TLMBG3100-GS08 [VISHAY]

Optoelectronic Device;
TLMBG3100-GS08
型号: TLMBG3100-GS08
厂家: VISHAY    VISHAY
描述:

Optoelectronic Device

文件: 总7页 (文件大小:186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLMB / BG / TG31..  
VISHAY  
Vishay Semiconductors  
High Intensity SMD LED  
Description  
This device has been designed to meet the increasing  
demand for InGaN technology.  
The package of the TLMB/ TLMBG/ TLMTG31.. is the  
PLCC-2 (equivalent to a size B tantalum capacitor).  
It consists of a lead frame which is surrounded with a  
white thermoplast. The reflector inside this package is  
filled up with clear epoxy.  
19225  
Pb  
e3  
Features  
• SMD LED with exceptional brightness  
Pb-free  
• Luminous intensity categorized  
Applications  
Automotive: Backlighting in dashboards and switches  
Telecommunication: Indicator and backlighting in  
telephone and fax  
Indicator and backlight for audio and video equipment  
Indicator and backlight in office equipment  
Flat backlight for LCDs, switches and symbols  
General use  
• Compatible with automatic placement equipment  
• EIA and ICE standard package  
• Compatible with infrared, vapor phase and wave  
solder processes according to CECC  
• Available in 8 mm tape  
• Low profile package  
• Non-diffused lens: excellent for coupling to light  
pipes and backlighting  
• Low power consumption  
• Luminous intensity ratio in one packaging unit  
IVmax/IVmin 1.6  
• Lead-free device  
Parts Table  
Part  
Color, Luminous Intensity  
Blue, I > 20 mcd  
Angle of Half Intensity (  
60 °  
)
Technology  
InGaN on SiC  
TLMB3140  
V
TLMBG3100  
TLMTG3100  
Blue green, I > 20 mcd  
60 °  
60 °  
InGaN on SiC  
InGaN on SiC  
V
True green, I > 66 mcd  
V
Absolute Maximum Ratings  
T
= 25 °C, unless otherwise specified  
amb  
TLMB3140 , TLMBG3100 , TLMT3100  
Parameter  
Test condition  
Symbol  
Value  
Unit  
V
Reverse voltage  
V
5
R
DC Forward current  
T
80 °C  
I
20  
mA  
A
amb  
F
Surge forward current  
Power dissipation  
t
10  
s
I
0.2  
84  
p
FSM  
T
80 °C  
P
mW  
°C  
amb  
V
Junction temperature  
Operating temperature range  
T
110  
j
T
- 40 to + 100  
°C  
amb  
Document Number 83162  
Rev. 1.3, 31-Aug-04  
www.vishay.com  
1
TLMB / BG / TG31..  
Vishay Semiconductors  
VISHAY  
Parameter  
Test condition  
Symbol  
Value  
Unit  
°C  
Storage temperature range  
T
- 40 to + 100  
stg  
Soldering temperature  
t
5 s  
T
260  
350  
°C  
sd  
Thermal resistance junction/  
ambient  
mounted on PC board  
R
K/W  
thJA  
2
(pad size > 16 mm )  
Optical and Electrical Characteristics  
T
= 25 °C, unless otherwise specified  
amb  
Pure green  
TLMTG3100  
Parameter  
Test condition  
= 20 mA  
Symbol  
Min  
80  
Typ.  
180  
Max  
541  
Unit  
mcd  
1)  
I
I
I
I
I
I
I
I
I
Luminous intensity  
F
F
F
F
F
R
F
F
V
d
p
Dominant wavelength  
Peak wavelength  
= 20 mA  
= 20 mA  
= 20 mA  
= 20 mA  
515  
528  
522  
60  
nm  
nm  
deg  
V
Angle of half intensity  
Forward voltage  
V
3.5  
4.2  
F
Reverse voltage  
= 10  
A
V
5
V
R
Temperature coefficient of V  
= 20 mA  
= 20 mA  
TC  
- 3.5  
- 0.3  
mV/K  
%/K  
F
V
Temperature coefficient of I  
TC  
I
V
1)  
in one Packing Unit I  
/I  
1.6  
Vmax Vmin  
Blue green  
TLMBG3100  
Parameter  
Test condition  
= 20 mA  
Symbol  
Min  
66  
Typ.  
130  
Max  
514  
Unit  
mcd  
1)  
I
I
I
I
I
I
I
I
I
Luminous intensity  
F
F
F
F
F
R
F
F
V
d
p
Dominant wavelength  
Peak wavelength  
Angle of half intensity  
Forward voltage  
= 20 mA  
= 20 mA  
= 20 mA  
= 20 mA  
496  
505  
502  
60  
nm  
nm  
deg  
V
V
3.5  
4.2  
F
Reverse voltage  
= 10  
A
V
5
V
R
Temperature coefficient of V  
= 20 mA  
= 20 mA  
TC  
- 4  
mV/K  
%/K  
F
V
Temperature coefficient of I  
TC  
- 0.2  
V
I
1)  
in one Packing Unit I  
/I  
1.6  
Vmax Vmin  
www.vishay.com  
2
Document Number 83162  
Rev. 1.3, 31-Aug-04  
TLMB / BG / TG31..  
VISHAY  
Vishay Semiconductors  
Blue  
TLMB3140  
Parameter  
Test condition  
Symbol  
Min  
20  
Typ.  
40  
Max  
476  
Unit  
mcd  
1)  
I = 20 mA  
I
Luminous intensity  
F
V
d
p
Dominant wavelength  
Peak wavelength  
I
= 20 mA  
462  
470  
464  
60  
nm  
nm  
deg  
V
F
I = 20 mA  
F
Angle of half intensity  
Forward voltage  
I = 20 mA  
F
I = 20 mA  
V
3.5  
4.2  
F
F
Reverse voltage  
I
= 10  
A
V
5
V
R
R
Temperature coefficient of V  
I = 20 mA  
TC  
V
- 4  
mV/K  
%/K  
F
F
Temperature coefficient of I  
I = 20 mA  
TC  
I
- 0.4  
V
F
1)  
in one Packing Unit I  
/I  
1.6  
Vmax Vmin  
Typical Characteristics (Tamb = 25 C unless otherwise specified)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
120  
2.5  
3.0  
3.5  
V – Forward Voltage ( V )  
F
4.0  
4.5  
5.0  
5.5  
16805  
T
amb  
– Ambient Temperature( °C )  
16807  
Figure 1. Power Dissipation vs. Ambient Temperature  
Figure 3. Forward Current vs. Forward Voltage  
1.8  
25  
20  
15  
10  
5
True Green  
I
= 50 mA  
F
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
-40 -20  
0
20  
40 60 80 100  
0
