W681513_05 [WINBOND]

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS; 5V单路语音频带编解码器, USB应用
W681513_05
型号: W681513_05
厂家: WINBOND    WINBOND
描述:

5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB APPLICATIONS
5V单路语音频带编解码器, USB应用

解码器 编解码器
文件: 总35页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W681513  
5V SINGLE-CHANNEL VOICEBAND CODEC FOR USB  
APPLICATIONS  
Data Sheet  
Publication Release Date: October, 2005  
- 1 -  
Revision A11  
W681513  
1. GENERAL DESCRIPTION  
The W681513 is a single channel PCM CODEC with pin-selectable μ-Law or A-Law companding  
dedicated to the USB accessory market by supporting a derivative 2MHz clock. The device is  
compliant with the ITU G.712 specification. It operates from a single +5V power supply and is  
available in 20-pin SOP package option. Functions performed include digitization and reconstruction  
of voice signals, and band limiting and smoothing filters required for PCM systems. The filters are  
compliant with ITU G.712 specification. W681513 performance is specified over the industrial  
temperature range of –40°C to +85°C.  
The W681513 includes an on-chip precision voltage reference and an additional power amplifier,  
capable of driving 300Ω loads differentially up to a level of 6.3V peak-to-peak. The analog section is  
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer  
protocol supports both long-frame and short-frame synchronous communications for PCM  
applications, and IDL and GCI communications for ISDN applications. W681513 accepts 2MHz  
master clock rate, and an on-chip pre-scaler automatically determines the division ratio for the  
required internal clock.  
Applications  
2. FEATURES  
Soft phones running on a PC (VoInternet):  
Single +5V power supply  
o
o
USB Phones  
Typical power dissipation of 30 mW,  
power-down mode of 0.5 μW  
USB to PSTN Gateway  
USB Microphones  
Fully-differential analog circuit design  
USB Headset for PC and Game Consoles  
On-chip precision reference of 1.575 V for  
a 0 dBm TLP at 600 Ω (775mVRMS  
)
Push-pull power amplifiers with external  
gain adjustment with 300 Ω load capability  
Master clock rate supports 2.000MHz  
clock for USB applications  
Pin-selectable  
companding (compliant with ITU G.711)  
μ-Law  
and  
A-Law  
CODEC A/D and D/A filtering compliant  
with ITU G.712  
Industrial temperature range (–40°C to  
+85°C)  
Package: 20-pin SOP (SOG)  
Pb-Free / RoHS package option available  
- 2 -  
W681513  
3. BLOCK DIAGRAM  
BCLKR  
FSR  
PAO+  
PAO-  
PAI  
RO+  
AO  
PCMR  
G.712 CODEC  
BCLKT  
G.711 /A-Law  
μ
AI+  
AI-  
FST  
PCMT  
/A-Law  
μ
256 kHz  
VAG  
MCLK  
Voltage reference  
Pre-Scaler  
8 kHz  
2000 kHz,  
Power Conditioning  
Publication Release Date: October, 2005  
Revision A11  
- 3 -  
W681513  
4. TABLE OF CONTENTS  
1. GENERAL DESCRIPTION.................................................................................................................. 2  
2. FEATURES ......................................................................................................................................... 2  
3. BLOCK DIAGRAM .............................................................................................................................. 3  
4. TABLE OF CONTENTS ...................................................................................................................... 4  
5. PIN CONFIGURATION ....................................................................................................................... 6  
6. PIN DESCRIPTION............................................................................................................................. 7  
7. FUNCTIONAL DESCRIPTION............................................................................................................ 8  
7.1. Transmit Path ................................................................................................................................8  
7.2. Receive Path .................................................................................................................................9  
7.3. Power Management.....................................................................................................................10  
7.3.1. Analog and Digital Supply.....................................................................................................10  
7.3.2. Analog Ground Reference Voltage Outpt.............................................................................10  
7.4. PCM Interface..............................................................................................................................10  
7.4.1. Long Frame Sync..................................................................................................................10  
7.4.2. Short Frame Sync .................................................................................................................11  
7.4.3. General Circuit Interface (GCI) .............................................................................................11  
7.4.4. Interchip Digital Link (IDL).....................................................................................................12  
7.4.5. System Timing ......................................................................................................................12  
