TFDU4300-TR1 [VISHAY]

Infrared Transceiver Module (SIR, 115.2 kbit/s); 红外收发器模块(爵士, 115.2 kbit / s的)
TFDU4300-TR1
型号: TFDU4300-TR1
厂家: VISHAY    VISHAY
描述:

Infrared Transceiver Module (SIR, 115.2 kbit/s)
红外收发器模块(爵士, 115.2 kbit / s的)

文件: 总15页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TFDU4300  
Vishay Semiconductors  
VISHAY  
Infrared Transceiver Module (SIR, 115.2 kbit/s)  
for IrDA® applications  
Description  
The TFDU4300 is a low profile (2.5 mm) infrared  
transceiver module with independent logic reference  
voltage (Vlogic) for low voltage IO interfacing. It is  
compliant to the latest IrDA physical layer standard for  
fast infrared data communication, supporting IrDA  
speeds up to 115.2 kbit/s (SIR) and carrier based  
remote control. The transceiver module consists of a  
PIN photodiode, an infrared emitter (IRED), and a  
low-power control IC to provide a total front-end solu-  
tion in a single package. This device covers an  
18065  
extended IrDA low power range of close to 1 m. With  
an external current control resistor the current can be  
adjusted for shorter ranges.  
• Low Profile (Universal) Package Capable of  
Surface Mount Soldering to Side and Top View  
Orientation  
This Vishay SIR transceiver is built in a new smaller  
package using the experiences of the lead frame  
BabyFace technology.  
The Rxd output pulse width is independent of the opti-  
cal input pulse width and stays always at a fixed pulse  
width thus making the device optimum for standard  
Endecs. TFDU4300 has a tri-state output and is float-  
ing in shut-down mode with a weak pull-up.  
• Directly Interfaces with Various Super I/O and  
Controller Devices as e.g. TOIM4232  
• Tri-state-Receiver Output, floating in shut down  
with a weak pull-up  
• Compliant with IrDA Background Light  
Specification  
• EMI Immunity in GSM Bands > 300 V/m verified  
Applications  
• Ideal for Battery Operated Applications  
Features  
• Compliant to the latest IrDA physical layer  
specification (9.6 kbit/s to 115.2 kbit/s) and TV  
Remote Control, bi-directional operation included.  
• Operates from 2.4 V to 5.5 V within specification  
over full temperature range from - 30 °C to + 85 °C  
• Telecommunication Products  
(Cellular Phones, Pagers)  
• Digital Still and Video Cameras  
• Printers, Fax Machines, Photocopiers, Screen  
• Projectors  
• Logic voltage 1.5 V to 5.5 V is independent of  
IRED driver and analog supply voltage  
• Medical and Industrial Data Collection  
• Diagnostic Systems  
• Split power supply, transmitter and receiver can be  
operated from two power supplies with relaxed  
requirements saving costs, US Patent No.  
6,157,476  
• Extended IrDA Low Power Range to about 70 cm  
• Typical Remote Control Range 12 m  
• Notebook Computers, Desktop PCs,  
Palmtop Computers (Win CE, Palm PC), PDAs  
• Internet TV Boxes, Video Conferencing Systems  
• External Infrared Adapters (Dongles)  
• Data Loggers  
• Low Power Consumption  
(< 0.12 mA Supply Current)  
• GPS  
• Kiosks, POS, Point and Pay Devices including  
IrFM - Applications  
• Power Shutdown Mode (< 5 µA Shutdown Current  
in Full Temperature Range, up to 85 °C)  
• Surface Mount Package, low profile (2.5 mm)  
- (L 8.5 mm × H 2.5 mm × W 2.9 mm)  
• High Efficiency Emitter  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
1
TFDU4300  
Vishay Semiconductors  
VISHAY  
Parts Table  
Part  
Description  
Qty / Reel  
TFDU4300-TR1  
TFDU4300-TR3  
TFDU4300-TT1  
TFDU4300-TT3  
Oriented in carrier tape for side view surface mounting  
Oriented in carrier tape for side view surface mounting  
Oriented in carrier tape for top view surface mounting  
Oriented in carrier tape for top view surface mounting  
750 pcs  
2500 pcs  
750 pcs  
2500 pcs  
Functional Block Diagram  
Vlogic  
Vcc1  
Push-Pull  
Driver  
Rxd  
