PC87382-VBH/NOPB [WINBOND]

Microprocessor Circuit, CMOS, PQFP48, PLASTIC, LQFP-48;
PC87382-VBH/NOPB
型号: PC87382-VBH/NOPB
厂家: WINBOND    WINBOND
描述:

Microprocessor Circuit, CMOS, PQFP48, PLASTIC, LQFP-48

外围集成电路
文件: 总72页 (文件大小:783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2003  
Revision 1.2  
PC87382  
LPC-to-LPC Switch for Docking Stations, with Fast  
Infrared Port, Serial Port and GPIOs  
General Description  
Outstanding Features  
The PC87382, a member of the National Semiconductor LPC  
SuperI/O family, is targeted for a wide range of portable ap-  
plications. The PC87382 is PC2001 and ACPI compliant, and  
features an LPC-to-LPC Switch with hot plugability, Fast In-  
frared port (FIR, IrDA 1.1 compliant), Serial Port, and Gener-  
al-Purpose Input/Output (GPIO) support for a total of eight  
ports.  
LPC-to-LPC Switch with hot plugability, enables LPC  
devices in the Docking Station to be connected to the  
Main LPC Bus, thus reducing the number of signals re-  
quired through the Docking Station connector  
LPC bus interface, based on Intel’s LPC Interface  
Specification Revision 1.1, August 2002 (supports  
CLKRUN signal)  
The PC87382 enables glueless implementation of an LPC-  
to-LPC Switch between the motherboard LPC bus and the  
Docking Station, and supports hot insertion and hot removal.  
Fast Infrared port  
PC2001 and ACPI Revision 2.0 compliant  
Serial IRQ support (15 options)  
Protection features, including GPIO lock and pin con-  
figuration lock  
Eight GPIO ports, including with “assert IRQ” capability  
XOR Tree and TRI-STATE device pins (or ICT) test-  
ability modes.  
5V tolerant and back-drive protected pins (except LPC  
bus pins)  
48-pin LQFP package  
System Block Diagram  
Docking  
Station  
Portable  
Platform  
I/O  
Ports  
South Bridge  
LPC Bus  
Docking LPC Bus  
PC87382  
DCLKOUT  
Docking  
SIO  
Embedded  
Controller  
TPM  
Serial  
Infrared  
Interface Interface  
National Semiconductor and TRI-STATE are registered trademarks of National Semiconductor Corporation.  
All other brand or product names are trademarks or registered trademarks of their respective holders.  
©2003 National Semiconductor Corporation  
www.national.com  
Features  
LPC System Interface  
Eight General-Purpose I/O (GPIO) Ports  
8-bit I/O cycles  
Support assert IRQ  
CLKRUN support  
Programmable drive type for each output pin (open-  
drain, push-pull or output disable)  
Implements PCI mobile design guide recommenda-  
tion (PCI Mobile Design Guide 1.1, Dec. 18, 1998)  
Programmable option for internal pull-up resistor on  
each input pin  
LPC-to-LPC Switch  
Output lock option  
Hot plugability  
Input debounce mechanism  
CLKRUN support  
Serial Port (SP1)  
The connection is controlled by software  
Low switch resistance and propagation delay  
Programmable Clock to Reset Delay  
Software compatible with the 16550A and the 16450  
Shadow register support for write-only bit monitoring  
UART data rates up to 1.5 Mbaud  
PC2001 and ACPI Compliant  
Fast Infrared Port (FIR)  
PnP Configuration Register structure  
Flexible resource allocation for all logical devices  
Relocatable base address  
Software compatible with the 16550A and the 16450  
Shadow register support for write-only bit monitoring  
FIR IrDA 1.1 compliant  
15 IRQ routing options  
HP-SIR  
Two optional 8-bit DMA channels (where applica-  
ASK-IR option of SHARP-IR  
ble) selected from four possible DMA channels  
DASK-IR option of SHARP-IR  
Clock Sources  
Consumer Remote Control supports RC-5, RC-6,  
14.318 MHz or 48 MHz clock input  
NEC, RCA and RECS 80  
LPC clock, up to 33 MHz  
DMA support: 1 or 2 channels  
14.318 MHz or 48 MHz clock output to the docking  
Strap Configuration  
station  
Base Address (BADDR) strap to determine the base  
Power Supply  
address of the Index-Data register pair  
3.3V supply operation  
Strap Inputs to select testability mode  
All pins are 5V tolerant, except LPC bus pins  
All pins are back-drive protected, except LPC bus pins  
Testability  
XOR Tree  
TRI-STATE device pins  
Internal Block Diagram  
LPC Interface  
14.31818 MHz  
Clock  
Generator  
Bus  
Interface  
Docking  
LPC Switch  
48 MHz  
FIR  
GPIO Ports  
Serial Port 1  
Ports  
I/O  
Infrared  
Interface  
Docking LPC  
Interface  
Serial  
Interface  
www.national.com  
2
Revision1.2  
Revision Record  
Revision Date  
Status  
Draft 0.1  
Comments  
February 2003  
March 2003  
March 2003  
April 2003  
Specification subject to change without notice.  
Specification subject to change without notice.  
Specification subject to change without notice.  
Specification subject to change without notice.  
Specification subject to change without notice.  
Draft 0.5  
Preliminary 0.9  
Preliminary 1.0  
1.1  
November 2003  
Added IDD and IDDLP current numbersTechnical writ-  
ing edits and typos.  
December 2003  
1.2  
Added tCOR and tCOF for output from Clock  
Generator.  
Technical writing edits and typos.  
Revision 1.2  
3
www.national.com  
Table of Contents  
1.0 Signal/Pin Connection and Description  
1.1  
1.2  
1.3  
CONNECTION DIAGRAM ...........................................................................................................8  
BUFFER TYPES AND SIGNAL/PIN DIRECTORY ......................................................................9  
DETAILED SIGNAL/PIN DESCRIPTIONS ................................................................................10  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
1.3.8  
1.3.9  
LPC Bus Interface .......................................................................................................10  
Docking LPC Bus ........................................................................................................10  
Clocks ..........................................................................................................................10  
Infrared (IR) ................................................................................................................11  
Serial Port (SP1) ..........................................................................................................11  
General-Purpose Input/Output (GPIO) Ports ...............................................................11  
Power and Ground .....................................................................................................12  
Strap Configuration ......................................................................................................12  
Test and Miscellaneous ...............................................................................................12  
1.4  
INTERNAL PULL-UP AND PULL-DOWN RESISTORS ............................................................13  
2.0 Power, Reset and Clocks  
2.1  
POWER .....................................................................................................................................14  
2.1.1  
2.1.2  
2.1.3  
Power Planes ..............................................................................................................14  
Power States ...............................................................................................................14  
Power Connection and Layout Guidelines ..................................................................14  
2.2  
2.3  
RESET SOURCES AND TYPES ...............................................................................................15  
2.2.1  
2.2.2  
VDD Power-Up Reset ..................................................................................................15  
Hardware Reset ...........................................................................................................15  
CLOCK DOMAINS .....................................................................................................................15  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
LPC Domain ................................................................................................................15  
48 MHz Domain ...........................................................................................................15  
Chip Power-Up ............................................................................................................16  
Specifications ..............................................................................................................16  
2.4  
TESTABILITY SUPPORT ..........................................................................................................16  
2.4.1  
2.4.2  
2.4.3  
ICT ...............................................................................................................................16  
XOR Tree Testing ........................................................................................................16  
Test Mode Entry Sequence .........................................................................................17  
3.0 Device Architecture and Configuration  
3.1  
3.2  
OVERVIEW ...............................................................................................................................18  
CONFIGURATION STRUCTURE AND ACCESS .....................................................................18  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
The Index-Data Register Pair ......................................................................................18  
Banked Logical Device Registers Structure ................................................................19  
Standard Configuration Register Definitions ...............................................................20  
Standard Configuration Registers ...............................................................................22  
Default Configuration Setup ........................................................................................23  
3.3  
MODULE CONTROL .................................................................................................................24  
3.3.1 Module Enable/Disable ................................................................................................24  
www.national.com  
4
Revision1.2  
Table of Contents (Continued)  
3.3.2  
Floating Module Output ...............................................................................................24  
3.4  
3.5  
INTERNAL ADDRESS DECODING ..........................................................................................25  
PROTECTION ...........................................................................................................................25  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
Configuration Lock .......................................................................................................25  
GPIO Ports Configuration Lock ...................................................................................25  
Fast Disable Configuration Lock ..................................................................................25  
Clock Control Lock ......................................................................................................25  
GPIO Ports Lock ..........................................................................................................25  
3.6  
3.7  
REGISTER TYPE ABBREVIATIONS ........................................................................................26  
SUPERI/O CONFIGURATION REGISTERS .............................................................................26  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
SuperI/O ID Register (SID) ..........................................................................................26  
SuperI/O Configuration 1 Register (SIOCF1) ..............................................................27  
SuperI/O Configuration 2 Register (SIOCF2) ..............................................................27  
SuperI/O Configuration 6 Register (SIOCF6) ..............................................................28  
SuperI/O Revision ID Register (SRID) ........................................................................28  
Clock Generator Control Register (CLOCKCF) ...........................................................29  
3.8  
3.9  
INFRARED CONFIGURATION .................................................................................................30  
3.8.1  
3.8.2  
Logical Device 2 (IR) Configuration .............................................................................30  
Infrared Configuration Register ...................................................................................30  
SERIAL PORT 1 CONFIGURATION .........................................................................................31  
3.9.1  
3.9.2  
Logical Device 3 (SP1) Configuration ..........................................................................31  
Serial Port 1 Configuration Register ............................................................................31  
3.10 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS CONFIGURATION ..........................32  
3.10.1 General Description .....................................................................................................32  
3.10.2 Implementation ............................................................................................................32  
3.10.3 Logical Device 7 (GPIO) Configuration .......................................................................33  
3.10.4 GPIO Pin Select Register (GPSEL) .............................................................................34  
3.10.5 GPIO Pin Configuration Register (GPCFG) ................................................................34  
3.10.6 GPIO Event Routing Register (GPEVR) ......................................................................35  
3.11 DOCKING LPC SWITCH CONFIGURATION ............................................................................36  
3.11.1 Logical Device 19 (DLPC) Configuration .....................................................................36  
4.0 LPC Bus Interface  
4.1  
4.2  
4.3  
4.4  
OVERVIEW ...............................................................................................................................37  
LPC TRANSACTIONS ...............................................................................................................37  
CLKRUN FUNCTIONALITY ......................................................................................................37  
INTERRUPT SERIALIZER ........................................................................................................37  
5.0 General-Purpose Input/Output (GPIO) Port  
5.1  
5.2  
OVERVIEW ...............................................................................................................................38  
BASIC FUNCTIONALITY ..........................................................................................................39  
5.2.1  
5.2.2  
Configuration Options ..................................................................................................39  
Operation .....................................................................................................................39  
Revision 1.2  
5
www.national.com  
Table of Contents (Continued)  
5.3  
EVENT HANDLING AND SYSTEM NOTIFICATION ................................................................40  
5.3.1  
5.3.2  
Event Configuration .....................................................................................................40  
System Notification ......................................................................................................40  
5.4  
GPIO PORT REGISTERS .........................................................................................................41  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
GPIO Pin Configuration Registers Structure ...............................................................42  
GPIO Port Runtime Register Map ...............................................................................42  
GPIO Data Out Register (GPDO) ................................................................................42  
GPIO Data In Register (GPDI) ....................................................................................43  
GPIO Event Enable Register (GPEVEN) ....................................................................43  
GPIO Event Status Register (GPEVST) ......................................................................43  
6.0 Docking LPC Switch  
6.1  
6.2  
OVERVIEW ...............................................................................................................................44  
FUNCTIONAL DESCRIPTION ..................................................................................................44  
6.2.1  
6.2.2  
Basic Functionality .......................................................................................................44  
LDRQ Sharing Mechanism ..........................................................................................44  
6.3  
DOCKING LPC SWITCH REGISTERS .....................................................................................45  
6.3.1  
6.3.2  
Docking LPC Switch Register Map ..............................................................................45  
Docking LPC Control (DLCTL) ....................................................................................45  
7.0 Legacy Functional Blocks  
7.1  
SERIAL PORT 1 (SP1) ..............................................................................................................47  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
General Description .....................................................................................................47  
Register Bank Overview ..............................................................................................47  
SP1 Register Maps ......................................................................................................48  
SP1 Bitmap Summary .................................................................................................49  
7.2  
IR FUNCTIONALITY (IR) ...........................................................................................................51  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
General Description .....................................................................................................51  
Register Bank Overview ..............................................................................................51  
IR Register Map for IR Functionality ............................................................................52  
IR Bitmap Summary for IR Functionality  
.................................................................55  
8.0 Device Characteristics  
8.1  
GENERAL DC ELECTRICAL CHARACTERISTICS .................................................................58  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
Recommended Operating Conditions .........................................................................58  
Absolute Maximum Ratings .........................................................................................58  
Capacitance ................................................................................................................59  
Power Consumption under Recommended Operating Conditions ..............................59  
Voltage Thresholds ......................................................................................................59  
8.2  
DC CHARACTERISTICS OF PINS, BY I/O BUFFER TYPES ..................................................59  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
Input, PCI 3.3V ............................................................................................................59  
Input, TTL Compatible .................................................................................................60  
Input, TTL Compatible with Schmitt Trigger ................................................................60  
Output, PCI 3.3V .........................................................................................................60  
www.national.com  
6
Revision1.2  
Table of Contents (Continued)  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
8.2.9  
Output, Push-Pull Buffer ..............................................................................................60  
Output, Open-Drain Buffer ...........................................................................................61  
Quick Switch ................................................................................................................61  
Exceptions ...................................................................................................................61  
Terminology .................................................................................................................61  
8.3  
8.4  
INTERNAL RESISTORS ...........................................................................................................62  
8.3.1  
8.3.2  
Pull-Up Resistor ...........................................................................................................62  
Pull-Down Resistor ......................................................................................................63  
AC ELECTRICAL CHARACTERISTICS ....................................................................................63  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
AC Test Conditions ......................................................................................................63  
Clock Input Timing .......................................................................................................64  
Clock Output Timing ....................................................................................................64  
LCLK and LRESET ......................................................................................................65  
VDD Power-Up Reset ..................................................................................................66  
LPC and SERIRQ Signals ...........................................................................................67  
Serial Port, Sharp-IR, SIR and Consumer Remote Control Timing .............................68  
MIR and FIR Timing ....................................................................................................69  
Modem Control Timing ................................................................................................70  
8.4.10 Docking LPC Switch Timing ........................................................................................71  
Revision 1.2  
7
www.national.com  
1.0 Signal/Pin Connection and Description  
1.1 CONNECTION DIAGRAM  
48 47 46 45 44 43 42 41 40 39 38 37  
CTS1  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LAD1  
DTR1_BOUT1/BADDR  
VDD  
RI1  
DLDRQ  
IRRX1  
3
VSS  
4
DLAD0  
LAD0  
5
PC87382  
48-Pin LQFP  
(Top View)  
6
IRTX  
IRRX2_IRSL0  
VDD  
DLFRAME  
LFRAME  
DSERIRQ  
SERIRQ  
LRESET  
DLCLK  
LCLK  
7
8
VSS  
9
VCORF  
10  
11  
12  
GPIO00  
GPIO01  
13 14 15 16 17 18 19 20 21 22 23 24  
48-Pin Low Profile Plastic Quad Flatpack (LQFP)  
NS Package Number VBH48A  
Order Number PC87382-VBH  
www.national.com  
8
Revision1.2  
1.0 Signal/Pin Connection and Description (Continued)  
1.2 BUFFER TYPES AND SIGNAL/PIN DIRECTORY  
This section describes all signals. Signals are organized in functional groups.  
Buffer Types  
The signal DC characteristics are denoted by a buffer type symbol, described briefly in Table 1 and in further detail in  
Chapter 8 on page 58.  
Table 1. Buffer Types  
Symbol  
INPCI  
INT  
Description  
Input, PCI 3.3V  
Input, TTL compatible  
INTS  
OPCI  
Op/n  
Input, TTL compatible, with Schmidt Trigger  
Output, PCI 3.3V  
Output, push-pull buffer that is capable of sourcing p mA and sinking n mA  
Output, open-drain output buffer that is capable of sinking n mA  
ODn  
QS  
Quick Switch pin  
Power pin  
PWR  
GND  
Ground pin  
Revision 1.2  
9
www.national.com  
1.0 Signal/Pin Connection and Description (Continued)  
1.3 DETAILED SIGNAL/PIN DESCRIPTIONS  
This section describes all signals of the PC87382.  
1.3.1 LPC Bus Interface  
Signal  
LAD3-0  
Pin(s)  
I/O Buffer Type  
Description  
40, 38,  
36, 32  
I/O  
INPCI/OPCI LPC Address-Data. Multiplexed command, address bidirectional data  
and cycle status.  
LCLK  
25  
16  
30  
I
O
I
INPCI  
OPCI  
INPCI  
LPC Clock. Same as PCI clock (up to 33 MHz).  
LDRQ  
LPC DMA Request. Encoded DMA request for LPC interface.  