8. TIMING DIAGRAMS.......................................................................................................................... 13  
9. ABSOLUTE MAXIMUM RATIINGS................................................................................................... 20  
9.1. Absolute Maximum Ratings.........................................................................................................20  
9.2. Operating Conditions...................................................................................................................20  
10. ELECTRICAL CHARACTERISTICS............................................................................................... 21  
10.1. General Parameters ..................................................................................................................21  
10.2. Analog Signal Level and Gain Parameters ...............................................................................22  
10.3. Analog Distortion and Noise Parameters ..................................................................................23  
10.4. Analog Input and Output Amplifier Parameters.........................................................................24  
10.5. Digital I/O ...................................................................................................................................26  
10.5.1. μ-Law Encode Decode Characteristics...............................................................................26  
10.5.2. A-Law Encode Decode Characteristics ..............................................................................27  
10.5.3. PCM Codes for Zero and Full Scale ...................................................................................28  
10.5.4. PCM Codes for 0dBm0 Output ...........................................................................................28  
11. TYPICAL APPLICATION CIRCUITS .............................................................................................. 29  
12. PACKAGE SPECIFICATION .......................................................................................................... 32  
12.2. 20L SOP (SOG)-300mil.............................................................................................................32  
- 4 -  
W681513  
13. ORDERING INFORMATION........................................................................................................... 33  
14. VERSION HISTORY ....................................................................................................................... 34  
Publication Release Date: October, 2005  
- 5 -  
Revision A11  
W681513  
5. PIN CONFIGURATION  
VAG  
AI+  
AI-  
RO+  
RO+  
PAI  
PAO-  
PAO+  
VDD  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
AO  
4
SINGLE  
CHANNEL  
CODEC  
/A-Law  
5
μ
VSS  
6
FST  
PCMT  
BCLKT  
MCLK  
FSR  
7
8
PCMR  
BCLKR  
PUI  
9
10  
SOP  
- 6 -  
W681513  
6. PIN DESCRIPTION  
Pin  
Name  
Pin Functionality  
No.  
RO+  
1
Non-inverting output of the receive smoothing filter. This pin can typically drive a 2 kΩ load to  
1.575 volt peak referenced to the analog ground level.  
RO+  
2
Non-inverting output of the receive smoothing filter. This pin can typically drive a 2 kΩ load to  
1.575 volt peak referenced to the analog ground level.  
PAI  
3
4
This pin is the inverting input to the power amplifier. Its DC level is at the VAG voltage.  
PAO-  
Inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt peak referenced  
to the VAG voltage level.  
PAO+  
5
Non-inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt peak  
referenced to the VAG voltage level.  
VDD  
6
7
Power supply. This pin should be decoupled to VSS with a 0.1μF ceramic capacitor.  
FSR  
8 kHz Frame Sync input for the PCM receive section. This pin also selects channel 0 or  
channel 1 in the GCI and IDL modes. It can also be connected to the FST pin when transmit  
and receive are synchronous operations.  
PCMR  
8
9
PCM input data receive pin. The data needs to be synchronous with the FSR and BCLKR pins.  
BCLKR  
PCM receive bit clock input pin. This pin also selects the interface mode. The GCI mode is  
selected when this pin is tied to VSS. The IDL mode is selected when this pin is tied to VDD  
.
This pin can also be tied to the BCLKT when transmit and receive are synchronous operations.  
PUI  
10  
Power up input signal. When this pin is tied to VDD, the part is powered up. When tied to VSS,  
the part is powered down.  
MCLK  
BCLKT  
PCMT  
FST  
11  
12  
13  
14  
15  
16  
System master clock input supporting 2000 kHz only.  
PCM transmit bit clock input pin.  
PCM output data transmit pin. The output data is synchronous with the FST and BCLKT pins.  
8 kHz transmit frame sync input. This pin synchronizes the transmit data bytes.  
This is the supply ground. This pin should be connected to 0V.  
VSS  
μ/A-Law  
Compander mode select pin. μ-Law companding is selected when this pin is tied to VDD. A-Law  
companding is selected when this pin is tied to VSS.  
AO  
AI-  
17  
18  
19  
20  
Analog output of the first gain stage in the transmit path.  
Inverting input of the first gain stage in the transmit path.  
Non-inverting input of the first gain stage in the transmit path.  
AI+  
VAG  
Mid-Supply analog ground pin, which supplies a 2.5 Volt reference voltage for all-analog signal  
