EDI9LC644AV1512BC [WEDC]

Memory IC,;
EDI9LC644AV1512BC
型号: EDI9LC644AV1512BC
厂家: WHITE ELECTRONIC DESIGNS CORPORATION    WHITE ELECTRONIC DESIGNS CORPORATION
描述:

Memory IC,

文件: 总26页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EDI9LC644V  
EDI9LC644AV  
128Kx32 SSRAM/1Mx32 SDRAM  
External Memory Solution for Texas Instruments TMS320C6000 DSP  
FEATURES  
DESCRIPTION  
Clock speeds:  
The EDI9LC644VxxBC is a 3.3V, 128K x 32 Synchronous Pipeline  
SRAM and a 1Mx32 Synchronous DRAM array constructed with  
one 128K x 32 SBSRAM and two 1Mx16 SDRAM die mounted on  
a multilayer laminate substrate. The device is packaged in a 153  
lead, 14mm by 22mm, BGA.  
• SSRAM: 200, 166,150, and 133 MHz  
• SDRAMs: 125 and 100 MHz  
DSP Memory Solution  
• Texas Instruments TMS320C6201  
• Texas Instruments TMS320C6701  
Packaging:  
The EDI9LC644VxxBC provides a total memory solution for the  
Texas Instruments TMS320C6201 and the TMS320C6701 DSPs  
The Synchronous Pipeline SRAM is available with clock speeds  
of 200, 166,150, and 133 MHz, allowing the user to develop a fast  
external memory for the SSRAM interface port .  
• 153 pin BGA, JEDEC MO-163  
3.3V Operating supply voltage  
The SDRAM is available in clock speeds of 125 and 100 MHz,  
allowing the user to develop a fast external memory for the  
SDRAM interface port .  
Direct control interface to both the SSRAM and SDRAM ports  
on the “C6x”  
Common address and databus  
65% space savings vs. monolithic solution  
Reduced system inductance and capacitance  
FIG. 1 PIN CONFIGURATION  
BOTTOM VIEW  
PIN DESCRIPTION  
1
2
3
4
5
6
7
8
9
A0-16  
Address Bus  
Data Bus  
A
B
C
D
E
F
DQ19  
DQ18  
VCCQ  
DQ17  
DQ16  
VCCQ  
NC  
DQ23  
DQ22  
VCCQ  
DQ21  
DQ20  
VCCQ  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A2  
DQ24  
DQ25  
VCCQ  
DQ26  
DQ27  
VCCQ  
A4  
DQ28  
DQ29  
VCCQ  
DQ30  
DQ31  
VCCQ  
A5  
A
B
C
D
E
F
DQ0-31  
SSCLK  
SDCE  
SSRAM Clock  
SDWE SDA10  
SSADC SSRAM Address Status Control  
VSS  
VSS  
VSS  
VSS  
SSWE  
SSOE  
SSRAM Write Enable  
SSRAM Output Enable  
SDRAM Clock  
SDCLK VSS  
VSS  
VSS  
VSS  
NC  
NC  
NC  
NC  
NC  
VSS  
SDCLK  
SDRAS  
G
H
J
NC SDRAS SDCAS  
G
H
J
SDRAM Row Address Strobe  
NC  
NC  
A8  
A9  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
A3  
A10  
SDCAS SDRAM Column Address Strobe  
SDWE SDRAM Write Enable  
SDA10 SDRAM Address 10/auto precharge  
A6  
A7  
A0  
A11  
A12  
K NC / A17 NC / A18 NC / A19 VSS  
NC  
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
7
A13  
A14  
K
L
M
N
P
L
NC  
VCCQ  
DQ12  
DQ13  
VCCQ  
DQ14  
DQ15  
1
NC  
VCCQ  
DQ11  
DQ10  
VCCQ  
DQ9  
DQ8  
2
NC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
3
BWE2 BWE3  
BWE0 BWE1  
A15  
A16  
BWE0-3  
SSRAM Byte Write Enables  
SDRAM SDQM 0 - 3  
M
N
P
VCCQ  
DQ4  
DQ5  
VCCQ  
DQ6  
DQ7  
8
VCCQ  
DQ0  
DQ1  
VCCQ  
DQ2  
DQ3  
9
VSS  
VSS  
VSS  
VSS  
SSCE  
SDCE  
VCC  
Chip Enable SSRAM Device  
Chip Enable SDRAM Device  
Power Supply pins, 3.3V  
SSCLK VSS  
R
T
VSS  
VSS  
NC  
NC  
6
R
T
U
SSADC SSWE  
SSOE SSCE  
VCCQ  
Data Bus Power Supply pins,  
3.3V (2.5V future)  
U
4
5
VSS  
NC  
Ground  
No Connect  
1
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
October 1999 Rev. 3  
EDI9LC644V  
EDI9LC644AV  
FIG. 2 BLOCK DIAGRAM  
A0-16  
A
A
0
1
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
DQ0-7  
5
DQ1-8  
DQ9-16  
DQ17-24  
DQ25-32  
6
DQ8-15  
7
8
DQ16-23  
9
10  
11  
12  
13  
14  
15  
16  
DQ24-31  
BWE  
SSWE  
BW1  
BW2  
BW3  
BW4  
BWE  
BWE  
BWE  
BWE  
0
1
2
3
CE  
OE  
2
SSCE  
SSOE  
ADSC  
CLK  
SSADC  
SSCLK  
DQ0-31  
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
9
DQ0-7  
DQ0-7  
DQ8-15  
A11  
BA  
DQ8-15  
SDA10  
A10/AP  
LDQM  
UDQM  
CS  
RAS  
CAS  
WE  
SDCE  
SDRAS  
SDCAS  
SDWE  
CLK  
SDCLK  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
BA  
DQ16-23  
DQ24-31  
DQ0-7  
A11  
DQ8-15  
A10/AP  
LDQM  
UDQM  
CS  
RAS  
CAS  
WE  
CLK  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
2
EDI9LC644V  
EDI9LC644AV  
OUTPUT FUNCTIONAL DESCRIPTIONS  
Symbol  
Type  
Signal  
Polarity  
Function  
SSCLK  
Input  
Pulse  
Positive Edge The system clock input. All of the SSRAM inputs are sampled on the rising edge of the clock.  