LFRAME  
LPC Frame. Low pulse indicates the beginning of a new LPC cycle or  
termination of a broken cycle.  
LRESET  
SERIRQ  
27  
28  
I
INPCI  
LPC Reset. Same as PCI system reset.  
I/O  
INPCI/OPCI Serial IRQ. The interrupt requests are serialized over a single pin, where  
each IRQ level is delivered during a designated time slot.  
CLKRUN  
19  
I/OD  
INPCI/OD6 Clock Run. Same as PCI CLKRUN.  
1.3.2 Docking LPC Bus  
Signal  
Pin(s)  
I/O Buffer Type  
Description  
DLAD3-0  
41, 39,  
37, 33  
I/O  
QS  
Dock LPC Address-Data. Multiplexed command, address bidirectional  
data and cycle status.  
DLCLK  
26  
31  
I/O  
I/O  
QS  
QS  
Dock LPC Clock. Same as PCI clock (up to 33 MHz).  
DLFRAME  
Dock LPC Frame. Low pulse indicates the beginning of a new LPC cycle  
or termination of a broken cycle.  
DSERIRQ  
29  
I/O  
QS  
Dock Serial IRQ. The interrupt requests are serialized over a single pin,  
where each IRQ level is delivered during a designated time slot.  
DCLKRUN  
DLRESET  
20  
18  
I/O  
O
QS  
Dock Clock Run. Same as PCI CLKRUN.  
O4/4  
Dock LPC Reset. Main LPC Reset combined with Dock LPC enable.  
DLDRQ  
4
I
INT  
Dock LPC DMA Request. Encoded DMA request for LPC interface.  
1.3.3 Clocks  
Signal  
Pin(s)  
43  
42  
I/O Buffer Type  
Description  
CLKIN  
I
INT  
Clock In. 14.318 MHz or 48 MHz clock input.  
DCLKOUT  
O
O14/14  
Dock Clock Output. Buffered clock for the Docking device. Enabled  
together with DLCLK; otherwise in TRI-STATE.  
www.national.com  
10  
Revision1.2  
1.0 Signal/Pin Connection and Description (Continued)  
1.3.4 Infrared (IR)  
Signal  
IRRX1  
Pin(s)  
I/O Buffer Type  
Description  
5
7
I
INTS  
IR Receive 1. Primary input to receive serial data from the IR transceiver.  
IRRX2_IRSL0  
I/O  
INTS/O3/6 IRRX2 - IR Receive 2. Auxiliary IR receiver input to support a second  
transceiver.  
IRSL0 - IR Select. Output used to control the IR transceiver.  
IRTX  
6
O
O6/12  
IR Transmit. IR serial output data.  
1.3.5 Serial Port (SP1)  
Signal  
CTS1  
Pin(s) I/O Buffer Type  
Description  
1
I
I
INTS  
INTS  
INTS  
O3/6  
Clear to Send. When low, indicates that the modem or other data transfer  
device is ready to exchange data.  
DCD1  
DSR1  
44  
45  
Data Carrier Detected. When low, indicates that the modem or other data  
transfer device has detected the data carrier.  
I
Data Set Ready. When low, indicates that the data transfer device, e.g.,  
modem, is ready to establish a communications link.  
DTR1_BOUT1 2  
O
Data Terminal Ready. When low, indicates to the modem or other data  
transfer device that the UART is ready to establish a communications link.  
Baud Output. Provides the associated serial channel baud rate generator  
output signal if Test Mode is selected, i.e., if bit 7 of the EXCR1 register is  
set.  
RI1  
3
I
INTS  
Ring Indicator. When low, indicates that a telephone ring signal was  
received by the modem. It is monitored during power-off for wake-up event  
detection.  
RTS1  
47  
O
O3/6  
Request to Send. When low, indicates to the modem or other data  
transfer device that the corresponding UART is ready to exchange data. A  
system reset sets this signal to inactive high; a loopback operation holds it  
inactive.  
SIN1  
46  
48  
I
INTS  
O3/6  
Serial Input. Receives composite serial data from the communications link  
(peripheral device, modem or other data transfer device).  
SOUT1  
O
Serial Output. Sends composite serial data to the communications link  
(peripheral device, modem or other data transfer device). These signals  
are set active high after a system reset.  
1.3.6 General-Purpose Input/Output (GPIO) Ports  
Signal  
Pin(s)  
I/O Buffer Type  
Description  
GPIO00-04  
11, 12,  
13, 14,  
15  
I/O  
I/O  
INTS  
OD6, O3/6  
/
General-Purpose I/O Port 0, bits 0-4. Each pin is configured independent-  
ly as input or I/O, with or without static pull-up, and with either open-drain or  
push-pull output type. The port supports interrupt assertion, and each pin  
can be enabled or masked as an interrupt source.  
GPIO20-21, 17, 21  
INTS  
/
General-Purpose I/O Port 2, bits 0,1,3. Same as Port 0, without  
22  
interrupt support.  
OD6, O3/6  
GPIO23  
Revision 1.2  
11  
www.national.com  
1.0 Signal/Pin Connection and Description (Continued)  
1.3.7 Power and Ground  
Signal  
Pin(s)  
I/O  
Buffer Type  
PWR  
Description  
VDD  
VSS  
35, 24, 8  
34, 23, 9  
I
I
Main 3.3V Power Supply.  
Ground.  
GND  
1.3.8 Strap Configuration  
Signal  
BADDR  
Pin(s) I/O Buffer Type  
Description  
2
I
INTS  
Base Address. Sampled at VDD Power-Up reset to determine the base  
address of the configuration Index-Data register pair.  
– No pull-down resistor (default)  
- the Index-Data pair at  
164Eh-164Fh.  
– 10 K1 external pull-down resistor - the Index-Data pair at 2Eh-2Fh1.  
The external pull-down resistor must be connected to VSS  
.
TRIS  
47  
I
INTS  
TRI-STATE Device. Sampled at VDD Power-Up to force the device to  
float all its output and I/O pins.  
– No pull-down resistor (default)  
- normal pin operation  
– 10 K1 external pull-down resistor - floating device pins  
The external pull-down resistor must be connected to VSS  
.
When TRIS is set to 0 (by an external pull-down resistor), TEST must be  
1 (i.e., left unconnected).  
TEST  
48  
I
INTS  
XOR Tree Test Mode. Sampled at VDD Power-Up to force the device  
pins into a XOR tree configuration.  
– No pull-down resistor (default)  
– 10 K1 external pull-down resistor - pins configured as XOR tree.  
The external pull-down resistor must be connected to VSS  
- normal device operation  
.
When TEST is set to 0 (by an external pull-down resistor), TRIS must be  
1 (i.e., left unconnected).  
1. Because the strap function is multiplexed with the Serial Port pins, a CMOS transceiver device is recommended  
for Serial Port functionality; in this case, the value of the external pull-down resistor is 10 K. If, however, a TTL  
transceiver device is used, the value of the external pull-down resistor must be 470, and since the Serial Port  
pins are not able to drive this load, the external pull-down resistor must disconnect tEPLV after VDD power-up  
(see Section 8.4.5 on page 66).  
1.3.9 Test and Miscellaneous  
Signal  
Pin(s) I/O Buffer Type  
Description  
XOR_OUT  
16  
10  
O
O3/6  
-
XOR Tree Output. All the device pins (except ground and power pins)  
are internally connected in a XOR tree structure.  
VCORF  
I/O  
On-Chip Core Power Converter Filter. Powers the core logic of all the  
device modules. An external 0.1 µF ceramic filter capacitor must be  
connected between this pin and VSS  
.
www.national.com  
12  
Revision1.2  
1.0 Signal/Pin Connection and Description (Continued)  
1.4 INTERNAL PULL-UP AND PULL-DOWN RESISTORS  
The signals listed in Table 2 can optionally support internal pull-up (PU) and/or pull-down (PD) resistors. See Section 8.3 on  
page 62 for the values of each resistor type.  
Table 2. Internal Pull-Up and Pull-Down Resistors  
Signal  
Pin(s)  
Type  
Comments  
General-Purpose Input/Output (GPIO) Ports  
GPIO00-04  
GPIO21  
11, 12,13,  
14, 15  
PU30  
Programmable  
21  
PU80  
PU30  
Programmable  
Programmable  
GPIO20,  
GPIO23  
17, 22  
Strap Configuration and Testability  
Strap1  
Strap1  
Strap1  
BADDR  
TEST  
TRIS  
2
PU30  
PU30  
PU30  
48  
47  
Docking LPC  
Active when the switch is off2  
DLAD3-0  
33, 37, 39,  
41  
PU30  
Active when the switch is off2  
Active when the switch is off2  
Active when the switch is off2  
Active when the switch is off2  
Active when the switch is off2  
Active when the switch is off2  
DLCLK  
26  
42  
31  
18  
29  
20  
4
PU30  
PU80  
PU30  
PD120  
PU30  
PU30  
PU30  
DCLKOUT  
DLFRAME  
DLRESET  
DSERIRQ  
DCLKRUN  
DLDRQ  
1. Active only during VDD Power-Up reset.  
2. The Docking LPC signal resistors are active when the corresponding  
switch is off.  
Revision 1.2  
13  
www.national.com  
2.0 Power, Reset and Clocks  
2.1 POWER  
2.1.1 Power Planes  
The PC87382 has a single 3.3V power source, VDD. Internally, an additional power plane (VCORF) is generated using an on-  
chip voltage converter. This power plane feeds all the core logic.  
2.1.2 Power States  
The following terminology is used in this document to describe the power states:  
Power On - VDD is active.  
Power Off - VDD is inactive.  
2.1.3 Power Connection and Layout Guidelines  
The PC87382 requires a power supply voltage of 3.3V ± 10% for the VDD supply. The on-chip Core voltage converter gen-  
erates a voltage below 3V for the internal logic.  
VDD and VCORF use a common ground return marked VSS.  
To obtain the best performance, bear in mind the following recommendations.  
Ground Connection. The following items must be connected to the ground layer (VSS) as close to the device as possible:  
The ground return (VSS) pins  
The decoupling capacitors of the Main power supply (VDD) pins  
The decoupling capacitor of the on-chip Core power converter (VCORF) pin  
Note that a low-impedance ground layer also improves noise isolation.  
Decoupling Capacitors. The following decoupling capacitors must be used in order to reduce EMI and ground bounce:  
Main power supply (VDD): Place one 0.1 µF capacitor on each VDD-VSS pin pair, as close to the pin as possible. In ad-  
dition, place one 1047 µF tantalum capacitor on the common net as close to the device as possible.  
On-Chip Core power converter (VCORF): Place one 0.1 µF ceramic capacitor on the VCORF-VSS pin pair as close to the  
pin as possible.  
Main 3.3V  
8
9
24  
23  
VDD  
VSS  
VDD  
VSS  
+
PC87382  
10-47  
µF  
0.1 µF  
0.1 µF  
0.1 µF  
10  
VCORF  
35  
34  
VDD  
VSS  
0.1 µF  
Figure 1. Decoupling Capacitors Connection  
www.national.com  
14  
Revision1.2  
2.0 Power, Reset and Clocks (Continued)  
2.2 RESET SOURCES AND TYPES  
The PC87382 has the following reset sources:  
VDD Power-Up Reset - activated when VDD is powered up  
Hardware Reset - activated when the LRESET input is asserted (low)  
2.2.1  
V
Power-Up Reset  
DD  
VDD Power-Up reset is generated by an internal circuit when VDD power is turned on. VDD Power-Up reset time (tIRST) lasts  
until the LRESET signal is de-asserted. The Hardware reset (LRESET) must be asserted for a minimum of 10 ms to ensure  
that the PC87382 operates correctly.  
External devices must wait at least tIRST before accessing the PC87382. If the host processor accesses the PC87382 during  
this time, the PC87382 LPC interface ignores the transaction (that is, it does not return a SYNC handshake).  
VDD Power-Up reset performs the following actions:  
Puts pins with strap options into TRI-STATE and enables their internal pull-up resistors  
Samples the logic levels of the strap pins  
Executes all the actions performed by the Hardware reset; see Section 2.2.2  
2.2.2 Hardware Reset  
Hardware reset is activated by assertion of LRESET input while VDD is “good”. When VDD power is off, the PC87382 ignores  
the level of the LRESET input. Hardware reset performs the following actions:  
Resets all lock bits in configuration registers  
Loads default values to all the bits in the Configuration Control  
Resets all the logical devices  
Loads default values to all the module registers  
2.3 CLOCK DOMAINS  
The PC87382 has two clock domains, as shown in Table 3.  
Table 3. Clock Domains of the PC87382  
Clock  
Domain  
Frequency  
Source  
Usage  
LPC bus interface and Configuration registers,  
Docking LPC Switch logic  
LPC  
Up to 33 MHz  
LPC clock input (LCLK)  
Legacy functions (Serial Port, Infrared)  
and DCLKOUT output pin  
On-chip Clock Generator or  
directly from Clock Input (CLKIN)  
48 MHz  
48 MHz  
2.3.1 LPC Domain  
The LPC clock signal at the LCLK pin must become valid before the end of the Hardware reset (LRESET); see Section 2.2.2.  
This clock can be slowed down or stopped using the CLKRUN protocol.  
2.3.2 48 MHz Domain  
The 48 MHz clock domain is sourced either by the on-chip Clock Generator or directly by the CLKIN input pin. The Clock  
Generator is fed by applying a clock source at a frequency of 14.31818 MHz. The Clock Generator generates two internal  
clocks, 24 MHz and 48 MHz. After power-up or Hardware reset, the clock (Clock Generator or external clock) is disabled.  
Clock Generator Functional Description  
The on-chip Clock Generator starts working when it is enabled by bit 7 of the CLOCKCF register, Index 29h, i.e., when the  
bit value changes from 0 to 1 (only for 14.31818 MHz clock source). Once enabled, the output clock is frozen to a steady  
logic level until the clock generator provides a stable output clock that meets all requirements. Then the clock starts toggling.  
On Hardware reset, the chip wakes up with the on-chip Clock Generator disabled. The input clock of the Clock Generator  
may toggle regardless of the state of the LRESET pin. The Clock Generator waits for a toggling input clock.  
Revision 1.2  
15  
www.national.com  
2.0 Power, Reset and Clocks (Continued)  
Bit 4 (read only) of the CLOCKCF register is the Valid Clock Generator status bit. While stabilizing, the output clock is frozen  
to a steady logic level, and the status bit is cleared to 0 to indicate a frozen clock. When the clock generator is stable, the output  
clock starts toggling and the status bit is set to 1. The status bit tells the software when the Clock Generator is ready. The soft-  
ware should poll this status bit until it is set (1), and only then activate the UART, the Infrared interface and the DCLKOUT pin.  
The clock generator and its output clock do not consume power when they are disabled.  
2.3.3 Chip Power-Up  
To ensure proper operation, proceed as follows after power-up:  
1. Set bits 5 and 6 of the Clock Generator Control register (CLOCKCF) at Index 29h according to the clock source used  
and the desired output frequency on DCLKOUT; see Table 4.  
2. Enable the clock. If the clock source is 14.31818 MHz:  
Poll bit 4 of the CLOCKCF register while the clock generator is stabilizing.  
When bit 4 of CLOCKCF is set to 1, go to step 3.  
3. Enable any module in the chip, as needed.  
Table 4. Clock Generator Encoding Options  
CLKIN Pin Frequency  
Desired DCLKOUT Frequency  
CLOCKCF Bits 6, 5  
48 MHz  
48 MHz  
14.31818 MHz  
48 MHz  
00  
01  
11  
14.31818 MHz  
2.3.4 Specifications  
Wake-up time is 33 msec (maximum). This is measured from the time the Clock Generator is enabled until the clock is stable.  
Note: The reference clock must be stable at the time the Clock Generator is enabled. Tolerance (long term deviation) of  
the generator output clock, relative to the input clock, is ±110 ppm. Total tolerance is therefore  
± (input clock tolerance + 110 ppm).  
2.4 TESTABILITY SUPPORT  
The PC87382 supports two testability modes:  
In-Circuit Testing (ICT)  
XOR Tree Testing  
2.4.1 ICT  
The In-Circuit Testing (ICT) technique, also known as “bed-of-nails”, injects logic patterns to the input pins of the devices  
mounted on the tested board. It then checks their outputs for the correct logic levels.  
The PC87382 supports this testing technique by floating (putting in TRI-STATE) all the device pins. This prevents “back-  
driving” the PC87382 pins by the ICT tester when a device normally controlled by PC87382 is tested (device inputs are driv-  
en by the ICT tester).  
2.4.2 XOR Tree Testing  
When the PC87382 is mounted on a board, it can be tested using the XOR Tree technique. This test also checks the correct  
connection of the device pins to the board.  