processing. This pin should be decoupled to VSS with a 0.01μF to 0.1 μF capacitor. This pin  
becomes high impedance when the chip is powered down.  
Publication Release Date: October, 2005  
- 7 -  
Revision A11  
W681513  
7. FUNCTIONAL DESCRIPTION  
W681513 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC  
complies with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a  
complete μ-Law and A-Law compander. The μ-Law and A-Law companders are designed to comply  
with the specifications of the ITU-T G.711 recommendation.  
The block diagram in section 3 shows the main components of the W681513. The chip consists of a  
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.  
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample  
rate with the external frame sync frequency. The power conditioning block provides the internal  
power supply for the digital and the analog section, while the voltage reference block provides a  
precision analog ground voltage for the analog signal processing. The main CODEC block diagram  
is shown in section 3.  
+
-
-
VAG  
PAO+  
+
-
PAO  
PAI  
Receive Path  
8
+
-
D/A  
+
RO  
Converter  
fC  
= 3400Hz  
Smoothing  
Filter  
Smoothing  
/A-  
μ
Filter  
Control  
Transmit Path  
AO  
AI+  
8
A/D  
+
Converter  
-
f
C
f
= 3400Hz  
C
= 200Hz  
-
AI  
μ
-
/A  
HighPass  
Filter  
Ant
-Aliasing  
Ant-Aliasing  
Filter  
Control  
Filter  
Figure 7.1 The W681513 Signal Path  
7.1. Transmit Path  
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain  
setting (see application examples in section 11). The device has an input operational amplifier whose  
output is the input to the encoder section. If the input amplifier is not required for operation it can be  
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or  
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The  
input amplifier can be powered down by connecting the AI+ pin to VDD or VSS. The AO pin is selected  
- 8 -  
W681513  
as an input when AI+ is tied to VDD and the AI- pin is selected as an input when AI+ is tied to VSS (see  
Table 7.1).  
AI+  
Input Amplifier  
Input  
VDD  
Powered Down  
Powered Up  
AO  
1.2 to VDD-1.2  
VSS  
AI+, AI-  
AI-  
Powered Down  
Table 7.1 Input Amplifier Modes of operation  
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the  
analog ground voltage VAG  
.
The output of the input amplifier is fed through a low-pass filter to prevent aliasing at the switched  
capacitor 3.4 kHz low pass filter. The 3.4 kHz switched capacitor low pass filter prevents aliasing of  
input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is  
filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the  
recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is  
digitized. The signal is converted into a compressed 8-bit digital representation with either μ-Law or A-  
Law format. The μ-Law or A-Law format is pin-selectable through the μ/A-Law pin. The compression  
format can be selected according to Table 7.2.  
Format  
μ/A-Law Pin  
VSS  
VDD  
A-Law  
μ-Law  
Table 7.2. Pin-selectable Compression Format  
The digital 8-bit μ-Law or A-Law samples are fed to the PCM interface for serial transmission at the  
sample rate supplied by the external frame sync FST.  
7.2. Receive Path  
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and  
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed  
through the pin-selectable μ-Law or A-Law expander and converted to analog samples. The mode of  
expansion is selected by the μ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a  
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.  
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is  
buffered to provide the receive output signal RO+. The RO+ output can be externally connected to the  
PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By  
using external resistors (see section 11 for examples), various gain settings of this output amplifier  
Publication Release Date: October, 2005  
- 9 -  
Revision A11  
W681513  
can be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting  
PAI to VDD  
.
7.3. POWER MANAGEMENT  
7.3.1. Analog and Digital Supply  
The power supply for the analog and digital parts of the W681513 must be 5V +/- 10%. This supply  
voltage is connected to the VDD pin. The VDD pin needs to be decoupled to ground through a 0.1 μF  
ceramic capacitor.  
7.3.2. Analog Ground Reference Voltage Output  
The analog ground reference voltage is available for external reference at the VAG pin. This voltage  
needs to be decoupled to VSS through a 0.01 μF ceramic capacitor.  
7.4. PCM INTERFACE  
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received  
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of  
operation of the interface are shown in Table 7.3.  
BCLKR  
FSR  
Interface Mode  
2.000 MHz  
VSS  
8 kHz  
VSS  
Long or Short Frame Sync  
ISDN GCI with active channel B1  
ISDN GCI with active channel B2  
ISDN IDL with active channel B1  
ISDN IDL with active channel B2  
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
Table 7.3 PCM Interface mode selections  
7.4.1. Long Frame Sync  
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the  
BCLKR or BCLKT pin to a 2.000 MHz clock and connecting the FSR or FST pin to the 8 kHz frame  