SSADS  
SSOE  
SSWE  
When sampled at the positive rising edge of the clock, SSADS, SSOE, and SSWE define the operation  
to be executed by the SSRAM.  
Input  
Pulse  
Active Low  
SSCE  
SDCLK  
SDCE  
Input  
Input  
Input  
Pulse  
Pulse  
Pulse  
Active Low SSCE disable or enable SSRAM device operation.  
Positive Edge The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.  
Active Low SDCE disable or enable device operation by masking or enabling all inputs except SDCLK and BWE0-3.  
SDRAS  
SDCAS  
SDWE  
When sampled at the positive rising edge of the clock, SDCAS, SDRAS, and SDWE define the operation  
to be executed by the SDRAM.  
Input  
Input  
Pulse  
Level  
Active Low  
Address bus for SSRAM and SDRAM  
A0 and A1 are the burst address inputs for the SSRAM  
During a Bank Active command cycle, A0-9, SDA10 defines the row address (RA0-10) when sampled at the  
rising clock edge.  
A0-16,  
SDA10  
During a Read or Write command cycle, A0-7 defines the column address (CA0-7) when sampled at the  
rising clock edge. In addition to the row address, SDA10 is used to invoke Autoprecharge operation at the  
end of the Burst Read or Write Cycle. If SDA10 is high, autoprecharge is selected and A11 defines the bank  
to be precharged (low = bank A, high = bank B). If SDA10 is low, autoprecharge is disabled.  
During a Precharge command cycle, SDA10 is used in conjunction with A11 to control which bank(s) to  
precharge. If SDA10 is high, both bank A and Bank B will be precharged regardless of the state of A11. If  
SDA10 is low, then A11 is used to define which bank to precharge.  
Input  
Output  
DQ0-31  
Level  
Pulse  
Data Input/Output are multiplexed on the same pins.  
BWE0-3 perform the byte write enable function for the SSRAM and DQM function for the SDRAM. BWE0  
is associated with DQ0-7, BWE1 with DQ8-15, BWE2 with DQ16-23 and BWE3 with DQ24-31.  
BWE0-3  
Input  
Vcc, Vss  
VCCQ  
Supply  
Supply  
Power and ground for the input buffers and the core logic.  
Data base power supply pins, 3.3V (2.5V future).  
3
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED DC OPERATING CONDITIONS  
(0°C TA 70°C; VCC = 3.3V -5% / +10% unless otherwise noted)  
Voltage on Vcc Relative to Vss  
Vin (DQx)  
-0.5V to +4.6V  
-0.5V to Vcc +0.5V  
-55°C to +125°C  
+175°C  
Parameter  
Symbol  
VCC  
Min  
3.135  
2.0  
Max  
3.6  
Units  
V
Storage Temperature (BGA)  
Junction Temperature  
Short Circuit Output Current  
Supply Voltage (1)  
Input High Voltage (1,2)  
Input Low Voltage (1,2)  
VIH  
VCC +0.3  
0.8  
V
VIL  
-0.3  
-10  
V
100 mA  
Input Leakage Current  
ILI  
10  
µA  
*Stress greater than those listed under "Absolute Maximum Ratings" may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions greater than those indicated  
in operational sections of this specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
0 VIN Vcc  
Output Leakage (Output Disabled)  
ILo  
-10  
10  
µA  
0 VIN Vcc  
Output High (IOH = -4mA) (1)  
Output Low (IOL = 8mA) (1)  
VOH  
VOL  
2.4  
V
V
0.4  
NOTES:  