In XOR Tree mode, all PC87382 pins are configured as inputs, except the last pin in the tree, which is the XOR_OUT output. The  
buffer type of the input pins participating in the XOR tree is INT (Input, TTL compatible), regardless of the buffer type of these pins  
in normal device operation mode (see Section 1.3 on page 10). The input pins are chained through XOR gates, as shown in  
Figure 2. The power and ground pins (VDD, VSS, VCORF) are excluded from the XOR tree.  
www.national.com  
16  
Revision1.2  
2.0 Power, Reset and Clocks (Continued)  
VDD  
XOR_OUT  
Pin 17  
Pin 18  
Pin 48  
Pin 1  
Pin 15  
Pin 16  
Figure 2. XOR Tree (Simplified Diagram)  
The maximum propagation delay through the XOR tree, from the first pin in the chain to XOR_OUT is 200 ns.  
2.4.3 Test Mode Entry Sequence  
Table 5 shows the decoding values required to enter each test mode. The test modes are decoded from the TEST and TRIS  
strap pins and are latched into PC87382 on power up.  
Table 5. Test Mode Selection  
Test Mode  
TEST  
TRIS  
No Test Mode Selected  
1
1
0
0
1
0
1
0
ICT  
XOR Tree  
Reserved exclusively for NSC use  
Revision 1.2  
17  
www.national.com  
3.0 Device Architecture and Configuration  
The PC87382 comprises a collection of legacy and proprietary functional blocks. Each functional block is described in a sep-  
arate chapter. This chapter describes the PC87382 structure and provides all logical device specific information, including  
special implementation of generic blocks, system interface and device configuration.  
3.1 OVERVIEW  
The PC87382 consists of four logical devices, the host interface, and a central set of configuration registers, all built around  
a central internal bus. Figure 3 illustrates the blocks and related logic.  
The system interface serves as a bridge between the external LPC interface and the internal bus. It supports 8-bit read and  
write transactions for I/O and DMA, as defined in Intel’s LPC Interface Specification, Revision 1.1.  
The central configuration register set is ACPI compliant and supports a PnP configuration. The configuration registers are  
structured as a subset of the Plug and Play Standard registers, defined in Appendix A of the Plug and Play ISA Specification,  
Revision 1.0a by Intel and Microsoft. All system resources assigned to the functional blocks (I/O address space, DMA chan-  
nels and IRQ lines) are configured in, and managed by, the central configuration register set. In addition, some function-  
specific parameters are configurable through the configuration registers and distributed to the functional blocks through spe-  
cial control signals.  
SIN1  
SOUT1  
RTS1  
DTR1_BOUT1  
GPIO20,21,23  
GPIO00-04  
Serial  
Port 1  
CTS1  
GPIO  
Ports  
DSR1  
DCD1  
RI1  
CLKIN  
LRESET  
LCLK  
IRRX1,IRRX2  
SERIRQ  
LDRQ  
Bus  
Interface  
IRTX  
IR  
LFRAME  
LAD3-0  
CLKRUN  
IRSL0  
DLRESET  
DLCLK  
LPC  
Bus  
Switch  
DSERIRQ  
DLDRQ  
DLFRAME  
DLAD3-0  
DCLKRUN  
BADDR  
TEST  
TRIS  
Strap  
Config  
Config &  
Control Registers  
Figure 3. PC87382 Detailed Block Diagram  
3.2 CONFIGURATION STRUCTURE AND ACCESS  
The configuration structure is comprised of a set of banked registers which are accessed via a pair of specialized registers.  
3.2.1 The Index-Data Register Pair  
Access to the PC87382 configuration registers is via an Index-Data register pair, using only two system I/O byte locations.  
The base address of this register pair is determined during VDD Power-Up reset, according to the state of the hardware strap-  
ping option on the BADDR pin. Table 6 shows the selected base addresses as a function of BADDR.  
www.national.com  
18  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
Table 6. BADDR Strapping Options  
I/O Address  
BADDR  
Index Register Data Register  
0
2Eh  
2Fh  
1 (default)  
164Eh  
164Fh  
The Index register is an 8-bit read/write register located at the selected base address (Base+0). It is used as a pointer to the  
configuration register file, and holds the index of the configuration register that is currently accessible via the Data register.  
Reading the Index register returns the last value written to it (or the default of 00h after reset).  
The Data register is an 8-bit register (Base+1) used as a data path to any configuration register. Accessing the Data register  
actually accesses the configuration register that is currently pointed to by the Index register.  
3.2.2 Banked Logical Device Registers Structure  
Each functional block is associated with a Logical Device Number (LDN). The configuration registers are grouped into banks,  
where each bank holds the standard configuration registers of the corresponding logical device. Table 7 shows the LDN val-  
ues of the PC87382 functional blocks. Any value not listed is reserved.  
Figure 4 shows the structure of the standard configuration register file. The LDN and PC87382 configuration registers are  
not banked and are accessed by the Index-Data register pair only, as described in Section 3.2.1. However, the device control  
and device configuration registers are duplicated over four banks for four logical devices. Therefore, accessing a specific  
register in a specific bank is performed by two-dimensional indexing, where the LDN register selects the bank (or logical  
device) and the Index register selects the register within the bank. Accessing the Data register while the Index register holds  
a value of 30h or higher physically accesses the logical device configuration registers currently pointed to by the Index reg-  
ister, within the logical device currently selected by the LDN register.  
07h  
Logical Device Number Register  
SuperI/O Configuration Registers  
20h  
2Fh  
Logical Device Control Register  
30h  
60h  
63h  
70h  
71h  
74h  
75h  
Standard Logical Device  
Configuration Registers  
Bank Select  
Special (Vendor-defined)  
Logical Device  
F0h  
FFh  
Configuration Registers  
Banks  
(One per Logical Device)  
Figure 4. Structure of Standard Configuration Register File  
Table 7. Logical Device Number (LDN) Assignments  
LDN  
Functional Block  
02h  
03h  
07h  
19h  
Infrared (IR)  
Serial Port 1 (SP1)  
General-Purpose I/O (GPIO) Ports  
Docking LPC Switch  
Revision 1.2  
19  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
Write accesses to unimplemented registers (i.e., accessing the Data register while the Index register points to a non-existing  
register) are ignored; reads return 00h on all addresses, except 74h and 75h (DMA configuration registers), which return  
04h (indicating no DMA channel is active). The configuration registers are accessible immediately after reset.  
3.2.3 Standard Configuration Register Definitions  
In the registers below, any undefined bit is reserved. Unless otherwise noted, the following definitions also hold true:  
All registers are read/write.  
All reserved bits return 0 on reads, except where noted otherwise. To prevent unpredictable results, do not modify  
these bits. Use read-modify-write to prevent the values of reserved bits from being changed during write.  
Write-only registers must not use read-modify-write during updates.  
Table 8. Standard General Configuration Registers  
Index  
Register Name  
Description  
07h  
Logical Device  
Number  
This register selects the current logical device. See Table 7 for valid numbers. All  
other values are reserved.  
20h-2Fh  
PC87382  
Configuration  
PC87382 configuration registers and ID registers.  
Table 9. Logical Device Activate Register  
Index  
Register Name  
Description  
30h  
Activate  
Bits 7-1: Reserved.  
Bit 0:  
Logical device activation control; see Section 3.3 on page 24.  
0: Disabled  
1: Enabled  
Table 10. I/O Space Configuration Registers  
Index  
Register Name  
Description  
60h  
I/O Port Base  
Address Bits 158  
Descriptor 0  
Indicates selected I/O lower limit address bits 158 for I/O Descriptor 0.  
61h  
I/O Port Base  
Address Bits 70  
Descriptor 0  
Indicates selected I/O lower limit address bits 70 for I/O Descriptor 0.  
www.national.com  
20  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
Table 11. Interrupt Configuration Registers  
Index  
Register Name  
Description  
70h  
Interrupt Number Indicates selected interrupt number.  
Bits 7-4: Reserved.  
Bits 3-0: These bits select the interrupt number. A value of 1 selects IRQ1. A value  
of 15 selects IRQ15. IRQ0 is not a valid interrupt selection and  
represents no interrupt selection.  
Note: Avoid selecting the same interrupt number (except 0) for different logical  
devices, as it causes the PC87382 to behave unpredictably.  
71h  
Interrupt Request Indicates the type and polarity of the interrupt request number selected in the  
Type Select  
previous register. If a logical device supports only one type of interrupt, the  
corresponding bit is read only.  
Bits 7-2: Reserved.  
Bit 1:  
Polarity of interrupt request selected in previous register.  
0: Low polarity.  
1: High polarity.  
Bit 0:  
Type of interrupt request selected in previous register.  
0: Edge.  
1: Level.  
Table 12. DMA Configuration Registers  
Description  
Index  
Register Name  
74h  
DMA Channel  
Select 0  
Indicates selected DMA channel for DMA 0 of the logical device (0 is the first DMA  
channel if more than one DMA channel is used).  
Bits 7-3: Reserved.  
Bits 2-0: These select the DMA channel for DMA 0, where:  
- A value of 0, 1, 2, or 3 selects DMA channel 0, 1, 2, or 3, respectively.  
- A value of 4 indicates that no DMA channel is active.  
- The values 5-7 are reserved.  
Note: Avoid selecting the same DMA channel (except 4) for different logical  
devices, as it causes the PC87382 to behave unpredictably.  
75h  
DMA Channel  
Select 1  
Indicates selected DMA channel for DMA 1 of the logical device (1 is the second  
DMA channel if more than one DMA channel is used).  
Bits 7-3: Reserved.  
Bits 2-0: These select the DMA channel for DMA 1, where:  
- A value of 0, 1, 2, or 3 selects DMA channel 0, 1, 2, or 3, respectively.  
- A value of 4 indicates that no DMA channel is active.  
- The values 57 are reserved.  
Note: Avoid selecting the same DMA channel (except 4) for different logical  
devices, as it causes the PC87382 to behave unpredictably.  
Table 13. Special Logical Device Configuration Registers  
Index  
Register Name  
Description  
F0h-FFh  
Logical Device Special (vendor-defined) configuration options.  
Configuration  
Revision 1.2  
21  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.2.4 Standard Configuration Registers  
Index  
Register Name  
Logical Device Number  
07h  
20h  
SuperI/O ID  
21h  
SuperI/O Configuration 1  
SuperI/O Configuration 2  
Reserved  
22h  
23h-25h  
26h  
SuperI/O Control and  
Configuration Registers  
SuperI/O Configuration 6  
SuperI/O Revision ID  
27h  
28h  
Reserved  
29h  
Clock Generator Control  
2Ah - 2Fh  
30h  
Reserved exclusively for National use  
Logical Device Control (Activate)  
I/O Base Address Descriptor 0 Bits 15-8  
I/O Base Address Descriptor 0 Bits 7-0  
Interrupt Number and Wake-Up on IRQ Enable  
IRQ Type Select  
60h  
Logical Device Control and  
61h  
Configuration Registers -  
one per Logical Device  
(some are optional)  
70h  
71h  
74h  
DMA Channel Select 0  
75h  
DMA Channel Select 1  
F0h - FFh  
Device Specific Logical Device Configuration 1 to 15  
Figure 5. Configuration Register Map  
SuperI/O Configuration Registers  
The PC87382 configuration registers at Indexes 20h and 27h are used for part identification. The other configuration  
registers are used for global power management and the selection of pin multiplexing options. For details, see Section 3.7  
on page 26.  
Logical Device Control and Configuration Registers  
A subset of these registers is implemented for each logical device. See the functional block descriptions in the following sec-  
tions.  
Control  
The only implemented control register for each logical device is the Activate register at Index 30h. Bit 0 of the Activate reg-  
ister controls the activation of the associated functional block. Activation enables access to the functional block’s registers,  
and attaches its system resources, which are unassigned as long as it is not activated. Other effects may apply on a function-  
specific basis (such as clock enable and active pinout signaling). Access to the configuration register of the logical device is  
enabled even when the logical device is not activated.  
Standard Configuration  
The standard configuration registers manage the PnP resource allocation to the functional blocks. The I/O port base address  
descriptor 0 is a pair of registers at Index 60-61h, holding the first 16-bit base address for the register set of the functional  
block. An optional 16-bit second base-address (descriptor 1) at Index 62-63h is used for logical devices with more than one  
continuous register set. Interrupt Number (Index 70h) and IRQ Type Select (Index 71h) allocate an IRQ line to the block and  
control its type. DMA Channel Select 0 (Index 74h) allocates a DMA channel to the block, where applicable. DMA Channel  
Select 1 (Index 75h) allocates a second DMA channel, where applicable.  
www.national.com  
22  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
Special Configuration  
The vendor-defined registers, starting at Index F0h, control function-specific parameters such as operation modes, power  
saving modes, pin TRI-STATE, and non-standard extensions to generic functions.  
3.2.5 Default Configuration Setup  
In the event of a VDD Power-Up or Hardware reset, the PC87382 wakes up with the following default configuration setup:  
The configuration base address is 2Eh or 164Eh, according to the BADDR strap pin value, as shown in Table 6 on  
page 19.  
All logical devices are disabled.  
All multiplexed GPIO pins are configured to their respective default function. When configured as GPIO, they have  
an internal static pull-up (default direction is input).  
The legacy devices (Serial Port and IR) are assigned with their legacy system resource allocation.  
National Semiconductor proprietary functions are not assigned with any default resources, and the default values of  
their base addresses are all 00h.  
See Section 2.2 on page 15 for more details on PC87382 reset sources and types.  
Revision 1.2  
23  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.3 MODULE CONTROL  
3.3.1 Module Enable/Disable  
Module control is performed primarily through the Activation bit (bit 0 of Index 30h) of each logical device. The operation of  
each module can be controlled by the host through the LPC bus.  
Module enable/disable by the host through the LPC bus is controlled by the following bits:  
Activation bit (bit 0) in Index 30h of the Standard configuration registers; see Section 3.2.3 on page 20.  
Fast Disable bit in SIOCF6 register; for the Serial Port 1 and IR modules only; see Section 3.7.4 on page 28.  
Global Enable bit (GLOBEN) in SIOCF1 register; see Section 3.7.2 on page 27.  
A module is enabled only if all of these bits are set to their “enable” value.  
When a legacy (SP1 or IR) module is disabled, the following takes place:  
The host system resources of the logical device (IRQ, DMA and runtime address range) are unassigned.  
Access to the standard- and device-specific Logical Device configuration registers through the LPC bus remains enabled.  
Access to the module’s runtime registers through the LPC bus is disabled (transactions are ignored; SYNC cycle is  
not generated).  
The module’s internal clock is disabled (the module is not functional) to lower the power consumption.  
When the GPIO or DLPC module is disabled, the following takes place:  
The host system resources of the logical device (IRQ and runtime address range) are unassigned.  
Access to the standard- and device-specific Logical Device configuration registers through the LPC bus remains enabled.  
Access to the module’s runtime registers through the LPC bus is disabled (transactions are ignored; SYNC cycle is  
not generated).  
The module is functional.  
3.3.2 Floating Module Output  
The pins of the Legacy modules (Serial Port, Infrared) can be floated. When the TRI-STATE Control bit (bit 0) is set in the  
specific module configuration register (at Index F0h of the specific logical device in the configuration space) and the module  
is disabled (see Section 3.3.1), the module output signals are floated and the I/O signals are configured as inputs (note that  
the logic level at the inputs is ignored by the module, which is disabled).  
Figure 6 shows the control mechanism for floating the pins of a Legacy module.  
Device Configuration  
Activation  
Bit (bit 0)  
Index 30h  
Register  
Global  
Enable  
GLOBEN  
Legacy  
Module  
Module Enable  
SIOCF1  
Register  
Fast  
SIOCF6  
Register  
Disable  
xxxDIS1  
Legacy Module  
Output  
Buffer  
Enable  
TRI-  
STATE  
Control  
Configuration  
Register  
(Index F0h)  
1. Wherever the bit is implemented  
Figure 6. Control of Floating Legacy Module Pins  
www.national.com  
24  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
3.4 INTERNAL ADDRESS DECODING  
A full 16-bit address decoding is applied when accessing the configuration I/O space as well as the registers of the functional  
blocks. However, the number of configurable bits in the base address registers varies for each logical device.  
The lower 1, 2, 3, 4 or 5 address bits are decoded within the functional block to determine the offset of the accessed register  
within the logical device’s I/O range of 2, 4, 8, 16 or 32 bytes, respectively. The remaining bits are matched with the base  
address register to decode the entire I/O range allocated to the logical device. Therefore the lower bits of the base address  
register are forced to 0 (read only), and the base address is forced to be 2, 4, 8, 16 or 32 byte-aligned, according to the size  
of the I/O range.  
The base addresses of the Serial Port 1 and FIR modules are limited to the I/O address range of 00h to 7FXh only (bits 11-  
15 are forced to 0). The addresses of the non-legacy logical devices are configurable within the full 16-bit address range (up  
to FFFXh).  
3.5 PROTECTION  
The PC87382 provides features to protect the hardware configuration from changes made by application software running  
on the host.  
The protection is activated by the software setting a “sticky” lock bit. Each lock bit protects a group of configuration bits lo-  
cated either in the same register or in different registers. When the lock bit is set, the lock bit and all the protected bits be-  
come read only and cannot be further modified by the host through the LPC bus. All the lock bits are reset by Hardware  
reset, thus unlocking the protected configuration bits.  
The bit locking protection mechanism is optional.  
The protected groups of configuration bits are described below.  