sync. The device synchronizes the data word for the PCM interface and the CODEC sample rate on  
the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when the FST pin is  
- 10 -  
W681513  
held HIGH for two consecutive falling edges of the bit-clock at the BCLKT pin. The length of the Frame  
Sync pulse can vary from frame to frame, as long as the positive frame sync edge occurs every 125  
μsec. During data transmission in the Long Frame Sync mode, the transmit data pin PCMT will  
become low impedance when the Frame Sync signal FST is HIGH or when the 8 bit data word is  
being transmitted. The transmit data pin PCMT will become high impedance when the Frame Sync  
signal FST becomes LOW while the data is transmitted or when half of the LSB is transmitted. The  
internal decision logic will determine whether the next frame sync is a long or short frame sync, based  
on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high impedance for  
two frame sync cycles after every power down state. More detailed timing information can be found in  
the interface timing section.  
7.4.2. Short Frame Sync  
The W681513 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is  
HIGH for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge  
of the bit-clock, the W681513 starts clocking out the data on the PCMT pin, which will also change  
from high to low impedance state. The data transmit pin PCMT will go back to the high impedance  
state halfway through the LSB. The Short Frame Sync operation of the W681513 is based on an 8-bit  
data word. When receiving data on the PCMR pin, the data is clocked in on the first falling edge after  
the falling edge that coincides with the Frame Sync signal. The internal decision logic will determine  
whether the next frame sync is a long or short frame sync, based on the previous frame sync pulse.  
To avoid bus collisions, the PCMT pin will be high impedance for two frame sync cycles after every  
power down state. More detailed timing information can be found in the interface timing section.  
7.4.3. General Circuit Interface (GCI)  
The GCI interface mode is selected when the BCLKR pin is connected to VSS for two or more frame  
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface  
consists of 4 pins: FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects  
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data  
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.  
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted  
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is  
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.  
Publication Release Date: October, 2005  
- 11 -  
Revision A11  
W681513  
7.4.4. Interchip Digital Link (IDL)  
The IDL interface mode is selected when the BCLKR pin is connected to VDD for two or more frame  
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface  
consists of 4 pins: IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR  
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the  
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK  
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after  
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK  
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the  
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when  
not used for data transmission and also in the time slot of the unused channel. For more timing  
information, see the timing section.  
7.4.5. System Timing  
The system can work at 2000 kHz master clock rate only. The system clock is supplied through the  
master clock input MCLK and can be derived from the bit-clock if desired. An internal pre-scaler is  
used to generate a fixed 256 kHz and 8 kHz sample clock for the internal CODEC. If the Frame Sync  
is LOW for the entire frame sync period while the MCLK and BCLK pin clock signals are still present,  
the W681513 will enter the low power standby mode. Another way to power down is to set the PUI pin  
to low. When the system needs to be powered up again, the PUI pin needs to be set to HIGH and the  
Frame Sync pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will  
become low impedance.  
- 12 -  
W681513  
8. TIMING DIAGRAMS  
TFTRHM  
TFTRSM  
TMCKL  
TMCKH  
TRISE  
TFALL  
MCLK  
TMCK  
TFS  
TFSL  
FST  
TFTRH  
TFTRS  
TFTFH  
TBCKH  
TBCKL  
BCLKT  
PCMT  
0
1
2
3
4
5
6
7
8
0
1
TFDTD  
TBDTD  
THID  
THID  
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
TFS  
TFSL  
FSR  
TFRRH  
TFRRS  
TFRFH  
TBCKH  
TBCKL  
BCLKR  
PCMR  
0
1
2
3
4
5
6
7
8
0
1
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
LSB  
MSB  
TDRH  
TDRS  
Figure 8.1 Long Frame Sync PCM Timing  
Publication Release Date: October, 2005  
Revision A11  
- 13 -  
W681513  
SYMBOL  
1/TFS  
DESCRIPTION  
MIN  
---  
TYP  
MAX  
UNIT  
kHz  
sec  
kHz  
ns  
FST, FSR Frequency  
8
---  
TFSL  
FST / FSR Minimum LOW Width 1  
BCLKT, BCLKR Frequency  
BCLKT, BCLKR HIGH Pulse Width  
BCLKT, BCLKR LOW Pulse Width  
TBCK  
2000  
50  
1/TBCK  
TBCKH  
TBCKL  
---  
---  
---  
---  
2000  
---  
50  
---  
ns  
TFTRH  
BCLKT 0 Falling Edge to FST Rising 20  
Edge Hold Time  
---  
ns  
TFTRS  
TFTFH  
TFDTD  
TBDTD  
THID  
FST Rising Edge to BCLKT 1 Falling 80  
edge Setup Time  
---  
---  
---  
---  
---  
---  
---  
60  
60  
60  
ns  
ns  
ns  
ns  
ns  
BCLKT 2 Falling Edge to FST Falling 50  
Edge Hold Time  