Comparator  
Amplifier  
Vcc2  
Logic  
Controlled Driver  
SD  
&
Txd  
Control  
RED C  
GND  
18282  
Pin Description  
Pin Number  
Function  
Description  
Connect IRED anode directly to the power supply (V  
I/O  
Active  
1
V
). IRED  
CC2  
CC2  
IRED Anode current can be decreased by adding a resistor in series between the  
power supply and IRED anode. A separate unregulated power  
supply can be used at this pin.  
2
3
IRED Cathode  
Txd  
IRED Cathode, internally connected to the driver transistor  
This Schmitt-Trigger input is used to transmit serial data when SD  
is low. An on-chip protection circuit disables the LED driver if the  
Txd pin is asserted for longer than 300 µs. The input threshold  
voltage adapts to and follows the logic voltage swing defined by the  
I
HIGH  
LOW  
HIGH  
applied V  
voltage.  
logic  
4
5
Rxd  
SD  
Received Data Output, push-pull CMOS driver output capable of  
driving standard CMOS or TTL loads. During transmission the Rxd  
output is inactive. No external pull-up or pull-down resistor is  
required. Floating with a weak pull-up of 500 k(typ.) in shutdown  
O
mode. The voltage swing is defined by the applied V  
voltage  
logic  
Shutdown. The input threshold voltage adapts to and follows the  
I
I
logic voltage swing defined by the applied V  
voltage.  
logic  
6
7
V
V
Supply Voltage  
CC1  
V
defines the logic voltage level of the I/O ports to adap the logic  
logic  
logic  
voltage swing to the IR controller. The Rxd output range is from 0 V  
to V , for optimum noise suppression the inputs- logic decision  
logic  
level is 0.5 x V  
Ground  
logic  
8
GND  
www.vishay.com  
2
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Pinout  
Definitions:  
TFDU4300  
weight 75 mg  
In the Vishay transceiver data sheets the following nomenclature is  
used for defining the IrDA operating modes:  
SIR: 2.4 kbit/s to 115.2 kbit/s, equivalent to the basic serial infrared  
standard with the physical layer version IrPhy 1.0  
MIR: 576 kbit/s to 1152 kbit/s  
FIR: 4 Mbit/s  
VFIR: 16 Mbit/s  
MIR and FIR were implemented with IrPhy 1.1, followed by IrPhy  
1.2, adding the SIR Low Power Standard. IrPhy 1.3 extended the  
Low Power Option to MIR and FIR and VFIR was added with IrPhy  
1.4.A new version of the standard in any case obsoletes the former  
version.  
5
6
1
2
3
4
8
GND  
7
IRED A IRED C  
Txd Rxd SD Vcc  
Vlog  
18101  
With introducing the updated versions the old versions are obso-  
lete. Therefore the only valid IrDA standard is the actual version  
IrPhy 1.4 (in Oct. 2002).  
Absolute Maximum Ratings  
Reference point Ground (pin 8) unless otherwise noted.  
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
Parameter  
Test Conditions  
Symbol  
Min  
Typ.  
Max  
Unit  
V
Supply voltage range,  
transceiver  
- 0.3 V < V  
- 0.5 V < V  
< 6 V  
< 6 V  
V
V
V
- 0.5  
+ 6.0  
CC2  
logic  
CC1  
CC2  
logic  
Supply voltage range,  
transmitter  
- 0.5 V < V  
- 0.5 V < V  
< 6 V  
< 6 V  
- 0.5  
- 0.5  
- 0.5  
- 0.5  
+ 6.0  
+ 6.0  
V
V
V
CC1  
logic  
Supply voltage range, V  
- 0.5 V < V  
- 0.3 V < V  
< 6 V  
< 6 V  
logic  
CC1  
CC2  
Rxd output voltage  
- 0.5 V < V  
- 0.3 V < V  
< 6 V  
< 6 V  
V
V
+ 0.5  
logic  
CC1  
logic  
Rxd  
Voltage at all inputs  
Input current  
Note: V V  
is allowed  
V
IN  
+ 6.0  
10  
V
in  
CC1  
for all pins, except IRED anode  
pin  
mA  
Output sinking current  
Power dissipation  
25  
mA  
see derating curve  
P
250  
mW  
D
Junction temperature  
T
125  
°C  
°C  
J
Ambient temperature range  
(operating)  
T
- 30  
- 40  
+ 85  
amb  
Storage temperature range  
T
+ 100  
°C  
stg  
Soldering temperature  
see recommended solder profile  
240  
125  
°C  
Average output current, pin 1  
I
mA  
IRED(DC)  
Repetitive pulsed output  
current, pin 1 to pin 2  
t < 90 µs, t < 20 %  