3.5.1 Configuration Lock  
Lock bit:  
LOCKMCF in SIOCF1 register (Device Configuration).  
Protected bits: LOCKMCF and IOWAIT (in SIOCF1 register) and all bits in SIOCF2 register (Device Configuration).  
3.5.2 GPIO Ports Configuration Lock  
Protects the configuration (but not the data) of all the GPIO Ports.  
Lock bit:  
LOCKGCF in SIOCF1 register (Device Configuration).  
Protected bits for each GPIO Port: LOCKGCF in SIOCF1 register, and all bits in GPCFG register (except LOCKCFP bit) and  
GPEVR register (Device Configuration).  
3.5.3 Fast Disable Configuration Lock  
Protects the Fast Disable bits for all the Legacy modules.  
Lock bit:  
LOCKFDS in SIOCF6 register (Device Configuration).  
Protected bits: All bits in SIOCF6 register (except General-Purpose Scratch bits) and GLOBEN bit in SIOCF1 register  
(Device Configuration).  
3.5.4 Clock Control Lock  
Protects the Clock Generator control bits.  
Lock bit:  
LOCKCCF in CLOCKCF register (Device Configuration).  
Protected bits: All bits in CLOCKCF register (Device Configuration).  
3.5.5 GPIO Ports Lock  
Protects the configuration and data of all the GPIO Ports.  
Lock bit:  
LOCKCFP in GPCFG register, for each GPIO Port (Device Configuration).  
Protected bits for each GPIO Port: PUPCTL, OUTTYPE and OUTENA in GPCFG register; the corresponding bit (to the  
port pin) in GPDO register (GPIO Ports).  
Revision 1.2  
25  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.6 REGISTER TYPE ABBREVIATIONS  
The following abbreviations are used to indicate the Register Type:  
R/W  
R
= Read/Write.  
= Read from a specific address returns the value of a specific register. Write to the same address is to a dif-  
ferent register.  
W
= Write.  
RO  
= Read Only.  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
R/W1S = Read/Write 1 to Set. Writing 1 to a bit sets its value to 1. Writing 0 has no effect.  
3.7 SUPERI/O CONFIGURATION REGISTERS  
This section describes the SuperI/O configuration and ID registers (those registers with first level indexes in the range of  
20h-2Eh). See Table 14 for a summary and directory of these registers.  
Note: Set the configuration registers to enable functions or signals that are relevant to the specific device. The values of  
fields that select functions, or signals, that are excluded from a specific device are treated as reserved and should  
not be selected.  
Table 14. SuperI/O Configuration Registers  
Index  
Mnemonic  
SID  
Register Name  
Type  
Section  
20h  
21h  
SuperI/O ID  
RO  
R/W  
R/W  
3.7.1  
3.7.2  
3.7.3  
SIOCF1  
SIOCF2  
SuperI/O Configuration 1  
SuperI/O Configuration 2  
22h  
23h-25h  
26h  
Reserved for National use  
SIOCF6  
SRID  
SuperI/O Configuration 6  
R/W  
RO  
3.7.4  
3.7.5  
3.7.6  
27h  
SuperI/O Revision ID  
29h  
CLOCKCF  
Clock Generator Control Register  
R/W  
2Ah - 2Fh  
Reserved exclusively for National use  
3.7.1 SuperI/O ID Register (SID)  
This register contains the identity number of the chip. The PC87382 family is identified by the value F4h.  
Location: Index 20h  
Type:  
RO  
Bit  
7
6
5
4
3
2
1
0
Name  
Chip ID  
Reset  
F4h  
www.national.com  
26  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
3.7.2 SuperI/O Configuration 1 Register (SIOCF1)  
Location: Index 21h  
Type:  
Varies per bit  
Bit  
7
6
5
0
4
1
3
0
2
0
1
Reserved  
0
0
GLOBEN  
1
Name  
Reset  
LOCKMCF LOCKGCF  
Reserved  
IOWAIT  
0
0
Bit  
Type  
Description  
7
R/W1S LOCKMCF (Lock Multiplexing Configuration). When set to 1, this bit locks the configuration of  
registers SIOCF1 and SIOCF2 by disabling writing to all bits in these registers (including the LOCKMCF  
bit itself), except for the LOCKGCF and GLOBEN bits in SIOCF1. Once set, this bit can only be cleared  
by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
6
R/W1S LOCKGCF (Lock GPIO Pins Configuration). When set to 1, this bit locks the configuration registers  
of all GPIO pins (see Section 3.10.3 on page 33) by disabling writes to all their bits (including the  
LOCKGCF bit itself). The locked registers include the GPCFG (except LOCKCFP bit) and GPEVR  
registers of all GPIO pins. Once set, this bit can only be cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
5-4  
Reserved. These bits must be ‘01’.  
3-2 R/W or IOWAIT (Number of I/O Wait States). These bits set the number of wait states for I/O transactions  
RO through the LPC bus.  
Bits  
3 2  
Number of Wait States  
0 0:  
0 1:  
1 0:  
0 (default)  
2
6
1 1: 12  
1
0
Reserved. This bit must be 0.  
R/W or GLOBEN (Global Device Enable). This bit makes it possible to disable all logical devices by setting a  
RO single bit (to 0). In addition, when the bit is set to 1, it enables the operation of all the logical devices  
of the PC87382, as long as the logical device is itself enabled (see Table 7 on page 19). The behavior  
of the different devices is explained in Section 3.3 on page 24.  
0: All logical devices in the PC87382 are disabled and their resources are released.  
1: Enables each PC87382 logical device that is itself enabled (default); see Section 3.3.1 on page 24.  
3.7.3 SuperI/O Configuration 2 Register (SIOCF2)  
This register is reset by hardware to 63h.  
Location: Index 22h  
Type:  
R/W or RO  
This register is reserved. It must be written with 63h  
Revision 1.2  
27  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.7.4 SuperI/O Configuration 6 Register (SIOCF6)  
This register provides a fast way to disable one or more modules without having to access the Activate register of each; see  
Section 3.3.1 on page 24.  
Location: Index 26h  
Type:  
Varies per bit  
Bit  
7
LOCKFDS  
0
6
5
4
Reserved  
0
3
SER1DIS  
0
2
IRDIS  
0
1
0
0
0
Name  
General-Purpose  
Scratch  
Reserved  
Reset  
0
0
Bit  
Type  
Description  
7
R/W1 LOCKFDS (Lock Fast Disable Configuration). When set to 1, this bit locks itself, SER1DIS and IRDIS  
S
bits in this register and GLOBEN bit in SIOCF1 register by disabling writing to all of these bits. Once set,  
this bit can only be cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
6-5  
4
R/W General-Purpose Scratch.  
Reserved.  
3
R/W SER1DIS (Serial Port 1 Disable).  
or RO  
0: Enabled or Disabled, according to Activation bit (default).  
1: Disabled.  
2
R/W IRDIS (Infrared Disable).  
or RO  
0: Enabled or Disabled, according to Activation bit (default).  
1: Disabled.  
1-0  
Reserved.  
3.7.5 SuperI/O Revision ID Register (SRID)  
This register contains the ID number of the specific family member (Chip ID) and the chip revision number (Chip Rev).  
Location: Index 27h  
Type:  
RO  
Bit  
7
0
6
Chip ID  
0
5
0
4
3
2
Chip Rev  
X
1
0
Name  
Reset  
X
X
X
X
Bit  
Description  
7-5 Chip ID.  
4-0 Chip Rev. These bits identify the device revision.  
www.national.com  
28  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
3.7.6 Clock Generator Control Register (CLOCKCF)  
Location: Index 29h  
Type:  
Varies per bit  
Bit  
7
CKEN  
0
6
5
4
3
2
0
1
Reserved  
0
0
0
Name  
Reset  
CKOUTSEL CK48SEL CKVALID LOCKCCF  
0
0
0
0
Bit  
Type  
Description  
7
R/W or CKEN (Clock Enable). This bit enables the internal clock of the PC87382. If the clock source selected  
RO by CK48SEL bit is the Clock Generator, CKEN enables the Clock Generator; otherwise it enables the  
path from the CLKIN input pin.  
0: Clock disabled (default).  
1: Clock enabled.  
6
5
R/W or CKOUTSEL (Clock Output Select). Selects the clock source to output on DCLKOUT pin.  
RO  
0: Select Clock Source from CLKIN pin (default).  
1: Select Clock Generator Output. Valid only if CK48SEL field is set.  
R/W or CK48SEL (48 MHz Clock Select). Selects the source of the internal 48 MHz clock.  
RO  
0: The source of the internal 48 MHz clock is CLKIN pin (default).  
Use when CLKIN pin is connected to a 48 MHz clock source.  
1: The source of the internal 48 MHz clock is the Clock Generator.  
Use when CLKIN pin is connected to a 14.31818 MHz clock source.  
4
3
RO CKVALID (Valid Clock Generator, Clock Status). This bit indicates the status of the on-chip, 48 MHz  
Clock Generator and controls the generator output clock signal. The PC87382 modules using this clock  
may be enabled (see Section 3.3.1 on page 24) only after this bit is read high (generator clock is valid).  
0: Generator output clock frozen (default).  
1: Generator output clock active (stable and toggling).  
R/W1S LOCKCCF (Lock Clock Configuration). When set to 1, this bit locks the CLOCKCF register by  
disabling writing to all its bits (including to the LOCKCCF bit itself). Once set, this bit can only be  
cleared by Hardware reset.  
0: The R/W bits are enabled for write (default).  
1: All the bits are Read-Only.  
2-0  
Reserved.  
Revision 1.2  
29  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.8 INFRARED CONFIGURATION  
3.8.1 Logical Device 2 (IR) Configuration  
Table 15 lists the configuration registers that affect the Infrared. Only the last register (F0h) is described here. See Sections  
3.2.3 and 3.2.4 for descriptions of the other registers.  
Table 15. Infrared Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 0 of the SIOCF1 register and bit 2 of the SIOCF6 register. R/W  
00h  
02h  
F8h  
03h  
03h  
04h  
04h  
02h  
60h Base Address MSB register. Bits 7-3 (for A15-11) are read only, 00000b.  
61h Base Address LSB register. Bit 2-0 (for A2-0) are read only, 000b.  
70h Interrupt Number and Wake-Up on IRQ Enable register.  
71h Interrupt Type. Bit 1 is R/W; other bits are read only.  
74h DMA Channel Select 0 (RX_DMA).  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
75h DMA Channel Select 1 (TX_DMA).  
F0h Infrared Configuration register.  
3.8.2 Infrared Configuration Register  
This register is reset by hardware to 02h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
6
0
5
0
4
3
0
2
1
0
Name  
Bank  
Select  
Enable  
Power  
Mode  
Control  
Busy  
Indicator  
TRI-STATE  
Control  
Reserved  
Reset  
0
0
0
1
0
Bit  
Description  
7
Bank Select Enable. Enables bank switching for Infrared.  
0: All attempts to access the extended registers in Infrared are ignored (default).  
1: Enables bank switching for Infrared.  
6-3 Reserved.  
2
Busy Indicator. This read-only bit can be used by power management software to decide when to power down  
the Infrared logical device.  
0: No transfer in progress (default).  
1: Transfer in progress.  
1
Power Mode Control. When the logical device is active in:  
0: Low power mode  
Infrared clock disabled. The output signals are set to their default states. Registers are maintained (unlike  
Active bit in Index 30, which also prevents access to Infrared registers).  
1: Normal power mode  
Infrared clock enabled. Infrared is functional when the logical device is active (default).  
0
TRI-STATE Control. When enabled and the device is inactive, the logical device output pins are in TRI-STATE.  
One exception is the IRTX pin, which is driven to 0 when Infrared is inactive and is not affected by this bit.  
0: TRI-STATE disabled (default).  
1: TRI-STATE enabled.  
www.national.com  
30  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
3.9 SERIAL PORT 1 CONFIGURATION  
3.9.1 Logical Device 3 (SP1) Configuration  
Table 16 lists the configuration registers that affect the Serial Port 1. Only the last register (F0h) is described here. See Sec-  
tions 3.2.3 and 3.2.4 for descriptions of the other registers.  
Table 16. Serial Port 1 Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 0 of the SIOCF1 register and bit 3 of the SIOCF6 register. R/W  
00h  
03h  
F8h  
04h  
03h  
04h  
04h  
02h  
60h Base Address MSB register. Bits 7-3 (for A15-11) are read only, 00000b.  
61h Base Address LSB register. Bit 2-0 (for A2-0) are read only, 000b.  
70h Interrupt Number and Wake-Up on IRQ Enable register.  
71h Interrupt Type. Bit 1 is R/W; other bits are read only.  
74h Report no DMA Assignment.  
R/W  
R/W  
R/W  
R/W  
RO  
75h Report no DMA Assignment.  
RO  
F0h Serial Port 1 Configuration register.  
R/W  
3.9.2 Serial Port 1 Configuration Register  
This register is reset by hardware to 02h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
6
0
5
0
4
3
0
2
1
0
Name  
Bank  
Select  
Enable  
Power  
Mode  
Control  
Busy  
Indicator  
TRI-STATE  
Control  
Reserved  
Reset  
0
0
0
1
0
Bit  
Description  
7
Bank Select Enable. Enables bank switching for Serial Port 1.  
0: Disabled (default).  
1: Enabled.  
6-3 Reserved.  
2
Busy Indicator. This read-only bit can be used by power management software to decide when to power down  
the Serial Port 1 logical device.  
0: No transfer in progress (default).  
1: Transfer in progress.  
1
Power Mode Control. When the logical device is active in:  
0: Low power mode  
Serial Port 1 clock disabled. The output signals are set to their default states. The RI input signal can be  
programmed to generate an interrupt. Register values are maintained (unlike Active bit in Index 30, which also  
prevents access to Serial Port 1 registers).  
1: Normal power mode  
Serial Port 1 clock enabled. Serial Port 1 is functional when the logical device is active (default).  
0
TRI-STATE Control. When enabled and the device is inactive, the logical device output pins are in TRI-STATE.  
0: Disabled (default).  
1: Enabled.  
Revision 1.2  
31  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.10 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) PORTS CONFIGURATION  
3.10.1 General Description  
The GPIO functional block includes eight pins arranged in two 8-bit ports:  
Port 0 contains five GPIOE pins (i.e., GPIO pins with event detection).  
Port 2 contains three GPIO pins (i.e., GPIO pins without event detection).  
All pins in port 0 have full event detection capability, enabling them to trigger the assertion of IRQ signals. Pins in port 2 do  
not have event detection capability. The runtime registers associated with the two ports are arranged in the GPIO address  
space as shown in Table 17. The GPIO base address is 16-byte aligned. Address bits 3-0 are used to indicate the register  
offset.  
Table 17. Runtime Registers in GPIO Address Space  
Offset  
Mnemonic  
GPDO0 GPIO Data Out 0  
GPDI0 GPIO Data In 0  
Register Name  
Port Type  
00h  
01h  
0
R/W  
RO  
02h  
GPEVEN0 GPIO Event Enable 0  
GPEVST0 GPIO Event Status 0  
Reserved  
R/W  
03h  
R/W1C  
04h-07h  
08h  
GPDO2 Data Out 2  
2
R/W  
RO  
09h  
GPDI2  
Data In 2  
3.10.2 Implementation  
The standard GPIO port with event detection capability (such as port 0) has four runtime registers. Each pin is associated  
with a GPIO Pin Configuration register that includes seven configuration bits. Port 2 is a non-standard port that does not  
support event detection, and therefore differs from the generic model as follows:  
It has two runtime registers for basic functionality: GPDO2 and GPDI2. Event detection registers GPEVEN2 and  
GPEVST2 are not available.  
Only bits 3-0 are implemented in the GPIO Pin Configuration register of port 2. Bits 6-4, associated with the event  
detection functionality, are reserved.  
www.national.com  
32  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
3.10.3 Logical Device 7 (GPIO) Configuration  
Table 18 lists the configuration registers that affect the GPIO. Only the last three registers (F0h - F2h) are described here.  
See Sections 3.2.3 and 3.2.4 for a detailed description of the other registers.  
Table 18. GPIO Configuration Register  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 7 of the SIOCF1 register.  
60h Base Address MSB register.  
R/W  
R/W  
00h  
00h  
00h  
00h  
03h  
04h  
04h  
00h  
61h Base Address LSB register. Bits 3-0 (for A3-0) are read only, 0000b.  
70h Interrupt Number register.  
R/W  
R/W  
71h Interrupt Type. Bit 1 is read/write. Other bits are read only.  
74h Report no DMA assignment.  
R/W  
RO  
75h Report no DMA assignment.  
RO  
F0h GPIO Pin Select register (GPSEL).  
R/W  
04h or 44h1  
01h  
F1h GPIO Pin Configuration register (GPCFG).  
Varies per bit  
F2h GPIO Pin Event Routing register (GPEVR).  
1. Depending on port number  
R/W or RO  
Figure 7 shows the organization of these registers.  