FST Rising Edge to Valid PCMT Delay ---  
Time  
BCLKT Rising Edge to Valid PCMT ---  
Delay Time  
Delay Time from the Later of FST 10  
Falling Edge, or  
BCLKT 8 Falling Edge to PCMT Output  
High Impedance  
TFRRH  
TFRRS  
TFRFH  
TDRS  
BCLKR 0 Falling Edge to FSR Rising 20  
Edge Hold Time  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
ns  
FSR Rising Edge to BCLKR 1 Falling 80  
edge Setup Time  
BCLKR 2 Falling Edge to FSR Falling 50  
Edge Hold Time  
Valid PCMR to BCLKR Falling Edge  
Setup Time  
0
TDRH  
PCMR Hold Time from BCLKR Falling 50  
Edge  
Table 8.1 Long Frame Sync PCM Timing Parameters  
1 TFSL must be at least TBCK  
- 14 -  
W681513  
TFTRHM  
TFTRSM  
TMCKL  
TMCKH  
TRISE  
TFALL  
MCLK  
TMCK  
TFS  
TFTFH  
TFTFS  
FST  
TFTRS  
TFTRH  
TBCKH  
TBCKL  
BCLKT  
PCMT  
0
1
-1  
0
1
2
3
4
5
6
7
8
TBCK  
TBDTD  
TBDTD  
THID  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
TFS  
TFRFH  
TFRFS  
FSR  
TFRRS  
TFRRH  
TBCKH  
TBCKL  
BCLKR  
PCMR  
0
1
-1  
0
1
2
3
4
5
6
7
8
TBCK  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
TDRH  
TDRS  
Figure 8.2 Short Frame Sync PCM Timing  
Publication Release Date: October, 2005  
Revision A11  
- 15 -  
W681513  
SYMBOL  
1/TFS  
DESCRIPTION  
MIN  
---  
TYP  
8
MAX  
---  
UNIT  
kHz  
kHz  
ns  
FST, FSR Frequency  
1/TBCK  
TBCKH  
BCLKT, BCLKR Frequency  
BCLKT, BCLKR HIGH Pulse Width  
BCLKT, BCLKR LOW Pulse Width  
2000  
50  
---  
---  
---  
---  
2000  
---  
TBCKL  
50  
---  
ns  
TFTRH  
BCLKT –1 Falling Edge to FST Rising Edge Hold 20  
Time  
---  
ns  
TFTRS  
FST Rising Edge to BCLKT 0 Falling edge Setup 80  
Time  
---  
---  
ns  
TFTFH  
TFTFS  
BCLKT 0 Falling Edge to FST Falling Edge Hold Time 50  
---  
---  
---  
---  
ns  
ns  
FST Falling Edge to BCLKT 1 Falling Edge Setup 50  
Time  
TBDTD  
THID  
BCLKT Rising Edge to Valid PCMT Delay Time  
10  
---  
---  
60  
60  
ns  
ns  
Delay Time from BCLKT 8 Falling Edge to PCMT 10  
Output High Impedance  
TFRRH  
TFRRS  
BCLKR –1 Falling Edge to FSR Rising Edge Hold 20  
Time  
---  
---  
---  
---  
ns  
ns  
FSR Rising Edge to BCLKR 0 Falling edge Setup 80  
Time  
TFRFH  
TFRFS  
BCLKR 0 Falling Edge to FSR Falling Edge Hold Time 50  
---  
---  
---  
---  
ns  
ns  
FSR Falling Edge to BCLKR 1 Falling Edge Setup 50  
Time  
TDRS  
TDRH  
Valid PCMR to BCLKR Falling Edge Setup Time  
PCMR Hold Time from BCLKR Falling Edge  
0
---  
---  
---  
---  
ns  
ns  
50  
Table 8.2 Short Frame Sync PCM Timing Parameters  
- 16 -  
W681513  
TFS  
FST  
BCLKT  
PCMT  
TFSFH  
TFSRS  
TFSRH  
-1  
TBCKH  
TBCKL  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
TBCK  
THID  
TBDTD  
TBDTD  
THID  
TBDTD  
TBDTD  
D7  
D6 D5  
D4 D3 D2 D1 D0  
LSB  
D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
LSB  
MSB  
TDRS  
TDRH  
TDRS  
TDRH  
D7  
D6 D5  
PCMR  
D4 D3 D2 D1 D0  
LSB  
D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
MSB  
LSB  
BCH = 0  
BCH = 1  
B1 Channel  
B2 Channel  
Figure 8.3 IDL PCM Timing  
SYMBOL DESCRIPTION  
MIN  
TYP  
8
MAX  
UNIT  
kHz  
kHz  
ns  
1/TFS  
1/TBCK  
TBCKH  
TBCKL  
TFSRH  
FST Frequency  
---  
---  
BCLKT Frequency  
2000  
50  
---  
---  
---  
---  
2000  
---  
BCLKT HIGH Pulse Width  
BCLKT LOW Pulse Width  
50  
---  
ns  
BCLKT –1 Falling Edge to FST Rising Edge 20  
Hold Time  
---  
ns  
TFSRS  
TFSFH  
TBDTD  
THID  
FST Rising Edge to BCLKT 0 Falling edge 60  
Setup Time  
---  
---  
---  
---  
---  
---  
60  
50  
ns  
ns  
ns  
ns  
BCLKT 0 Falling Edge to FST Falling Edge 20  
Hold Time  
BCLKT Rising Edge to Valid PCMT Delay 10  
Time  
Delay Time from the BCLKT 8 Falling Edge 10  
(B1 channel) or BCLKT 18 Falling Edge (B2  
Channel) to PCMT Output High Impedance  
TDRS  
TDRH  
Valid PCMR to BCLKT Falling Edge Setup 20  
Time  
---  
---  
---  
---  
ns  
ns  
PCMR Hold Time from BCLKT Falling Edge 75  
Table 8.3 IDL PCM Timing Parameters  
Publication Release Date: October, 2005  
Revision A11  
- 17 -  
W681513  
TFS  
FST  
BCLKT  
PCMT  
TFSFH  
TFSRS  
TBCKH  
TBCKL  
TFSRH  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
THID  
TFDTD  
D7  
TBDTD  
D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2  
MSB  
THID  
TBDTD  
TBDTD  
TBCK  
D6 D5  
D1 D0  
LSB  
MSB  
LSB  
TDRS  
TDRH  
TDRS  
TDRH  
D7  
D6 D5  
PCMR  
D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
MSB  
LSB  
LSB  
BCH = 0  
BCH = 1  
B1 Channel  
B2 Channel  
Figure 8.4 GCI PCM Timing  
SYMBOL  
1/TFST  
1/TBCK  
TBCKH  
TBCKL  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
FST Frequency  
---  
8
---  
kHz  
BCLKT Frequency  
BCLKT HIGH Pulse Width  
BCLKT LOW Pulse Width  
2000 ---  
2000 kHz  
50  
50  
20  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
60  
60  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TFSRH  
TFSRS  
TFSFH  
BCLKT 0 Falling Edge to FST Rising Edge Hold Time  
FST Rising Edge to BCLKT 1 Falling edge Setup Time 60  
BCLKT 1 Falling Edge to FST Falling Edge Hold Time  
FST Rising Edge to Valid PCMT Delay Time  
BCLKT Rising Edge to Valid PCMT Delay Time  
20  
---  
---  
TFDTD  
TBDTD  
THID  
Delay Time from the BCLKT 16 Falling Edge (B1 10  
channel) or BCLKT 32 Falling Edge (B2 Channel) to  
PCMT Output High Impedance  
TDRS  
TDRH  
Valid PCMR to BCLKT Rising Edge Setup Time  
PCMR Hold Time from BCLKT Rising Edge  
