal for the application system. (Refer to Figure 4.)  
The value of RθCA is dependent on the PC board used. The  
value of RθCA for the board used in device characterization  
is approximately 46 °C/W.  
Figure 6 shows the performance limits graphically for the  
Si9185 mounted on the circuit board used for thermal  
characterization.  
The ERROR pin is disconnected if not used.  
0.6  
DELAY  
A capacitor from DELAY to GROUND sets the time delay for  
ERROR going from low to high state. The time delay can be  
calculated using the following formula:  
0.5  
T
= 0 °C  
A
0.4  
0.3  
0.2  
0.1  
0.0  
T
A
= 25 °C  
VADJ Cdelay  
Tdelay  
(2)  
Idelay  
T
A
= 50 °C  
T
A
= 70 °C  
T
A
= 85 °C  
The DELAY pin should be an open circuit if not used.  
(V - V  
IN  
)
= 5.3 V  
CNOISE  
OUT MAX  
For low noise application, connect a high frequency ceramic  
capacitor from CNOISE to ground. A 0.01 µF or a 0.1 µF X5R  
or X7R is recommended.  
0
1
2
3
4
5
6
V
- V  
OUT  
(V)  
IN  
Figure 6.  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
www.vishay.com  
11  
Si9185  
Vishay Siliconix  
PCB Footprint and Layout Considerations  
1.425  
0.056  
The Si9185 comes in the MLP33 PowerPAK package with  
an exposed pad on the bottom to provide a low thermal  
impedance path into the PC board. When the PC board  
layout is designed, a copper plane, referred to as spreading  
copper, is recommended to be placed under the package to  
which the exposed pad is soldered. This spreading copper is  
the path for the heat to move away from the package into the  
PC board. With the Si9185 mounted on a four layer board  
measuring 2" x 2", a spreading copper area of 0.25 square  
inches will yield an Rθja of 50 °C/W. This allows for power  
dissipation in excess of 1 watt in an 80 °C ambient  
environment.  
0.906  
0.036  
0.650  
0.026  
0.325  
0.013  
2.245  
0.088  
0.396  
0.016  
1.426  
0.056  
mm  
inches  
2.852  
0.112  
Figure 7. MLP33 PowerPAK Pad Pattern  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?71765.  
www.vishay.com  
12  
Document Number: 71765  
S09-2454-Rev. G, 23-Nov-09  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

SI9185DMP-AD-T1

Micropower 500-mA CMOS LDO Regulator
VISHAY

SI91860

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91860DY

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91860DY-E3

Fixed Positive Standard Regulator, 3.3VPDSO8, SO-8
VISHAY

SI91860DY-T1

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91860DY-T1-E3

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91861

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91861DY

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91861DY-E3

IC VREG 3.3 V FIXED POSITIVE REGULATOR, PDSO8, SO-8, Fixed Positive Single Output Standard Regulator
VISHAY

SI91861DY-T1

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91861DY-T1-E3

400-mA Smart Regulator for Network Interface Card
VISHAY

SI91871

300-mA Ultra Low-Noise LDO Regulator With Discharge Option
VISHAY