GPIO Pin Select Register  
(Index F0h)  
Port Select  
Pin Select  
Port 2, Pin 0  
Port 0, Pin 0  
Pin 0  
Port 0  
GPIO Pin  
Configuration Register  
(Index F1h)  
Configuration Registers  
Port 0, Pin 7  
Port 2  
Pin 7  
Pin 0  
Port 0, Pin 0  
GPIO Pin Event  
Routing Register  
(Index F2h)  
Event Routing  
Registers  
Port 0, Pin 7  
Pin 7  
Figure 7. Organization of GPIO Pin Registers  
Revision 1.2  
33  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.10.4 GPIO Pin Select Register (GPSEL)  
This register selects the GPIO pin (port number and bit number) to be configured (i.e., which register is accessed via the  
GPIO Pin Configuration register). It is reset by hardware to 00h.  
Location: Index F0h  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
0
3
Reserved  
0
2
0
1
PINSEL  
0
0
0
Name  
Reset  
Reserved  
PORTSEL  
Bit  
Description  
7-6 Reserved.  
5-4 PORTSEL (Port Select). These bits select the GPIO port to be configured:  
Bits  
5 4  
GPIO Port  
0 0: Port 0 (default)  
0 1: Reserved  
1 0: Port 2  
1 1: Reserved  
3
Reserved.  
2-0 PINSEL (Pin Select). These bits select the GPIO pin to be configured in the selected port:  
000, 001,... 111: Binary value of the pin number, 0, 1,... 7 respectively (default=0).  
For port 2 only values 000,001,011 are legal.  
3.10.5 GPIO Pin Configuration Register (GPCFG)  
This register reflects, for both read and write, the register currently selected by the GPIO Pin Select register (GPSEL). All  
the GPIO Pin registers that are accessed via this register have a common bit structure, as shown below. This register is  
reset by hardware to 44h for port 0, and to 04h for port 2.  
Location: Index F1h  
Type:  
Varies per bit  
Port 0, bits 0-4 (with event detection capability)  
Bit  
7
Reserved  
0
6
EVDBNC  
1
5
EVPOL  
0
4
EVTYPE  
0
3
LOCKCFP  
0
2
PUPCTL  
1
1
OUTTYPE  
0
0
OUTENA  
0
Name  
Reset  
Port 2, bits 0,1,3 (without event detection capability)  
Bit  
7
6
5
4
0
3
LOCKCFP  
0
2
PUPCTL  
1
1
OUTTYPE  
0
0
OUTENA  
0
Name  
Reset  
Reserved  
0
0
0
Bit  
Type  
Description  
7
6
Reserved.  
R/W or EVDBNC (Event Debounce Enable). (Ports 0 and 1 with event detection capability). Enables  
RO transferring the signal only after a predetermined debounce period.  
0: Disabled.  
1: Enabled (default).  
Reserved. (Port 2). Always 0.  
www.national.com  
34  
Revision1.2  
3.0 Device Architecture and Configuration (Continued)  
Bit  
Type  
Description  
5
R/W or EVPOL (Event Polarity). (Ports 0 and 1 with event detection capability). This bit defines the polarity of  
RO the signal that issues an interrupt from the corresponding GPIO pin (falling/low or rising/high).  
0: Falling edge or low level input (default).  
1: Rising edge or high level input.  
Reserved. (Port 2). Always 0.  
4
3
R/W or EVTYPE (Event Type). (Ports 0 and 1 with event detection capability). This bit defines the type of the  
RO signal that issues an interrupt from the corresponding GPIO pin (edge or level).  
0: Edge input (default).  
1: Level input.  
Reserved. (Port 2). Always 0.  
R/W1S LOCKCFP (Lock Configuration of Pin). When set to 1, this bit locks the GPIO pin configuration and  
data (see also Section 5.4 on page 41) by disabling writing to itself, to GPCFG register bits PUPCTL,  
OUTTYPE and OUTENA, and to the corresponding bit in GPDO register. Once set, this bit can only be  
cleared by Hardware reset.  
0: R/W bits are enabled for write (default).  
1: All bits are RO.  
2
R/W or PUPCTL (Pull-Up Control). This bit is used to enable/disable the internal pull-up capability of the  
RO corresponding GPIO pin. It supports open-drain output signals with internal pull-ups and TTL input  
signals.  
0: Disabled.  
1: Enabled (default).  
1
0
R/W or  
RO  
(
OUTTYPE Output Type). This bit controls the output buffer type (open-drain or push-pull) of the  
corresponding GPIO pin.  
0: Open-drain (default).  
1: Push-pull.  
R/W or OUTENA (Output Enable). This bit indicates the GPIO pin output state. It has no effect on the input  
RO path.  
0: TRI-STATE (default).  
1: Output enabled.  
3.10.6 GPIO Event Routing Register (GPEVR)  
This register enables the routing of the GPIO event to IRQ signals. It is implemented only for ports 0,1 which have event  
detection capability. This register is reset by hardware to 00h.  
Location: Index F2h  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
Reserved  
0
3
0
2
0
1
0
0
EV2IRQ  
0
Name  
Reset  
Bit  
Description  
7-1 Reserved.  
0
EV2IRQ (Event to IRQ Routing). Controls the routing of the event from the selected GPIO pin to IRQ; see  
Section 5.3.2 on page 40.  
0: Disabled (default).  
1: Enabled.  
Revision 1.2  
35  
www.national.com  
3.0 Device Architecture and Configuration (Continued)  
3.11 DOCKING LPC SWITCH CONFIGURATION  
3.11.1 Logical Device 19 (DLPC) Configuration  
Table 19 lists the configuration registers that affect the DLPC. See Sections 3.2.3 and 3.2.4 for descriptions of the registers  
summarized below.  
Table 19. DLPC Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
30h Activate. See also bit 0 of the SIOCF1 register.  
60h Base Address MSB register.  
R/W  
R/W  
R/W  
RO  
00h  
00h  
00h  
00h  
00h  
04h  
04h  
61h Base Address LSB register. Bit 0 (for A0) is read only, 0b.  
70h Interrupt Number register. No Interrupt assignment.  
71h Interrupt Type. No Interrupt assignment.  
74h Report no DMA assignment.  
RO  
RO  
75h Report no DMA assignment.  
RO  
www.national.com  
36  
Revision1.2  
4.0 LPC Bus Interface  
4.1 OVERVIEW  
The LPC host Interface supports 8-bit I/O Read and Write and 8-bit DMA transactions, as defined in Intel’s LPC Interface  
Specification, Revision 1.1.  
4.2 LPC TRANSACTIONS  
The LPC Interface of the PC87382 can respond to the following LPC transactions:  
8-bit I/O read and write cycles  
8-bit DMA read and write cycles  
DMA request cycles  
4.3 CLKRUN FUNCTIONALITY  
The PC87382 supports the CLKRUN signal, which is implemented according to the specification in PCI Mobile Design  
Guide, Revision 1.1, December 18, 1998. The PC87382 supports operation with both a slow and stopped clock in ACPI state  
S0 (when the system is active but is not being accessed). In the following cases, the PC87382 drives the CLKRUN signal  
low to force the LPC bus clock into full speed operation:  
An IRQ is pending internally, waiting to be sent through the serial IRQ.  
A DMA request is pending internally, waiting to be sent through the serial DMA.  
Note: When the CLKRUN signal is not in use, the PC87382 assumes a valid clock on the LCLK pin.  
4.4 INTERRUPT SERIALIZER  
The Interrupt Serializer translates parallel interrupt request signals received from internal IRQ sources, into serial interrupt  
request data transmitted over the SERIRQ bus.  
The internal IRQs are fed into a Mapping, Enable and Polarity Control block, which maps them to their associated IRQ slots.  
The IRQs are then fed into the Interrupt Serializer, where they are translated into serial data and transmitted over the SER-  
IRQ bus.  
The same slot cannot be shared among different interrupt sources in the device.  
Revision 1.2  
37  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port  
This chapter describes one 8-bit port. A device may include a combination of several ports with different implementations.  
For the device specific implementation, see Section 3.10 on page 32.  
5.1 OVERVIEW  
The GPIO port is an 8-bit port, which is based on eight pins. It features:  
Software capability to manipulate and read pin levels  
Controllable system notification by several means based on the pin level or level transition  
Ability to capture and manipulate events and their associated status  
Back-drive protected pins.  
GPIO port operation is associated with two sets of registers:  
Pin Configuration registers, mapped in the Device Configuration space. These registers are used to set up the logical  
behavior of each pin. There are two 8-bit registers for each GPIO pin.  
Four 8-bit runtime registers: GPIO Data Out (GPDO), GPIO Data In (GPDI), GPIO Event Enable (GPEVEN) and  
GPIO Event Status (GPEVST). These registers are mapped in the GPIO device I/O space (which is determined by  
the base address registers in the GPIO Device Configuration). They are used to manipulate and/or read the pin val-  
ues, and to control and handle system notification. Each runtime register corresponds to the 8-pin port, such that bit  
n in each one of the four registers is associated with GPIOXn pin, where X is the port number.  
Each GPIO pin is associated with ten configuration bits and the corresponding bit slice of the four runtime registers, as  
shown in Figure 8.  
The functionality of the GPIO port is divided into basic functionality, which includes the manipulation and reading of the GPIO  
pins, and enhanced functionality. Basic functionality is described in Section 5.2. Enhanced functionality, which includes  
event detection and system notification, is described in Section 5.3.  
Bit n  
GPDOX  
GPIOX Base Address  
GPDIX  
Runtime  
8 GPCFG  
Registers  
GPEVENX  
GPEVSTX  
Registers  
X = port number  
n = pin number, 0 to 7  
GPIO Pin  
Configuration (GPCFG)  
Register  
GPIOXn  
Pin  
GPIOXn CNFG  
GPIOXn  
Port Logic  
x8  
Port and Pin  
Select  
GPIO Pin  
Select (GPSEL)  
Register  
x8  
8 GPEVR  
Registers  
Event  
Pending  
Indicator  
Interrupt  
Request  
Event  
Routing  
Control  
x8  
GPIO Pin Event  
Routing (GPEVR)  
Register  
GPIOXn ROUTE  
Figure 8. GPIO Port Architecture  
www.national.com  
38  
Revision1.2  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.2 BASIC FUNCTIONALITY  
The basic functionality of each GPIO pin is based on four configuration bits and a bit slice of runtime registers GPDO and  
GPDI. The configuration and operation of a single GPIOXn pin (pin n in port X) is shown in Figure 9.  
GPIO Device  
Enable  
Read Only  
Data In  
Static  
Pull-Up  
Push-Pull =1  
Pin  
Read/Write  
Data Out  
Internal  
Bus  
Pull-Up  
Enable  
Output  
Enable  
Output  
Type  
Pull-Up  
Control  
Lock  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GPIO Pin Configuration (GPCFG) Register  
Figure 9. GPIO Basic Functionality  
5.2.1 Configuration Options  
The GPCFG register controls the following basic configuration options:  
Port Direction - Controlled by the Output Enable bit (bit 0).  
Output Type - Push-pull vs. open-drain. It is controlled by Output Buffer Type (bit 1) by enabling/disabling the pull-up  
portion of the output buffer.  
Weak Static Pull-Up - May be added to any type of port (input, open-drain or push-pull). It is controlled by Pull-Up Control  
(bit 2).  
Pin Lock - GPIO pin may be locked to prevent any changes in the output value and/or the output characteristics. The  
lock is controlled by Lock (bit 3). It disables writes to the GPDO register bits, and to bits 0-3 of the GPCFG register (In-  
cluding the Lock bit itself). Once locked, it can be released by Hardware reset only.  
5.2.2 Operation  
The value that is written to the GPDO register is driven to the pin if the output is enabled. Reading from the GPDO register  
returns its contents, regardless of the pin value or the port configuration. The GPDI register is a read-only register. Reading  
from the GPDI register returns the pin value, regardless of what is driving it (the port itself, configured as an output port, or  
the external device when the port is configured as an input port). Writing to this register is ignored.  
Activation of the GPIO port is controlled by an external device-specific configuration bit (or a combination of bits). When the  
port is inactive, access to GPDI and GPDO registers is disabled. However, there is no change in the port configuration and  
in the GPDO value, and hence there is no effect on the outputs of the pins.  
Revision 1.2  
39  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.3 EVENT HANDLING AND SYSTEM NOTIFICATION  
The enhanced GPIO port supports system notification based on event detection. This functionality is based on six configu-  
ration bits and a bit slice of runtime registers GPEVEN and GPEVST. The configuration and operation of the event detection  
capability is shown in Figure 10. System notification is shown in Figure 11.  
GPIO  
Event  
Pending  
Indication  
GPIO  
Status  
1
0
Set  
Read  
Reset  
R/W  
Event  
Enable  
Write 1 to Clear  
0
1
Rising  
Edge  
Detector  
Input  
Debouncer  
Internal  
Bus  
Pin  
Rising Edge or  
High Level =1  
Level =1  
Event  
Debounce  
Enable  
GPIO Pin Configuration Register  
(GPCFG)  
Event Type  
Bit 4  
Event Polarity  
Bit 5  
Bit 6  
Figure 10. Event Detection  
5.3.1 Event Configuration  
Each pin in the GPIO port is a potential input event source. The event detection can trigger a system notification on prede-  
termined behavior of the source pin. The GPCFG register determines the event detection trigger type for the system notifi-  
cation.  
Event Type and Polarity  
Two trigger types of event detection are supported: edge and level. An edge event can be detected on a source pin transition  
either from high to low or low to high. A level event may be detected when the source pin is at active level. The trigger type  
is determined by Event Type (bit 4 of the GPCFG register). The direction of the transition (for edge) or the polarity of the  
active level (for level) is determined by Event Polarity (bit 5 of the GPCFG register).  
Active edge refers to a change in a GPIO pin level that matches the Event Polarity bit (1 for rising edge and 0 for falling  
edge). Active level refers to the GPIO pin level that matches the Event Polarity bit (1 for high level and 0 for low level). The  
corresponding bit in GPEVST register is set by hardware whenever an active edge or an active level is detected, regardless  
of the GPEVEN register setting. Writing 1 to the Status bit clears it to 0. Writing 0 is ignored.  
Event Debounce Enable  
The input signal can be debounced for at least 16 msec before entering the Rising Edge detector. The signal state is trans-  
ferred to the detector only after a debouncing period during which the signal has no transitions, to ensure that the signal is  
stable. The debouncer adds 16 msec delay to both assertion and de-assertion of the event pending indicator. Therefore,  
when working with a level event and system notification by IRQ, it is recommended to disable the debounce if the delay in  
the IRQ de-assertion is not acceptable. The debounce is controlled by Event Debounce Enable (bit 6 of the GPCFG register).  
5.3.2 System Notification  
System notification on GPIO-triggered events is done by asserting an Interrupt Request (via the device’s Bus Interface).  
The system notification for each GPIO pin is controlled by the corresponding bits in the GPEVEN and GPEVR registers.  
System notification by a GPIO pin is enabled if the corresponding bit of the GPEVEN register is set to 1. The event routing  
mechanism is shown in Figure 11.  
www.national.com  
40  
Revision1.2  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
GPIO Event Pending Indication  
GPIO Event to  
IRQ  
Event  
Routing  
Logic  
Routed Events  
from other GPIO Pins  
Enable  
IRQ  
Routing  
GPIO Pin  
Event Routing Register  
(GPEVR)  
Bit 0  
Figure 11. GPIO Event Routing Mechanism  
The GPEVST register reflects the event source pending status.  
Active edge refers to a change in a GPIO pin level that matches the Event Polarity bit (1 for rising edge and 0 for falling  
edge). Active level refers to the GPIO pin level that matches the Event Polarity bit (1 for high level and 0 for low level). The  
corresponding bit of the GPEVST register is set by hardware whenever an active edge is detected, regardless of any other  
bit settings. Writing 1 to the Status bit clears it to 0. Writing 0 is ignored.  
A GPIO pin is in event pending state if the corresponding bit of the GPEVEN register is set and one of the following is true:  
The Event Type is level and the pin is at active level.  
The Event Type is edge and the corresponding bit of the GPEVST register is set.  
The target means of system notification is asserted if at least one GPIO pin is in event pending state.  
The selection of the target means of system notification is determined by the GPEVR register. If IRQ is selected as one of the  
means for the system notification, the specific IRQ line is determined by the IRQ selection procedure of the device configura-  
tion. The assertion of any means of system notification is blocked when the GPIO functional block is deactivated.  
System event notification functionality is provided even when the GPIO pin is enabled as output.  
A pending edge event may be cleared by clearing the corresponding GPEVST bit. However, a level event source must not  
be released by software (except for disabling the source) as long as the pin is at active level. When a level event is used, it  
is recommended to disable the input debouncer.  
On de-activation of the GPIO port, the GPEVST register is cleared, and access to both the GPEVST and GPEVEN registers  
is disabled. The target IRQ line is detached from the GPIO and de-asserted.  
Before enabling any system notification, it is recommended to first set the desired event configuration and then verify that  
the status registers are cleared.  
5.4 GPIO PORT REGISTERS  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write.  
R
= Read from a specific address returns the value of a specific register. Write to the same address is to a  
different register.  
W
= Write.  