Table 8.4 GCI PCM Timing Parameters  
20  
---  
---  
---  
---  
ns  
ns  
60  
- 18 -  
W681513  
SYMBOL  
DESCRIPTION  
MIN  
TYP  
2000  
MAX  
UNIT  
1/TMCK  
Master Clock Frequency  
---  
---  
kHz  
TMCKH  
TMCK  
/
MCLK Duty Cycle for 256 kHz 45%  
Operation  
55%  
TMCKH  
TMCKL  
TFTRHM  
TFTRSM  
Minimum Pulse Width HIGH for 50  
MCLK(512 kHz or Higher)  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
Minimum Pulse Width LOW for MCLK 50  
(512 kHz or Higher)  
MCLK falling Edge to FST Rising Edge 50  
Hold Time  
FST Rising Edge to MCLK Falling edge 50  
Setup Time  
TRISE  
TFALL  
Rise Time for All Digital Signals  
Fall Time for All Digital Signals  
---  
---  
---  
---  
50  
50  
ns  
ns  
Table 8.5 General PCM Timing Parameters  
Publication Release Date: October, 2005  
Revision A11  
- 19 -  
W681513  
9. ABSOLUTE MAXIMUM RATINGS  
9.1. ABSOLUTE MAXIMUM RATINGS  
Condition  
Junction temperature  
Value  
1500C  
-650C to +1500C  
Storage temperature range  
Voltage Applied to any pin  
(VSS - 0.3V) to (VDD + 0.3V)  
(VSS – 1.0V) to (VDD + 1.0V)  
-0.5V to +6V  
Voltage applied to any pin (Input current limited to +/-20 mA)  
VDD - VSS  
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute  
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.  
9.2. OPERATING CONDITIONS  
Condition  
Industrial operating temperature  
Supply voltage (VDD  
Ground voltage (VSS)  
Value  
-400C to +850C  
)
+4.5V to +5.5V  
0V  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely  
affect the life and reliability of the device.  
- 20 -  
W681513  
10. ELECTRICAL CHARACTERISTICS  
10.1. GENERAL PARAMETERS  
Symbol Parameters  
Conditions  
Min (2) Typ (1)  
Max (2)  
Units  
VIL  
Input LOW Voltage  
0.6  
V
V
V
V
VIH  
VOL  
VOH  
Input HIGH Voltage  
2.4  
PCMT Output LOW Voltage  
PCMT Output HIGH Voltage  
IOL = 3 mA  
0.4  
IOL = -3 mA  
VDD  
0.4  
VDD Current (Operating) - ADC + DAC  
VDD Current (Standby)  
6
8
mA  
IDD  
ISB  
No Load  
FST & FSR =Vss  
PUI=VDD  
;
10  
100  
μA  
Ipd  
IIL  
VDD Current (Power Down)  
Input Leakage Current  
PUI= Vss  
0.1  
10  
μA  
μA  
μA  
VSS<VIN<VDD  
+/-10  
+/-10  
VSS<PCMT<VDD  
High Z State  
IOL  
PCMT Output Leakage Current  
CIN  
Digital Input Capacitance  
10  
15  
pF  
pF  
COUT  
PCMT Output Capacitance  
PCMT High Z  
1. Typical values: TA = 25°C , VDD = 5.0 V  
2. All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all  
specifications are 100 percent tested.  
Publication Release Date: October, 2005  
- 21 -  
Revision A11  
W681513  
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
;
MCLK=BCLK= 2MHz; FST=FSR=8 kHz synchronous operation  
PARAMETER SYM.  
CONDITION  
TYP.  
TRANSMIT  
(A/D)  
RECEIVE  
(D/A)  
UNIT  
MIN.  
MAX.  
MIN.  
MAX.  
Absolute  
Level  
LABS  
1.096  
0.775  
1.579  
1.573  
---  
---  
---  
---  
VPK  
VRMS  
VPK  
VPK  
0 dBm0 = 0dBm @ 600Ω  
Max. Transmit TXMAX  
Level  
---  
---  
---  
---  
---  
---  
---  
---  
3.17 dBm0 for μ-Law  
3.14 dBm0 for A-Law  
Absolute Gain GABS  
(0 dBm0 @  
1020 Hz;  
0 dBm0 @ 1020 Hz;  
TA=+25°C  
0
-0.25  
+0.25 -0.25 +0.25 dB  
TA=+25°C)  
Absolute Gain GABST  
variation with  
Temperature  
0
-0.03  
-0.05  
+0.03 -0.03 +0.03 dB  
+0.05 -0.05 +0.05  
TA=0°C to TA=+70°C  
TA=-40°C to TA=+85°C  
Frequency  
Response,  
GRTV  
15 Hz  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
-40  
-30  
-26  
-0.4  
-0.5  
-0.5  
-0.5  
-0.5  
0
0
0
0
dB  
50 Hz  
Relative to  
0dBm0 @  
1020 Hz  
60 Hz  
---  
200 Hz  
-1.0  
-0.20  
-0.35  
-0.8  
---  
300 to 3000 Hz  
3300 Hz  
+0.15 -0.20 +0.15  
+0.15 -0.35 +0.15  
3400 Hz  
0
-0.8  
---  
0
3600 Hz  
0
0
4000 Hz  
---  
-14  
-32  
+0.3  
+0.6  
+1.6  
---  
-14  
-30  
+0.2  
+0.4  
+1.6  
4600 Hz to 100 kHz  
+3 to –40 dBm0  
-40 to –50 dBm0  
-50 to –55 dBm0  
---  
---  
Gain Variation GLT  
vs. Level Tone  
-0.3  
-0.6  
-1.6  
-0.2  
-0.4  
-1.6  
dB  
(1020 Hz  
relative to –10  
dBm0)  
- 22 -  
W681513  
10.3. ANALOG DISTORTION AND NOISE PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
;
MCLK=BCLK= 2MHz; FST=FSR=8 kHz synchronous operation  
PARAMETER  
SYM.  
CONDITION  
TRANSMIT (A/D)  
MIN. TYP. MAX.  
RECEIVE (D/A)  
TYP. MAX.  
UNIT  
MIN.  
34  
36  
30  
25  
34  
36  
30  
25  
---  
Total Distortion vs.  
Level Tone (1020 Hz,  
μ-Law, C-Message  
Weighted)  
+3 dBm0  
36  
36  
29  
25  
36  
36  
29  
25  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
-47  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
dBC  
DLTμ  
0 dBm0 to -30 dBm0  
-40 dBm0  
---  
-45 dBm0  
---  
Total Distortion vs.  
Level Tone (1020 Hz,  
A-Law, Psophometric  
Weighted)  
DLTA  
+3 dBm0  
---  
dBp  
dB  
0 dBm0 to -30 dBm0  
-40 dBm0  
---  
---  
-45 dBm0  
---  
Spurious Out-Of-Band DSPO  
at RO+ (300 Hz to  
3400 Hz @ 0dBm0)  
4600 Hz to 7600 Hz  
7600 Hz to 8400 Hz  
8400 Hz to 100000 Hz  
300 to 3000 Hz  
-30  
-40  
-30  
-47  
---  
---  
Spurious In-Band (700 DSPI  
Hz to 1100 Hz @  
0dBm0)  
---  
dB  
dB  
Intermodulation  
Distortion (300 Hz to  
3400 Hz –4 to –21  
dBm0  
DIM  
Two tones  
---  
---  
-41  
---  
---  
-41  
Crosstalk (1020 Hz @ DXT  
0dBm0)  
---  
---  
---  
---  
-75  
---  
---  
---  
---  
-75  
dBm0  
Absolute Group Delay  
1200Hz  
360  
240  
μsec  
μsec  
τABS  
Group Delay  
500 Hz  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