I
600  
mA  
on  
IRED(RP)  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
3
TFDU4300  
Vishay Semiconductors  
VISHAY  
Eye safety information  
Parameter  
Test Conditions  
Symbol  
d
Min  
1.3  
Typ.  
1.8  
Max  
Unit  
mm  
Virtual source size  
Method: (1-1/e) encircled  
energy  
*)  
Maximum intensity for class 1  
IEC60825-1 or EN60825-1,  
edition Jan. 2001, operating  
below the absolute maximum  
ratings  
I
mW/sr  
e
**)  
(500)  
*)  
Due to the internal limitation measures the device is a "class 1" device under all conditions.  
**)  
IrDA specifies the max. intensity with 500 mW/sr.  
www.vishay.com  
4
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Electrical Characteristics  
Transceiver  
Tested @ T  
= 25 °C, V  
= V  
= 2.7 V to 5.5 V unless otherwise noted.  
amb  
CC1  
CC2  
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
Parameter  
Supply voltage  
Test Conditions  
Remark: For 2.4 V < V  
Symbol  
Min  
2.4  
Typ.  
Max  
5.5  
Unit  
V
<
V
CC1  
CC1  
2.6 V @ T  
< - 25 °C a minor  
amb  
reduction of the receiver  
sensitivity may occur  
*)  
Idle supply current @ V  
I
90  
75  
130  
µA  
µA  
CC1  
CC1  
CC1  
SD = Low, E = 1 klx ,  
e
(receive mode, no signal)  
T
= - 25 °C to + 85 °C,  
amb  
V
= V  
= 2.7 V to 5.5 V  
CC2  
CC1  
*)  
I
SD = Low, E = 1 klx ,  
e
T
= 25 °C,  
amb  
V
= V  
= 2.7 V to 5.5 V  
CC2  
CC1  
*)  
Idle supply current @ V  
I
1
µA  
logic  
SD = Low, E = 1 klx , V  
,
log  
e
log  
(receive mode, no signal)  
pin 7, no signal, no load @ Rxd  
= 300 mA, 20 % Duty  
Average dynamic supply  
current, transmitting  
I
I
65  
mA  
IRED  
CC  
Cycle  
Standby supply current  
SD = High, T = 25 °C, E = 0 klx  
I
I
I
0.1  
µA  
µA  
µA  
µA  
°C  
V
e
SD  
SD  
SD  
SD = High, T = 70 °C  
SD = High, T = 85 °C  
no signal, no load  
2
3
Standby supply current, V  
I
1
logic  
log  
Operating temperature range  
Output voltage low, Rxd  
Output voltage high, Rxd  
T
- 30  
- 0.5  
+ 85  
0.15 x V  
logic  
A
C
I
= 15 pF  
V
V
Load  
OL  
= - 500 µA  
0.8 x V  
V
V
+ 0.5  
+ 0.5  
V
OH  
OH  
OH  
logic  
logic  
logic  
I
= - 250 µA, C  
= 15 pF  
V
R
0.9 x V  
logic  
V
OH  
Load  
Rxd to V  
impedance  
400  
500  
600  
kΩ  
V
CC1  
Rxd  
Input voltage low (Txd, SD)  
Input voltage high (Txd, SD)  
Input leakage current (Txd, SD)  
Controlled pull down current  
V
- 0.5  
0.5  
6
IL  
**)  
V
V - 0.5  
logic  
V
CMOS level  
IH  
V
= 0.9 x V  
I
ICH  
- 2  
+ 2  
µA  
µA  
IN  
logic  
SD, Txd = "0" to "1",  
< 0.15 V  
I
+ 150  
IRTx  
V
IN  
logic  
SD, Txd = "0" to "1",  
> 0.7 V  
I
- 1  
0
1
5
µA  
IRTx  
V
IN  
logic  
Input capacitance (Txd, SD)  
C
pF  
IN  
*)  
Standard illuminant A  
**)  
To provide an improved immunity with increasing V  
the typical threshold level is increasing with V  
and set to 0.5 x V  
. It is  
logic  
logic  
logic  
recommended to use the specified min/max values to avoid increased operating current.  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
5
TFDU4300  
Vishay Semiconductors  
VISHAY  
Optoelectronic Characteristics  
Receiver  
Tested @ T  
= 25 °C, V  
= V  
= 2.7 V to 5.5 V unless otherwise noted.  
amb  
CC1  
CC2  
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
Parameter  
Test Conditions  
Symbol  
Min  
Typ.  
Max  
Unit  
2
Minimum detection threshold  
irradiance, SIR Mode  
9.6 kbit/s to 115.2 kbit/s  
λ = 850 nm - 900 nm  
α = 0 °, 15 °  
E
40  
(4)  
80  
(8)  
e
mW/m  
2)  
(µW/cm  
2
Maximum detection threshold  
irradiance  
λ = 850 nm - 900 nm  
E
E
5
e
e
kW/m  
(500)  
2
(mW/cm )  
2
Receiver input irradiance for low λ = 850 nm - 900 nm  
4
(0.4)  
mW/m  
*)  
t , t < 40 ns,  
2)  
signal suppression  
No Rxd signal  
r
f
(µW/cm  
t
= 1.6 µs @ f = 115 kHz,  
po  
no output signal allowed  
10 % to 90 %, C = 15 pF  
Rise time of output signal  