RO  
= Read Only.  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
Revision 1.2  
41  
www.national.com  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.4.1 GPIO Pin Configuration Registers Structure  
For each GPIO Port, there is a group of eight identical sets of configuration registers. Each set is associated with one GPIO  
pin. The entire group is mapped to the PnP configuration space. The mapping scheme is based on the GPSEL register (see  
Section 3.10.4 on page 34), which functions as an index register for the pin, and the selected GPCFG and GPEVR registers,  
which reflect the configuration of the currently selected pin (see Table 20).  
Table 20. GPIO Configuration Registers  
Index  
Configuration Register or Action  
Type  
Reset  
F0h GPIO Pin Select register (GPSEL)  
R/W  
00h  
04h or 44h1  
01h  
F1h GPIO Pin Configuration register 1 (GPCFG)  
Varies per bit  
F2h GPIO Pin Event Routing register (GPEVR)  
1. Depending on port number  
R/W or RO  
5.4.2 GPIO Port Runtime Register Map  
Offset  
Mnemonic  
Register Name  
GPIO Data Out  
Type  
R/W  
Section  
5.4.3  
1
1
1
1
GPDO  
GPDI  
Device specific  
Device specific  
Device specific  
Device specific  
GPIO Data In  
RO  
5.4.4  
GPEVEN  
GPEVST  
GPIO Event Enable  
GPIO Event Status  
R/W  
5.4.5  
R/W1C  
5.4.6  
1. The location of this register is defined in Section 3.10.3 on page 33.  
5.4.3 GPIO Data Out Register (GPDO)  
Location: Device specific  
Type:  
R/W  
Bit  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Name  
DATAOUT  
Reset  
Bit  
Description  
7-0 DATAOUT (Data Out). Bits 7-0 correspond to pins 7-0 of the specific Port. The value of each bit determines the  
value driven on the corresponding GPIO pin when its output buffer is enabled. Writing to the bit latches the  
written data, unless the bit is locked by the GPCFG register Lock bit. Reading the bit returns its value regardless  
of the pin value and configuration.  
0: Corresponding pin driven to low.  
1: Corresponding pin driven or released (according to buffer type selection) to high (default).  
www.national.com  
42  
Revision1.2  
5.0 General-Purpose Input/Output (GPIO) Port (Continued)  
5.4.4 GPIO Data In Register (GPDI)  
Location: Device specific  
Type:  
RO  
Bit  
7
6
5
4
3
2
1
0
Name  
DATAIN  
Reset  
X
X
X
X
X
X
X
X
Bit  
Description  
7-0 DATAIN (Data In). Bits 7-0 correspond to pins 7-0 of the specific Port. Reading each bit returns the value of the  
corresponding GPIO pin. Pin configuration and the GPDO register value may influence the pin value. Writes are  
ignored.  
0: Corresponding pin level low.  
1: Corresponding pin level high.  
5.4.5 GPIO Event Enable Register (GPEVEN)  
Location: Device specific  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Name  
EVTENA  
Reset  
Bit  
Description  
7-0 EVTENA (Event Enable). Bits 7-0 correspond to pins 7-0 of the specific Port. Each bit enables system  
notification by the corresponding GPIO pin. The bit has no effect on the corresponding Status bit in GPEVST  
register.  
0: Event pending by corresponding GPIO pin masked.  
1: Event pending by corresponding GPIO pin enabled.  
5.4.6 GPIO Event Status Register (GPEVST)  
Location: Device specific  
Type:  
R/W1C  
Bit  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Name  
EVTSTAT  
Reset  
Bit  
Description  
70 EVTSTAT (Event Status). Bits 7-0 correspond to pins 7-0 of the specific Port. The setting of each bit is  
independent of the Event Enable bit in GPEVEN register. An active event sets the Status bit, which may be  
cleared only by software writing 1 to the bit.  
0: No active edge or level detected since last cleared.  
1: Active edge or level detected.  
Revision 1.2  
43  
www.national.com  
6.0 Docking LPC Switch  
6.1 OVERVIEW  
The Docking LPC Switch connects between the main platform LPC bus and the Docking Station LPC bus.  
Features:  
Low switch resistance  
LDRQ output sharing between local and Docking DMA requests  
Docking LPC Device Reset control  
Programmable Clock to Reset Delay  
Prevents signal bouncing when the Docking Station is switched on  
6.2 FUNCTIONAL DESCRIPTION  
6.2.1 Basic Functionality  
The Docking LPC Bus signals are divided into the following groups:  
Immediate connection signals (DLCLK, DSERIRQ, DCLKRUN): These signals are connected via a low-resistance  
switch to the main LPC bus.  
Delayed connection signals (DLAD3-0, DLFRAME): These signals are connected via a low-resistance switch to the  
main LPC bus. When enabled, the connection is established on LPC Idle detection following CLK2RST Timer expira-  
tion.  
DLRESET: Driven low starting from the time the switch is enabled until CLK2RST Timer expiration. After CLK2RST  
Timer expiration, DLRESET reflects the LRESET pin value.  
DCLKOUT: When the switch is enabled, DCLKOUT drives the Clock Generator output or clock from CLKIN input (de-  
pending on bit 6 of CLOCKCF register; see Section 3.7.6 on page 29) to the Docking device. Otherwise, this pin is  
not driven and is held high by an internal pull-up resistor.  
DLDRQ: Combined with an internal DMA request on LDRQ output; see Section 6.2.2 on page 44.  
The switch connection procedure is triggered by the following condition:  
Bit 0 of DLCTL register is written with 1.  
Following the switch trigger detection, the following sequence is performed as follows:  
1. DLCLK, DSERIRQ, DCLKRUN signals are connected to LCLK, SERIRQ, CLKRUN signals, respectively. DCLKOUT out-  
put driver is enabled. DLRESET output is held low (active). CLK2RST timer starts counting.  
2. EXP bit of DLCTL register is set on CLK2RST counter reaching the value defined by CLK2RSTVAL field of DLCTL reg-  
ister.  
3. Host software must poll for the EXP bit. The switch connection is performed when the EXP bit is read with 1. In addition,  
the Serial IRQ must be configured to Continuous mode during the switch activation.  
4. DLRESET output is deactivated. DLFRAME and DLAD3-0 signals are connected to LFRAME and LAD3-0 signals, re-  
spectively. LDRQ sharing mechanism is enabled; see Section 6.2.2.  
All Docking LPC signals are held high by internal pull-up resistors while the corresponding switch is in open (disconnected)  
state, except DLRESET, which is held low by pull-down resistor.  
At VDD Power-up the switch is in disconnected state. Note that the switch state is not affected by the warm reset.  
6.2.2 LDRQ Sharing Mechanism  
The Docking Station DMA Request DLDRQ and the PC87382 internal DMA Request are combined on LDRQ output using  
the LDRQ sharing mechanism. The mechanism performs arbitration between the two DMA Requests.  
www.national.com  
44  
Revision1.2  
6.0 Docking LPC Switch (Continued)  
6.3 DOCKING LPC SWITCH REGISTERS  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write.  
RO = Read Only.  
6.3.1 Docking LPC Switch Register Map  
Offset  
Mnemonic  
DLCTL  
Register Name  
Docking LPC Control  
Reserved  
Type  
R/W  
RO  
Section  
1
1
6.3.2  
-
Device specific  
Device specific  
Reserved  
1. The location of this register is defined in the Section 3.11.1 on page 36.  
6.3.2 Docking LPC Control (DLCTL)  
This register is reset by VDD Power-Up reset.  
Location: Device specific  
Type:  
R/W  
Bit  
7
0
6
0
5
0
4
0
3
EXP  
0
2
1
0
DLCON  
0
Name  
Reset  
Reserved  
CLK2RSTVAL  
0
0
Bit  
Type  
Description  
7-4  
3
Reserved.  
RO  
EXP (Timer Expired). When set, this bit indicates that the CLK2RST timer expired. The bit is  
cleared on the switch disconnection.  
2-1  
R/W CLK2RSTVAL (CLK2RST Timer Value). Defines the minimum time interval from the connection of  
DLCLK until DLRESET de-assertion. The interval is measured in LCLK clock cycles.  
Bits  
2 1  
Minimum Time Interval  
0 0: 0 - the Timer is disabled (default)  
0 1: 33*tCYC  
1 0: 330*tCYC  
1 1: 3300*tCYC  
0
R/W DLCON (Docking LPC Connect). Setting this bit triggers the Docking LPC Connection procedure.  
Clearing this bit disables the switch.  
Revision 1.2  
45  
www.national.com  
7.0 Legacy Functional Blocks  
This chapter briefly describes the following blocks, which provide legacy device functions:  
Serial Port 1 (SP1)  
Infrared (IR)  
The description of each Legacy block includes the sections listed below. For details on the general implementation of each  
legacy block, see the SuperI/O Legacy Functional Blocks Datasheet.  
General Description  
Register Map table(s)  
Bitmap table(s)  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write.  
R
= Read from a specific address returns the value of a specific register. Write to the same address is to a  
different register.  
W
= Write.  
RO  
= Read Only.  
R/W1C= Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
www.national.com  
46  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
7.1 SERIAL PORT 1 (SP1)  
7.1.1  
General Description  
The Serial Port functional block supports serial data communication with a remote peripheral device or modem using a wired  
interface. The Serial Port can function in one of three modes:  
16450-Compatible mode (Standard 16450)  
16550-Compatible mode (Standard 16550)  
Extended mode  
Extended mode provides advanced functionality for the UART.  
The Serial Port provides receive and transmit channels that can operate concurrently in full-duplex mode. It performs all  
functions required to conduct parallel data interchange with the system and composite serial data exchange with the external  
data channel, including:  
Format conversion between the internal parallel data format and the external programmable composite serial format  
Serial data timing generation and recognition  
Parallel data interchange with the system using a choice of bidirectional data transfer mechanisms  
Status monitoring for all phases of communication activity  
Complete MODEM-control capability.  
Existing 16550-based legacy software is completely and transparently supported. Module organization and specific fallback  
mechanisms switch the module to 16550-Compatible mode on reset or when initialized by 16550 software.  
7.1.2  
Register Bank Overview  
Four register banks, each containing eight registers, control Serial Port operation. All registers use the same 8-byte address  
space to indicate offsets 00h through 07h. The active bank must be selected by the software.  
The register bank organization enables access to the banks as required for activation of all module modes, while maintaining  
transparent compatibility with 16450 or 16550 software.  
The Bank Selection register (BSR) selects the active bank and is common to all banks as shown in Figure 12. Therefore,  
each bank defines seven new registers.  
The default bank selection after system reset is 0.  
BANK 3  
BANK 2  
BANK 1  
BANK 0  
Offset 07h  
Offset 06h  
Offset 05h  
Offset 04h  
Common  
LCR/BSR  
Register  
Throughout  
All Banks  
Offset 02h  
Offset 01h  
Offset 00h  
16550 Banks  
Figure 12. Register Bank Architecture  
Revision 1.2  
47  
www.national.com  
7.0 Legacy Functional Blocks (Continued)  
7.1.3  
SP1 Register Maps  
Table 21. Bank 0 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
RXD  
TXD  
IER  
Receiver Data  
RO  
W
00h  
01h  
02h  
Transmitter Data  
Interrupt Enable  
Event Identification  
FIFO Control  
R/W  
R
EIR  
FCR  
LCR  
BSR  
MCR  
LSR  
MSR  
SPR  
ASCR  
W
Link Control  
W
03h  
Bank Select  
R/W  
R/W  
R/W  
R
04h  
05h  
06h  
Modem/Mode Control  
Link Status  
Modem Status  
Scratch Pad  
R/W  
RO  
07h  
Auxiliary Status and Control  
Table 22. Bank 1 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
LBGD(L)  
Legacy Baud Generator Divisor (Low Byte)  
R/W  
R/W  
01h  
LBGD(H) Legacy Baud Generator Divisor (High Byte)  
02h  
Reserved  
LCR/BSR Link Control/ Bank Select  
Reserved  
03h  
R/W  
04h-07h  
Table 23. Bank 2 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
Baud Generator Divisor (Low Byte)  
R/W  
R/W  
R/W  
R/W  
R/W  
BGD(H) Baud Generator Divisor (High Byte)  
EXCR1  
BSR  
Extended Control 1  
Bank Select  
EXCR2  
Extended Control 2  
Reserved  
TXFLV  
RXFLV  
TX_FIFO Level  
RX_FIFO Level  
RO  
RO  
www.national.com  
48  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
Table 24. Bank 3 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
MRID  
SH_LCR  
SH_FCR  
BSR  
Module Identification and Revision ID  
Shadow of LCR  
RO  
RO  
01h  
02h  
Shadow of FIFO Control  
Bank Select  
RO  
03h  
R/W  
04h-07h  
Reserved  
7.1.4  
SP1 Bitmap Summary  
Table 25. Bank 0 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
00h  
RXD  
TXD  
RXD7-0  
TXD7-0  
IER1  
IER2  
EIR1  
EIR2  
FCR1  
Reserved  
MS_IE  
MS_IE  
RXFT  
LS_IE  
LS_IE  
TXLDL_IE RXHDL_IE  
TXLDL_IE RXHDL_IE  
01h  
Reserved  
FEN1-0  
TXEMP_IE Reserved  
Reserved  
IPR1-0  
IPF  
Reserved  
RXFTH1-0  
RXFTH1-0  
TXEMP_EV Reserved  
Reserved  
MS_EV  
LS_EV  
TXSR  
TXSR  
STB  
TXLDL_EV RXHDL_EV  
02h  
RXSR  
RXSR  
FIFO_EN  
FIFO_EN  
FCR2  
LCR  
BSR  
TXFTH1-0  
Reserved  
PEN  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
WLS1-0  
03h  
04h  
BSR6-0  
ISEN/  
DCDLP  
MCR1  
Reserved  
LOOP  
RILP  
RTS  
DTR  
MCR2  
LSR  
Reserved  
TX_DFR  
FE  
Reserved  
PE  
RTS  
OE  
DTR  
RXDA  
DCTS  
05h  
06h  
ER_INF  
DCD  
TXEMP  
RI  
TXRDY  
DSR  
BRK  
CTS  
MSR  
DDCD  
TERI  
DDSR  
SPR1  
Scratch Data  
Reserved  
07h  
ASCR2  
RXF_TOUT  
1. Non-Extended mode  
2. Extended mode  
Revision 1.2  
49  
www.national.com  
7.0 Legacy Functional Blocks (Continued)  
Table 26. Bank 1 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
LBGD(L)  
LBGD(H)  
LBGD7-0  
LBGD15-8  
Reserved  
LCR  
BSR  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
03h  
BSR6-0  
04h-07h  
Reserved  
Table 27. Bank 2 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
BGD7-0  
BGD15-8  
LOOP  
BTEST  
BKSE  
LOCK  
Reserved ETDLBK  
Reserved  
EXT_SL  
BSR6-0  
EXCR2  
Reserved  
PRESL1-0  
Reserved  
Reserved  
TXFLV  
RXFLV  
Reserved  
Reserved  
TFL4-0  
RFL4-0  
Table 28. Bank 3 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
MRID  
SH_LCR  
SH_FCR  
BSR  
MID3-0  
RID3-0  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
02h  
RXFTH1-0  
BKSE  
TXFTH1-0  
Reserved  
BSR6-0  
TXSR  
RXSR  
FIFO_EN  
03h  
04-07h  
Reserved  
www.national.com  
50  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
7.2 IR FUNCTIONALITY (IR)  
7.2.1 General Description  
This functional block provides advanced, versatile serial communications features with IR capabilities. It supports six modes  
of operation: UART, Sharp-IR, IrDA 1.0 SIR (hereafter SIR), Consumer Electronic IR (also called TV Remote or Consumer  
remote control, hereafter CEIR), IrDA 1.1 MIR, and FIR. In UART mode, the Serial Port can function in 16450-Compatible  
mode, 16550-Compatible mode, or Extended mode. This chapter describes general implementation of the Enhanced Serial  
Port with Fast IR. For device specific implementation, see Device Architecture and Configuration in the datasheet of the rel-  
evant device.  
Note: UART operation of IR module is not supported in PC87382.  
Existing 16550-based legacy software is completely and transparently supported. Organization and specific fallback mech-  
anisms switch the Serial Port to 16550-Compatible mode on reset or when initialized by 16550 software.  
This module has two DMA channels; the device can use either one or both of them. One channel is required for IR-based  
applications, since IR communication works in half-duplex fashion. Two channels would normally be needed to handle high-  
speed, full-duplex, UART-based applications.  
7.2.2  
Register Bank Overview  
Eight register banks, each containing eight registers, control the module operation. All registers use the same 8-byte address  
space to indicate offsets 00h-07h. The active bank must be selected by the software.  
The register bank organization enables access to the banks as required for activation of all module modes, while maintaining  
transparent compatibility with 16450 or 16550 software.  
The Bank Selection register (BSR) selects the active bank and is common to all banks; see Figure 13. Therefore, each bank  
defines seven new registers.  
The default bank selection after system reset is 0.  