750  
380  
130  
130  
750  
18  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
750  
370  
120  
120  
750  
13  
τD  
Distortion (relative to  
group delay @ 1200  
Hz)  
600 Hz  
1000 Hz  
2600 Hz  
2800 Hz  
Idle Channel Noise  
NIDL  
dBrnc0  
dBm0p  
μ-Law; C-message  
-68  
-78  
A-Law; Psophometric  
Publication Release Date: October, 2005  
Revision A11  
- 23 -  
W681513  
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS  
VDD=5V ±10%; VSS=0V; TA=-40°C to +85°C; all analog signals referred to VAG  
;
PARAMETER  
AI Input Offset Voltage  
AI Input Current  
SYM.  
VOFF,AI  
IIN,AI  
CONDITION  
AI+, AI-  
MIN.  
---  
TYP.  
MAX.  
±25  
UNIT.  
---  
mV  
AI+, AI-  
---  
±0.1  
---  
±1.0  
---  
μA  
MΩ  
pF  
V
AI Input Resistance  
AI Input Capacitance  
RIN,AI  
AI+, AI- to VAG  
AI+, AI-  
10  
CIN,AI  
---  
---  
10  
AI Common Mode Input Voltage  
Range  
VCM,AI  
AI+, AI-  
1.2  
---  
VDD-1.2  
AI Common Mode Rejection  
Ratio  
CMRRTI AI+, AI-  
---  
60  
---  
dB  
AI Amp Gain Bandwidth Product GBWTI  
---  
---  
2150  
95  
---  
---  
kHz  
dB  
AO, RLD10kΩ  
AO, RLD10kΩ  
C-Message Weighted  
RLD=10kΩ to VAG  
RLD=2kΩ to VAG  
AO, RO to VAG  
AO, RO  
AI Amp DC Open Loop Gain  
AI Amp Equivalent Input Noise  
AO Output Voltage Range  
GTI  
NTI  
VTG  
---  
-24  
---  
---  
dBrnC  
V
0.5  
1.0  
VDD-0.5  
---  
V
DD-1.0  
Load Resistance  
RLDTGRO  
CLDTGRO  
IOUT1  
2
---  
---  
---  
---  
1
---  
100  
---  
kΩ  
pF  
Load Capacitance  
AO & RO Output Current  
RO+ Output Resistance  
RO+ Output Offset Voltage  
Analog Ground Voltage  
VAG Output Resistance  
mA  
0.5 AO,RO+VDD-0.5  
RO+, 0 to 3400 Hz  
RO+ to VAG  
±1.0  
---  
RRO+  
---  
Ω
VOFF,RO+  
VAG  
---  
---  
2.5  
2.5  
mV  
V
±25  
Relative to VSS  
2.429  
---  
2.573  
12.5  
RVAG  
Within ±25mV change  
Transmit  
Ω
Power Supply Rejection Ratio (0 PSRR  
to 100 kHz to VDD, C-message)  
40  
40  
---  
80  
75  
---  
---  
---  
dBC  
Receive  
PAI Input Offset Voltage  
PAI Input Current  
VOFF,PAI  
IIN,PAI  
PAI  
mV  
±20  
±1.0  
---  
PAI  
---  
10  
---  
±0.05  
---  
μA  
PAI Input Resistance  
RIN,PAI  
GBWPI  
PAI to VAG  
PAO- no load  
MΩ  
kHz  
PAI Amp Gain Bandwidth  
Product  
1000  
---  
Output Offset Voltage  
Load Resistance  
VOFF,PO  
RLDPO  
PAO+ to PAO-  
---  
---  
---  
mV  
±50  
PAO+, PAO-  
differentially  
300  
---  
Ω
Load Capacitance  
CLDPO  
PAO+, PAO-  
differentially  
---  
---  
1000  
pF  
- 24 -  
W681513  
PARAMETER  
PO Output Current  
SYM.  
IOUTPO  
CONDITION  
0.5 AO,RO+VDD-0.5  
PAO+ to PAO-  
MIN.  
±10.0  
---  
TYP.  
---  
1
MAX.  
---  
UNIT.  
mA  
PO Output Resistance  
PO Differential Gain  
RPO  
---  
Ω
-0.2  
0
+0.2  
dB  
GPO  
RLD=300Ω, +3dBm0, 1  
kHz, PAO+ to PAO-  
PO Differential Signal to  
Distortion C-Message weighted  
45  
---  
---  
60  
40  
40  
---  
---  
---  
dBC  
dB  
DPO  
ZLD=300Ω  
ZLD=100nF + 100Ω  
ZLD=100nF + 20Ω  
0 to 4 kHz  
PO Power Supply Rejection  
Ratio (0 to 25 kHz to VDD  
Differential out)  
40  
---  
55  
40  
---  
---  
PSRRP  
O
,
4 to 25 kHz  
Publication Release Date: October, 2005  
Revision A11  
- 25 -  
W681513  
10.5. DIGITAL I/O  
10.5.1. μ-Law Encode Decode Characteristics  
Normalized  
Normalized  
Encode  
Decision  
Levels  
Digital Code  
Decode  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
0
Step  
Step  
Step  
8159  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
8031  
:
7903  
:
4319  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4191  
:
4063  
:
2143  
2079  
:
2015  
:
1055  
1023  
:
991  
:
511  
495  
:
479  
:
239  
231  
:
223  
:
103  
99  
:
95  
:
35  
33  
:
31  
:
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
Notes:  
Sign bit = 0 for negative values, sign bit = 1 for positive values  
- 26 -  
W681513  
10.5.2. A-Law Encode Decode Characteristics  
Normalized  
Digital Code  
Normalized  
Encode  
Decision  
Levels  
Decode  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
1
Step  
Step  
Step  
4096  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
3968  
:
:
2048  
0
0
0
0
0
0
0
2112  
:
2048  
:
1088  
1056  
:
1024  
:
544  
528  
:
512  
:
272  
264  
:
256  
:
136  
132  
:
128  
:
68  
66  
:
64  
:
2
0
1
Notes:  
1. Sign bit = 0 for negative values, sign bit = 1 for positive values  
2. Digital code includes inversion of all even number bits  
Publication Release Date: October, 2005  
Revision A11  
- 27 -  
W681513  
10.5.3. PCM Codes for Zero and Full Scale  
A-Law  
μ-Law  
Level  
Sign bit  
Chord bits  
Step bits  
Sign bit  
Chord bits  
(D6,D5,D4)  
010  
Step bits  
(D3,D2,D1,D0)  
1010  
(D7)  
(D6,D5,D4) (D3,D2,D1,D0)  
(D7)  
+ Full Scale  
+ Zero  
1
1
0
0
000  
111  
111  
000  
0000  
1111  
1111  
0000  
1
1
0
0
101  
0101  
- Zero  
101  
0101  
- Full Scale  
010  
1010  
10.5.4. PCM Codes for 0dBm0 Output  
A-Law  
Chord bits  
(D6,D5,D4)  
011  
μ-Law  
Sample  
Sign bit Chord bits  
Step bits  
Sign bit  
Step bits  
(D3,D2,D1,D0)  
0100  
(D7)  
0
(D6,D5,D4) (D3,D2,D1,D0)  
(D7)  
0
1
2
3
4
5
6
7
8
001  
000  
000  
001  
001  
000  
000  
001  
1110  
1011  
1011  
1110  
1110  
1011  
1011  
1110  
0
0
010  
0001  
0
0
010  
0001  
0
0
011  
0100  
1
1
011  
0100  
1
1
010  
0001  
1
1
010  
0001  
1
1
011  
0100  
- 28 -  
W681513  
11. TYPICAL APPLICATION CIRCUITS  
VCC  