1. All voltages referenced to Vss (GND).  
2. Overshoot: VIH +6.0V for t tKC/2  
Underershoot: VIL -2.0V for t tKC/2  
DC ELECTRICAL CHARACTERISTICS  
Description  
Conditions  
Symbol  
Frequency  
133MHz  
150MHz  
166MHz  
200MHz  
133MHz  
150MHz  
166MHz  
200MHz  
83MHz  
Typ  
400  
450  
500  
TBD  
300  
350  
400  
TBD  
220  
235  
255  
Max  
Units  
550  
580  
625  
TBD  
450  
480  
525  
TBD  
240  
250  
280  
Power Supply Current:  
Operating (1,2,3)  
SSRAM Active / DRAM Auto Refresh  
Icc1  
mA  
mA  
Power Supply Current  
Operating (1,2,3)  
SSRAM Active / DRAM Idle  
SDRAM Active / SSRAM Idle  
Icc2  
Power Supply Current  
Operating (1,2,3)  
Icc3  
ISB1  
100MHz  
125MHz  
mA  
mA  
SSCE and SDCE Vcc -0.2V,  
All other inputs at Vss +0.2 VIN or  
VIN VCC -0.2V, Clk frequency = 0  
20.0  
40.0  
CMOS Standby  
TTL Standby  
SSCE and SDCE VIH min  
All other inputs at VIL max VIN or  
VIN VCC -0.2V, Clk frequency = 0  
ISB2  
Icc5  
30.0  
190  
55.0  
250  
mA  
mA  
Auto Refresh  
NOTES:  
1. ICC (operating) is specified with no output current. ICC (operating) increases with faster cycle times and greater output loading.  
2. "Device idle" means device is deselected (CE VIH) Clock is running at max frequency and Addresses are switching each cycle.  
3. Typical values are measured at 3.3V, 25°C. ICC (operating) is specified at specified frequency.  
BGA CAPACITANCE  
Description  
Conditions  
Symbol  
CI  
Typ  
5
Max  
Units  
Address Input Capacitance (1)  
Input/Output Capacitance (DQ) (1)  
Control Input Capacitance (1)  
Clock Input Capacitance (1)  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
TA = 25°C; f = 1MHz  
8
10  
8
pF  
pF  
pF  
pF  
CO  
8
CA  
5
CCK  
4
6
NOTE:  
1. This parameter is sampled.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
4
EDI9LC644V  
EDI9LC644AV  
SSRAM AC CHARACTERISTICS (EDI9LC644V)  
Symbol  
200MHz  
Max  
166MHz  
Max  
150MHz  
Max  
133MHz  
Max  
Parameter  
Clock Cycle Time  
Min  
5
Min  
6
Min  
7
Min  
8
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKHKH  
tKLKH  
tKHKL  
tKHQV  
tKHQX  
tKQLZ  
tKQHZ  
tOELQV  
tOELZ  
tOEHZ  
tS  
Clock HIGH Time  
1.6  
1.6  
2.4  
2.4  
2.6  
2.6  
2.8  
2.8  
Clock LOW Time  
Clock to output valid  
2.5  
3.5  
3.8  
4.0  
Clock to output invalid  
1.5  
0
1.5  
0
1.5  
0
1.5  
0
Clock to output on Low-Z  
Clock to output in High-Z  
Output Enable to output valid  
Output Enable to output in Low-Z  
Output Enable to output in High-Z  
Address, Control, Data-in Setup Time to Clock  
Address, Control, Data-in Hold Time to Clock  
1.5  
3
1.5  
3.5  
3.5  
1.5  
3.8  
3.8  
1.5  
4.0  
4.0  
2.5  
0
0
0
0
3.0  
3.5  
3.5  
3.8  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
tH  
SSRAM AC CHARACTERISTICS (EDI9LC644AV)  
Symbol  
200MHz  
Max  
166MHz  
Max  
150MHz  
133MHz  
Parameter  
Clock Cycle Time  
Min  
5
Min  
6
Min  
Max  
Min  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKHKH  
tKLKH  
tKHKL  
tKHQV  
tKHQX  
tKQLZ  
tKQHZ  
tOELQV  
tOELZ  
tOEHZ  
tS  
7
8
Clock HIGH Time  
1.6  
1.6  
2.4  
2.4  
2.6  
2.6  
2.8  
2.8  
Clock LOW Time  
Clock to output valid  
2.5  
3.5  
3.8  
4.0  
Clock to output invalid  
1.5  
0
1.5  
0
1.5  
0
1.5  
0
Clock to output on Low-Z  
Clock to output in High-Z  
Output Enable to output valid  
Output Enable to output in Low-Z  
Output Enable to output in High-Z  
Address, Control, Data-in Setup Time to Clock  
Address, Control, Data-in Hold Time to Clock  
1.5  
3
1.5  
3.5  
3.5  
1.5  
3.8  
3.8  
1.5  
4.0  
4.0  
2.5  
0
0
0
0
3.0  
3.5  
3.5  
3.8  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
tH  
5
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
SSRAM OPERATION TRUTH TABLE  
Operation  
Address Used  
None  
SSCE  
H
SSADS  
SSWE  
X
SSOE  
X
DQ  
High-Z  
D
Deselected Cycle, Power Down  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
NOTE:  
L
L
External  
External  
External  
Current  
Current  
Current  
Current  
Current  
Current  
L
L
X
L
L
H
L
Q
L
L
H
H
High-Z  
Q
X
H
H
H
H
H
H
H
L
X
H
H
High-Z  
Q
H
H
L
H
H
H
High-Z  
D
X
L
X
H
L
X
D
1. X means “dont care”, H means logic HIGH. L means logic LOW.  
2. All inputs except SSOE must meet setup and hold times around the rising edge (LOW to HIGH) of SSCLK.  
3. Suspending burst generates wait cycle  
4. For a write operation following a read operation, SSOE must be HIGH before the input data required setup time plus High-Z time for SSOE and staying HIGH  
though out the input data hold time.  
5. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
SSRAM PARTIAL TRUTH TABLE  
Function  
SSWE BWE0 BWE1 BWE2 BWE3  
READ  
H
L
L
X
L
L
X
H
L
X
H
L
X
H
L
WRITE one Byte (DQ0-7)  
WRITE all Bytes  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
6
EDI9LC644V  
EDI9LC644AV  
FIG. 3 SSRAM READ TIMING  
tKHKL  
tKHKH  
tKLKH  
SSCLK  
tH  
tS  
SSADS  
tS  
SSCE  
ADDR  
tH  
tS  
A1  
A5  
A2  
A3  
A4  
tH  
SSOE  
SSWE  
tOEHQZ  
tOELQV  
tKHQX  
Q(A1)  
tKHQV  
tKQLZ  
Q(A2)  
Q(A3)  
Q(A4)  
Q(A5)  
DQ  
FIG. 4 SSRAM WRITE TIMING  
tKHKL  
tKHKH  
tKLKH  
SSCLK  
tH  
tS  
SSADS  
SSCE  
tH  
tH  
tS  
A4  
A1  
A2  
A3  
A5  
ADDR  
SSOE  
SSWE  
tH  
KHGWX  
tS  
tH  
tH  
tS  
D(A2)  
D(A3)  
D(A5)  
D(A1)  
D(A4)  
DQ  
7
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
SDRAM AC CHARACTERISTICS  
Symbol  
125MHz  
100MHz  
83MHz  
Parameter  
Min  
8
Max  
1000  
1000  
6
Min  
10  
Max  
1000  
1000  
7
Min  
12  
Max  
1000  
1000  
8
Units  
CL = 3  
CL = 2  
tCC  
tCC  
Clock Cycle Time (1)  
ns  
10  
12  
15  
Clock to valid Output delay (1,2)  
Output Data Hold Time (2)  
Clock HIGH Pulse Width (3)  
Clock LOW Pulse Width (3)  
Input Setup Time (3)  
tSAC  
tOH  
ns  
ns  
3
3
3
2
1
2
3
3
3
2
1
2
3
3
3
2
1
2
tCH  
ns  
tCL  
ns  
tSS  
ns  
Input Hold Time (3)  
tSH  
ns  
CLK to Output Low-Z (2)  
CLK to Output High-Z  
tSLZ  
tSHZ  
tRRD  
tRCD  
tRP  
ns  
7
7
8
ns  
Row Active to Row Active Delay (4)  
RAS\ to CAS\ Delay (4)  
20  
20  
20  
50  
70  
70  
1
20  
20  
20  
50  
80  
80  
1
24  
24  
24  
60  
90  
90  
1
ns  
ns  
Row Precharge Time (4)  
Row Active Time (4)  
ns  
tRAS  
tRC  
10,000  
10,000  
10,000  
ns  
Row Cycle Time - Operation (4)  
Row Cycle Time - Auto Refresh (4,8)  
ns  
tRFC  
tCDL  
tRDL  
tBDL  
tCCD  
ns  
Last Data in to New Column Address Delay (5)  
Last Data in to Row Precharge (5)  
CLK  
CLK  
CLK  
CLK  
1
1
1
Last Data in to Burst Stop (5)  
1
1
1
Column Address to Column Address Delay (6)  
Number of Valid Output Data (7)  
1.5  
2
1.5  
2
1.5  
2
ea  
1
2
1
NOTES:  
1. Parameters depend on programmed CAS latency.  
2. If clock rise time is longer than 1ns (trise/2 -0.5)ns should be added to the parameter.  
3. Assumed input rise and fall time = 1ns. If trise of tfall are longer than 1ns. [(trise = tfall)/2] - 1ns should be added to the parameter.  
4. The minimum number of clock cycles required is detemined by dividing the minimum time required by the clock cycle time and then rounding up to the  
next higher integer.  
5. Minimum delay is required to complete write.  
6. All devices allow every cycle column address changes.  
7. In case of row precharge interrupt, auto precharge and read burst stop.  
8. A new command may be given tRFC after self-refresh exit.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
8
EDI9LC644V  
EDI9LC644AV  
CLOCK FREQUENCY AND LATENCY PARAMETERS - 125MHz SDRAM  
(Unit = number of clock)  
Frequency  
CAS  
tRC  
tRAS  
tRP  
tRRD  
tRCD  
tCCD  
tCDL  
tRDL  
Latency  
70ns  
50ns  
20ns  
20ns  
20ns  
10ns  
10ns  
10ns  
125MHz (8.0ns)  
100MHz (10.0ns)  
83MHz (12.0ns)  
3
3
2
9
7
6
6
5
4
3
2
2
2
2
2
3
2
2
1
1
1
1
1
1
1
1
1
CLOCK FREQUENCY AND LATENCY PARAMETERS - 100MHz SDRAM  
(Unit = number of clock)  
Frequency  
CAS  
tRC  
tRAS  
tRP  
tRRD  
tRCD  
tCCD  
tCDL  
tRDL  
Latency  
70ns  
50ns  
20ns  
20ns  
20ns  
10ns  
10ns  
10ns  
100MHz (12.0ns)  
83MHz (12.0ns)  
3
2
7
6
5
5
2
2
2
2
2
2
1
1
1
1
1
1
REFRESH CYCLE PARAMETERS  
-10  
-12  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Units  
ms  
Refresh Period (1,2)  
tREF  
64  
64  
NOTES:  