Fall time of output signal  
t
10  
10  
100  
100  
3.0  
ns  
ns  
µs  
ns  
L
r(Rxd)  
90 % to 10 %, C = 15 pF  
t
f(Rxd)  
L
Rxd pulse width of output signal input pulse length > 1.2 µs  
t
1.65  
2.0  
PW  
2
Stochastic jitter, leading edge  
250  
input irradiance = 100 mW/m ,  
115.2 kbit/s  
Standby /Shutdown delay,  
receiver startup time  
after shutdown active or  
power-on  
150  
µs  
µs  
**)  
Latency  
t
100  
L
150  
*)  
Equivalent to IrDA Background Light and Electromagnetic Field Test: Fluorescent Lighting Immunity  
**)  
Compliment to IrDA® SIR  
www.vishay.com  
6
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Transmitter  
Tested @ T  
= 25 °C, V  
= V  
= 2.7 V to 5.5 V unless otherwise noted.  
CC2  
amb  
CC1  
Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
Parameter  
Test Conditions  
Symbol  
Min  
250  
Typ.  
300  
Max  
350  
Unit  
mA  
IRED operating current  
limitation  
No external resistor for current  
I
D
*)  
limitation  
Forward voltage of built-in IRED I = 300 mA  
V
1.4  
- 1  
30  
1.8  
65  
1.9  
1
V
f
f
Output leakage IRED current  
Output radiant intensity  
Txd = 0 V, 0 < V  
< 5.5 V  
I
µA  
CC1  
IRED  
α = 0 °, 15 °  
Txd = High, SD = Low  
= 5.0 V, α = 0 °, 15 °  
I
mW/sr  
e
V
I
0.04  
mW/sr  
CC1  
e
Txd = Low or SD = High  
(Receiver is inactive as long as  
SD = High)  
Output radiant intensity, angle of  
half intensity  
α
24  
°
**)  
λ
880  
900  
nm  
p
Peak - emission wavelength  
Spectral bandwidth  
∆λ  
45  
nm  
ns  
Optical rise time, fall time  
t
, t  
10  
100  
1.8  
ropt fopt  
Optical output pulse duration  
input pulse width 1.63 µs,  
t
1.6  
1.63  
µs  
opt  
115.2 kbit/s  
input pulse width t  
input pulse width t  
< 20 µs  
20 µs  
t
t
t + 0.15  
Txd  
µs  
µs  
%
Txd  
Txd  
opt  
Txd  
t
20  
300  
25  
opt  
Optical overshoot  
*)  
Using an external current limiting resistor is allowed and recommended to reduce IRED intensity and operating current when current  
reduction is intended to operate at the IrDA low power conditions. E.g. for V  
= 3.3 V a current limiting resistor of R = 56 Ω  
CC2  
S
will allow a power minimized operation at IrDA low power conditions.  
**)  
Note: Due to this wavelength restriction compared to the IrDA spec of 850 nm to 900 nm the transmitter is able to operate as source for  
®
the standard Remote Control applications with codes as e.g. Phillips RC5/RC6 or RECS 80.  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
7
TFDU4300  
Vishay Semiconductors  
VISHAY  
In addition, when connecting the described circuit to  
the power supply, low impedance wiring should be  
used.  
When extended wiring is used the inductance of the  
power supply can cause dynamically a voltage drop  
at VCC2. Often some power supplies are not apply to  
follow the fast current rise time. In that case another  
4.7 µF (type, see table under C1) at VCC2 will be help-  
ful.  
Recommended Circuit Diagram  
Operated with a clean low impedance power supply  
the TFDU4300 needs no additional external compo-  
nents. However, depending on the entire system  
design and board layout, additional components may  
be required (see figure 1).  
Under extreme EMI conditions as placing an RF-  
transmitter antenna on top of the transceiver, we rec-  
ommend to protect all inputs by a low-pass filter, as a  
minimum a 12 pF capacitor, especially at the Rxd  
port. The transceiver itself withstands EMI at GSM  
frequencies above 300 V/m. When interference is  
observed, it is picked up by the wiring to the inputs. It  
is verified by DPI (direct power injection) measure-  
ments that as long as the interfering RF - voltage is  
below the logic threshold levels of the inputs and  
equivalent levels at the outputs no interference is  
expected.  
VCC  
2
R1  
R2  
IRED Anode  
Vcc  
VCC  
1