1K  
22uF  
1.5K  
0.1uF  
3.9K  
330pF  
1.0uF  
U1  
62K  
17  
18  
19  
AO  
AI-  
AI+  
14  
12  
13  
8KHz SYNC INPUT  
FST  
BCLKT  
PCMT  
select  
3.9K  
PCM OUTPUT  
MICROPHONE  
1.0uF  
11  
2.000 MHz CLOCK IN  
PCM INPUT  
MCLK  
62K  
330pF  
20K  
20  
1
VAG  
RO+  
8
9
7
PCMR  
BCLKR  
FSR  
1.5K  
2
3
4
5
RO+  
PAI  
3K  
16  
10  
PCM MODE CONTROL  
POWER CONTROL  
PAO-  
u/A  
PUI  
PAO+  
SPEAKER  
W681513  
0.01uF  
Figure 11.1 A USB VoIP Phone application  
Publication Release Date: October, 2005  
Revision A11  
- 29 -  
W681513  
1K  
VCC  
22uF  
C6 330pF  
1.5K  
R3 3.9K  
1.0uF  
R5 62K  
AO  
AI-  
AI+  
MICROPHONE  
1.0uF R4 3.9K  
R6 62K  
VAG  
1.5K  
C7 330pF  
0.01uF  
R8 3K  
R9 select  
PAO-  
R7 20K  
PAI  
RO+  
SPEAKER  
PAO+  
Figure 11.2 Equivalent Circuit of Figure 11.1  
SUGGESTED COMPONENT VALUES BY APPLICATION  
SCHEMATIC  
COMPONENT #  
TELEPHONE  
HANDSET  
VoIP PHONE  
SET  
R3,4  
R5,6  
C6,7  
R9  
1K  
27K  
1K  
91K  
1200 pF  
SELECT  
20K  
330 pF  
SELECT  
20K  
R7  
R8  
3K  
3K  
In the handset application the gain from the handset microphone is set to 27 for the input amplifier.  
This is because the acoustical chamber in the telephone type handset lets the electret microphone  
provide an output of ~28 mVRMS  
.
The chamber typically has a gain of 3 over a bare microphone (or  
one placed with only a small opening to the outside world.) Because of the high sensitivity of the  
earphone (150 Ώ impedance) in a typical handset, the output gain from the Power Amp is set to ~0.16  
for a satisfactory listening level.  
In the VoIP telephone, or small wireless phones, the plastic case is typically too small to provide a  
reasonable acoustic chamber. Thus the output from the microphone is less than in the previous  
example. This results in having to set the input gain of the CODEC to ~75 to 90 and in a comparable  
- 30 -  
W681513  
signal level to the receive telephone handset but, because of the increased gain, the Signal-to-Noise  
Ratio (SNR) has decreased and the signal sounds noisier. On the receive side, the gain is set as in  
the previous example. When the Power Amp gain is as low as 0.16 a 32 ohm load speaker can be  
driven.  
Resistor R9 sets the sidetone level (the signal fed back to the earpiece from the microphone so the  
telephone sounds “live”) to the level desired by the designer.  
Capacitors C6 and C7 are introduced for external compensation to keep the input amplifier stable at  
such high gain figures and prevent oscillation. These capacitors are not needed when the gain is  
close to unity or less than unity.  
Publication Release Date: October, 2005  
- 31 -  
Revision A11  
W681513  
12. PACKAGE SPECIFICATION  
12.2. 20L SOP (SOG)-300MIL  
SMALL OUTLINE PACKAGE (SAME AS SOG & SOIC) DIMENSIONS  
c
1
2
E
H
E
L
1
1
O
D
0.2  
A
Y
SEATING PLANE  
e
GAUGE  
A
b
DIMENSION (MM)  
DIMENSION (INCH)  
SYMBOL  
MIN.  
2.35  
0.10  
0.33  
0.23  
7.40  
12.60  
MAX.  
2.65  
0.30  
0.51  
0.32  
7.60  
13.00  
MIN.  
0.093  
0.004  
0.013  
0.009  
0.291  
0.496  
MAX.  
0.104  
0.012  
0.020  
0.013  
0.299  
0.512  
A
A1  
b
c
E
D
e
1.27 BSC  
0.050 BSC  
HE  
Y
10.00  
-
10.65  
0.10  
1.27  
8º  
0.394  
-
0.419  
0.004  
0.050  
8º  
L
0.40  
0º  
0.016  
0º  
0
- 32 -  
W681513  
13. ORDERING INFORMATION  
Winbond Part Number Description  
W681513_ _  
Package Material:  
Product Family  
W681513 Product  
Blank  
=
=
Standard Package  
Pb-free Package  
G
Package Type:  
20-Lead Plastic Small Outline Package (SOG/SOP)  
S
=
When ordering W681513 series devices, please refer to the following part numbers.  
Part Number  
W681513S  
W681513SG  
Publication Release Date: October, 2005  
Revision A11  
- 33 -  
W681513  
14. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A3  
October 1,  
2003  
First published version  
Add Important Notice  
A10  
A11  
April 2005  
33  
2
October,  
2005  
Added reference to Pb-free RoHS packaging and to VRMS  
Capitalized logic HIGH/LOW  
Various  
22  
Added Reference to VRMS  
22, 23  
23  
Extended Test conditions  
Corrected Idle Channel Noise min/max and units.  
Improved Application Diagrams  
29-31  
33  
Added G package ordering code  
- 34 -  
W681513  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
The information contained in this datasheet may be subject to change without  
notice. It is the responsibility of the customer to check the Winbond USA website  
(www.winbond-usa.com) periodically for the latest version of this document, and  
any Errata Sheets that may be generated between datasheet revisions.  
Publication Release Date: October, 2005  
- 35 -  
Revision A11  

相关型号:

W682310

DUAL-CHANNEL VOICEBAND CODECS
WINBOND

W682310S

PCM Codec, A/MU-Law, 1-Func, PDSO24, 0.300 INCH, PLASTIC, SOP-24
WINBOND

W682388

Pro-X⑩ CODEC Layout Guideline
WINBOND

W682388D

Analog Transmission Interface,
WINBOND

W682388DG

Dual Programmable Extended CODEC/SLIC
WINBOND

W682388YG

Dual Programmable Extended CODEC/SLIC
WINBOND

W682388_1

Dual Programmable Extended CODEC/SLIC
WINBOND

W682510

DUAL-CHANNEL VOICEBAND CODECS
WINBOND

W682510S

PCM Codec, A/MU-Law, 1-Func, PDSO24, 0.300 INCH, PLASTIC, SOP-24
WINBOND

W682510_05

DUAL-CHANNEL VOICEBAND CODECS
WINBOND

W6880-10PG-300W

Available with 9 or 10 #22 contacts
ETC

W6880-10PG-3ESW

Available with 9 or 10 #22 contacts
ETC