1. 4096 cycles  
2. Any time that the Refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.  
SDRAM COMMAND TRUTH TABLE  
SDCE  
SDRAS  
SDCAS  
SDWE  
BWE  
A11  
SDA10  
A9-0  
Notes  
Function  
Mode Register Set  
Auto Refresh (CBR)  
L
L
L
L
L
L
L
L
L
L
L
H
X
X
L
L
L
L
L
H
L
L
H
L
L
L
H
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
OP CODE  
X
BA  
X
X
Single Bank  
Precharge all Banks  
L
H
H
H
L
L
2
Precharge  
L
H
Bank Activate  
Write  
L
BA  
BA  
BA  
BA  
BA  
X
Row Address  
2
2
2
2
2
3
H
H
H
H
H
H
X
X
X
L
H
L
Write with Auto Precharge  
Read  
L
L
Read with Auto Precharge  
Burst Termination  
No Operation  
L
H
X
X
X
X
X
H
H
X
X
X
X
Device Deselect  
X
Data Write/Output Disable  
Data Mask/Output Disable  
NOTES:  
X
4
4
H
X
1. All of the SDRAM operations are defined by states of SDCE\, SDWE\, SDRAS\, SDCAS\, and BWE0-3 at the positive rising edge of the clock.  
2. Bank Select (BA), if A11 = 0 then bank A is selected, if BA = 1 then bank B is selected.  
3. During a Burst Write cycle there is a zero clock delay, for a Burst Read cycle the delay is equal to the CAS latency.  
4. The BWE has two functions for the data DQ Read and Write operations. During a Read cycle, when BWE goes high at a clock timing the data outputs are disabled  
and become high impedance after a two clock delay. BWE also provides a data mask function for Write cycles. When it activates, the Write operation at the clock is  
prohibited (zero clock latency).  
9
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
SDRAM CURRENT STATE TRUTH TABLE  
Command  
A11  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS SDWE  
SDA10-A0  
OP Code  
Description  
(BA)  
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
Mode Register Set  
Auto or Self Refresh  
Precharge  
Set the Mode Register  
Start Auto  
1
1
X
X
X
L
H
H
L
X
No Operation  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
Activate the specified bank and row  
ILLEGAL  
Idle  
H
H
H
H
X
L
Column  
2
1
1
L
H
L
Column  
ILLEGAL  
H
H
X
L
X
X
X
No Operation  
H
X
L
X
No Operation  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Precharge  
3
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
1
Row Active  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation  
4,5  
4,5  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
No Operation  
X
No Operation  
OP Code  
ILLEGAL  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Read  
H
H
H
H
X
L
Column  
Terminate Burst; Start the Write cycle  
Terminate Burst; Start a new Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
Terminate Burst; Start the Precharge  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
2
Write  
H
H
H
H
X
L
Column  
Terminate Burst; Start a new Write cycle  
Terminate Burst; Start the Read cycle  
Terminate the Burst  
Continue the Burst  
Continue the Burst  
ILLEGAL  
5,6  
5,6  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Read with  
Auto Precharge  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
ILLEGAL  
H
X
X
Continue the Burst  
Continue the Burst  
X
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
10  
EDI9LC644V  
EDI9LC644AV  
SDRAM CURRENT STATE TRUTH TABLE (cont.)  
Command  
A11  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS SDWE  
SDA10-A0  
OP Code  
Description  
(BA)  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Write with  
Auto Precharge  
H
H
H
H
X
L
Column  
ILLEGAL  
ILLEGAL  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
H
X
L
X
Continue the Burst  
Continue the Burst  
ILLEGAL  
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
No Operation; Bank(s) idle after tRP  
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write w/o Precharge  
Read w/o Precharge  
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
2
2
Precharging  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
ILLEGAL  
20  
H
H
X
L
X
X
X
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
No Operation; Bank(s) idle after tRP  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
2
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Row Activating  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
No Operation; Row active after tRCD  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
2
6
6
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Write Recovering  
H
H
H
H
X
L
Column  
Start Write; Determine if Auto Precharge  
Start Read; Determine if Auto Precharge  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
No Operation; Row active after tDPL  
ILLEGAL  
L
H
L
Column  
Read  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto orSelf Refresh  
Precharge  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
2
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
2
Write Recovering  
with Auto  
H
H
H
H
X
Column  
ILLEGAL  
2,6  
2,6  
Precharge  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
Device Deselect  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
No Operation; Precharge after tDPL  
H
X
X
X
11  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
SDRAM CURRENT STATE TRUTH TABLE (cont.)  