C1  
C2  
Ground  
Vlogic  
GND  
Mode  
SD  
SD  
Txd  
Txd  
Rxd  
Rxd  
IRED Cathode  
18096  
Figure 2 and figure 3 show examples for circuit dia-  
grams to work with low voltage logic and using the  
transceiver when VCC1 = Vlogic, just connecting the  
responsible pins to each other.  
Figure 1. Recommended Application Circuit  
Recommended Application Circuit  
The capacitor C1 is buffering the supply voltage and  
eliminates the inductance of the power supply line.  
This one should be a Tantalum or other fast capacitor  
to guarantee the fast rise time of the IRED current.  
The resistor R1 is the current limiting resistor, which  
may be used to reduce the operating current to levels  
below the specified controlled values for saving bat-  
tery power.  
Vishay’s transceivers integrate a sensitive receiver  
and a built-in power driver. The combination of both  
needs a careful circuit board layout. The use of thin,  
long, resistive and inductive wiring should be avoided.  
The inputs (Txd, SD) and the output Rxd should be  
directly connected (DC - coupled) to the I/O circuit.  
The capacitor C2 combined with the resistor R2 is the  
low pass filter for smoothing the supply voltage. R2,  
C1 and C2 are optional and dependent on the quality  
of the supply voltages VCC1 and injected noise. An  
unstable power supply with dropping voltage during  
transmission may reduce the sensitivity (and trans-  
mission range) of the transceiver.  
The placement of these parts is critical. It is strongly  
recommended to position C2 as close as possible to  
the transceiver power supply pins. An Tantalum  
capacitor should be used for C1 while a ceramic  
capacitor is used for C2.  
www.vishay.com  
8
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Block Diagram of Transceiver with a Separate  
V
Power Supply (I/O voltage follows V voltage swing)  
logic  
DD  
VCC = 3.3 V  
VDD = 1.8 V  
IR Controller  
TFDU4300  
Vdd  
Vcc2 IREDA(1)  
IREDC (2)  
TxD (3)  
RxD (4)  
SD (5)  
IRTX  
IRRX  
IRMODE  
R1  
47  
Vcc1 (6)  
Vlogic (7)  
(8)  
GND  
C1  
GND  
C3  
C2  
C4  
18454  
Figure 2.  
Block Diagram of Transceiver with a Common Power Supply  
for V and V  
(I/O voltage follows V voltage swing)  
logic  
CC  
CC  
VCC = 3.3 V  
IR Controller  
TFDU4300  
Vdd  
Vcc2 IREDA(1)  
IREDC (2)  
TxD (3)  
IRTX  
IRRX  
RxD (4)  
SD (5)  
IRMODE  
Vcc1 (6)  
R1  
47  
Vlogic (7)  
(8)  
GND  
C4  
C3  
C2  
C1  
GND  
18455  
Figure 3.  
One should keep in mind that basic RF - design rules termination. See e.g. "The Art of Electronics" Paul  
for circuit design should be taken into account. Espe- Horowitz, Winfield Hill, 1989, Cambridge University  
cially longer signal lines should not be used without Press, ISBN: 0521370957.  
Table 1.  
Recommended Application Circuit Components  
Component  
C1, C3  
C2, C4  
R1  
Recommended Value  
Vishay Part Number  
293D 475X9 016B  
4.7 µF, 16 V  
0.1 µF, Ceramic  
depends on current to be adjusted  
47 , 0.125 W  
VJ 1206 Y 104 J XXMT  
R2  
CRCW-1206-47R0-F-RT1  
I/O manual, the Vishay application notes, or contact  
directly Vishay Sales, Marketing or Application.  
For operating at RS232 ports the ENDEC TOIM4232  
is recommended.  
I/O and Software  
In the description, already different I/Os are men-  
tioned. Different combinations are tested and the  
function verified with the special drivers available  
from the I/O suppliers. In special cases refer to the  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
9
TFDU4300  
Vishay Semiconductors  
VISHAY  
Truth table  
Inputs  
Outputs  
Remark  
2
SD  
Txd  
x
Rxd  
Transmitter  
0
Operation  
Shutdown  
Optical input Irradiance mW/m  
x
high  
weakly pulled  
> 1 ms  
(500 k) to V  
CC1  
low  
low  
high  
x
x
high inactive  
high inactive  
I
Transmitting  
e
high  
0
Protection is active  