10 20 30 40 50 60 70 80 90 100 110  
– Ambient Temperature( °C )  
16806  
T
16056  
T
amb  
Ambient Temperature ( °C )  
amb  
Figure 2. Forward Current vs. Ambient Temperature for InGaN  
Figure 4. Rel. Luminous Flux vs. Ambient Temperature  
Document Number 83162  
Rev. 1.3, 31-Aug-04  
www.vishay.com  
3
TLMB / BG / TG31..  
Vishay Semiconductors  
VISHAY  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Blue Green  
I = 50 mA  
F
1.0  
0.1  
420 440 460 480 500 520 540 560 580 600  
1
10  
100  
16070  
λ - Wavelength ( nm )  
16808  
I
– Forward Current ( mA )  
F
Figure 5. Specific Luminous Flux vs. Forward Current  
Figure 8. Relative Intensity vs. Wavelength  
10.00  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
True Green  
True Green  
1.00  
0.10  
0.01  
1
10  
100  
460 480 500 520 540 560 580 600 620  
16039  
I
F
- Forward Current ( mA )  
16068  
λ - Wavelength ( nm )  
Figure 6. Relative Luminous Flux vs. Forward Current  
Figure 9. Relative Intensity vs. Wavelength  
1.2  
476  
Blue  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Blue  
474  
472  
470  
468  
0
10  
20  
I - Forward Current ( mA )  
F
30  
40  
50  
400 420 440 460 480 500 520 540 560  
16069  
λ - W avelength ( nm )  
16814  
Figure 7. Relative Intensity vs. Wavelength  
Figure 10. Dominant Wavelength vs. Forward Current  
www.vishay.com  
4
Document Number 83162  
Rev. 1.3, 31-Aug-04  
TLMB / BG / TG31..  
VISHAY  
Vishay Semiconductors  
538  
536  
534  
532  
530  
528  
526  
524  
515  
513  
511  
509  
507  
505  
503  
Blue Green  
True Green  
501  
0
0
10  
20  
I - Forward Current ( mA )  
F
30  
40  
50  
10  
20  
30  
40  
50  
16813  
I
- Forward Current ( mA )  
16812  
F
Figure 11. Dominant Wavelength vs. Forward Current  
Figure 12. Dominant Wavelength vs. Forward Current  
Package Dimensions in mm  
3.5 0.2  
technical drawings  
according to DIN  
specifications  
Mounting Pad Layout  
Pin identification  
1.2  
area covered with  
solder resist  
C
A
4
1.6 (1.9)  
2.4  
Dimensions: IR and Vaporphase  
(Wave Soldering)  
+ 0.15  
3
Drawing-No. : 6.541-5025.01-4  
Issue: 7; 05.04.04  
95 11314  
Document Number 83162  
Rev. 1.3, 31-Aug-04  
www.vishay.com  
5
TLMB / BG / TG31..  
Vishay Semiconductors  
VISHAY  
Ozone Depleting Substances Policy Statement  
It is the policy of Vishay Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and  
operatingsystems with respect to their impact on the health and safety of our employees and the public, as  
well as their impact on the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are  
known as ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs  
and forbid their use within the next ten years. Various national and international initiatives are pressing for an  
earlier ban on these substances.  
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the  
use of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments  
respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design  
and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each  
customer application by the customer. Should the buyer use Vishay Semiconductors products for any  
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all  
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal  
damage, injury or death associated with such unintended or unauthorized use.  
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423  
www.vishay.com  
6
Document Number 83162  
Rev. 1.3, 31-Aug-04  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
All product specifications and data are subject to change without notice.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf  
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein  
or in any other disclosure relating to any product.  
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any  
information provided herein to the maximum extent permitted by law. The product specifications do not expand or  
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed  
therein, which apply to these products.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this  
document or by any conduct of Vishay.  
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless  
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such  
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting  
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding  
products designed for such applications.  
Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 18-Jul-08  
www.vishay.com  
1

相关型号:

TLMBG3100-GS18

Optoelectronic Device
VISHAY

TLMC3100

Low Current SMD LED
VISHAY

TLMC3101

Low Current SMD LED
VISHAY

TLMC3101-GS08

Visible LED, Transparent
VISHAY

TLMD310

High Intensity SMD LED
VISHAY

TLMD3100

Visible LED, Clear,
VISHAY

TLMD3100-GS08

Visible LED, Clear
VISHAY

TLMD3101

High Intensity SMD LED
VISHAY

TLMD3101-GS08

Visible LED, Clear
VISHAY

TLMD3102

High Intensity SMD LED
VISHAY

TLMD3105

High Intensity SMD LED
VISHAY

TLMD3105-GS08

Visible LED, Clear
VISHAY