Command  
A11  
Current State  
Action  
Notes  
SDCE SDRAS SDCAS  
SDWE  
SDA10-A0  
OP Code  
Description  
(BA)  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
Mode Register Set  
Auto or Self Refresh  
Precharge  
ILLEGAL  
X
X
X
ILLEGAL  
ILLEGAL  
L
H
H
L
X
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Refreshing  
H
H
H
H
X
L
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
L
X
X
X
Burst Termination  
No Operation  
Device Deselect  
Mode Register Set  
Auto or Self Refresh  
Precharge  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
No Operation; Idle after tRC  
ILLEGAL  
H
X
L
X
X
OP Code  
L
L
H
L
X
X
X
ILLEGAL  
L
H
H
L
X
ILLEGAL  
L
H
L
BA  
BA  
BA  
X
Row Address  
Bank Activate  
Write  
ILLEGAL  
Mode Register  
Accessing  
H
H
H
H
X
Column  
ILLEGAL  
L
H
L
Column  
Read  
ILLEGAL  
H
H
X
X
X
X
Burst Termination  
No Operation  
ILLEGAL  
H
X
X
No Operation; Idle after two clock cycles  
X
Device Deselect No Operation; Idle after two clock cycles  
NOTES:  
1. Both Banks must be idle otherwise it is an illegal action.  
2. The Current State refers only refers to one of the banks, if BA selects this bank then the action is illegal. If BA selects the bank not being referenced by the Current  
State then the action may be legal depending on the state of that bank.  
3. The minimum and maximum Active time (tRAS) must be satisfied.  
4. The RAS to CAS Delay (tRCD) must occur before the command is given.  
5. Address SDA10 is used to determine if the Auto Precharge function is activated.  
6. The command must satisfy any bus contention, bus turn around, and/or write recovery requirements.  
The command is illegal if the minimum bank to bank delay time (tRRD) is not satisfied.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
12  
EDI9LC644V  
EDI9LC644AV  
FIG. 5 SDRAM SINGLE BIT READ-WRITE-READ CYCLE (SAME PAGE) @ CAS LATENCY = 3,  
BURST LENGTH = 1  
0
1
2
t
3
4
5
6
t
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
t
CH  
t
CL  
CC  
t
RCD  
RAS  
SDCE  
t
SS  
tSH  
t
RCD  
tRP  
t
SS  
tSH  
SDRAS  
t
CCD  
t
SS  
tSH  
SDCAS  
ADDR  
t
SS  
t
SH  
t
SS  
tSH  
Ra  
Ca  
Cb  
Cc  
Rb  
Note 2, 3  
BS  
Note 2, 3  
BS  
Note 2, 3 Note 4  
BS BS  
Note 2  
BS  
A
11 (BA)  
SDA10  
DQ  
BS  
Ra  
Note 3  
RAC  
Note 3  
Db  
Note 3 Note 4  
Rb  
t
t
SS  
SS  
SS  
tSH  
t
SAC  
Qa  
Qc  
t
SLZ  
t
OH  
t
t
t
SH  
SH  
SDWE  
t
BWE  
Row Active  
Read  
Write  
Read  
Precharge  
Row Active  
DON'T CARE  
13  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 6 SDRAM POWER UP SEQUENCE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
t
RP  
t
RFC  
t
RFC  
ADDR  
Key  
RAa  
A
11 (BA)  
SDA10  
DQ  
RAa  
HIGH-Z  
SDWE  
BWE  
High level is necessary  
Precharge  
(All Banks)  
Auto Refresh  
Mode Register Set  
Auto Refresh  
Row Active  
(A-Bank)  
DON'T CARE  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
14  
EDI9LC644V  
EDI9LC644AV  
FIG. 7 SDRAM READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
Note 1  
t
RC  
t
RCD  
SDRAS  
SDCAS  
ADDR  
Ra  
Ca0  
Rb  
Cb0  
A11 (BA)  
SDA10  
CL = 2  
Ra  
Rb  
t
SHZ  
Note 4  
t
RAC  
Note 3  
t
RDL  
t
OH  
t
SAC  
Qa0  
Qa1  
Qa2  
Qa3  
Qa2  
Db0  
Db0  
Db1  
Db2  
Db3  
t
SHZ Note 4  
DQ  
t
RAC  
t
RDL  
t
OH  
Note 3  
t
SAC  
CL = 3  
Qa0  
Qa1  
Qa3  
Db1  
Db2  
Db3  
SDWE  
BWE  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
DON'T CARE  
NOTES:  
1. Minimum row cycle times are required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. (CAS Latency - 1) number of valid output data is available after Row precharge. Last valid output will be Hi-Z (tSHZ)  
after the clock.  
3. Access time from Row active command. tCC *(tRCD + CAS Latency - 1) + tSAC.  
4. Output will be Hi-Z after the end of burst. (1, 2, 4, 8 & Full page bit burst)  
15  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 8 SDRAM PAGE READ & WRITE CYCLE AT SAME BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
t
RCD  
SDRAS  
Note 2  
SDCAS  
ADDR  
Ra  
Ca0  
Cb0  
Cc0  
Cd0  
A
11 (BA)  
SDA10  
CL = 2  
Ra  
t
RDL  
Qa0  
Qa1  
Qb0  
Qa1  
Qb1  
Qb2  
Dc0  
Dc0  
Dc1  
Dd0  
Dd1  
DQ  
t
CDL  
CL = 3  
Qa0  
Qb0  
Qb1  
Dc1  
Dd0  
Dd1  
SDWE  
BWE  
Note 1  
Note 3  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Read  
(A-Bank)  
Write  
(A-Bank)  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
DON'T CARE  
NOTES:  
1. To write data before burst read ends. BWE should be asserted three cycle prior to write command to avoid bus contention.  
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge will be written.  
3. BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked  
internally.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
16  
EDI9LC644V  
EDI9LC644AV  
FIG. 9 SDRAM PAGE READ CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
Note 1  
SDRAS  
Note 2  
SDCAS  
ADDR  
RAa  
CAa  
RBb  
CBb  
CAc  
CBd  
CAe  
A
11 (BA)  
SDA10  
CL = 2  
RAa  
RBb  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
DQ  
CL = 3  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
SDWE  
BWE  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Read  
(B-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Read  
(A-Bank)  
DON'T CARE  
NOTES:  
1. SDCE can be “don’t care” when SDRAS, SDCAS and SDWE are high at the clock going high edge.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
17  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 10 SDRAM PAGE WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
Note 2  
SDCAS  
ADDR  
RAa  
CAa  
RBb  
CBb  
CAc  
CBd  
A
11 (BA)  
SDA10  
DQ  
RAa  
RBb  
t
CDL  
tRDL  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 DBd1  
SDWE  
BWE  
Note 1  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Write  
(B-Bank)  
Write  
(A-Bank)  
Write  
(B-Bank)  
Precharge  
(Both Banks)  
Write  
(A-Bank)  
DON'T CARE  
NOTES:  
1. To interrupt burst write by Row precharge, BWE should be asserted to mask invalid input data.  
2. To interrupt a burst read by Row precharge, both the read and the precharge banks must be the same.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
18  
EDI9LC644V  
EDI9LC644AV  
FIG. 11 SDRAM READ & WRITE CYCLE AT DIFFERENT BANK @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
RAa  
RBb  
CBb  
CAa  
RAc  
CAc  
A
11 (BA)  
SDA10  
CL = 2  
RAa  
RBb  
RAc  
t
CDL  
Note 1  
QAa0 QAa1 QAa2 QAa3  
DBb0 DBb1 DBb2 DBb3  
DBb0 DBb1 DBb2 DBb3  
QAc0 QAc1 QAc2  
QAc0 QAc1  
DQ  
CL = 3  
QAa0 QAa1 QAa2 QAa3  
SDWE  
BWE  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Write  
(B-Bank)  
Read  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
DON'T CARE  
NOTES:  
1. tCDL should be met to complete write.  
19  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 12 SDRAM READ & WRITE CYCLE WITH AUTO PRECHARGE @ BURST LENGTH = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
Ra  
Rb  
Ca  
Cb  
A
11 (BA)  
SDA10  
Ra  
Rb  
CL = 2  
DQ  
Qa0  
Qa1  
Qa2  
Qa3  
Db0  
Db0  
Db1  
Db2  
Db3  
CL = 3  
Qa0  
Qa1  
Qa2  
Qa3  
Db1  
Db2  
Db3  
SDWE  
BWE  
Row Active  
(A-Bank)  
Read with  
Auto Precharge  
(A-Bank)  
Auto Precharge  
Start Point  
(A-Bank)  
Write with  
Auto Precharge  
(B-Bank)  
Auto Precharge  
Start Point  
(B-Bank)  
Row Active  
(B-Bank)  
DON'T CARE  
NOTES:  
1. tCDL should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length = 1 & 2 and BRSW mode)  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
20  
EDI9LC644V  
EDI9LC644AV  
FIG. 13 SDRAM READ INTERRUPTED BY PRECHARGE COMMAND & READ BURST STOP @  
BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
RAa  
CAa  
CAb  
A
11 (BA)  
SDA10  
CL = 2  
RAa  
Note 2  
1
1
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
QAa0 QAa1 QAa2 QAa3 QAa4  
DQ  
2
2
QAa0 QAa1 QAa2 QAa3 QAa4  
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5  
CL = 3  
SDWE  
BWE  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Burst Stop  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
DON'T CARE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. About the valid DQs after burst stop, it is the same as the case of SDRAS interrupt. Both cases are illustrated in the above timing diagram. See the label 1, 2 on  
each of them. But at burst write, burst stop and SDRAS interrupt should be compared carefully. Refer to the timing diagram of “Full page write burst stop cycle”.  
3. Burst stop is valid at every burst length.  
21  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 14 SDRAM WRITE INTERRUPTED BY PRECHARGE COMMAND & WRITE BURST STOP @  
BURST LENGTH = FULL PAGE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
RAa  
CAa  
CAb  
A
11 (BA)  
SDA10  
DQ  
RAa  
t
BDL  
t
RDL  
Note 2  
DAa0 DAa1 DAa2 DAa3 DAa4  
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5  
SDWE  
BWE  
Row Active  
(A-Bank)  
Write  
(A-Bank)  
Burst Stop  
Write  
(A-Bank)  
Precharge  
(A-Bank)  
DON'T CARE  
NOTES:  
1. At full page mode, burst is end at the end of burst. So auto precharge is possible.  
2. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by AC parameter of tRDL.  
BWE at write interrupt by precharge command is needed to prevent invalid write.  
BWE should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input data after Row precharge cycle will be masked  
internally.  