BANK 7  
BANK 6  
Common  
Register  
Throughout  
BANK 5  
BANK 4  
BANK 3  
BANK 2  
BANK 1  
BANK 0  
All Banks  
Offset 07h  
Offset 06h  
Offset 05h  
Offset 04h  
LCR / BSR  
Offset 02h  
IR Special Banks  
(Banks 4-7)  
Offset 01h  
Offset 00h  
Figure 13. IR Register Bank Architecture  
Table 29 shows the main functions of the registers in each bank. Banks 0-3 control both UART and IR modes of operation;  
banks 4-7 control and configure the IR modes only.  
Revision 1.2  
51  
www.national.com  
7.0 Legacy Functional Blocks (Continued)  
Table 29. Register Bank Summary  
Main Functions  
Bank UART Mode  
IR Mode  
0
Global Control and Status  
1
Legacy Bank  
2
Alternative Baud Generator Divisor, Extended Control and Status  
Module Revision ID and Shadow registers  
IR mode setup  
3
4
5
6
7
IR Control and Status FIFO  
IR Physical Layer Configuration  
CEIR and Optical Transceiver Configuration  
The register maps in this chapter use the following abbreviations for Type:  
R/W = Read/Write.  
R = Read from a specific address returns the value of a specific register. Write to the same address is to a different  
register.  
W = Write.  
RO = Read Only.  
R/W1C = Read/Write 1 to Clear. Writing 1 to a bit clears it to 0. Writing 0 has no effect.  
7.2.3  
IR Register Map for IR Functionality  
Table 30. Bank 0 Register Map  
Offset Mnemonic  
Register Name  
Receiver Data  
Type  
00h  
RXD  
TXD  
IER  
RO  
Transmitter Data  
Interrupt Enable  
Event Identification  
FIFO Control  
W
01h  
02h  
R/W  
EIR  
R
FCR  
LCR  
BSR  
MCR  
LSR  
MSR  
SPR  
ASCR  
W
03h  
Link Control  
W
R/W  
Bank Select  
04h  
05h  
06h  
07h  
Modem / Mode Control  
Link Status  
R/W  
R/W  
Modem Status  
R
Scratch Pad  
R/W  
Auxiliary Status and Control  
Varies per bit  
Table 31. Bank 1 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
LBGD(L)  
Legacy Baud Generator Divisor (Low Byte)  
R/W  
R/W  
01h  
LBGD(H) Legacy Baud Generator Divisor (High Byte)  
02h  
Reserved  
LCR/BSR Link Control / Bank Select  
Reserved  
03h  
R/W  
04h - 07h  
www.national.com  
52  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
Table 32. Bank 2 Register Map  
Offset  
Mnemonic  
Register Name  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
Baud Generator Divisor (Low Byte)  
Baud Generator Divisor (High Byte)  
Extended Control1  
Bank Select  
R/W  
R/W  
R/W  
R/W  
R/W  
EXCR2  
Extended Control 2  
Reserved  
TXFLV  
RXFLV  
TX_FIFO Level  
RO  
RO  
RX_FIFO Level  
Table 33. Bank 3 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
MRID  
SH_LCR  
SH_FCR  
BSR  
Module Identification and Revision ID  
Shadow of LCR  
RO  
RO  
Shadow of FIFO Control  
Bank Select  
RO  
R/W  
04h-07h  
Reserved  
Table 34. Bank 4 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
TMR(L)  
TMR(H)  
IRCR1  
BSR  
Timer (Low Byte)  
Timer (High Byte)  
IR Control 1  
R/W  
R/W  
R/W  
R/W  
R/W  
Bank Select  
TFRL(L)/  
TFRCC(L)  
Transmitter Frame Length (Low Byte) /  
Transmitter Frame Current Count (Low Byte)  
05h  
06h  
07h  
TFRL(H)/  
TFRCC(H)  
Transmitter Frame Length (High Byte) /  
Transmitter Frame Current Count (High Byte)  
R/W  
R/W  
R/W  
RFRML(L)/  
RFRCC(L)  
Receiver Frame Maximum Length (Low Byte) /  
Receiver Frame Current Count (Low Byte)  
RFRML(H)/  
RFRCC(H)  
Receiver Frame Maximum Length (High Byte) /  
Receiver Frame Current Count (High Byte)  
Revision 1.2  
53  
www.national.com  
7.0 Legacy Functional Blocks (Continued)  
Table 35. Bank 5 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
SPR2  
SPR3  
Scratch Pad 2  
Scratch Pad 3  
R/W  
R/W  
Reserved  
BSR  
Bank Select  
IR Control 2  
Frame Status  
R/W  
R/W  
RO  
IRCR2  
FRM_ST  
RFRL(L)/LSTFRC Received Frame Length (Low Byte) / Lost Frame Count  
RO  
RFRL(H)  
Received Frame Length (High Byte)  
RO  
Table 36. Bank 6 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
IRCR3  
MIR_PW  
SIR_PW  
BSR  
IR Control 3  
R/W  
R/W  
R/W  
R/W  
R/W  
MIR Pulse Width Control  
SIR Pulse Width Control  
Bank Select  
BFPL  
Beginning Flags / Preamble Length  
05h-07h  
Reserved  
Table 37. Bank 7 Register Map  
Register Name  
Offset  
Mnemonic  
Type  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
IRRXDC  
IRTXMC  
RCCFG  
BSR  
IR Receiver Demodulator Control  
IR Transmitter Modulator Control  
CEIR Configuration  
R/W  
R/W  
R/W  
Bank Select  
R/W  
IRCFG1  
IR Interface Configuration 1  
Varies per bit  
Reserved  
Reserved  
IRCFG4  
IR Interface Configuration 4  
R/W  
www.national.com  
54  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
7.2.4 IR Bitmap Summary for IR Functionality  
Table 38. Bank 0 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
00h  
01h  
RXD  
TXD  
RXD7-0  
TXD7-0  
IER1  
IER2  
Reserved  
SFIF_IE TXEMP_IE DMA_IE  
MS_IE  
MS_IE  
LS_IE  
TXLDL_IE RXHDL_IE  
TXLDL_IE RXHDL_IE  
TMR_IE  
LS_IE/  
TXHLT_IE  
EIR1  
EIR2  
02h  
FEN1-0  
Reserved  
RXFT  
IPR1-0  
IPF  
TMR_EV  
SFIF_EV TXEMP_EV DMA_EV  
MS_EV  
LS_EV/ TXLDL_EV RXHDL_EV  
TXHLT_EV  
FCR1  
RXFTH1-0  
RXFTH1-0  
Reserved  
TXFTH1-0  
TXSR  
TXSR  
STB  
RXSR  
RXSR  
FIFO_EN  
FIFO_EN  
FCR2  
LCR  
BSR  
Reserved  
03h  
04h  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
WLS1-0  
BSR6-0  
MCR1  
Reserved  
LOOP  
ISEN/  
DCDLP  
RILP  
RTS  
DTR  
MCR2  
LSR  
MDSL2-0  
TXEMP  
IR_PLS  
BRK/  
TX_DFR DMA_EN  
RTS  
OE  
DTR  
05h  
ER_INF/  
FR_END  
TXRDY  
DSR  
FE/ PE/  
RXDA  
MAX_LEN PHY_ERR BAD_CRC  
06h  
07h  
MSR  
SPR1  
DCD  
RI  
CTS  
DDCD  
TERI  
DDSR  
DCTS  
Scratch Data  
ASCR2  
CTE  
TXUR  
RXACT/  
RXBSY  
RXWDG/  
LOST_FR  
TXHFE  
S_EOT FEND_INF RXF_TOUT  
1. Non-Extended mode  
2. Extended mode  
Table 39. Bank 1 Bitmap  
Bits  
Register  
Offset  
Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
LBGD(L)  
LBGD(H)  
LBGD7-0  
LBGD15-8  
Reserved  
LCR  
BSR  
BKSE  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
BSR6-0  
04-07h  
Reserved  
Revision 1.2  
55  
www.national.com  
7.0 Legacy Functional Blocks (Continued)  
Table 40. Bank 2 Bitmap  
Register  
Bits  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
BGD(L)  
BGD(H)  
EXCR1  
BSR  
BGD7-0  
BGD15-8  
BTEST  
BKSE  
LOCK  
Reserved ETDLBK  
LOOP  
DMASWP  
BSR6-0  
DMATH  
DMANF  
EXT_SL  
EXCR2  
Reserved  
PRESL1-0  
RF_SIZ1-0  
TF_SIZ1-0  
05h  
Reserved  
06h  
07h  
TXFLV  
RXFLV  
Reserved  
Reserved  
TFL5-0  
RFL5-0  
Table 41. Bank 3 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
MRID  
SH_LCR  
SH_FCR  
BSR  
MID3-0  
RID3-0  
BKSE  
SBRK  
STKP  
EPS  
PEN  
STB  
WLS1-0  
RXFTH1-0  
TXFTH1-0  
Reserved  
BSR6-0  
TXSR  
RXSR  
FIFO_EN  
BKSE  
04h-07h  
Reserved  
Table 42. Bank 4 Bitmap  
Register  
Offset Mnemonic  
Bits  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
TMR(L)  
TMR(H)  
IRCR1  
BSR  
TMR7-0  
Reserved  
Reserved  
TMR11-8  
CTEST  
IR_SL1-0  
BSR6-0  
TFRL7-0 /TFRCC7-0  
TMR_EN  
BKSE  
TFRL(L)/  
TFRCC(L)  
05h  
06h  
07h  
TFRL(H)/  
TFRCC(H)  
Reserved  
TFRL12-8 / TFRCC12-8  
RFRML7-0 / RFRCC7-0  
RFRML12-8 / RFRCC12-8  
RFRML(L)/  
RFRCC(L)  
RFRML(H)/  
RFRCC(H)  
Reserved  
www.national.com  
56  
Revision1.2  
7.0 Legacy Functional Blocks (Continued)  
Table 43. Bank 5 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
SPR2  
SPR3  
Scratch Pad 2  
Scratch Pad 3  
Reserved  
BSR  
BKSE  
Reserved  
VLD  
BSR6-0  
FEND_MD AUX_IRRX TX_MS  
IRCR2  
SFTSL  
MDRS  
IRMSSL IR_FDPLX  
FRM_ST  
LOST_FR Reserved MAX_LEN PHY_ERR BAD_CRC  
RFRL7-0 / LSTFRC7-0  
OVR1  
OVR2  
RFRL(L)/  
LSTFRC  
07h  
RFRL(H)  
Reserved  
RFRL12-8  
Table 44. Bank 6 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
IRCR3  
MIR_PW  
SIR_PW  
BSR  
SHDM_DS SHDM_DS FIR_CRC MIR_CRC Reserved TXCRC_INV TXCRC_DS Reserved  
Reserved  
Reserved  
MPW3-0  
SPW3-0  
BKSE  
BSR6-0  
BFPL  
MBF7-4  
FPL3-0  
05h-07h  
Reserved  
Table 45. Bank 7 Bitmap  
Bits  
Register  
Offset Mnemonic  
7
6
5
4
3
2
1
0
00h  
01h  
02h  
03h  
04h  
IRRXDC  
IRTXMC  
RCCFG  
BSR  
DBW2-0  
MCPW2-0  
T_OV  
DFR4-0  
MCFR4-0  
TXHSC  
R_LEN  
BKSE  
RXHSC RCDM_DS Reserved  
BSR6-0  
RC_MMD1-0  
IRCFG1  
STRV_MS Reserved  
SIRTX  
IRRX1  
Level  
IRID3  
IRIC2-0  
05h  
06h  
07h  
Reserved  
Reserved  
IRCFG4  
Reserved IRRX_MD IRSL0_DS  
RXINV IRSL21_DS  
Reserved  
Revision 1.2  
57  
www.national.com  
8.0 Device Characteristics  
8.1 GENERAL DC ELECTRICAL CHARACTERISTICS  
8.1.1 Recommended Operating Conditions  
Symbol  
VDD  
Parameter  
Min  
3.0  
0
Typ  
Max  
3.6  
Unit  
V
Supply Voltage  
3.3  
TA  
Operating Temperature  
+70  
°C  
8.1.2 Absolute Maximum Ratings  
Absolute maximum ratings are values beyond which damage to the device may occur. Unless otherwise specified, all volt-  
ages are relative to ground.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
0.5  
Max  
+4.1  
Unit  
V
Supply Voltage  
Input Voltage  
Input Voltage  
VI  
VDD + 0.5  
V
All other pins  
0.5  
0.5  
5.5  
V
V
VI  
LPC and DLPC pins1  
VDD + 0.5  
VO  
Output Voltage  
0.5  
65  
VDD + 0.5  
+165  
V
°C  
TSTG Storage Temperature  
PD  
TL  
Power Dissipation  
500  
mW  
°C  
Lead Temperature Soldering (10 s)  
ESD Tolerance  
+260  
CZAP = 100 pF  
RZAP = 1.5 K2  
2000  
V
1. LCLK, LAD3-0, LFRAME, LRESET, SERIRQ, LDRQ, CLKRUN, DLCLK, DLAD3-0,  
DLFRAME, DSERIRQ, DCLKRUN  
2. Value based on test complying with RAI-5-048-RA human body model ESD testing.  
www.national.com  
58  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.1.3 Capacitance  
Min2  
Typ1  
Max2  
12  
Symbol  
Parameter  
Unit  
CLCLK  
CPIN  
LCLK Pin Capacitance  
Other Pins Capacitance  
5
8
8
pF  
pF  
10  
1. TA = 25°C, f = 1 MHz  
2. Not tested. Guaranteed by design  
8.1.4 Power Consumption under Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
VDD Average Main Supply Current  
VIL = 0.5 V, VIH = 2.4 V  
No Load  
IDD  
8
10  
mA  
VDD Quiescent Main Supply Current VIL = VSS, VIH = VDD  
IDDLP  
1.5  
2
mA  
in Low Power Mode  
No Load  
8.1.5 Voltage Thresholds  
Symbol  
Parameter1  
Min2  
2.2  
Max2  
Typ  
Unit  
VDDON  
VDD Detected as Power-on  
VDD Detected as Power-off  
2.6  
2.5  
2.9  
2.8  
V
V
VDDOFF  
2.1  
1. All parameters specified for 0°C TA 70°C.  
2. Not tested. Guaranteed by characterization.  
8.2 DC CHARACTERISTICS OF PINS, BY I/O BUFFER TYPES  
The following tables summarize the DC characteristics of all device pins described in the Chapter 1.2 on page 9. The char-  
acteristics describe the general I/O buffer types defined in Table 1. For exceptions, refer to Section 8.2.8. The DC charac-  
teristics of the system interface meet the PCI2.2 3.3V DC signaling.  
8.2.1 Input, PCI 3.3V  
Symbol: INPCI  
Symbol  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
VDD + 0.51  
0.3VDD  
±1  
VIH  
0.5VDD  
V
0.51  
VIL  
Input Low Voltage  
V
2
Input Leakage Current  
0 < Vin < VDD  
µA  
lIL  
1. Not tested. Guaranteed by design.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with TRI-STATE outputs.  
Revision 1.2  
59  
www.national.com  
8.0 Device Characteristics (Continued)  
8.2.2 Input, TTL Compatible  
Symbol: INT  
Symbol  
VIH  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
V
5.51  
0.8  
2.0  
0.51  
VIL  
Input Low Voltage  
V
Input Leakage Current  
VIN = VDD  
VIN = VSS  
1
µA  
µA  
IIL  
1  
1. Not tested. Guaranteed by design.  
8.2.3 Input, TTL Compatible with Schmitt Trigger  
Symbol: INTS  
Symbol  
VIH  
Parameter  
Input High Voltage  
Conditions  
Min  
Max  
Unit  
V
5.51  
0.8  
2.0  
1
VIL  
Input Low Voltage  
V
0.5  
Input Leakage Current  
VIN = VDD  
VIN = VSS  
1
µA  
µA  
mV  
IIL  
1  
2502  
VH  
Input Hysteresis  
1. Not tested. Guaranteed by design.  
2. Not tested. Guaranteed by characterization.  
8.2.4 Output, PCI 3.3V  
Symbol: OPCI  
Symbol  
VOH  
Parameter  
Output High Voltage  
Output Low Voltage  
Conditions  
lout = 500 µA  
lout =1500 µA  
Min  
Max  
Unit  
V
0.9VDD  
VOL  
0.1 VDD  
V
8.2.5 Output, Push-Pull Buffer  
Symbol: Op/n  
Output, push-pull buffer that is capable of sourcing p mA and sinking n mA.  
Symbol  
VOH  
Parameter  
Output High Voltage  
Output Low Voltage  
Conditions  
IOH = p mA  
IOL = n mA  
Min  
Max  
Unit  
V
2.4  
VOL  
0.4  
V
www.national.com  
60  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.2.6 Output, Open-Drain Buffer  
Symbol: ODn  
Output, Open-Drain output buffer, capable of sinking n mA. Output from these signals is open-drain and cannot be forced high.  
Symbol  
Parameter  
Output Low Voltage  
Conditions  
Min  
Max  
Unit  
VOL  
IOL = n mA  
0.4  
V
8.2.7 Quick Switch  
Symbol: QS.  