> 50 µs  
low  
low  
low  
< 4  
high inactive  
low (active)  
0
Ignoring low signals below the  
IrDA defined threshold for noise  
immunity  
low  
> Min. Detection Threshold  
Irradiance  
< Max. Detection Threshold  
Irradiance  
0
0
Response to an IrDA compliant  
optical input signal  
low  
low  
> Max. Detection Threshold  
Irradiance  
undefined  
Overload conditions can cause  
unexpected outputs  
Recommended Solder Profile  
Current Derating Diagram  
90  
85  
80  
75  
70  
65  
240  
220  
200  
180  
160  
140  
120  
100  
80  
10 s max.  
@ 230°C  
2°C - 4°C/s  
120 s - 180 s  
2°C - 4°C/s  
90 s max  
60  
60  
40  
55  
50  
20  
0
4.5  
Operating Voltage [V] @ duty cycle 20%  
2.0  
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
6.0  
0
50  
100 150 200 250 300 350  
Time ( s )  
14874  
18097  
Figure 4. Recommended Solder Profile  
Figure 5. Temperature Derating Diagram  
www.vishay.com  
10  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Package Dimensions in mm  
18100  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
11  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Reel Dimensions  
W
1
Reel Hub  
W
2
14017  
Tape Width  
A max.  
N
W min.  
W max.  
W min.  
W max.  
1
2
3
3
mm  
16  
mm  
180  
330  
mm  
60  
mm  
16.4  
16.4  
mm  
22.4  
22.4  
mm  
15.9  
15.9  
mm  
19.4  
19.4  
16  
50  
www.vishay.com  
12  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Tape Dimensions in mm  
18306  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
13  
TFDU4300  
Vishay Semiconductors  
VISHAY  
18307  
www.vishay.com  
14  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
TFDU4300  
Vishay Semiconductors  
VISHAY  
Ozone Depleting Substances Policy Statement  
It is the policy of Vishay Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and  
operatingsystems with respect to their impact on the health and safety of our employees and the public, as  
well as their impact on the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are  
known as ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs  
and forbid their use within the next ten years. Various national and international initiatives are pressing for an  
earlier ban on these substances.  
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the  
use of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments  
respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design  
and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each  
customer application by the customer. Should the buyer use Vishay Semiconductors products for any  
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all  
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal  
damage, injury or death associated with such unintended or unauthorized use.  
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423  
Document Number 82614  
Rev. 1.4, 26-Jan-04  
www.vishay.com  
15  

相关型号:

TFDU4300-TR3

Infrared Transceiver Module (SIR, 115.2 kbit/s)
VISHAY

TFDU4300-TT1

Infrared Transceiver Module (SIR, 115.2 kbit/s)
VISHAY

TFDU4300-TT3

Infrared Transceiver Module (SIR, 115.2 kbit/s)
VISHAY

TFDU4301

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA® Applications
VISHAY

TFDU4301-TR1

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA® Applications
VISHAY

TFDU4301-TR3

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA® Applications
VISHAY

TFDU4301-TT1

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA® Applications
VISHAY

TFDU4301-TT3

Infrared Transceiver Module (SIR, 115.2 kbit/s) for IrDA® Applications
VISHAY

TFDU5100-TR3

暂无描述
VISHAY

TFDU5100-TT3

Transmitter/Receiver IC, 9.70 X 4 MM, 4.70 MM HEIGHT, SMT-8
VISHAY

TFDU5100TT3

Switch, Through Hole Mount,
VISHAY

TFDU5102

Fast Infrared Transceiver Module Family (MIR, 1 Mbit/s) for 2.6 V to 5.5 V Operation
VISHAY