3. Burst stop is valid at every burst length.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
22  
EDI9LC644V  
EDI9LC644AV  
FIG. 15 SDRAM BURST READ SINGLE BIT WRITE CYCLE @ BURST LENGTH = 2  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SDCLK  
SDCE  
SDRAS  
SDCAS  
ADDR  
Note 2  
RAa  
CAa  
RBb  
CAb  
RAc  
CAd  
CBc  
A
11 (BA)  
SDA10  
CL = 2  
RAa  
RBb  
RAc  
DAa0  
DAa0  
QAb0 QAb1  
DBc0  
DBc0  
QAd0 QAd1  
DQ  
CL = 3  
QAb0 QAb1  
QAd0 QAd1  
SDWE  
BWE  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(Both Banks)  
Write  
Read with  
Write with  
Auto Precharge  
(B-Bank)  
(A-Bank) Auto Precharge  
(A-Bank)  
DON'T CARE  
NOTES:  
1. BRSW modes enabled by setting A9 “High” at MRS (Mode Register Set).  
At the BRSW Mode, the burst length at Write is fixed to “1” regardless of programmed burst length.  
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle,  
so in the case of BRSW write command, the next cycle starts the precharge.  
23  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 16  
SDRAM MODE REGISTER SET CYCLE  
SDRAM AUTO REFRESH CYCLE  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
SDCLK  
HIGH  
SDCE  
Note 2  
t
RFC  
SDRAS  
Note 1  
Note 3  
SDCAS  
ADDR  
Key  
Ra  
DQ  
HI-Z  
HI-Z  
SDWE  
BWE  
MRS  
New  
Command  
Auto Refresh  
New Command  
DON'T CARE  
*Both banks precharge should be completed before Mode Register Set cycle and Auto refresh cycle.  
NOTES:  
MODE REGISTER SET CYCLE  
1. SDCE, SDRAS, SDCAS & SDWE activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new SDRAS activation.  
7. Please refer to Mode Register Set table.  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
24  
EDI9LC644V  
EDI9LC644AV  
PACKAGE DESCRIPTION: 153 LEAD BGA (17 x 9 BALL ARRAY)  
JEDEC MO-163  
3.50 (0.138)  
MAX  
14.00 (0.551)  
BSC  
A
B
PIN 1 INDEX  
C
D
E
F
G
H
J
22.00 (0.866)  
BSC  
K
L
M
N
P
R
T
U
1.27 (0.050) TYP  
ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES  
ORDERING INFORMATION  
Part Number  
SSRAM Access SDRAM Access  
Part Number  
SSRAM Access SDRAM Access  
EDI9LC644V2012BC  
200MHz  
200MHz  
166MHz  
166MHz  
150MHz  
150MHz  
133MHz  
133MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
EDI9LC644AV2012BC  
200MHz  
200MHz  
166MHz  
166MHz  
150MHz  
150MHz  
133MHz  
133MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
125MHz  
100MHz  
EDI9LC644V2010BC  
EDI9LC644V1612BC  
EDI9LC644V1610BC  
EDI9LC644V1512BC  
EDI9LC644V1510BC  
EDI9LC644V1312BC  
EDI9LC644V1310BC  
EDI9LC644AV2010BC  
EDI9LC644AV1612BC  
EDI9LC644AV1610BC  
EDI9LC644AV1512BC  
EDI9LC644AV1510BC  
EDI9LC644AV1312BC  
EDI9LC644AV1310BC  
25  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
EDI9LC644V  
EDI9LC644AV  
FIG. 17  
INTERFACING THE TEXAS INSTRUMENTS TMS320C6x  
WITH THE ED9LC644V (128Kx32 SSRAM/1Mx32 SDRAM)  
Address Bus  
EA2-21  
EDI9LC644V  
128K x 32 SSRAM  
1M x 32 SDRAM  
EA  
EA  
2
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ0-7  
DQ8-15  
Texas Instruments  
TMS320C6x  
DSP  
DQ16-23  
DQ24-31  
SSWE\  
SSCE\  
SSOE\  
SSADC\  
SSCLK  
SSWE\  
CE  
SSOE\  
SSADS\  
SSCLK  
2\  
SSRAM  
Control  
BWE  
BWE  
BWE  
BWE  
0\  
1\  
2\  
3
\
BE  
BE  
BE  
BE  
0\  
1\  
2\  
3
\
Shared  
Controls  
SDA10  
SDA10  
CE  
SDRAS\  
SDCAS\  
SDWE\  
SDCLK  
SDCE\  
SDRAS\  
0\  
SDRAM  
SDCAS\ Control  
SDWE\  
SDCLK  
Data Bus  
ED0-31  
White Electronic Designs Corporation • (508) 366-5151 • www.whiteedc.com  
26  

相关型号:

EDI9LC644AV1610BC

Memory Circuit, 1MX32, CMOS, PBGA153, 14 X 22 MM, BGA-153
WEDC
WEDC

EDI9LC644AV2010BC

Memory Circuit, 1MX32, CMOS, PBGA153, 14 X 22 MM, BGA-153
WEDC

EDI9LC644V

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V-BC

SSRAM/SDRAM MCP
ETC

EDI9LC644V1310BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1312BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1510BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1512BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1610BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V1612BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC

EDI9LC644V2010BC

128Kx32 SSRAM/1Mx32 SDRAM
WEDC