Symbol  
Parameter  
Switch On Resistance1  
Conditions  
VIN = 0V  
Typ  
5
Max  
10  
Unit  
RON  
VIN = VDD  
Switch is on  
5
10  
IIL  
Input Leakage Current  
±10  
µA  
1. Not tested. Guaranteed by characterization.  
8.2.8 Exceptions  
1. All pins are 5V tolerant except for the pins with PCI (INPCI, OPCI) and Quick Switch (QS) buffer types.  
2. All pins are back-drive protected, except for the pins with PCI (INPCI, OPCI) buffer types.  
3. The following pins have an internal static pull-up resistor (when enabled) and therefore may have leakage current from  
VDD (when VIN = 0): GPIO00-04, GPIO20-21, GPIO23, DLCLK, DLAD3-0, DLFRAME, DSERIRQ, DLDRQ, DCLKRUN,  
DCLKOUT.  
4. The following pins have an internal static pull-down resistor (when enabled) and therefore may have leakage current to  
VSS (when VIN = VDD): DLRESET.  
5. The following strap pins have an internal static pull-up resistor enabled during VDD Power-Up reset and therefore may  
have leakage current to VDD (when VIN = 0): BADDR, TRIS, TEST.  
6. IOH is valid for a GPIO pin only when it is not configured as open-drain.  
7. In XOR Tree mode, the buffer type of the input pins participating in the XOR Tree (see Section 2.4.2 on page 16) is INT  
(Input, TTL compatible), regardless of the buffer type of these pins in normal device operation mode; see Section 1.3 on  
page 10.  
8.2.9 Terminology  
Back-Drive Protection. A pin that is back-drive protected does not sink current into the supply when an input voltage higher  
than the supply, but below the pin’s maximum input voltage, is applied to the pin. This is true even when the supply is inac-  
tive. Note that active pull-up resistors and active output buffers are typically not back-drive protected.  
5-Volt Tolerance. An input signal that is 5V tolerant can operate with input voltage of up to 5V even though the supply to  
the device is only 3.3V. The actual maximum input voltage allowed to be supplied to the pin is indicated by the maximum  
high voltage allowed for the input buffer. Note that some pins have multiple buffers, not all of which are 5V tolerant. In such  
cases, there is a note that indicates at what conditions a 5V input may be applied to the pin; if there is no note, the low max-  
imum voltage among the buffers is the maximum voltage allowed for the pin.  
Revision 1.2  
61  
www.national.com  
8.0 Device Characteristics (Continued)  
8.3 INTERNAL RESISTORS  
DC Test Conditions  
Pull-Up Resistor Test Circuit  
Pull-Down Resistor Test Circuit  
VSUP  
VSUP  
VSUP  
Device  
Device  
IPU  
A
IPD  
A
Under  
Test  
Under  
Test  
RPU  
Pin  
Pin  
RPD  
V
V
VPIN  
VPIN  
Figure 14. Internal Resistor Test Conditions, TA = 0°C to 70°C, VSUP = 3.3V  
VSUP  
VSUP  
VSUP  
V
> V  
V
< V  
PIN IL  
PIN  
IH  
Device  
Under  
Test  
Device  
Under  
Test  
10 µA  
IPU  
RPU  
IPU  
RPU  
Pin  
Pin  
A
A
V
V
10 KΩ  
10 µA  
VPIN  
VPIN  
Figure 15. Internal Pull-Down Resistor for Straps, TA = 0°C to 70°C, VSUP = 3.3V  
Notes for Figures 14 and 15:  
1. The equivalent resistance of the pull-up resistor is calculated by RPU = (VSUP VPIN) / IPU  
.
2. The equivalent resistance of the pull-down resistor is calculated by RPD = VPIN / IPD  
.
8.3.1 Pull-Up Resistor  
Symbol: PUnn  
Conditions1  
Min2  
Max2  
Symbol  
Parameter  
Typical  
Unit  
RPU  
Pull-up equivalent resistance  
VPIN = 0V  
nn 30%  
nn  
nn + 30%  
nn 38%  
KΩ  
KΩ  
3
VPIN = 0.8 VSUP  
3
nn 35%  
KΩ  
VPIN = 0.17 VSUP  
1. TA = 0°C to 70°C, VSUP = 3.3V.  
2. Not tested. Guaranteed by characterization.  
3. For strap pins only.  
www.national.com  
62  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.3.2 Pull-Down Resistor  
Symbol: PDnn  
Conditions1  
Min2  
Max2  
Symbol  
Parameter  
Typical  
Unit  
RPD  
Pull-down equivalent resistance  
VPIN = VSUP  
nn 30%  
nn  
nn + 30%  
KΩ  
1. TA = 0°C to 70°C, VSUP = 3.3V.  
2. Not tested. Guaranteed by characterization.  
8.4 AC ELECTRICAL CHARACTERISTICS  
8.4.1 AC Test Conditions  
Load Circuit (Notes 1, 2)  
AC Testing Input, Output Waveform  
VDD  
S1  
2.4  
2.0  
0.8  
2.0  
0.8  
0.1 µF  
Test Points  
0.4  
RL  
Device  
Input  
Output  
Under  
Test  
CL  
Figure 16. AC Test Conditions, TA = 0 °C to 70 °C, VDD = 3.3 V ±10%  
Notes:  
1. CL = 50 pF for all output pins; this value includes both jig and oscilloscope capacitance.  
2. S1 = Open for push-pull output pins.  
S1 = VDD for high impedance to active low and active low to high impedance measurements.  
S1 = GND for high impedance to active high and active high to high impedance measurements.  
RL = 1.0 Kfor all the pins.  
Revision 1.2  
63  
www.national.com  
8.0 Device Characteristics (Continued)  
8.4.2 Clock Input Timing  
48 MHz  
14.31818 MHz  
Symbol  
Parameter  
Min  
6
Max  
Min  
29.5  
29.5  
Max  
Unit  
ns  
Clock High Pulse Width1  
Clock Low Pulse Width1  
tCH  
tCL  
6
ns  
2
tCP  
FCIN  
tCR  
tCF  
20  
21.5  
ns  
69.14  
70.54  
Clock Period  
Clock Frequency  
48 - 0.1%  
48 + 0.1%  
14.31818 - 0.02% 14.31818 + 0.02% MHz  
Clock Rise Time2 (0.8V-2.0V)  
Clock Fall Time2 (2.0V-0.8V)  
5
5
5
5
ns  
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
.
tCP  
tCH  
VIH  
VIH  
VIH  
VIL  
CLKIN  
VIL  
VIL  
tCL  
tCF  
tCR  
8.4.3 Clock Output Timing  
From Clock Generator  
From CLKIN  
Symbol  
Parameter  
Min  
Max  
Min  
tCH - 1  
tCL - 1  
tCP - 0.5  
FCIN  
Max  
Unit  
ns  
Clock High Pulse Width1  
Clock Low Pulse Width1  
tCOH  
tCOL  
6
6
20  
ns  
Clock Period2  
tCOP  
FCOUT  
tCOR  
tCOF  
21.5  
tCP + 0.5  
ns  
Clock Frequency  
48 - 0.1%  
48 + 0.1%  
FCIN  
MHz  
ns  
Clock Rise Time1 (0.4V-2.4V)  
Clock Fall Time1 (2.4V-0.4V)  
5
5
5
5
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
.
tCOH  
tCOP  
VOH  
VOH  
VOH  
VOH  
DCLKOUT  
VOL  
VOL  
VIL  
tCOL  
tCOF  
tCOR  
www.national.com  
64  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.4.4 LCLK and LRESET  
Symbol  
Parameter  
Min  
Max  
Units  
1
LCLK Cycle Time  
30  
ns  
tCYC  
LCLK High Time2  
LCLK Low Time2  
LCLK Slew Rate3,4  
tHIGH  
11  
11  
1
ns  
ns  
tLOW  
-
-
4
V/ns  
mV/ns  
ns  
LRESET Slew Rate3,5  
LRESET pulse width  
50  
100  
tWRST  
1. The PCI may have any clock frequency between nominal DC and 33 MHz.  
Device operational parameters at frequencies under 16 MHz can be guaranteed  
by design rather than by testing. The clock frequency can be changed at any  
time during the operation of the system as long as the clock edges remain  
“clean” (monotonic) and the minimum cycle and high and low times are not vio-  
lated. The clock may only be stopped in a low state.  
2. Not tested. Guaranteed by characterization.  
3. Not tested. Guaranteed by design  
4. Rise and fall times are specified in terms of the edge rate measured in V/ns.  
This slew rate must be met across the minimum peak-to-peak portion of the  
clock wavering as shown below.  
5. The minimum LRESET slew rate applies only to the rising (de-assertion) edge of  
the reset signal, and ensures that system noise cannot render an otherwise  
monotonic signal to appear to bounce in the switching range.  
3.3V Clock  
tHIGH  
tLOW  
0.6 VDD  
0.5 VDD  
0.4 VDD  
0.3 VDD  
0.4 VDD p-to-p  
(minimum)  
0.2 VDD  
tCYC  
Revision 1.2  
65  
www.national.com  
8.0 Device Characteristics (Continued)  
8.4.5  
V
Power-Up Reset  
DD  
Min1  
Max1  
Symbol  
Description  
Reference Conditions  
tIRST Internal Power-Up reset time VDD power-up to end of internal reset  
tLRST LRESET active time VDD power-up to end of PCI_RESET  
Internal strap pull-up resistor, Before end of internal reset  
valid time2  
tLRST  
10 ms  
tIRST  
tIPLV  
External strap pull-up resistor, Before end of internal reset  
valid time  
tEPLV  
tIRST  
1. Not tested. Guaranteed by design.  
2. Active only during VDD Power-Up reset.  
VDDONmin  
VDD (Power)  
tIRST  
tLRST  
tIPLV  
VDD Power-Up Reset  
(Internal)  
LRESET  
Internal Straps  
(Pull-up)  
tEPLV  
External Straps  
(Pull-Down)  
www.national.com  
66  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.4.6 LPC and SERIRQ Signals  
Symbol  
tVAL  
tON  
Description  
Output Valid Delay  
Float to Active Delay  
Active to Float Delay  
Input Setup Time  
Input Hold Time  
Reference Conditions  
After RE LCLK  
Min  
2
Max  
Unit  
ns  
11  
After RE LCLK  
2
ns  
tOFF  
tSU  
After RE LCLK  
28  
ns  
Before RE LCLK  
After RE LCLK  
7
0
ns  
tHI  
ns  
Output  
LCLK  
tVAL  
tON  
LPC Signals/  
SERIRQ  
tOFF  
Input  
LCLK  
tSU  
tHI  
LPC Signals/  
SERIRQ  
Input  
Valid  
Revision 1.2  
67  
www.national.com  
8.0 Device Characteristics (Continued)  
8.4.7 Serial Port, Sharp-IR, SIR and Consumer Remote Control Timing  
Min1  
Max1  
Symbol  
Parameter  
Conditions  
Unit  
2
tBT  
Single Bit Time in Serial Port and Sharp-IR  
tBTN + 25  
Transmitter  
Receiver  
ns  
ns  
ns  
ns  
ns  
tBTN 25  
tBTN 2%  
tBTN + 2%  
tCWN + 25  
3
tCMW  
Modulation Signal Pulse Width in Sharp-IR  
and Consumer Remote Control  
Transmitter  
Receiver  
tCWN  
25  
500  
4
tCMP  
Modulation Signal Period in Sharp-IR and  
Consumer Remote Control  
tCPN + 25  
Transmitter  
tCPN 25  
5
5
Receiver  
ns  
ns  
tMMIN  
tMMAX  
(3/16) x tBTN 15  
(3/16) x tBTN + 15  
2
2
tSPW  
SIR Signal Pulse Width  
Transmitter,  
Variable  
Transmitter,  
Fixed  
1.48  
1.78  
µs  
µs  
Receiver  
Transmitter  
Receiver  
1
SDRT  
SIR Data Rate Tolerance.  
% of Nominal Data Rate.  
± 0.87%  
± 2.0%  
± 2.5%  
± 6.5%  
tSJT  
SIR Leading Edge Jitter.  
% of Nominal Bit Duration.  
Transmitter  
Receiver  
1. Not tested. Guaranteed by design.  
2. tBTN is the nominal bit time in Serial Port, Sharp-IR, SIR and Consumer Remote Control modes. It is deter-  
mined by the setting of the Baud Generator Divisor registers.  
3. tCWN is the nominal pulse width of the modulation signal for Sharp-IR and Consumer Remote Control modes. It  
is determined by the MCPW field (bits 7-5) of the IRTXMC register and the TXHSC bit (bit 2) of the RCCFG  
register.  
4. tCPN is the nominal period of the modulation signal for Sharp-IR and Consumer Remote Control modes. It is  
determined by the MCFR field (bits 4-0) of the IRTXMC register and the TXHSC bit (bit 2) of the RCCFG regis-  
ter.  
5. tMMIN and tMMAX define the time range within which the period of the in-coming subcarrier signal must fall for  
the signal to be accepted by the receiver. These time values are determined by the contents of the IRRXDC  
register and the setting of the RXHSC bit (bit 5) of the RCCFG register.  
t
BT  
Serial Port  
t
t
CMP  
CMW  
Sharp-IR  
Consumer Remote Control  
t
SPW  
SIR  
www.national.com  
68  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.4.8 MIR and FIR Timing  
Min1  
25  
Max1  
Symbol  
Parameter  
Conditions  
Transmitter  
Receiver  
Unit  
nsec  
nsec  
2
tMPW  
MIR Signal Pulse Width  
tMWN + 25  
tMWN  
60  
MDRT  
tMJT  
MIR Transmitter Data Rate Tolerance  
± 0.1%  
± 2.9%  
MIR Receiver Edge Jitter, % of Nominal Bit Duration  
tFPW  
FIR Signal Pulse Width  
Transmitter  
Receiver  
120  
90  
130  
160  
nsec  
nsec  
nsec  
nsec  
tFDPW  
FIR Signal Double Pulse Width  
Transmitter  
Receiver  
245  
215  
255  
285  
FDRT  
tFJT  
FIR Transmitter Data Rate Tolerance  
± 0.01%  
FIR Receiver Edge Jitter, % of Nominal Bit Duration  
1. Not tested. Guaranteed by design.  
± 4.0%  
2. tMWN is the nominal pulse width for MIR mode. It is determined by the M_PWID field (bits 4-0) in the MIR_PW  
register at offset 01h in bank 6.  
t
t
MPW  
MIR  
FIR  
Data  
Symbol  
t
FDPW  
FPW  
Chips  
Figure 17. MIR and FIR Timing  
Revision 1.2  
69  
www.national.com  
8.0 Device Characteristics (Continued)  
8.4.9 Modem Control Timing  
Symbol  
Parameter  
Min  
10  
Max  
Unit  
ns  
RI1 Low Time1  
tL  
RI1 High Time1  
tH  
10  
ns  
Delay to Set IRQ from Modem Input2  
tSIM  
40  
ns  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
CTS, DSR, DCD  
INTERRUPT  
tSIM  
tSIM  
tSIM  
(Read MSR)  
(Read MSR)  
RI  
tL  
tH  
www.national.com  
70  
Revision1.2  
8.0 Device Characteristics (Continued)  
8.4.10 Docking LPC Switch Timing  
Symbol  
tON  
Parameter  
Min  
0
Max  
14  
Unit  
ns  
ns  
-
Switch On after RE LCLK1  
Switch Off after RE LCLK1  
tOFF  
0
28  
4
tSW  
Delay from Switch Enable Command to  
Switch On2,3  
4*tCYC  
CLK2RSTVAL5  
tCLK2RST  
Delay from Switch Enable Command to  
DLRESET de-assertion and DLFRAME,  
DLAD connection2  
-
tSU  
DLDRQ setup time before RE LCLK  
7
0
ns  
ns  
ps  
tH  
DLDRQ hold time after RE LCLK  
Switch Propagation Delay1  
tSWPD  
300  
1. Not tested. Guaranteed by characterization.  
2. Not tested. Guaranteed by design.  
3. The time is measured from the end of the corresponding LPC transaction.  
4. tCYC is LCLK cycle time.  
5. Defined by CLK2RSTVAL field of the DLCTL register; see Section 6.3.2 on page 45.  
Switch On/Off Command  
tSW  
tCLK2RST  
tSW  
LCLK  
tON  
tON  
tOFF  
DLCLK, DCLKOUT,  
DCLKRUN,  
Connected  
Held by Pull-ups  
Held by Pull-ups  
Driven  
DSERIRQ  
Connected  
DLFRAME, DLAD  
Held by Pull-down  
DLRESET  
Revision 1.2  
71  
www.national.com  
Physical Dimensions  
All dimensions are in millimeters.  
48-Pin Low Profile Plastic Quad Flatpack (LQFP)  
NS Package Number VBH48A  
Order Number PC87382-VBH  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance  
with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury  
to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
National Semiconductor  
Europe  
National Semiconductor  
Japan Ltd.  
National Semiconductor  
Corporation  
Americas  
Email:  
new.feedback@nsc.com  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Fax: +49 (0) 180-530 85 86  
Tel:  
81-3-5639-7560  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 87 90  
Fax: 81-3-5639-7507  
Email: nsj.crc@jksmtp.nsc.com  
Tel:  
65-2544466  
Fax: 65-2504466  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY