W83627UHG [WINBOND]

WINBOND LPC I/O; WINBOND LPC I / O
W83627UHG
型号: W83627UHG
厂家: WINBOND    WINBOND
描述:

WINBOND LPC I/O
WINBOND LPC I / O

PC
文件: 总241页 (文件大小:1798K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W83627UHG  
WINBOND LPC I/O  
Date: May/25/2007 Revision: 1.0  
W83627UHG  
W83627UHG Data Sheet Revision History  
WEB  
VERSION  
PAGES  
DATES  
VERSION  
MAIN CONTENTS  
1
2
NA  
9/14/2006  
0.5  
NA  
For Customer reference. (PRELIMINARY)  
1. Remove the section of AT Interface in  
Chapter 9 Floppy Disk Controller.  
2. Remove sections 8.4 and 8.5 (EXTFDD and  
EXT2FDD).  
3. Remove section 9.6 (OnNow / Security  
Keyboard and Mouse Wake-Up).  
NA  
11/29/2006  
0.6  
NA  
4. Update “S5COLD State” to “S5 State”.  
5. Update  
Characteristic.  
6. Update the description of CRF0.  
“VDD”  
to  
“5VCC”  
in  
DC  
1.  
2.  
Substitute “TControl” with “TBase”  
Modify the pin descriptions of INDEX#, SOUTF,  
TRAK0#,  
HEFRAS,  
WP#,  
PENKBC,  
RDATA#,  
VIN0  
DSKCHG#,  
VIN2,  
~
CPUVCORE, VREF, PLED and PSOUT#  
3.  
4.  
5.  
6.  
Revise the pin name of Pin 52 to PFDCUART  
Modify the IO type of Pin 90, 92 and 77.  
Update Figure 7-4 and 7-8  
Modify section 7.3.1, 7.5, 7.7.2, 7.7.3, 7.7.4 and  
18.2  
3
NA  
05/25/2007  
1.0  
NA  
7.  
8.  
9.  
Modify Chapter 13 Power Management Event  
Add section 13.4 PWROK Generation  
Remove Configuration Register CR[24h], bit 0;  
CR[26h], bit 7 and Logical Device A, CR[E4h],  
bit 4  
10. Modify Logical Device A, CR[E6h], bit 3 and bit  
5; Logical Device C, CR[E5h], bit 0  
11. Re-define the strapping function of pin 122.  
Please note that all data and specifications are subject to change without notice. All the trademarks of  
products and companies mentioned in this data sheet belong to their respective owners.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where  
malfunction of these products can reasonably be expected to result in personal injury. Winbond  
customers using or selling these products for use in such applications do so at their own risk and  
agree to fully indemnify Winbond for any damages resulting from such improper use or sales.  
Publication Release Date: May 25, 2007  
-I-  
Revision 1.0  
W83627UHG  
Table of Contents -  
1.  
2.  
3.  
4.  
5.  
GENERAL DESCRIPTION ......................................................................................................... 1  
FEATURES................................................................................................................................. 2  
BLOCK DIAGRAM ...................................................................................................................... 5  
PIN LAYOUT............................................................................................................................... 6  
PIN DESCRIPTION..................................................................................................................... 7  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
LPC Interface.................................................................................................................. 8  
FDC Interface.................................................................................................................. 8  
Multi-Mode Parallel Port ............................................................................................... 10  
Serial Port & Infrared Port Interface.............................................................................. 12  
KBC Interface................................................................................................................ 17  
Hardware Monitor Interface .......................................................................................... 17  
PECI Interface............................................................................................................... 18  
SST Interface................................................................................................................ 18  
Advanced Configuration and Power Interface.............................................................. 18  
5.10 General Purpose I/O Port ............................................................................................. 19  
5.10.1 GPIO Power Source.....................................................................................................19  
5.10.2 GPIO-1 Interface ..........................................................................................................19  
5.10.3 GPIO-2 Interface ..........................................................................................................19  
5.10.4 GPIO-3 Interface ..........................................................................................................19  
5.10.5 GPIO-4 Interface ..........................................................................................................19  
5.10.6 GPIO-5 Interface ..........................................................................................................20  
5.10.7 GPIO-6 Interface ..........................................................................................................20  
5.10.8 WDTO# and SUSLED Pins ..........................................................................................20  
5.11 POWER PINS............................................................................................................... 20  
6.  
7.  
CONFIGURATION REGISTER ACCESS PROTOCOL ........................................................... 21  
6.1  
Configuration Sequence ............................................................................................... 23  
6.1.1 Enter the Extended Function Mode ................................................................................23  
6.1.2 Configure the Configuration Registers............................................................................24  
6.1.3 Exit the Extended Function Mode...................................................................................24  
6.1.4 Software Programming Example....................................................................................24  
HARDWARE MONITOR ........................................................................................................... 26  
7.1  
7.2  
General Description...................................................................................................... 26  
Access Interfaces.......................................................................................................... 26  
7.2.1 LPC Interface .................................................................................................................27  
7.2.2 I2C Interface....................................................................................................................29  
Analog Inputs................................................................................................................ 31  
7.3.1 Voltages Over 2.048 V or Less Than 0 V .......................................................................32  
7.3.2 Voltage Detection ...........................................................................................................32  
7.3.3 Temperature Sensing.....................................................................................................33  
SST Command Summary............................................................................................. 35  
7.4.1 Command Summary.......................................................................................................36  
7.3  
7.4  
-II-  
W83627UHG  
7.4.2 Combination Sensor Data Format ..................................................................................37  
PECI.............................................................................................................................. 38  
Fan Speed Measurement and Control ......................................................................... 40  
7.6.1 Fan Speed Measurement...............................................................................................40  
7.6.2 Fan Speed Control .........................................................................................................41  
7.6.3 SMART FANTM Control...................................................................................................42  
Interrupt Detection ........................................................................................................ 49  
7.7.1 SMI# Interrupt Mode.......................................................................................................49  
7.7.2 OVT# Interrupt Mode......................................................................................................52  
7.7.3 Caseopen Detection.......................................................................................................53  
7.7.4 BEEP Alarm Function.....................................................................................................54  
7.5  
7.6  
7.7  
8.  
HARDWARE MONITOR REGISTER SET................................................................................ 55  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
Address Port (Port x5h) ................................................................................................ 55  
Data Port (Port x6h)...................................................................................................... 55  
SYSFANOUT PWM Output Frequency Configuration Register - Index 00h (Bank 0) . 56  
SYSFANOUT Output Value Select Register - Index 01h (Bank 0) .............................. 56  
CPUFANOUT PWM Output Frequency Configuration Register - Index 02h (Bank 0). 57  
CPUFANOUT Output Value Select Register - Index 03h (Bank 0).............................. 57  
FAN Configuration Register I - Index 04h (Bank 0)...................................................... 58  
SYSTIN Target Temperature Register/ SYSFANIN Target Speed Register - Index 05h  
(Bank 0)..................................................................................................................................... 58  
8.9 CPUTIN Target Temperature Register/ CPUFANIN Target Speed Register - Index 06h  
(Bank 0)..................................................................................................................................... 59  
8.10 Tolerance of Target Temperature or Target Speed Register - Index 07h (Bank 0) ..... 59  
8.11 SYSFANOUT Stop Value Register - Index 08h (Bank 0)............................................. 59  
8.12 CPUFANOUT Stop Value Register - Index 09h (Bank 0)............................................. 60  
8.13 SYSFANOUT Start-up Value Register - Index 0Ah (Bank 0)....................................... 60  
8.14 CPUFANOUT Start-up Value Register - Index 0Bh (Bank 0)....................................... 60  
8.15 SYSFANOUT Stop Time Register - Index 0Ch (Bank 0).............................................. 61  
8.16 CPUFANOUT Stop Time Register - Index 0Dh (Bank 0)............................................. 61  
8.17 Fan Output Step Down Time Register - Index 0Eh (Bank 0) ....................................... 61  
8.18 Fan Output Step Up Time Register - Index 0Fh (Bank 0) ............................................ 62  
8.19 Reserved Registers - Index 10h (Bank 0) .................................................................... 62  
8.20 Reserved Registers - Index 11h (Bank 0) .................................................................... 62  
8.21 FAN Configuration Register II - Index 12h (Bank 0)..................................................... 62  
8.22 Reserved Registers - Index 13h (Bank 0) .................................................................... 63  
8.23 Reserved Registers - Index 14h (Bank 0) .................................................................... 63  
8.24 Reserved Registers - Index 15h (Bank 0) .................................................................... 63  
8.25 Reserved Registers - Index 16h (Bank 0) .................................................................... 63  
8.26 Reserved Registers - Index 17h (Bank 0) .................................................................... 63  
8.27 OVT# Configuration Register - Index 18h (Bank 0)...................................................... 63  
8.28 Reserved Registers - Index 19h ~ 1Fh (Bank 0).......................................................... 64  
8.29 Value RAM Index 20h ~ 3Fh (Bank 0) ..................................................................... 64  
Publication Release Date: May 25, 2007  
-III-  
Revision 1.0  
W83627UHG  
8.30 Configuration Register - Index 40h (Bank 0) ................................................................ 65  
8.31 Interrupt Status Register 1 - Index 41h (Bank 0).......................................................... 66  
8.32 Interrupt Status Register 2 - Index 42h (Bank 0).......................................................... 66  
8.33 SMI# Mask Register 1 - Index 43h (Bank 0)................................................................. 67  
8.34 SMI# Mask Register 2 - Index 44h (Bank 0)................................................................. 67  
8.35 Reserved Register - Index 45h (Bank 0) .................................................................... 68  
8.36 SMI# Mask Register 3 - Index 46h (Bank 0)................................................................. 68  
8.37 Fan Divisor Register I - Index 47h (Bank 0) ................................................................. 68  
8.38 Serial Bus Address Register - Index 48h (Bank 0)....................................................... 68  
8.39 CPUFANOUT monitor Temperature source select register - Index 49h (Bank 0) ....... 69  
8.40 SYSFANOUT monitor Temperature source select register - Index 4Ah (Bank 0) ....... 70  
8.41 Fan Divisor Register II - Index 4Bh (Bank 0)................................................................ 70  
8.42 SMI#/OVT# Control Register - Index 4Ch (Bank 0)...................................................... 71  
8.43 FAN IN/OUT Control Register - Index 4Dh (Bank 0).................................................... 72  
8.44 Register 50h ~ 5Fh Bank Select Register - Index 4Eh (Bank 0) .................................. 72  
8.45 Winbond Vendor ID Register - Index 4Fh (Bank 0)...................................................... 73  
8.46 Reserved Register - Index 50h ~ 55h (Bank 0)............................................................ 73  
8.47 BEEP Control Register 1 - Index 56h (Bank 0) ............................................................ 73  
8.48 BEEP Control Register 2 - Index 57h (Bank 0) ............................................................ 74  
8.49 Chip ID - Index 58h (Bank 0) ........................................................................................ 75  
8.50 Diode Selection Register - Index 59h (Bank 0) ............................................................ 75  
8.51 Reserved Register - Index 5Ah ~ 5Ch (Bank 0)........................................................... 75  
8.52 VBAT Monitor Control Register - Index 5Dh (Bank 0).................................................. 75  
8.53 Critical Temperature enable register - Index 5Eh (Bank 0).......................................... 76  
8.54 Reserved Register - Index 5Fh (Bank 0)...................................................................... 77  
8.55 Reserved Registers - Index 60h (Bank 0) .................................................................... 77  
8.56 Reserved Registers - Index 61h (Bank 0) .................................................................... 77  
8.57 Reserved Registers - Index 62h (Bank 0) .................................................................... 77  
8.58 Reserved Registers - Index 63h (Bank 0) .................................................................... 77  
8.59 Reserved Registers - Index 64h (Bank 0) .................................................................... 77  
8.60 Reserved Registers - Index 65h (Bank 0) .................................................................... 77  
8.61 Reserved Registers - Index 66h (Bank 0) .................................................................... 77  
8.62 CPUFANOUT Maximum Output Value Register - Index 67h (Bank 0) ........................ 77  
8.63 CPUFANOUT Output Step Value Register - Index 68h (Bank 0)................................. 78  
8.64 Reserved Registers - Index 69h (Bank 0) .................................................................... 78  
8.65 Reserved Registers - Index 6Ah (Bank 0).................................................................... 78  
8.66 SYSFANOUT Critical Temperature register - Index 6Bh (Bank 0)............................... 78  
8.67 CPUFANOUT Critical Temperature register - Index 6Ch (Bank 0) .............................. 78  
8.68 Reserved Registers - Index 6Dh (Bank 0).................................................................... 79  
8.69 Reserved Registers - Index 6Eh (Bank 0).................................................................... 79  
8.70 CPUTIN/PECI Temperature (High Byte) Register - Index 50h (Bank 1)...................... 79  
8.71 CPUTIN/PECI Temperature (Low Byte) Register - Index 51h (Bank 1)....................... 79  
8.72 CPUTIN Configuration Register - Index 52h (Bank 1).................................................. 80  
-IV-  
W83627UHG  
8.73 CPUTIN Hysteresis (High Byte) Register - Index 53h (Bank 1) ................................... 80  
8.74 CPUTIN Hysteresis (Low Byte) Register - Index 54h (Bank 1).................................... 80  
8.75 CPUTIN Over-temperature (High Byte) Register - Index 55h (Bank1)......................... 81  
8.76 CPUTIN Over-temperature (Low Byte) Register - Index 56h (Bank 1) ........................ 81  
8.77 SYSTIN/CPUTIN/PECI Temperature (High Byte) Register - Index 50h (Bank 2)........ 81  
8.78 SYSTIN/CPUTIN/PECI Temperature (Low Byte) Register – Index 51h (Bank 2)........ 82  
8.79 Reserved Registers – Index 52h (Bank 2).................................................................... 82  
8.80 Reserved Registers – Index 53h (Bank 2).................................................................... 82  
8.81 Reserved Registers – Index 54h (Bank 2).................................................................... 82  
8.82 Reserved Registers – Index 55h (Bank 2).................................................................... 82  
8.83 Reserved Registers – Index 56h (Bank 2).................................................................... 82  
8.84 Interrupt Status Register 3 – Index 50h (Bank 4) ......................................................... 82  
8.85 SMI# Mask Register 4 – Index 51h (Bank 4)................................................................ 83  
8.86 Reserved Register - Index 52h (Bank 4) ...................................................................... 83  
8.87 BEEP Control Register 3 - Index 53h (Bank 4) ............................................................ 83  
8.88 SYSTIN Temperature Sensor Offset Register - Index 54h (Bank 4)............................ 84  
8.89 CPUTIN Temperature Sensor Offset Register - Index 55h (Bank 4) ........................... 84  
8.90 Reserved Registers - Index 56h (Bank 4) .................................................................... 84  
8.91 Reserved Register - Index 57h-58h (Bank 4)............................................................... 84  
8.92 Real Time Hardware Status Register I - Index 59h (Bank 4) ....................................... 84  
8.93 Real Time Hardware Status Register II - Index 5Ah (Bank 4)...................................... 85  
8.94 Real Time Hardware Status Register III - Index 5Bh (Bank 4)..................................... 86  
8.95 Reserved Register - Index 5Ch - 5Fh (Bank 4) ............................................................ 87  
8.96 Value RAM 2 Index 50h-59h (Bank 5) ..................................................................... 87  
8.97 Reserved Register - Index 50h - 57h (Bank 6)............................................................. 87  
FLOPPY DISK CONTROLLER................................................................................................. 88  
9.  
9.1  
FDC Functional Description.......................................................................................... 88  
9.1.1 FIFO (Data) ....................................................................................................................88  
Data Separator.............................................................................................................. 89  
9.2.1 Write Precompensation ..................................................................................................89  
9.2.2 Perpendicular Recording Mode......................................................................................89  
9.2.3 FDC Core .......................................................................................................................90  
9.2.4 FDC Commands.............................................................................................................90  
Register Descriptions.................................................................................................... 98  
9.3.1 Status Register A (SA Register) (Read base address + 0).............................................98  
9.3.2 Status Register B (SB Register) (Read base address + 1)...........................................100  
9.3.3 Digital Output Register (DO Register) (Write base address + 2) ..................................101  
9.3.4 Tape Drive Register (TD Register) (Read base address + 3).......................................101  
9.3.5 Main Status Register (MS Register) (Read base address + 4).....................................102  
9.3.6 Data Rate Register (DR Register) (Write base address + 4)........................................103  
9.3.7 FIFO Register (R/W base address + 5)........................................................................105  
9.3.8 Digital Input Register (DI Register) (Read base address + 7).......................................107  
9.2  
9.3  
Publication Release Date: May 25, 2007  
-V-  
Revision 1.0  
W83627UHG  
9.3.9 Configuration Control Register (CC Register) (Write base address + 7) ......................109  
UART PORT ........................................................................................................................... 110  
10.  
10.1 Universal Asynchronous Receiver/Transmitter (UART A, B, C, D, E, F) ................... 110  
10.2 Register Address ........................................................................................................ 110  
10.2.1 UART Control Register (UCR) (Read/Write) ..............................................................110  
10.2.2 UART Status Register (USR) (Read/Write)................................................................113  
10.2.3 Handshake Control Register (HCR) (Read/Write) ......................................................114  
10.2.4 Handshake Status Register (HSR) (Read/Write)........................................................114  
10.2.5 This register is used to control the FIFO functions of the UART.................................115  
10.2.6 Interrupt Status Register (ISR) (Read only)................................................................116  
10.2.7 Interrupt Control Register (ICR) (Read/Write) ............................................................117  
PARALLEL PORT................................................................................................................... 118  
11.  
11.1 Printer Interface Logic................................................................................................. 118  
11.2 Enhanced Parallel Port (EPP) .................................................................................... 118  
11.2.1 Data Port (Data Swapper) ..........................................................................................119  
11.2.2 Printer Status Buffer ...................................................................................................119  
11.2.3 Printer Control Latch and Printer Control Swapper.....................................................120  
11.2.4 EPP Address Port.......................................................................................................121  
11.2.5 EPP Data Port 0-3......................................................................................................121  
11.2.6 EPP Pin Descriptions .................................................................................................122  
11.2.7 EPP Operation ...........................................................................................................122  
11.3 Extended Capabilities Parallel (ECP) Port ................................................................. 123  
11.3.1 ECP Register and Bit Map..........................................................................................124  
11.3.2 Data and ecpAFifo Port ..............................................................................................125  
11.3.3 Device Status Register (DSR) ....................................................................................125  
11.3.4 Device Control Register (DCR) ..................................................................................125  
11.3.5 CFIFO (Parallel Port Data FIFO) Mode = 010 ............................................................126  
11.3.6 ECPDFIFO (ECP Data FIFO) Mode = 011.................................................................126  
11.3.7 TFIFO (Test FIFO Mode) Mode = 110........................................................................126  
11.3.8 CNFGA (Configuration Register A) Mode = 111.........................................................126  
11.3.9 CNFGB (Configuration Register B) Mode = 111.........................................................127  
11.3.10 ECR (Extended Control Register) Mode = all...........................................................127  
11.3.11 ECP Pin Descriptions ...............................................................................................129  
11.3.12 ECP Operation .........................................................................................................130  
11.3.13 DMA Transfers .........................................................................................................131  
11.3.14 Programmed I/O (NON-DMA) Mode.........................................................................131  
KEYBOARD CONTROLLER................................................................................................... 132  
12.  
12.1 Output Buffer............................................................................................................... 132  
12.2 Input Buffer ................................................................................................................. 132  
12.3 Status Register ........................................................................................................... 133  
12.4 Commands.................................................................................................................. 134  
12.5 Hardware GATEA20/Keyboard Reset Control Logic.................................................. 135  
12.5.1 KB Control Register (Logic Device 5, CR-F0) ............................................................135  
12.5.2 Port 92 Control Register (Default Value = 0x24) ........................................................137  
-VI-  
W83627UHG  
13.  
POWER MANAGEMENT EVENT........................................................................................... 138  
13.1 Power Control Logic ................................................................................................... 138  
13.1.1 PSON# Logic..............................................................................................................139  
13.1.2 AC Power Failure Resume.........................................................................................140  
13.2 Wake Up the System by Keyboard and Mouse.......................................................... 141  
13.2.1 Waken up by Keyboard events...................................................................................141  
13.2.2 Waken up by Mouse events .......................................................................................142  
13.3 Resume Reset Logic .................................................................................................. 142  
13.4 PWROK Generation ................................................................................................... 143  
14.  
SERIALIZED IRQ.................................................................................................................... 145  
14.1 Start Frame................................................................................................................. 145  
14.2 IRQ/Data Frame.......................................................................................................... 146  
14.3 Stop Frame ................................................................................................................. 147  
WATCHDOG TIMER............................................................................................................... 148  
GENERAL PURPOSE I/O....................................................................................................... 149  
16.1 GPIO Architecture....................................................................................................... 149  
16.2 Access Channels........................................................................................................ 149  
CONFIGURATION REGISTER............................................................................................... 151  
17.1 Chip (Global) Control Register.................................................................................... 151  
17.2 Logical Device 0 (FDC)............................................................................................... 157  
17.3 Logical Device 1 (Parallel Port) .................................................................................. 161  
17.4 Logical Device 2 (UART A)......................................................................................... 162  
17.5 Logical Device 3 (UART B)......................................................................................... 163  
17.6 Logical Device 5 (Keyboard Controller)...................................................................... 165  
17.7 Logical Device 6 (UART C)......................................................................................... 167  
17.8 Logical Device 7 (GPIO3, GPIO4).............................................................................. 168  
17.9 Logical Device 8 (WDTO#, PLED, GPIO5, 6 & GPIO Base Address) ....................... 170  
17.10 Logical Device 9 (GPIO1, GPIO2 and SUSLED)...................................................... 174  
17.11 Logical Device A (ACPI)............................................................................................ 176  
17.12 Logical Device B (Hardware Monitor) ....................................................................... 184  
17.13 Logical Device C (PECI, SST)................................................................................... 185  
17.14 Logical Device D (UART D)....................................................................................... 191  
17.15 Logical Device E (UART E)....................................................................................... 192  
17.16 Logical Device F (UART F) ....................................................................................... 193  
SPECIFICATIONS .................................................................................................................. 194  
15.  
16.  
17.  
18.  
18.1 Absolute Maximum Ratings........................................................................................ 194  
18.2 DC CHARACTERISTICS............................................................................................ 194  
18.3 AC CHARACTERISTICS............................................................................................ 199  
18.3.1 Power On / Off Timing................................................................................................199  
18.3.2 AC Power Failure Resume Timing .............................................................................200  
18.3.3 Clock Input Timing......................................................................................................205  
18.3.4 PECI and SST Timing ................................................................................................206  
Publication Release Date: May 25, 2007  
-VII-  
Revision 1.0  
W83627UHG  
18.3.5 SMBus Timing............................................................................................................207  
18.3.6 Floppy Disk Drive Timing............................................................................................207  
18.3.7 UART/Parallel Port .....................................................................................................209  
18.3.8 Parallel Port Mode Parameters ..................................................................................211  
18.3.9 Parallel Port................................................................................................................212  
18.3.10 KBC Timing Parameters...........................................................................................221  
18.3.11 GPIO Timing Parameters .........................................................................................224  
18.4 LRESET Timing .......................................................................................................... 225  
TOP MARKING SPECIFICATION .......................................................................................... 226  
PACKAGE SPECIFICATION.................................................................................................. 227  
19.  
20.  
APPENDIX – ABBREVIATIONS ......................................................................................................... 228  
-VIII-  
W83627UHG  
List of Figures -  
Figure 3-1 W83627UHG Block Diagram........................................................................................... 5  
Figure 4-1 W83627UHG Pin Layout ................................................................................................. 6  
Figure 6-1 Structure of the Configuration Register ......................................................................... 21  
Figure 6-2 Configuration Register................................................................................................... 23  
Figure 7-1 LPC Bus’ Reads from / Writes to Internal Registers...................................................... 28  
Figure 7-2 Serial Bus Write to Internal Address Register Followed by the Data Byte.................... 29  
Figure 7-3 Serial Bus Read from Internal Address Register........................................................... 30  
Figure 7-4 Analog Inputs and Application Circuit of the W83627UHG ........................................... 31  
Figure 7-5 Monitoring Temperature from Thermistor...................................................................... 33  
Figure 7-6 Monitoring Temperature from Thermal Diode (Voltage Mode)...................................... 34  
Figure 7-7 Monitoring Temperature from Thermal Diode ............................................................... 35  
Figure 7-8 PECI Illustration............................................................................................................. 39  
Figure 7-9 FANOUT and Corresponding Temperature Sensors in SMART FANTMI ...................... 42  
Figure 7-10 Mechanism of Thermal CruiseTM Mode (PWM Duty Cycle) ........................................ 43  
Figure 7-11 Mechanism of Thermal CruiseTM Mode (DC Output Voltage) ..................................... 43  
Figure 7-12 Mechanism of Fan Speed CruiseTM Mode................................................................... 44  
Figure 7-13 FANOUT and Corresponding Temperature Sensor in SMART FANTM III ................... 45  
Figure 7-14 Setting of SMART FANTM III......................................................................................... 46  
Figure 7-15 SMART FANTM III Mechanism (Current Temp. > Target Temp. + Tol.)....................... 47  
Figure 7-16 SMART FANTM III Mechanism (Current Temp. < Target Temp. – Tol.)....................... 48  
Figure 7-17 SMI Mode of Voltage and Fan Inputs.......................................................................... 49  
Figure 7-18 SMI Mode of SYSTIN I ................................................................................................ 50  
Figure 7-19 SMI Mode of SYSTIN II ............................................................................................... 51  
Figure 7-20 SMI Mode of CPUTIN.................................................................................................. 52  
Figure 7-21 OVT# Modes of Temperature Inputs........................................................................... 53  
Figure 7-22 Caseopen Mechanism................................................................................................. 54  
Figure 12-1 Keyboard and Mouse Interface.................................................................................. 132  
Figure 13-1 Power Control Mechanism......................................................................................... 139  
Figure 13-2 Power Sequence from S5 to S0, then back to S5. .................................................... 139  
Figure 13-3 Mechanism of Resume Reset Logic.......................................................................... 143  
Figure 14-1 Start Frame Timing with Source Sampled A Low Pulse on IRQ1 ............................. 145  
Figure 14-2 Stop Frame Timing with Host Using 17 SERIRQ Sampling Period........................... 147  
Publication Release Date: May 25, 2007  
-IX-  
Revision 1.0  
W83627UHG  
List of Tables-  
Table 6-1 Devices of I/O Base Address.......................................................................................... 22  
Table 6-2 Chip (Global) Control Registers...................................................................................... 25  
Table 7-1 Temperature Data Format .............................................................................................. 33  
Table 7-2 SST Command Summary............................................................................................... 36  
Table 7-3 Typical Temperature Values........................................................................................... 37  
Table 7-4 Fan Divisor Definition...................................................................................................... 40  
Table 7-5 Divisor, RPM, and Count Relation .................................................................................. 40  
Table 7-6 Display Registers – at SMART FANTM I Mode................................................................ 44  
Table 7-7 Relative Registers – at Thermal Cruise Mode................................................................ 45  
Table 7-8 Relative Registers – at Speed Cruise Mode................................................................... 45  
Table 7-9 Display Register – at SMART FANTMIII Mode ................................................................ 48  
Table 7-10 Relative Register – at SMART FANTMIII Control Mode................................................. 49  
Table 9-1 The Delays of the FIFO................................................................................................... 88  
Table 9-2 FDC Registers................................................................................................................. 98  
Table 10-1 Register Summary for UART ...................................................................................... 112  
Table 11-1 Pin Descriptions for SPP, EPP, and ECP Modes....................................................... 118  
Table 11-2 EPP Register Addresses ............................................................................................ 118  
Table 11-3 Address and Bit Map for SPP and EPP Modes.......................................................... 119  
Table 11-4 ECP Mode Description................................................................................................ 123  
Table 11-5 ECP Register Addresses ............................................................................................ 124  
Table 11-6 Bit Map of the ECP Registers ..................................................................................... 124  
Table 12-1 Bit Map of Status Register .......................................................................................... 133  
Table 12-2 KBC Command Sets................................................................................................... 134  
Table 13-1 Bit Map of Logical Device A, CR[E4h], Bits [6:5] ........................................................ 140  
Table 13-2 Definitions of Mouse Wake-Up Events ....................................................................... 142  
Table 13-3 Timing and Voltage Parameters of RSMRST#........................................................... 143  
Table 14-1 SERIRQ Sampling Periods......................................................................................... 146  
Table 16-1 Relative Control Registers of GPIO 25, 26 and 27 that Support Wake-Up Function . 149  
Table 16-2 GPIO Register Addresses........................................................................................... 150  
-X-  
W83627UHG  
1. GENERAL DESCRIPTION  
The W83627UHG is a member of Winbond's Super I/O product line. This family features the LPC (Low  
Pin Count) interface. This interface is more economical than its ISA counterpart because it has  
approximately forty pins fewer, yet still provides as great performance. In addition, the improvement  
allows even more efficient operation of software, BIOS and device drivers.  
In addition to providing an LPC interface for I/O, the W83627UHG monitors several critical parameters  
in PC hardware, including power supply voltages, fan speeds, and temperatures. In terms of  
temperature monitoring, the W83627UHG adopts the Current Mode (dual current source) approach.  
The W83627UHG also supports the Smart Fan control system, including “SMART FANTM I and SMART  
FANTM III, which makes the system more stable and user-friendly.  
The W83627UHG supports four -- 360K, 720K, 1.2M, 1.44M, or 2.88M -- disk drives and data transfer  
rates of 250 Kb/s, 300 Kb/s, 500 Kb/s, 1 Mb/s, and 2 Mb/s. The disk drive adapter supports the  
functions of floppy disk drive controller (compatible with the industry standard 82077/ 765), data  
separator, write pre-compensation circuit, decode logic, data rate selection, clock generator, drive  
interface control logic, and interrupt and DMA logic. Such a wide range of functions integrated into one  
W83627UHG greatly reduces the number of required components to interface with floppy disk drives.  
The W83627UHG provides six high-speed serial communication ports (UARTs), one of which provides  
IR functions IrDA 1.0 (SIR for 1.152K bps). Each UART includes a 16-byte send/receive FIFO, a  
programmable baud rate generator, complete modem-control capability, and a processor interrupt  
system. All of the UARTs support legacy speeds up to 115.2K bps as well as higher baud rates of  
230K, 460K, or 921K bps to support higher speed modems.  
The W83627UHG supports the PC-compatible printer port (SPP), the bi-directional printer port (BPP),  
the enhanced parallel port (EPP) and the extended capabilities port (ECP).  
The W83627UHG provides flexible I/O control functions through a set of 45 general purpose I/O  
(GPIO) ports. These GPIO ports may serve as simple I/O ports or may be individually configured to  
provide alternative functions.  
The W83627UHG supports the SST (Simple Serial Transport) interface and Intel® PECI (Platform  
Environment Control Interface).  
The W83627UHG fully complies with the Microsoft© PC98 and PC99 Hardware Design Guide and  
meets the requirements of ACPI.  
The configuration registers inside the W83627UHG support mode selection, function enable and  
disable, and power-down selection. Furthermore, the configurable PnP features are compatible with  
the plug-and-play feature in Windows 95/98/2000/XPTM, making the allocation of the system resources  
more efficient than ever.  
One special characteristic of the Super I/O product line is the separation of the power supply in normal  
operation from that in standby operation. Please pay attention to the layout of these two power  
supplies to avoid short circuits. Otherwise, the feature will not function.  
Publication Release Date: May 25, 2007  
-1-  
Revision 1.0  
 
W83627UHG  
2. FEATURES  
General  
y
y
y
y
y
Meet LPC Spec. 1.01  
Support LDRQ# (LPC DMA), SERIRQ (Serialized IRQ)  
Integrated hardware monitor functions  
Compliant with Microsoft PC2000/PC2001 Hardware Design Guide  
Support DPM (Device Power Management), ACPI (Advanced Configuration and Power  
Interface)  
y
y
Programmable configuration settings  
Single 24- or 48-MHz clock input  
FDC  
y
y
y
y
y
y
y
y
Variable write pre-compensation with track-selection capability  
Support vertical recording format  
DMA-enable logic  
16-byte data FIFOs  
Support floppy disk drives and tape drives  
Detect all overrun and underrun conditions  
Built-in address mark detection circuit to simplify the read electronics  
FDD anti-virus functions with software write protect and FDD-write enable signal (write data  
signal forced to be inactive)  
y
y
y
y
y
Support 3.5-inch or 5.25-inch floppy disk drives  
Compatible with industry standard 82077  
360K / 720K / 1.2M / 1.44M / 2.88M formats  
250K, 300K, 500K, 1M, 2M bps data transfer rate  
Support 3-mode FDD and its Windows driver  
UART  
y
y
Six high-speed, 16550-compatible UARTs with 16-byte send / receive FIFOs  
Fully programmable serial-interface characteristics:  
--- 5, 6, 7 or 8-bit characters  
--- Even, odd or no parity bit generation/detection  
--- 1, 1.5 or 2 stop-bit generation  
y
Internal diagnostic capabilities:  
--- Loop-back controls for communications link fault isolation  
--- Break, parity, overrun, framing error simulation  
y
y
Programmable baud rate generator allows division of clock source by any value from 1 to  
16  
(2 -1)  
Maximum baud rate for clock source 14.769 MHz is up to 921K bps. The baud rate at 24 MHz  
is 1.5M bps.  
-2-  
 
W83627UHG  
Parallel Port  
y
y
y
y
y
Compatible with IBM parallel port  
Support PS/2-compatible bi-directional parallel port  
Support Enhanced Parallel Port (EPP) - Compatible with IEEE 1284 specification  
Support Extended Capabilities Port (ECP) - Compatible with IEEE 1284 specification  
Enhanced printer port back-drive current protection  
Keyboard Controller  
8042-based keyboard controller  
Support Phoenix MultiKey/42TM firmware  
Asynchronous Access to two data registers and one status register  
Software-compatible with 8042  
Support PS/2 mouse  
Support port 92  
Support both interrupt and polling modes  
Fast Gate A20 and Hardware Keyboard Reset  
8-bit timer / counter  
Support binary and BCD arithmetic  
6, 8, 12, or 16 MHz operating frequency  
Hardware Monitor Functions  
Smart Fan control system, supporting the functions of SMART FANTM I - “Thermal CruiseTM”  
and “Fan Speed CruiseTM” modes and SMART FANTM III functions  
Programmable threshold temperature to speed fan fully while current temperature exceeds  
this temperature during Thermal CruiseTM mode  
Two thermal inputs from optionally-remote thermistors or thermal diode output  
Support Current Mode (dual current source) temperature sensing method  
Eight voltage inputs (CPUVCORE, VIN[0..2] and 5VCC, AVCC , 5VSB, VBAT)  
Two fan-speed monitoring inputs  
Two fan-speed controls  
Dual mode for fan control (PWM and DC)  
Built-in case open detection circuit  
Programmable hysteresis and setting points for all monitored items  
Over-temperature indicator output  
Issue SMI#, OVT# to activate system protection  
Publication Release Date: May 25, 2007  
-3-  
Revision 1.0  
W83627UHG  
Winbond Hardware DoctorTM Support  
Provide I2C interface to read / write registers  
Infrared  
Support IrDA version 1.0 SIR protocol with maximum baud rate up to 115.2K bps  
Support SHARP ASK-IR protocol with maximum baud rate up to 57,600 bps  
General Purpose I/O Ports  
45 programmable general purpose I/O ports  
GP25, GP26 and GP27 can distinguish whether the input pins have any transitions by reading  
the registers and all of the 3 GPIOs also can assert PSOUT# or PME# to wake up the system  
if each them has any transition.  
OnNow Functions  
y
y
y
Keyboard Wake-Up by programmable keys  
Mouse Wake-Up by programmable buttons  
On Now Wake-Up from all of the ACPI sleeping states (S1-S5)  
Simple Serial Transport™ Interface  
y
y
SST temperature and voltage Combination Sensor command support  
Support SST 0.9 Specification  
PECI Interface  
y
y
y
PECI Host  
Support PECI 1.0 Specification  
Support 4 CPU addresses and 2 domains per CPU address  
Package  
y
y
128-pin QFP  
Pb-free / RoHS  
-4-  
W83627UHG  
3. BLOCK DIAGRAM  
LRESET#, LCLK, LFRAME#, LAD[3:0], LDRQ#, SERIRQ  
LPC  
Interface  
Floppy drive  
interface signals  
General  
-purpose  
GPIO  
PECI  
FDC  
I/O pins  
PECI  
UART  
interface  
Serial port A, B,C,D,E,F  
interface signals  
A, B,C, D, E, F  
SST  
interface  
SST  
HM  
IRRX  
IRTX  
IR  
Hardware monitor  
channel and Vref  
Printer port  
interface signals  
PRT  
Keyboard/Mouse  
data and clock  
KBC  
ACPI  
Figure 3-1 W83627UHG Block Diagram  
Publication Release Date: May 25, 2007  
Revision 1.0  
-5-  
 
W83627UHG  
4. PIN LAYOUT  
64  
SUSLED  
KDAT  
KCLK  
5VSB  
GP27  
KBRST  
GA20M  
RIA#  
DCDA#  
VSS  
CPUTIN  
SYSTIN  
AGND  
GP22  
GP21/BEEP  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
VBAT  
5VCC  
Vtt  
VSB  
VSB  
AVCC  
GP20/PLED  
CTSC#/GP37  
DSRC#/GP36  
RTSC#/GP35  
DTRC#/GP34  
SINC/GP33  
SOUTC/GP32  
DCDC#/GP31  
RIC#/GP30  
SOUTA(PENKBC)  
SINA  
DTRA# (PFDCUART)  
RTSA# (HEFRAS)  
DSRA#  
CTSA#  
5VCC  
STB#  
AFD#  
ERR#  
INIT#  
SLIN#  
PD0  
PD1  
PD2  
W83627UHG  
CTSD#/GP47  
DSRD#/GP46  
(FAN_SET) RTSD#/GP45  
DTRD#/GP44  
SIND/GP43  
(GPI_MUL) SOUTD/GP42  
DCDD#/GP41  
RID#/GP40  
CTSE#/GP57  
DSRE#/GP56  
RTSE#/GP55  
DTRE#/GP54  
5VCC  
PD3  
Figure 4-1 W83627UHG Pin Layout  
-6-  
 
W83627UHG  
5. PIN DESCRIPTION  
Note: Please refer to Section 18.2 DC CHARACTERISTICS for details.  
AOUT  
AIN  
- Analog output pin  
- Analog input pin  
I/O12tp3  
- 3.3-V, TTL-level, bi-directional pin with 12mA source-sink capability  
I/O12ts  
- TTL-level Schmitt-trigger bi-directional pin with 12mA source-sink capability  
- TTL-level, bi-directional pin and open-drain output with 12mA sink capability  
I/OD12t  
I/OD16ts  
I/OD12ts  
I/OD12tsu  
- TTL-level Schmitt-trigger bi-directional pin and open-drain output with 16mA sink capability  
- TTL-level Schmitt-trigger bi-directional pin and open-drain output with 12mA sink capability  
- TTL-level, bi-directional, Schmitt-trigger pin with internal pull-up resistor  
. Open-drain output with 12-mA sink capability.  
I/Ov3  
I/Ov4  
INts  
- Bi-direction pin with source capability of 6 mA and sink capability of 1 mA  
- Bi-direction pin with source capability of 6 mA and sink capability of 1 mA  
- TTL-level Schmitt-trigger input pin  
INtsu  
INtsp3  
INt  
- TTL-level Schmitt-trigger input pin with internal pull-up resistor  
- 3.3-V, TTL-level Schmitt-trigger input pin  
- TTL-level input pin  
INtu  
- TTL-level input pin with internal pull-up resistor  
- CMOS-level input pin with internal pull-down resistor  
- 3.3-V, output pin with 12mA source-sink capability  
- Open-drain output pin with 12mA sink capability  
- Open-drain output pin with 24mA sink capability  
- Output pin with 8mA source-sink capability  
- Output pin with 12mA source-sink capability  
- Output pin with 24mA source-sink capability  
INcd  
O12p3  
OD12  
OD24  
O8  
O12  
O24  
Publication Release Date: May 25, 2007  
Revision 1.0  
-7-  
 
W83627UHG  
5.1 LPC Interface  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
System clock input, either 24MHz or 48MHz. The actual  
frequency must be specified in register. The default value is  
48MHz.  
INt  
CLKIN  
19  
OD12  
INtsp3  
PME#  
PCICLK  
LDRQ#  
SERIRQ  
86  
21  
22  
23  
Generated PME event.  
PCI-clock 33-MHz input.  
Encoded DMA Request signal.  
Serialized IRQ input / output.  
O12p3  
I/O12tp3  
24-  
27  
These signal lines communicate address, control, and data  
information over the LPC bus between a host and a peripheral.  
LAD[3:0]  
LFRAME#  
LRESET#  
I/O12tp3  
INtsp3  
Indicates the start of a new cycle or the termination of a broken  
cycle.  
29  
30  
Reset signal. It can be connected to the PCIRST# signal on the  
host.  
INtsp3  
5.2 FDC Interface  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
OD24  
DRVDEN0  
Drive Density Select bit 0.  
Clear To Send. It is the modem control input. The function of  
these pins can be tested by reading bit 4 of the handshake  
status register.  
5
INt  
CTSF#  
This Schmitt-trigger input from the disk drive is active-low when  
the head is positioned over the beginning of a track marked by  
an index hole. This input pin needs to connect a pulled-up 1-  
KΩ resistor to 5V for Floppy Drive compatibility.  
INtsu  
INDEX#  
6
I/OD12ts  
OD24  
INt  
GP64  
MOA#  
DSRF#  
General purpose I/O port 6 bit 4.  
Motor A On. When set to 0, this pin enables disk drive A. This is  
an open-drain output.  
7
8
Data Set Ready. An active low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
Drive Select A. When set to 0, this pin enables disk drive A. This  
is an open-drain output.  
OD24  
O24  
DSA#  
UART F Request To Send. An active low signal informs the  
modem or data set that the controller is ready to send data.  
RTSF#  
-8-  
 
W83627UHG  
FDC Interface, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
Direction of the head step motor. An open-drain output.  
Logic 1 = outward motion  
OD24  
DIR#  
9
Logic 0 = inward motion  
UART F Data Terminal Ready. An active low signal informs the  
modem or data set that the controller is ready to communicate.  
O24  
OD24  
INt  
DTRF#  
STEP#  
SINF  
Step output pulses. This active-low open-drain output produces  
a pulse to move the head to another track.  
10  
Serial Input. This pin is used to receive serial data through the  
communication link.  
Write data. This logic-low open-drain writes pre-compensation  
serial data to the selected FDD. An open-drain output.  
OD24  
WD#  
11  
13  
UART F Serial Output. This pin is used to transmit serial data out  
to the communication link.  
O24  
OD24  
INt  
SOUTF  
WE#  
Write enable. An open-drain output.  
Data Carrier Detect. An active low signal indicates the modem  
or data set has detected a data carrier.  
DCDF#  
Track 0. This Schmitt-trigger input from the disk drive is active-  
low when the head is positioned over the outermost track. This  
input pin needs to connect a pulled-up 1-KΩ resistor to 5V for  
Floppy Drive compatibility.  
INtsu  
I/OD12ts  
INtsu  
TRAK0#  
GP63  
WP#  
14  
General purpose I/O port 6 bit 3.  
Write Protected. This active-low Schmitt input from the disk drive  
indicates that the diskette is write-protected. This input pin needs  
to connect a pulled-up 1-KΩ resistor to 5V for Floppy Drive  
compatibility.  
15  
16  
I/OD12ts  
GP62  
General purpose I/O port 6 bit 2.  
The read-data input signal from the FDD. This input pin needs to  
connect a pulled-up 1-KΩ resistor to 5V for Floppy Drive  
compatibility.  
INtsu  
RDATA#  
GP61  
I/OD12ts  
General purpose I/O port 6 bit 1.  
Publication Release Date: May 25, 2007  
-9-  
Revision 1.0  
W83627UHG  
FDC Interface, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
Head Select. This open-drain output determines which disk  
drive head is active.  
OD24  
HEAD#  
Logic 1 = side 0  
Logic 0 = side 1  
17  
Ring Indicator. An active low signal indicates that a ring signal is  
being received from the modem or data set.  
INt  
RIF#  
Diskette Change. This signal is active-low at power-on and  
whenever the diskette is removed. This input pin needs to  
connect a pulled-up 1-KΩ resistor to 5V for Floppy Drive  
compatibility.  
INtsu  
DSKCHG#  
GP60  
18  
I/OD12ts  
General purpose I/O port 6 bit 0.  
5.3 Multi-Mode Parallel Port  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
PRINTER MODE:  
An active-high input on this pin indicates that the printer is selected.  
See the description of the parallel port for the definition of this pin in  
ECP and EPP modes.  
SLCT  
31  
INts  
PRINTER MODE:  
An active-high input on this pin indicates that the printer has detected  
the end of the paper. See the description of the parallel port for the  
definition of this pin in ECP and EPP modes.  
PE  
32  
33  
34  
INts  
INts  
INts  
PRINTER MODE:  
An active-high input indicates that the printer is not ready to receive  
data. See the description of the parallel port for the definition of this  
pin in ECP and EPP modes.  
BUSY  
ACK#  
PRINTER MODE: ACK#  
An active-low input on this pin indicates that the printer has received  
data and is ready to accept more data. See the description of the  
parallel port for the definition of this pin in ECP and EPP modes.  
PRINTER MODE: ERR#  
An active-low input on this pin indicates that the printer has  
encountered an error. See the description of the parallel port for the  
definition of this pin in ECP and EPP modes.  
ERR#  
SLIN#  
45  
43  
INts  
PRINTER MODE: SLIN#  
OD12  
Output line for detection of printer selection. See the description of  
the parallel port for the definition of this pin in ECP and EPP modes.  
-10-  
 
W83627UHG  
Multi-Mode Parallel Port, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
PRINTER MODE: INIT#  
OD12  
INIT#  
44  
Output line for the printer initialization. See the description of the  
parallel port for the definition of this pin in ECP and EPP modes.  
PRINTER MODE: AFD#  
An active-low output from this pin causes the printer to auto feed a  
line after a line is printed. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
OD12  
OD12  
AFD#  
STB#  
46  
47  
PRINTER MODE: STB#  
An active-low output is used to latch the parallel data into the printer.  
See the description of the parallel port for the definition of this pin in  
ECP and EPP modes.  
PRINTER MODE: PD0  
I/O12ts  
I/O12ts  
I/O12ts  
I/O12ts  
I/O12ts  
I/O12ts  
I/O12ts  
I/O12ts  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
42  
41  
40  
39  
38  
37  
36  
35  
Parallel port data bus bit 0. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD1  
Parallel port data bus bit 1. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD2  
Parallel port data bus bit 2. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD3  
Parallel port data bus bit 3. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD4  
Parallel port data bus bit 4. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD5  
Parallel port data bus bit 5. See the description of the parallel port  
for the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD6  
Parallel port data bus bit 6. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
PRINTER MODE: PD7  
Parallel port data bus bit 7. See the description of the parallel port for  
the definition of this pin in ECP and EPP modes.  
Publication Release Date: May 25, 2007  
-11-  
Revision 1.0  
W83627UHG  
5.4 Serial Port & Infrared Port Interface  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
INt  
CTSA#  
49  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
INt  
I/OD12t  
INt  
CTSB#  
GP17  
78  
General-purpose I/O port 1 bit 7.  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
CTSC#  
GP37  
109  
117  
125  
I/OD12t  
INt  
General-purpose I/O port 3 bit 7.  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
CTSD#  
GP47  
I/OD12t  
INt  
General-purpose I/O port 4 bit 7.  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
CTSE#  
GP57  
I/OD12t  
INt  
General-purpose I/O port 5 bit 7.  
Clear To Send. This is the modem-control input. The function of  
these pins can be tested by reading bit 4 of the handshake status  
register.  
CTSF#  
DRVDEN0  
DSRA#  
5
OD24  
INt  
Drive Density Select bit 0.  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
50  
79  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
INt  
I/OD12t  
INt  
DSRB#  
GP16  
General-purpose I/O port 1 bit 6.  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
DSRC#  
GP36  
110  
118  
I/OD12t  
INt  
General-purpose I/O port 3 bit 6.  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
DSRD#  
GP46  
I/OD12t  
General-purpose I/O port 4 bit 6.  
-12-  
 
W83627UHG  
Serial Port & Infrared Port Interface, continued  
SYMBOL  
DSRE#  
GP56  
PIN  
I/O  
DESCRIPTION  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
IN  
t
126  
I/OD12t  
INt  
General-purpose I/O port 5 bit 6.  
Data Set Ready. An active-low signal indicates the modem or  
data set is ready to establish a communication link and transfer  
data to the UART.  
DSRF#  
7
Motor A On. When set to 0, this pin enables disk drive 0. This is  
an open drain output.  
OD24  
O8  
MOA#  
UART A Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
RTSA#  
During power-on reset, this pin is pulled down internally and is  
defined as HEFRAS, which provides the power-on value for  
CR26 bit 6 (HEFRAS). The PCB layout should reserve space for  
a 1-kΩ resistor to pull down this pin so as to ensure the selection  
of I/O port’s configuration address to 2EH, and a 1-kΩ resistor is  
recommended to pull it up if 4EH is selected as I/O ports  
configuration address.  
51  
HEFRAS  
INcd  
UART B Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
O8  
I/OD8  
O8  
RTSB#  
GP15  
80  
General-purpose I/O port 1 bit 5.  
UART C Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
RTSC#  
GP35  
111  
I/OD8  
O8  
General-purpose I/O port 3 bit 5.  
UART D Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
RTSD#  
Determines the initial FAN speed. Power-on configuration for 2  
fan speeds, 50% or 100%. During power-on reset, this pin needs  
a pulled-up or a pull-down resistor to decide whether the fan  
speed is 50% or 100%.  
119  
INcd  
FAN_SET  
I/OD8  
O12  
GP45  
RTSE#  
GP55  
General-purpose I/O port 4 bit 5.  
UART E Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
127  
8
I/OD12t  
O24  
General-purpose I/O port 5 bit 5.  
UART F Request To Send. An active-low signal informs the  
modem or data set that the controller is ready to send data.  
RTSF  
Drive Select A. When set to 0, this pin enables disk drive A. This  
is an open drain output.  
OD24  
DSA#  
Publication Release Date: May 25, 2007  
-13-  
Revision 1.0  
W83627UHG  
Serial Port & Infrared Port Interface, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
UART A Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
O8  
DTRA#  
During power-on reset, this pin is pulled down internally and is  
defined as FDC enable, which provides the power-on value for  
CR24 bit 1. A 1 kΩ is reserved to pull down and a 1 kΩ resistor  
is recommended if intends to pull-up to enable UART F.  
52  
PFDCUART  
INcd  
UART B Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
O8  
I/OD12t  
O8  
DTRB#  
GP14  
81  
General-purpose I/O port 1 bit 4.  
UART C Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRC#  
GP34  
112  
120  
128  
I/OD12t  
O8  
General-purpose I/O port 3 bit 4.  
UART D Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRD#  
GP44  
I/OD8t  
O8  
General-purpose I/O port 4 bit 4.  
UART E Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRE#  
GP54  
I/OD12t  
O24  
General-purpose I/O port 5 bit 4.  
UART F Data Terminal Ready. An active-low signal informs the  
modem or data set that the controller is ready to communicate.  
DTRF#  
9
Direction of the head step motor. An open drain output.  
Logic 1 = outward motion  
OD24  
INt  
DIR#  
Logic 0 = inward motion  
Serial Input. This pin is used to receive serial data through the  
communication link.  
SINA  
SINB  
53  
82  
Serial Input. This pin is used to receive serial data through the  
communication link.  
INt  
IRRX  
GP13  
IR Receiver input.  
I/OD12t  
INt  
General-purpose I/O port 1 bit 3.  
Serial Input. This pin is used to receive serial data through the  
communication link.  
SINC  
GP33  
SIND  
GP43  
113  
121  
I/OD12t  
INt  
General-purpose I/O port 3 bit 3.  
Serial Input. This pin is used to receive serial data through the  
communication link.  
I/OD12t  
General-purpose I/O port 4 bit 3.  
-14-  
W83627UHG  
Serial Port & Infrared Port Interface, continued  
SYMBOL  
SINE  
PIN  
I/O  
DESCRIPTION  
Serial Input. This pin is used to receive serial data through the  
communication link.  
INt  
1
I/OD12t  
INt  
GP53  
General-purpose I/O port 5 bit 3.  
Serial Input. This pin is used to receive serial data through the  
communication link.  
SINF  
10  
54  
Step output pulses. This active low open drain output produces a  
pulse to move the head to another track.  
OD24  
O8  
STEP#  
SOUTA  
UART A Serial Output. This pin is used to transmit serial data out  
to the communication link.  
During power on reset, this pin is pulled down internally and is  
defined as PENKBC, and the power-on values are shown at  
CR24 bit 2. The PCB layout should reserve space for a 1-kΩ  
resistor to pull down this pin to ensure the disabling of KBC, and  
a 1-kΩ resistor is recommended to pull the pin up If wish to  
enable KBC.  
PENKBC  
SOUTB  
INcd  
UART B Serial Output. This pin is used to transmit serial data out  
to the communication link.  
O8  
83  
IRTX  
IR Transmitter output.  
I/OD8  
O8  
GP12  
General-purpose I/O port 1 bit 2.  
UART C Serial Output. This pin is used to transmit serial data out  
to the communication link.  
SOUTC  
GP32  
114  
I/OD8  
O8  
General-purpose I/O port 3 bit 2.  
UART D Serial Output. This pin is used to transmit serial data out  
to the communication link.  
SOUTD  
Determines PIN 107 and 108 multi-function select. During power-  
on reset, this pin is pulled down internally and is defined as  
BEEP function and power LED enable. A 1 kΩ is reserved to pull  
down and a 1 kΩ resistor is recommended if intending to pull up  
to enable GPIO output.  
122  
GPI_MUL  
INcd  
I/OD8  
O8  
GP42  
SOUTE  
GP52  
General-purpose I/O port 4 bit 2.  
UART E Serial Output. This pin is used to transmit serial data out  
to the communication link.  
2
I/OD8  
O24  
General-purpose I/O port 5 bit 2.  
UART F Serial Output. This pin is used to transmit serial data out  
to the communication link.  
SOUTF  
11  
Write data. This logic low open drain writes pre-compensation  
serial data to the selected FDD. An open drain output.  
OD24  
WD#  
Publication Release Date: May 25, 2007  
-15-  
Revision 1.0  
W83627UHG  
Serial Port & Infrared Port Interface, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
INt  
DCDA#  
56  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
INt  
I/OD12t  
INt  
DCDB#  
GP11  
84  
General-purpose I/O port 1 bit 1.  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
DCDC#  
GP31  
115  
I/OD12t  
INt  
General-purpose I/O port 3 bit 1.  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
DCDD#  
GP41  
123  
3
I/OD12t  
General-purpose I/O port 4 bit 1.  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
INt  
I/OD12t  
INt  
DCDE#  
GP51  
DCDF#  
WE#  
General-purpose I/O port 5 bit 1.  
Data Carrier Detect. An active-low signal indicates the modem or  
data set has detected a data carrier.  
13  
57  
85  
OD24  
INt  
Write enable. An open drain output.  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
RIA#  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
INt  
I/OD12t  
INt  
RIB#  
GP10  
RIC#  
GP30  
RID#  
GP40  
RIE#  
GP50  
RIF#  
General-purpose I/O port 1 bit 0.  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
116  
124  
4
I/OD12t  
INt  
General-purpose I/O port 3 bit 0.  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
I/OD12t  
INt  
General-purpose I/O port 4 bit 0.  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
I/OD12t  
INt  
General-purpose I/O port 5 bit 0.  
Ring Indicator. An active-low signal indicates that a ring signal is  
being received from the modem or data set.  
Head select. This open drain output determines which disk drive  
17  
head is active.  
Logic 1 = side 0  
Logic 0 = side 1  
OD24  
HEAD#  
-16-  
W83627UHG  
5.5 KBC Interface  
SYMBOL  
GA20M  
KBRST  
KCLK  
PIN  
58  
I/O  
O12  
DESCRIPTION  
Gate A20 output. This pin is high after system reset. (KBC P21)  
Keyboard reset. This pin is high after system reset. (KBC P20)  
Keyboard Clock.  
59  
O12  
I/OD16ts  
62  
I/OD16ts  
I/OD16ts  
I/OD16ts  
Keyboard Data.  
KDAT  
MCLK  
MDAT  
63  
65  
66  
PS2 Mouse Clock.  
PS2 Mouse Data.  
5.6 Hardware Monitor Interface  
SYMBOL  
BEEP  
PIN  
I/O  
DESCRIPTION  
Beep function for hardware monitor. This pin is low after  
system reset.  
OD12  
107  
I/OD12t General-purpose I/O port 2 bit 1.  
GP21  
CASE OPEN Detection. An active-low input from an external  
device when the case is open. This signal can be latched if pin  
VBAT is connected to the battery, even if the W83627UHG is  
turned off.  
INt  
CASEOPEN#  
76  
Pull up a 2-MΩ resistor to VBAT is recommended if useless.  
Analog Inputs for voltage measurement (Range: 0 to 2.048 V)  
Analog Inputs for voltage measurement (Range: 0 to 2.048 V).  
Analog Inputs for voltage measurement (Range: 0 to 2.048 V)  
Analog Inputs for voltage measurement (Range: 0 to 2.048 V)  
Reference Voltage (2.048 V)  
VIN2  
VIN1  
98  
99  
AIN  
AIN  
VIN0  
100  
101  
102  
AIN  
CPUVCORE  
VREF  
AIN  
AOUT  
Temperature sensor 2 input. It is used for CPU temperature  
sensing.  
CPUTIN  
SYSTIN  
103  
104  
AIN  
AIN  
Temperature sensor 1 input. It is used for system temperature  
sensing.  
Over temperature Shutdown Output. This pin indicates the  
temperature is over the temperature limit. (Default after  
LRESET#)  
OVT#  
SMI#  
95  
OD12  
System Management Interrupt channel output.  
CPUFANIN  
SYSFANIN  
91  
93  
I/O12ts  
0 to +5 V amplitude fan tachometer input.  
Publication Release Date: May 25, 2007  
-17-  
Revision 1.0  
 
W83627UHG  
Hardware Monitor Interface, continued  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
DC/PWM fan output control.  
O12  
CPUFANOUT  
SYSFANOUT  
90  
92  
OD12  
AOUT  
CPUFANOUT and SYSFANOUT are default PWM mode.  
OD12  
PLED  
GP20  
Power LED output. This pin is tri-stated as default.  
General-purpose I/O port 2 bit 0.  
108  
I/OD12t  
5.7 PECI Interface  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
PECI  
88  
I/OV3  
INTEL® CPU PECI interface. Connect to CPU.  
Vtt  
89  
Power  
INTEL® CPU Vtt Power.  
5.8 SST Interface  
SYMBOL  
PIN  
87  
I/O  
DESCRIPTION  
SST  
I/OV4  
Simple Serial Transport (SST) Interface.  
5.9 Advanced Configuration and Power Interface  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
PSIN#  
68  
INtu  
Panel Switch Input. This pin is active-low.  
Panel Switch Output. This signal is used to wake-up the  
system from S3/S5 state.  
OD12  
OD12  
PSOUT#  
67  
RSMRST#  
SUSB#  
PSON#  
PWROK  
SCL  
75  
73  
72  
71  
Resume reset signal output.  
INt  
System S3 state input.  
OD12  
Power Supply on-off Output.  
OD12  
This pin generates the PWROK signal while 5VCC comes in.  
Serial Bus clock.  
INts  
70  
69  
I/OD12ts  
GP25  
General-purpose I/O port 2 bit 5.  
Serial bus bi-directional Data.  
General-purpose I/O port 2 bit 6.  
I/OD12t  
I/OD12t  
SDA  
GP26  
-18-  
 
W83627UHG  
5.10 General Purpose I/O Port  
5.10.1  
GPIO Power Source  
SYMBOL  
GPIO port 1  
POWER SOURCE  
5VSB  
5VSB  
5VCC  
5VCC  
5VCC  
5VCC  
GPIO port 2  
GPIO port 3  
GPIO port 4  
GPIO port 5  
GPIO port 6 (Bit 0-4)  
5.10.2  
GPIO-1 Interface  
See 5.4 Serial Port & Infrared Port Interface  
5.10.3  
SYMBOL  
GP20  
GPIO-2 Interface  
PIN  
I/O  
DESCRIPTION  
General-purpose I/O port 2 bit 0.  
I/OD12t  
108  
OD12  
PLED  
GP21  
Power LED output. This pin is tri-stated as default..  
General-purpose I/O port 2 bit 1.  
I/OD12t  
107  
Beep function for hardware monitor. This pin is low after  
system reset.  
OD12  
BEEP  
I/OD12t  
I/OD12t  
I/OD12t  
I/OD12ts  
General-purpose I/O port 2 bit 2.  
GP22  
GP23  
GP24  
GP25  
SCL  
106  
96  
General-purpose I/O port 2 bit 3.  
General-purpose I/O port 2 bit 4.  
General-purpose I/O port 2 bit 5.  
94  
70  
INts  
Serial Bus clock.  
I/OD12t  
General-purpose I/O port 2 bit 6.  
GP26  
SDA  
69  
58  
I/OD12t  
I/OD12t  
Serial bus bi-directional data.  
General-purpose I/O port 2 bit 7.  
GP27  
5.10.4  
GPIO-3 Interface  
See 5.4 Serial Port & Infrared Port Interface  
5.10.5  
GPIO-4 Interface  
See 5.4 Serial Port & Infrared Port Interface  
Publication Release Date: May 25, 2007  
Revision 1.0  
-19-  
 
W83627UHG  
5.10.6  
GPIO-5 Interface  
See 5.4 Serial Port & Infrared Port Interface  
5.10.7  
GPIO-6 Interface  
See 5.2 FDC Interface  
5.10.8  
WDTO# and SUSLED Pins  
SYMBOL  
PIN  
77  
I/O  
DESCRIPTION  
Watchdog timer output signal.  
OD12  
WDTO#  
OD12  
SUSLED  
64  
Suspend-LED output signal. This pin is low as default.  
5.11 POWER PINS  
SYMBOL  
PIN  
DESCRIPTION  
5VSB  
61  
+5 V stand-by power supply for the digital circuit.  
VBAT  
74  
+3 V on-board battery for the digital circuit.  
5VCC  
3VCC  
AVCC  
12,48  
28  
+5 V power supply for the digital circuit.  
+3.3V power supply for driving 3V on the host interface.  
Analog +5 V power input. Internally supply to all analog circuits.  
97  
Analog ground. The ground reference for all analog input.  
Internally connected to all analog circuits.  
AGND  
105  
VSS  
Vtt  
20,55  
89  
Ground.  
INTEL® CPU Vtt power.  
-20-  
 
W83627UHG  
6. CONFIGURATION REGISTER ACCESS PROTOCOL  
The W83627UHG uses Super I/O protocol to access configuration registers to set up different types of  
configurations. The W83627UHG has totally fifteen Logical Devices (from Logical Device 0 to Logical  
Device F with the exception of Logical Device 4 for backward compatibility) corresponding to fifteen  
individual functions: FDC (Logical Device 0), Parallel Port (Logical Device 1), UARTA (Logical Device  
2), UARTB (Logical Device 3), Keyboard Controller (Logical Device 5), UARTC (Logical Device 6),  
GPIO3, 4 (Logical Device 7), WDTO# & PLED and GPIO5, 6 (Logical Device 8), GPIO1, 2 and  
SUSLED (Logical Device 9), ACPI (Logical Device A), Hardware Monitor (Logical Device B), PECI &  
SST (Logical Device C), UARTD (Logical Device D), UARTE(Logical Device E), and UARTF (Logical  
Device F). Each Logical Device has its own configuration registers (above CR30). The host can  
access those registers by writing an appropriate Logical Device Number into the Logical Device select  
register at CR7.  
Logical Device No.  
Logical Device  
Control  
Logical Device  
One Per  
Configuration  
Logical Device  
#0  
#1  
#2  
#F
Figure 6-1 Structure of the Configuration Register  
Publication Release Date: May 25, 2007  
Revision 1.0  
-21-  
 
W83627UHG  
Table 6-1 Devices of I/O Base Address  
LOGICAL DEVICE  
NUMBER  
I/O BASE  
ADDRESS  
DEFAULT  
VALUE  
FUNCTION  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
FDC  
100h ~ FF8h  
100h ~ FF8h  
100h ~ FF8h  
100h ~ FF8h  
3F0h  
378h  
3F8h  
2F8h  
Parallel Port  
UART A  
UART B  
Reserved  
Keyboard Controller  
UART C  
100h ~ FF8h  
100h ~ FF8h  
100h ~ FF8h  
Reserved  
60h/64h  
3E0h  
GPIO 3, 4  
-
WDTO# & PLED, and GPIO 5, 6  
GPIO 1, 2  
-
Reserved  
-
ACPI  
Reserved  
-
Hardware Monitor  
PECI & SST  
UART C  
100h ~ FF8h  
Reserved  
-
-
100h ~ FF8h  
100h ~ FF8h  
100h ~ FF8h  
2E0h  
3E8h  
2E8h  
UART D  
UART E  
-22-  
W83627UHG  
6.1 Configuration Sequence  
Power-on Reset  
Any other I/O transition cycle  
Wait for key string  
I/O Write to 2Eh  
N
Is the data  
“87h”?  
Y
Any other I/O transition cycle  
Check Pass key  
I/O Write to 2Eh  
N
Is the data  
“87h”?  
Y
Extended Function  
Mode  
Figure 6-2 Configuration Register  
To program the W83627UHG configuration registers, the following configuration procedures must be  
followed in sequence:  
(1). Enter the Extended Function Mode.  
(2). Configure the configuration registers.  
(3). Exit the Extended Function Mode.  
6.1.1  
Enter the Extended Function Mode  
To place the chip into the Extended Function Mode, two successive writes of 0x87 must be applied to  
Extended Function Enable Registers (EFERs, i.e. 2Eh or 4Eh).  
Publication Release Date: May 25, 2007  
-23-  
Revision 1.0  
 
W83627UHG  
6.1.2  
Configure the Configuration Registers  
The chip selects the Logical Device and activates the desired Logical Devices through Extended  
Function Index Register (EFIR) and Extended Function Data Register (EFDR). The EFIR is located at  
the same address as the EFER, and the EFDR is located at address (EFIR+1).  
First, write the Logical Device Number (i.e. 0x07) to the EFIR and then write the number of the desired  
Logical Device to the EFDR. If accessing the Chip (Global) Control Registers, this step is not required.  
Secondly, write the address of the desired configuration register within the Logical Device to the EFIR  
and then write (or read) the desired configuration register through the EFDR.  
6.1.3  
Exit the Extended Function Mode  
To exit the Extended Function Mode, writing 0xAA to the EFER is required. Once the chip exits the  
Extended Function Mode, it is in the normal running mode and is ready to enter the configuration  
mode.  
6.1.4  
Software Programming Example  
The following example is written in Intel 8086 assembly language. It assumes that the EFER is located  
at 2Eh, so the EFIR is located at 2Eh and the EFDR is located at 2Fh. If the HEFRAS (CR26 bit 6) is  
set, 2Eh can be directly replaced by 4Eh and 2Fh replaced by 4Fh.  
;-----------------------------------------------------  
; Enter the Extended Function Mode  
;-----------------------------------------------------  
MOV DX, 2EH  
MOV AL, 87H  
OUT DX, AL  
OUT DX, AL  
;-----------------------------------------------------------------------------  
; Configure Logical Device 1, Configuration Register CRF0  
;-----------------------------------------------------------------------------  
MOV DX, 2EH  
MOV AL, 07H  
OUT DX, AL  
MOV DX, 2FH  
MOV AL, 01H  
OUT DX, AL  
;
; point to Logical Device Number Reg.  
; select Logical Device 1  
MOV DX, 2EH  
MOV AL, F0H  
OUT DX, AL  
MOV DX, 2FH  
MOV AL, 3CH  
OUT DX, AL  
; select CRF0  
; update CRF0 with value 3CH  
-24-  
 
W83627UHG  
;------------------------------------------  
; Exit the Extended Function Mode  
;------------------------------------------  
MOV DX, 2EH  
MOV AL, AAH  
OUT DX, AL  
Table 6-2 Chip (Global) Control Registers  
INDEX  
02h  
07h  
20h  
21h  
22h  
23h  
24h  
25h  
R/W  
Write Only  
R/W  
DEFAULT VALUE  
DESCRIPTION  
Software Reset  
Logical Device  
Chip ID, MSB  
00h  
A2h  
Read Only  
Read Only  
R/W  
3xh  
Chip ID, LSB  
FFh  
Device Power Down  
Device Power Down  
Global Option  
R/W  
F0h  
R/W  
0100_0ss0b  
00h  
R/W  
Interface Tri-state  
Enable  
26h  
27h  
28h  
29h  
R/W  
0s000000b  
Reserved  
00h  
Global Option  
R/W  
R/W  
Global Option  
00h  
Multi-function Pin  
Selection  
2Ah  
2Bh  
2Ch  
R/W  
00h  
I2C Pin Select  
Reserved  
02h  
R/W  
R/W  
Multi-function Pin  
Selection  
2Dh  
00h  
GPIO2 Input Detected  
Type  
2Eh  
2Fh  
R/W  
R/W  
00h  
00h  
Reserved  
Reserved  
S: Strapping; x: chip version.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-25-  
W83627UHG  
7. HARDWARE MONITOR  
7.1 General Description  
The W83627UHG monitors several critical parameters in PC hardware, including power supply  
voltages, fan speeds, and temperatures, all of which are very important for a high-end computer  
system to work stably and properly. In addition, proprietary hardware reduces the amount of  
programming and processor intervention to control cooling fan speeds, minimizing ambient noise and  
maximizing system temperature and reliability.  
The W83627UHG can simultaneously monitor all of the following inputs:  
Eight analog voltage inputs (four internal voltages VBAT, 5VSB, 5VCC and AVCC power; four  
external voltage inputs)  
Two fan tachometer inputs  
Two remote temperatures, using either a thermistor or the CPU thermal diode (voltage or  
current mode measurement method)  
One case-open detection signal.  
These inputs are converted to digital values using the integrated, eight-bit analog-to-digital converter  
(ADC).  
In response to these inputs, the W83627UHG can generate the following outputs:  
Two PWM (pulse width modulation) or DC fan outputs for the fan speed control  
Beep tone output for warnings  
SMI#  
OVT# signals for system protection events  
The W83627UHG provides hardware access to all monitored parameters through the LPC or I2C  
interface and software access through application software, such as Winbond’s Hardware DoctorTM, or  
BIOS. In addition, the W83627UHG can generate pop-up warnings or beep tones when a parameter  
goes outside of a user-specified range.  
The rest of this section introduces the various features of the W83627UHG hardware-monitor  
capability. These features are divided into the following sections:  
Access Interfaces  
Analog Inputs  
Fan Speed Measurement and Control  
Smart Fan Control  
SMI# Interrupt Mode  
OVT# Interrupt Mode  
Registers and Value RAM  
7.2 Access Interfaces  
The W83627UHG provides two interfaces, LPC and I2C, for the microprocessor to read or write the  
internal registers of the hardware monitor.  
-26-  
 
W83627UHG  
7.2.1  
LPC Interface  
The internal registers of the hardware monitor block are accessible through two separate methods on  
the LPC bus. The first set of registers, which primarily enables the block and sets its address in the  
CPU I/O address space are accessed by the Super I/O protocol described in Chapter 6 at address  
2Eh/2Fh or 4Eh/4Fh. The bulk of the functionality and internal registers of this block are accessed  
from an index/data pair of CPU I/O addresses. The standard locations are usually 295h/296h and are  
set by CR60 and CR61 accessed using the Super I/O protocol as described in Chapter 6.  
Due to the number of internal registers, it is necessary to separate the register sets into “banks”  
specified by register 4Eh. The structure of the internal registers is shown in the following figure.  
Publication Release Date: May 25, 2007  
-27-  
Revision 1.0  
 
W83627UHG  
Smart Fan Configuration  
Registers  
00h-1Fh  
Monitor Value Registers  
20h~3Fh  
BANK 0  
FANOUT Critical  
Temperature  
6Bh~6Eh  
Configuration Register  
40h  
BANK 1  
Interrupt Status Registers  
41h, 42h  
CPUTIN Temperature  
Control/Stauts Registers  
50h~56h  
SMI# Mask Registers  
43h, 44h, 46h  
Fan Divisor Register I  
47h  
LPC  
Bus  
Serial Bus Address  
48h  
BANK 4  
Interrupt Status & SMI#  
Mask Registers  
50h~51h  
Port 5h  
FANOUTs Source Select Register  
49h, 4Ah  
Index  
Register  
BANK 4  
Beep Control Registers  
53h  
Fan Divisor Register II  
4Bh  
SMI#/OVT# Control Register  
4Ch  
BANK 4  
Temperature Offset  
Fan IN /OUT Control Register  
4Dh  
Registers  
54h~56h  
Bank Select for 50h~5Fh  
Registers  
4Eh  
BANK 4  
Real Time Status  
Registers  
Port 6h  
Winbond Vendor ID  
4Fh  
59h~5Bh  
Data  
Register  
BANK 0  
BEEP Control Registers  
56h~57h  
BANK 5  
Monitor Value Registers  
50h~5Ch  
BANK 0  
Chip ID Register  
58h  
BANK 0  
Temperature Sensor Type  
Configuration &  
Fan Divisor Registers  
59h,5Dh  
BANK 0  
Cirtical Tempature and  
Curren mode enable  
5Eh  
BANK 0  
Smart Fan Configuration  
Registers  
60h~6Ah  
Figure 7-1 LPC Bus’ Reads from / Writes to Internal Registers  
-28-  
W83627UHG  
7.2.2  
I2C Interface  
The I2C interface is a second, parallel port into the internal registers of the hardware monitor function  
block. The interface is totally compatible with the industry-standard I2C specification, allowing external  
components that are also compatible to read the internal registers of the W83627UHG hardware  
monitor and control fan speeds. The address of the I2C peripheral is set by the register located at  
index 48h (which is accessed by the index/data pair at I/O address typically at 295h/296h).  
The two timing diagrams below illustrate how to use the I2C interface to write to an internal register  
and how to read the value in an internal register, respectively.  
(a) Serial bus write to internal address register followed by the data byte  
0
7
8
0
7
8
SCL  
SDA  
0
1
0
1
1
0
1
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Start By  
Master  
Ack  
by  
627UHG  
Ack  
by  
627UHG  
Frame 1  
Serial Bus Address Byte  
Frame 2  
Internal Index Register Byte  
0
7
8
SCL (Continued)  
SDA (Continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AAckck  
byby  
768247RUHG  
Stop  
by  
Master  
Frame 3  
Data Byte  
Figure 7-2 Serial Bus Write to Internal Address Register Followed by the Data Byte  
Publication Release Date: May 25, 2007  
Revision 1.0  
-29-  
 
W83627UHG  
(b) Serial bus read from a register  
0
7
8
0
7
8
SCL  
SDA  
0
1
0
1
1
0
1
R/W  
D7 D6  
D5 D4 D3 D2  
Frame 2  
D1 D0  
Start By  
Master  
Ack  
by  
Ack  
by  
627UHG  
Frame 1  
627UHG  
Serial Bus Address Byte  
Internal Index Register Byte  
0
8
0
0
7
0
7
8
1
0
1
1
0
1
R/W  
D7 D6  
D5 D4 D3 D2  
D1 D0  
Ack  
by  
Master  
Ack  
by  
627UHG  
Stop by  
Master  
Frame 3  
Serial Bus Address Byte  
Repeat  
Frame 4  
Data Byte  
start  
by  
Master  
0
Figure 7-3 Serial Bus Read from Internal Address Register  
-30-  
W83627UHG  
7.3 Analog Inputs  
The eight analog inputs of the hardware monitor block connect to an 8-bit Analog to Digital Converter  
(ADC) and consist of four general-purpose inputs connected to external device pins (CPUVCORE,  
VIN0 – VIN2) and four internal signals connected to the power supplies (AVCC, VBAT, 5VSB and  
5VCC). All inputs are limited to a maximum voltage of 2.048V due to an internal setting of 8mV LSB  
(256 steps x 8mV = 2.048V). All inputs to the ADC must limit the maximum voltage by using a voltage  
divider. The power supplies have internal resistors, while the external pins require outside limiting  
resistors as described below.  
Pin 97  
AVCC  
Pin 74  
VBAT  
Power Inputs  
Pin 61  
5VSB  
Pin 12  
5VCC  
Pin 101  
CPUVCORE  
R1  
VIN0  
Pin 100  
V0  
R2  
Positive Voltage Input  
8-bit ADC  
with  
8mV LSB  
Pin 99  
Pin 98  
VIN1  
R3  
VIN2  
Negative Voltage Input  
V2  
R4  
R
THM  
10K@25 C, beta=3435K  
R
10K, 1%  
VREF  
Pin 102  
R
15K, 1%  
CPUTIN  
SYSTIN  
Pin 103  
Pin 104  
CPUD+  
CAP,2200p  
Pin 105  
AGND  
CPUD-  
(AGND)  
Figure 7-4 Analog Inputs and Application Circuit of the W83627UHG  
As illustrated in the figure above, other connections may require some external circuits. The rest of  
this section provides more information about voltages outside the range of the 8-bit ADC, CPU Vcore  
voltage detection, and temperature measurement  
Publication Release Date: May 25, 2007  
-31-  
Revision 1.0  
 
W83627UHG  
7.3.1  
Voltages Over 2.048 V or Less Than 0 V  
Input voltages greater than 2.048 V should be reduced by an external resistor divider to keep the input  
voltages in the proper range. For example, input voltage V0 (+12 V) should be reduced before it is  
connected to VIN0 according to the following equation:  
R2  
VIN0 = V ×  
0
R1 + R2  
R1 and R2 can be set to 150 KΩ and 10 KΩ, respectively, to reduce V0 from +12 V to less than 2.048  
V.  
The W83627UHG uses the same approach. Pins 12 and 97 provide two functions. One, these pins  
are connected to 5VCC at +5 V to supply internal (digital / analog) power to the W83627UHG. Two,  
these pins monitor 5VCC. The W83627UHG has two internal, 80-KΩ and 20-KΩ, serial resistors that  
reduce the ADC-input voltage to 1 V.  
20KΩ  
80KΩ + 20KΩ  
Vin = 5VCC ×  
1V , where 5VCC is set to 5V  
Pin 61 is implemented likewise to monitor its +5 V stand-by power supply.  
Pin 74 also has two internal, 20-KΩ serial resistors that reduce the ADC-input voltage to 1.65 V.  
20KΩ  
20KΩ + 20KΩ  
Vin =VBAT ×  
1.65V , where VBAT is set to 3.3V  
The CPUVCORE pin feeds directly into the ADC with no voltage divider since the nominal voltage on  
this pin is only 1.2V.  
Negative voltages are handled similarly, though the equation looks a little more complicated. For  
example, negative voltage V2 (-5V) can be reduced according to the following equation:  
R4  
VIN2 = (V2 2.048)×  
+ 2.048,whereV 2 = −5  
4
R
3
+ R  
R3 and R4 can be set to 120 KΩ and 10 KΩ, respectively, to reduce negative input voltage V2 from – 5  
V to less than 2.048 V. Note that R4 is referenced to VREF, or 2.048V instead of 0V to allow for more  
dynamic range. This is simply good analog practice to yield the most precise measurements.  
Both of these solutions are illustrated in the figure above.  
7.3.2  
Voltage Detection  
The data format for voltage detection is an eight-bit value, and each unit represents an interval of 8  
mV.  
Detected Voltage = Reading * 0.008 V  
If the source voltage was reduced by a voltage divider, the detected voltage value must be scaled  
up accordingly.  
-32-  
 
W83627UHG  
The voltage values can be read at Hardware Monitor Register Bank 0, Index 20h to 25h.  
7.3.3 Temperature Sensing  
The data format for sensor SYSTIN is 8-bit, two's-complement, and the data format for sensors  
CPUTIN is 9-bit, two's-complement. This is illustrated in the table below.  
Table 7-1 Temperature Data Format  
8-BIT DIGITAL OUTPUT  
8-BIT BINARY 8-BIT HEX  
0111,1101 7Dh  
9-BIT DIGITAL OUTPUT  
9-BIT BINARY 9-BIT HEX  
TEMPERATURE  
+125°C  
+25°C  
+1°C  
0,1111,1010  
0,0011,0010  
0,0000,0010  
0,0000,0001  
0,0000,0000  
1,1111,1111  
1,1111,1110  
1,1100,1110  
1,1001,0010  
0FAh  
032h  
002h  
001h  
000h  
1FFh  
1FFh  
1CEh  
192h  
0001,1001  
0000,0001  
-
19h  
01h  
+0.5°C  
+0°C  
-
-
0000,0000  
-
00h  
-0.5°C  
-1°C  
1111,1111  
1110,0111  
1100,1001  
FFh  
E7h  
C9h  
-25°C  
-55°C  
Eight-bit temperature data is read from Index 27h. For nine-bit temperature data, the 8 MSB are read  
from Bank1 Index 50h,and the LSB is read from Bank1 Index 51h, bit 7.  
There are two sources of temperature data: external thermistors or thermal diodes.  
7.3.3.1  
Monitor Temperature from Thermistor  
External thermistors should have a β value of 3435K and a resistance of 10 KΩ at 25°C. As illustrated  
in the schematic below, the thermistor is connected in series with a 10-KΩ resistor and then connects  
to VREF (pin 102). The configuration registers to select a themistor temperature sensor and the  
measurement method are found at Bank 0, Index 59h, 5Dh, and 5Eh.  
R
RTHM  
10K, 1%  
10K@25°C, beta=3435K  
VREF Pin 102  
CPUTIN Pin 103  
W83627UHG  
SYSTIN Pin 104  
Figure 7-5 Monitoring Temperature from Thermistor  
Publication Release Date: May 25, 2007  
Revision 1.0  
-33-  
 
W83627UHG  
7.3.3.2  
Monitor Temperature from Thermal Diode (Voltage Mode)  
The thermal diode D- pin is connected to AGND (pin 105), and the D+ pin is connected to the  
temperature sensor pin in the W83627UHG. A 15-KΩ resistor is connected to VREF to supply the bias  
current for the diode, and the 2200-pF, bypass capacitor is added to filter high-frequency noise. The  
configuration registers to select a thermal diode temperature sensor and the measurement method are  
found at Bank 0, Index 59h, 5Dh, and 5Eh.  
VREF  
R= 15K, 1%  
W83627UHG  
CPUTIN  
(SYSTIN)  
D+  
D-  
Thermal  
Diode  
C= 2200pF  
AGND  
Figure 7-6 Monitoring Temperature from Thermal Diode (Voltage Mode)  
-34-  
W83627UHG  
7.3.3.3  
Monitor Temperature from Thermal Diode (Current Mode)  
The W83627UHG also can measure diode temperature by current mode and the circuit is shown in  
the following figure.  
W83627UHG  
CPUTIN  
(SYSTIN)  
D+  
D-  
Thermal  
Diode  
C= 2200pF  
AGND  
Figure 7-7 Monitoring Temperature from Thermal Diode  
The pin of processor D- is connected to AGND (pin 105) and the pin D+ is connected to temperature  
sensor pin in W83627UHG. A bypass capacitor C=2200pF should be added to filter the high  
frequency noise. The configuration registers to select a thermal diode temperature sensor and the  
measurement method are found at Bank 0, Index 59h, 5Dh, and 5Eh.  
7.4 SST Command Summary  
The W83627UHG can act as an SST peripheral or slave and output the results of the Analog to Digital  
Converter onto the SST bus. SST is a new, popular standard to communicate temperature and  
voltage information from around the PC motherboard to report on the status of the system and control  
cooling fans and other safety mechanisms.  
SST is a self-clocked, one-wire bus for data transfer. The bus requires no additional control lines. In  
addition, SST also includes variable data transfer rate established with every message. Therefore, it is  
comparatively flexible. The W83627UHG has a programmable SST address defined at Logical Device  
C CR[F1h]. The default address is 0x48h which is within the range of 0x48h-0x4ah defined in the SST  
specification.  
Since the same, integrated Analog to Digital Converter is used, all the features and restrictions of use  
remain the same. The reference voltage is integrated and fixed with the 8-bit ADC, yielding a  
maximum voltage on each of 2.048V and an LSB of 8mV. As discussed in the previous section 7.3,  
voltage scaling using resistive dividers may be necessary to keep external voltages within the  
maximum input voltage range. The power supply pins have integrated resistive dividers.  
Publication Release Date: May 25, 2007  
-35-  
Revision 1.0  
 
W83627UHG  
7.4.1  
Command Summary  
The W83627UHG supports SST commands as shown in the following table:  
Table 7-2 SST Command Summary  
COMMAND  
DESCRIPTION  
ResetDevice()  
This command is used to recover from serious  
hardware or bus error.  
GetDIB()  
Support 8-byte and 16-byte read length  
GetIntTemp()  
Returns the 20byte temperature data values for  
pin SYSTIN (Pin 104)  
GetExtTemp()  
GetAllTemps()  
GetVolt12V()  
Returns the 2-byte temperature data values for  
pin CPUTIN (Pin 103)  
Returns the 4-byte temperature data values for  
both SYSTIN and CPUTIN  
Returns the 2-byte voltage data values for pin  
VIN0 (Pin 100). This pin should be connected to  
+12V power through scaling resistors. Please  
refer to section 7.4.2.2  
GetVolt5V()  
Returns the 2-byte voltage data values for pin  
5VCC (Pin 12, 48). This pin should be  
connected to +5V power directly. Please refer to  
section 7.4.2.2  
GetVolt3p3V()  
GetVolt2p5V()  
GetVoltVccp()  
Returns the 2-byte voltage data values for pin  
VIN1 (Pin 99). This pin should be connected to  
+3.3V power through scaling resistors. Please  
refer to section 7.4.2.2  
Returns the 2-byte voltage data values for pin  
VIN2 (Pin 98). This pin should be connected to  
+2.5V power through scaling resistors. Please  
refer to section 7.4.2.2  
Returns the 2-byte voltage data values of  
CPUVCORE (Pin 101). This pin should be  
connected to CPU power supply directly. The  
CPU power supply voltage must not be higher  
than 2.048 volt  
GetAllVoltages()  
Returns a 10-byte voltage data value containing  
all the above listed five (5) voltages  
-36-  
 
W83627UHG  
7.4.2  
Combination Sensor Data Format  
Temperature Data Format  
7.4.2.1  
The W83627UHG temperature data format of both CPUTIN and SYSTIN is 16-bit two’s-complement  
binary value. It represents multiple of 1/64°C in the temperature reading.  
Table 1 shows some typical temperature values in 16-bit two’s complement format.  
Table 7-3 Typical Temperature Values  
TEMPERATURE  
16-BIT DIGITAL OUTPUT (2’S COMPLEMENT)  
16-BIT BINARY  
16-BIT HEX  
1400h  
+80°C  
+79.5°C  
+1°C  
0001 0100 0000 0000  
0001 0011 1110 0000  
0000 0000 0100 0000  
0000 0000 0000 0000  
1111 1111 1100 0000  
1111 1110 1100 0000  
13E0h  
0010h  
+0°C  
0000h  
-1°C  
FFC0h  
FEC0h  
-5°C  
7.4.2.2  
Voltage Data Format  
The W83627UHG can return five (5) voltage values through the SST interface. The voltage data  
format is 16-bit two’s-complement binary. The relation between the 2-byte data and the monitored  
voltage is listed below:  
1) CPUVCORE (pin 101) = Decimal[2-byte data by GetVoltVccp() ] / 1024 volts  
2) 5VCC (pin 12) = Decimal[2-byte data by GetVolt5V()] / 1024 volts  
3) “+12V” = Decimal[2-byte data by GetVolt12V()] / 1024 / ((R1+R2) / R2) volts  
VIN0 (pin 100) is connected as shown below:  
R2  
+12V  
AGND  
VIN0  
1
1
R1  
150K 1%  
10K 1%  
4) “+3VCC” = Decimal[2-byte data by GetVolt3p3V()] / 1024 / ((R3+R4) / R4) volts  
VIN1 (pin 99) is connected as shown below:  
R3  
3VCC  
VIN1  
1
10K 1%  
R4  
AGND  
1
10K 1%  
Publication Release Date: May 25, 2007  
Revision 1.0  
-37-  
 
W83627UHG  
5) “+2.5V” = Decimal[2-byte data by GetVolt2p5V()] / 1024 / ((R5+R6) / R6) volts  
VIN2 (pin 98) is connected as shown below:  
R5  
2.5V  
VIN2  
1
10K 1%  
R6  
AGND  
1
10K 1%  
7.5 PECI  
PECI (Platform Environment Control Interface) is a proprietary derivation of SST. It is one of the  
temperature sensing methods that the W83627UHG supports. With a bandwidth ranging from 2 kbps  
to 2 Mbps, PECI uses a single wire – no additional control lines needed – for self-clocking and data  
transfer. By interfacing to Digital Thermal Sensor on the Intel® CPU, PECI reports a negative  
temperature value relative to the processor’s temperature at which the thermal control circuit (TCC) is  
activated.  
To enable the PECI functionalities of the W83627UHG, BIOS/software should follow the steps below:  
1. Program Logical Device C, CR[E8h] bit (1..0) for PECI speed selection to meet the bit timing limits  
of CPU with PECI. “11b” is recommended to be set to the bit for better stability.  
2. Program Logical Device C, CR[E5h] bit (7..4) for each PECI Agent to match the number of  
domains in the processors. Setting to “1” enables the W83627UHG to issue GetTemp(0) and  
GetTemp(1) commands to access the PECI temperatures of domains 0 and domain 1. Setting to “0”  
enables the W83627UHG to issue GetTemp(0) command for domain 0.  
3. Program Logical Device C, CR[E0h] bit (3..0) for each PECI Agent. Setting to “1” returns the PECI  
temperature of domain 1 to the temperature reading register. Setting to “0” returns the PECI  
temperature of domain 0 to the temperature reading register. If CR[E5h] bit 1 is set to “1”, the higher  
PECI temperature of domain 0 and domain 1 is returned to the temperature reading register. See the  
example below for more details about the temperature reading register(s)  
4. Program Logical Device C, CR[E0h] bit (7..4) for each PECI Agent. Setting to “1” enables the  
W83627UHG to access the agent. The power-on default is disabled. After an agent is enabled, the  
W83627UHG issues PING and GetTemp commands to obtain the PECI temperature.  
5. Since the PECI temperature is a relative value, the W83627UHG provides registers for each PECI  
Agent to convert the relative value to a more traditional “absolute” format. The TBase registers  
(Logical Device C, CR[E1h]~CR[E4h]) store the “base” temperature. By means of BIOS/software, the  
desired base temperature can be written to these registers. Important: the value must be positive.  
Otherwise abnormal temperature responses will take place. Here is an example on how to obtain  
TBase value:  
(1). Use a digital thermometer on the surface of the PECI processor to measure the processor body  
temperature.  
(2). Power up the system with the PECI processor. Run the processor to 100% loading.  
(3). After the system is stable, read the PECI reading from Logical Device C, CR[E0h] ~ CR[E7h] of  
selected Agents and record the value of the digital thermometer.  
-38-  
 
W83627UHG  
(4). Calculate TBase. For example, if PECI = -10 and the digital thermometer is 50’C, then TBase  
could be set to 60’C. (60 – 10 = 50).  
6. There are two temperature reading registers in the W83627UHG: Bank1, Index 50h & 51h, and  
Bank2, Index 50h & 51h. The source of the Bank 1, Index 50h & 51h value is determined by the  
value programmed into the CPUFANOUT monitor Temperature source select register (Hardware  
Monitor Device, Bank 0, Index 49h, bits (2..0)). The source of Bank 2, Index 50h & 51h value is  
determined by the value programmed into the SYSFANOUT monitor Temperature source select  
register (Hardware Monitor Device, Bank 0, Index 4Ah, bits(7..5)).  
7. The temperature values in Bank 1 and Bank 2 Index 50h & 51h are:  
Bank 1, Index 50h & 51h = (TBase) + (PECI Agent relative temperature)  
Bank 2, Index 50h & 51h = (TBase) + (PECI Agent relative temperature)  
Example:  
If the PECI relative temperature of agent 1 is -10; TBase is set to 72°C, and Bank0 Index 49h  
selects PECI Agent 1 as the temperature source, the reported temperature will be 62°C (-10 + 72).  
Please be noted that when the temperature source is selected as PECI temperature source,  
the Bank 1 Index 50h & 51h or Bank 2 Index 50h & 51h reading does not reflect the actual  
temperature of the processor.  
8. In addition, each PECI Agent relative temperature can be read in Logical Device C, CR[E0h] ~  
CR[E7h], as long as Logical Device C, CR[E8h] bit 3 is set to “1”. When this bit is “1”, Logical Device  
C, CR[E0h] ~ CR[E7h] become “Read Only” registers.  
CPU  
W83627UHG  
(PECI Host)  
PECI  
PECI  
Fan Control  
Figure 7-8 PECI Illustration  
9. A warning flag register at Logical Device C, CR[E8h] bit (7..4) is designed for each PECI  
Agent to report whether the W83627UHG (PECI host) detects the PECI client or not and whether the  
PECI client returns invalid FCS values from the polling for three successive times.  
Publication Release Date: May 25, 2007  
-39-  
Revision 1.0  
W83627UHG  
7.6 Fan Speed Measurement and Control  
This section is divided into two parts, one to measure the speed and the other to control the speed.  
7.6.1 Fan Speed Measurement  
The W83627UHG can measure fan speed for fans equipped with tachometer outputs. The tachometer  
signals should be set to TTL-level, and the maximum input voltage cannot exceed +5 V. If the  
tachometer signal exceeds +5 V, an external trimming circuit should be added to reduce the voltage  
accordingly.  
The fan speed counter is read from Bank0 Index 28h, and 29h. The fan speed can then be evaluated  
by the following equation:  
1.35×106  
Count × Divisor  
RPM =  
The default divisor is 2 and is specified at Bank0 Index 47h, bits 7 ~ 4; and Index 5Dh, bits 6 ~ 5.  
There are three bits for each divisor, and the corresponding divisor is listed in the table below.  
Table 7-4 Fan Divisor Definition  
BIT 2  
BIT 1  
BIT 0  
FAN DIVISOR  
BIT 2  
BIT 1  
BIT 0  
FAN DIVISOR  
0
0
0
0
0
0
1
1
0
1
0
1
1
2
4
8
1
1
1
1
0
0
1
1
0
1
0
1
16  
32  
64  
128  
The following table provides some examples of the relationship between divisor, RPM, and count.  
Table 7-5 Divisor, RPM, and Count Relation  
NOMINAL  
RPM  
TIME PER  
REVOLUTION  
DIVISOR  
COUNTS  
70% RPM  
TIME FOR 70%  
1
8800  
4400  
2200  
1100  
550  
6.82 ms  
13.64 ms  
27.27 ms  
54.54 ms  
109.08 ms  
218.16 ms  
436.32 ms  
872.64 ms  
153  
153  
153  
153  
153  
153  
153  
153  
6160  
3080  
1540  
770  
385  
192  
96  
9.84 ms  
19.48 ms  
38.96 ms  
77.92 ms  
155.84 ms  
311.68 ms  
623.36 ms  
1246.72 ms  
2 (default)  
4
8
16  
32  
64  
128  
275  
137  
68  
48  
-40-  
 
W83627UHG  
7.6.2  
Fan Speed Control  
The W83627UHG has two output pins for fan control, each of which offers PWM duty cycle and DC  
voltage to control the fan speed. The output type (PWM or DC) of each pin is configured by Bank0  
Index 04h, bits 1 ~ 0.  
For PWM, the duty cycle is programmed by eight-bit registers at Bank0 Index 01h and Index 03h. The  
duty cycle can be calculated using the following equation:  
Programmed8 - bit Register Value  
Dutycycle(%) =  
×100%  
255  
The default duty cycle is FFh, or 100%. The PWM clock frequency is programmed at Bank0 Index 00h  
and Index 02h.  
For DC, the W83627UHG has a six bit digital-to-analog converter (DAC) that produces 0 to 5 Volts DC.  
The analog output is programmed at Bank0 Index 01h and Index 03h. The analog output can be  
calculated using the following equation:  
Programmed 6 - bit Register Value  
= AVCC ×  
`
OUTPUT Voltage (V)  
64  
The default value is 111111YY, or nearly 5 V, and Y is a reserved bit.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-41-  
 
W83627UHG  
7.6.3  
SMART FANTM Control  
The W83627UHG supports two SMART FANTM I features—Thermal CruiseTM mode and Fan Speed  
CruiseTM mode—and SMART FANTM III. Each of these is discussed in the following sections. When  
SMART FANTM I features are enabled, fan output starts from the previous setting in Bank0 Index 01h  
and Index 03h.  
There are two pairs of temperature sensors and fan outputs in SMART FANTM I, as illustrated in the  
figure below.  
SYSTIN  
CPUTIN  
PECI_Agent1  
Pin 92  
SYSFANOUT  
PECI_Agent2  
PECI_Agent3  
PECI_Agent4  
CPUTIN  
PECI_Agent1  
Pin 90  
CPUFANOUT  
PECI_Agent2  
PECI_Agent3  
PECI_Agent4  
Figure 7-9 FANOUT and Corresponding Temperature Sensors in SMART FANTMI  
7.6.3.1  
Thermal CruiseTM Mode  
Two pairs of temperature sensors and fan outputs in Thermal CruiseTM mode:  
SYSTIN and the temperature sensor selected by Bank0 Index 4Ah, bits 7 ~ 5  
CPUTIN and the temperature sensor selected by Bank0 Index 49h, bits 2 ~ 0  
Thermal CruiseTM mode controls the fan speed to keep the temperature in a specified range. First, this  
range is defined in BIOS by a temperature and the interval (e.g., 55 °C ± 3 °C). As long as the current  
temperature remains below the low end of this range (i.e., 52 °C), the fan is off. Once the temperature  
exceeds the low end, the fan turns on at a speed defined in BIOS (e.g., 20% output). Thermal  
CruiseTM mode then controls the fan output according to the current temperature. Three conditions  
may occur:  
(1) If the temperature still exceeds the high end, fan output increases slowly. If the fan is operating  
at full speed but the temperature still exceeds the high end, a warning message is issued to  
protect the system.  
(2) If the temperature falls below the high end (e.g., 58 °C) but remains above the low end (e.g.,  
52 °C), fan output remains the same.  
(3) If the temperature falls below the low end (e.g., 52 °C), fan output decreases slowly to zero or  
to a specified “stop value”. This stop value is enabled by Bank0 Index12h, bits 5 ~ 4, and the  
value itself is specified in Bank0 Index 08h and Index 09h. The fan remains at the stop value for  
the period of time defined in Bank0 Index 0Ch and Index 0Dh.  
-42-  
 
W83627UHG  
In general, Thermal CruiseTM mode means  
if the current temperature is higher than the high end, increase the fan speed;  
if the current temperature is lower than the low end, decrease the fan speed;  
otherwise, keep the fan speed the same.  
The following figures illustrate two examples of Thermal CruiseTM mode.  
Figure 7-10 Mechanism of Thermal CruiseTM Mode (PWM Duty Cycle)  
Figure 7-11 Mechanism of Thermal CruiseTM Mode (DC Output Voltage)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-43-  
W83627UHG  
7.6.3.2  
Two pairs of fan input sensors and fan outputs in Fan Speed CruiseTM mode.  
Fan Speed CruiseTM Mode  
SYSFANIN and SYSFANOUT  
CPUFANIN and CPUFANOUT  
Fan Speed CruiseTM mode keeps the fan speed in a specified range. First, this range is defined in  
BIOS by a fan speed count (the amount of time between clock input signals, not the number of clock  
input signals in a period of time) and an interval (e.g., 160 ± 10). As long as the fan speed count is in  
the specified range, fan output remains the same. If the fan speed count is higher than the high end  
(e.g., 170), fan output increases to make the count lower. If the fan speed count is lower than the low  
end (e.g., 150), fan output decreases to make the count higher. One example is illustrated in this  
figure.  
A
C
Count  
170  
160  
150  
(%)  
100  
Fan  
output  
50  
0
Figure 7-12 Mechanism of Fan Speed CruiseTM Mode  
The following tables show current temperature, fan output value and the relative control registers at  
Thermal CruiseTM and Fan Speed CruiseTM mode.  
Table 7-6 Display Registers – at SMART FANTM I Mode  
REGISTER  
ADDRESS  
DESCRIPTION  
REGISTER NAME  
ATTRIBUTE  
BIT DATA  
Bank1, Index  
50h ,51h  
Current CPU  
Temperature  
CPUTIN Temperature  
Sensor  
8 MSB, 1°C bit 7,  
0.5 °C  
Read only  
Bank0, Index  
27h  
Current SYS  
Temperature  
SYSTIN Temperature  
Sensor  
Read only  
8 MSB, 1°C  
Current  
CPUFANOUT  
Output Value  
Bank0, Index  
03h  
CPUFANOUT Output  
Value Select  
80h / FFh by  
strapping  
Bits 7-0  
CPUFANOUT Value  
Current  
Bank0 Index  
01h  
SYSFANOUT Output  
Value Select  
80h / FFh by  
strapping  
Bits 7-0  
SYSFANOUT Value  
SYSFANOUT  
Output Value  
-44-  
W83627UHG  
Table 7-7 Relative Registers – at Thermal CruiseTM Mode  
KEEP  
MIN.  
FAN  
SPEED  
CRUISETM  
MODE  
START-  
UP  
VALUE  
STEP-  
DOWN  
TIME  
TARGET  
TEMPERATURE  
STOP  
VALUE  
STOP  
TIME  
STEP-  
UP TIME  
TOLERANCE  
OUTPUT  
VALUE  
Bank0, 07h  
Bits0-3  
Bank0,  
0Ah  
Bank0,  
08h  
Bank0,  
12h, Bit5  
Bank0,  
0Ch  
SYSFANOUT  
CPUFANOUT  
Bank0, 05h  
Bank0, 06h  
Bank0,  
0Eh  
Bank0,  
0Fh  
Bank0, 07h  
Bits 4-7  
Bank0,  
0Bh  
Bank0,  
09h  
Bank0,  
12h, Bit4  
Bank0,  
0Dh  
Table 7-8 Relative Registers – at Speed CruiseTM Mode  
THERMAL-  
CRUISETM  
MODE  
STEP-  
DOWN  
TIME  
KEEP MIN. FAN  
OUTPUT VALUE  
TARGET-SPEED  
COUNT  
STEP-  
UP TIME  
TOLERANCE  
Bank0, Index 07h Bank0, Index 12h  
Bits 0-3 Bit5  
Bank0, Index 07h Bank0, Index 12h  
Bits 4-7 Bit4  
SYSFANOUT  
CPUFANOUT  
Bank0, Index 05h  
Bank0, Index 06h  
Bank0,  
Index  
0Eh  
Bank0,  
Index  
0Fh  
7.6.3.3  
SMART FANTM III  
SMART FANTM III controls the fan speed so that the temperature meets the target temperature set in  
BIOS or application software. There is only one pair of fan outputs and temperature sensors in SMART  
FANTM III mode.  
CPUFANOUT and the temperature sensor selected by Bank0 Index 49h, bits 2 ~ 0  
CPUTIN  
PECI_Agent1  
PECI_Agent2  
Pin 90  
PECI_Agent3  
CPUFANOUT  
PECI_Agent4  
Figure 7-13 FANOUT and Corresponding Temperature Sensor in SMART FANTM III  
The algorithm is as follows:  
Publication Release Date: May 25, 2007  
Revision 1.0  
-45-  
W83627UHG  
(1) The target temperature, temperature tolerance, maximum and minimum fan outputs and step are  
set.  
(2) The following figure shows the initial conditions. If the current temperature is within (Target  
Temperature ± Temperature Tolerance), the fan speed remains constant.  
Setting  
Fan output  
(DC / PWM)  
Tolerance  
Max. Fan Output  
Min. Fan Output  
Tar. - Tol.  
Tar. + Tol.  
Temperature  
Figure 7-14 Setting of SMART FANTM III  
(3) If the current temperature is higher than (Target Temperature + Temperature Tolerance), fan  
speed rises one step. The step is the value in the CPUFANOUT Output Value Select Register,  
Bank0, Index 03h. In addition, the target temperature shifts to (Target Temperature + Temperature  
Tolerance), creating a new target temperature, named Target Temperature 1 in this figure.  
-46-  
W83627UHG  
Current Temp. > Target Temp. + Tol.  
Fan output  
(DC / PWM)  
Tolerance  
Max. Fan Output  
Step  
Fan Initial  
Output Value  
Min. Fan Output  
Tar 1  
Tar 3  
Tar 2  
Temperature  
Tar  
Tar 5  
Tar 4  
Figure 7-15 SMART FANTM III Mechanism (Current Temp. > Target Temp. + Tol.)  
If the current temperature rises higher than (Target Temperature 1 + Temperature Tolerance), the fan  
speed rises one step again, and the target temperature shifts to (Target Temperature 1 + Temperature  
Tolerance), or Target Temperature 2. This process repeats whenever the current temperature is  
higher than (Target Temperature X ± Temperature Tolerance) or until the fan speed reaches its  
maximum speed.  
(4) If the current temperature falls below (Target Temperature Temperature Tolerance), the fan  
speed falls one step. The step is the value in the CPUFANOUT Output Value Select Register,  
Bank0, Index 03h. In addition, the target temperature shifts to (Target Temperature -  
Temperature Tolerance), creating a new target temperature named Target Temperature 1.This is  
illustrated in the figure below.  
Publication Release Date: May 25, 2007  
-47-  
Revision 1.0  
W83627UHG  
Current Temp. < Target Temp.- Tol.  
Fan output  
(DC / PWM)  
Tolerance  
Max. Fan Output  
Fan Initial  
Output Value  
Step  
Min. Fan Output  
Temperature  
Tar  
Tar 2  
Tar 3  
Tar 1  
Figure 7-16 SMART FANTM III Mechanism (Current Temp. < Target Temp. – Tol.)  
If the current temperature falls lower than (Target Temperature 1 Temperature Tolerance), the fan  
speed is reduced one step again, and the target temperature shifts to (Target Temperature 1 -  
Temperature Tolerance), or Target Temperature 2. This process repeats whenever the current  
temperature is lower than (Target Temperature X Temperature Tolerance) or until the fan speed  
reaches its minimum speed.  
(5) If the current temperature is always lower than (Target Temperature X Temperature Tolerance),  
the fan speed decreases slowly to zero or to a specified stop value. The stop value is enabled by  
register Bank0, 12h, bit 4 and the stop value is specified in Bank0, Index 09h. The fan remains at  
the stop value for the period of time defined in Bank0, Index 0Dh.  
The following tables show the current temperature, fan output value and the relative control registers  
at SMART FANTM III mode.  
Table 7-9 Display Register – at SMART FANTMIII Mode  
REGISTER  
ADDRESS  
DESCRIPTION  
REGISTER NAME  
ATTRIBUTE  
BIT DATA  
Bank1, Index  
50h ,51h  
Current CPU  
Temperature  
CPUTIN Temperature  
Sensor  
8 MSB, 1°C bit 7,  
0.5 °C  
Read only  
Current  
CPUFANOUT  
Output Value  
Bank0, Index  
03h  
CPUFANOUT Output  
Value Select  
80h / FFh by  
strapping  
Bits 7-0  
CPUFANOUT Value  
-48-  
W83627UHG  
Table 7-10 Relative Register – at SMART FANTM III Control Mode  
STOP  
VALUE  
(MIN. FAN  
OUTPUT)  
SMART FANTM III  
MODE  
TARGET  
TEMPERATURE  
MAX. FAN  
OUTPUT  
STOP  
TIME  
TOLERANCE  
Bank0, Index  
06h  
Bank0, Index  
07h, bit 4-7  
Bank0,  
Index 09h  
Bank0, Index  
67h  
Bank0,  
Index 0Dh  
CPUFANOUT  
KEEP MIN.  
FAN  
SMART FANTM III  
MODE  
STEP DOWN  
TIME  
STEP UP  
TIME  
OUTPUT STEP  
OUTPUT  
VALUE  
Bank0, Index  
68h  
Bank0, Index  
0Fh  
Bank0,  
Index 0Eh  
Bank0, Index  
12h, bit 4  
CPUFANOUT  
7.7 Interrupt Detection  
7.7.1  
SMI# Interrupt Mode  
The SMI#/OVT# pin (pin 95) is a multi-function pin. It can be in SMI# mode or in OVT# mode by  
setting Configuration Register CR[29h], bit 6 to one or zero, respectively. In SMI# mode, it can monitor  
voltages, fan counts, or temperatures.  
7.7.1.1  
Voltage SMI# Mode  
The SMI# pin can create an interrupt if a voltage exceeds a specified high limit or falls below a  
specified low limit. This interrupt must be reset by reading all the interrupt status registers, or  
subsequent events do not generate interrupts. This mode is illustrated in the following figure.  
High limit  
Fan Count limit  
Low limit  
SMI#  
SMI#  
*
*
*
*
*
*
*Interrupt Reset when Interrupt Status Registers are read  
Figure 7-17 SMI Mode of Voltage and Fan Inputs  
Publication Release Date: May 25, 2007  
Revision 1.0  
-49-  
 
W83627UHG  
7.7.1.2  
Fan SMI# Mode  
The SMI# pin can create an interrupt if a fan count crosses a specified fan limit (rises above it or falls  
below it). This interrupt must be reset by reading all the interrupt status registers, or subsequent  
events do not generate interrupts. This mode is illustrated in the figure above.  
7.7.1.3  
Temperature SMI# Mode  
The SMI# pin can create interrupts that depend on the temperatures measured by SYSTIN and  
CPUTIN. These interrupts are divided into two parts, one for SYSTIN and the other for CPUTIN.  
7.7.1.3.1  
Temperature Sensor 1(SYSTIN) SMI# Interrupt  
The SMI# pin has three interrupt modes with SYSTIN.  
(1) Comparator Interrupt Mode  
This mode is enabled by setting THYST (Temperature Hysteresis) to 127°C.  
In this mode, the SMI# pin can create an interrupt as long as the current temperature exceeds TO  
(Over Temperature). This interrupt can be reset by reading all the interrupt status registers, or  
subsequent events do not generate interrupts. If the interrupt is reset, the SMI# pin continues to  
create interrupts until the temperature goes below TO. This is illustrated in the figure below.  
T
HYST  
127'C  
T
OI  
T
OI  
T
HYST  
SMI#  
SMI#  
*
*
*
*
*
*
*
*Interrupt Reset when Interrupt Status Registers are read  
Figure 7-18 SMI Mode of SYSTIN I  
(2) Two-Times Interrupt Mode  
This mode is enabled by setting THYST (Temperature Hysteresis) lower than TO and setting Bank0  
Index 4Ch, bit 5 to zero.  
In this mode, the SMI# pin can create an interrupt when the current temperature rises above TO or  
when the current temperature falls below THYST. Once the temperature rises above TO, however,  
and generates an interrupt, this mode does not generate additional interrupts, even if the  
temperature remains above TO, until the temperature falls below THYST. This interrupt must be  
reset by reading all the interrupt status registers, or subsequent events do not generate interrupts.  
This is illustrated in the figure above.  
-50-  
W83627UHG  
(3) One-Time Interrupt Mode  
This mode is enabled by setting THYST (Temperature Hysteresis) lower than TO and setting Bank0  
Index 4Ch, bit 5 to one.  
In this mode, the SMI# pin can create an interrupt when the current temperature rises above TO.  
Once the temperature rises above TO, however, and generates an interrupt, this mode does not  
generate additional interrupts, even if the temperature remains above TO, until the temperature  
falls below THYST. This interrupt must be reset by reading all the interrupt status registers, or  
subsequent events do not generate interrupts. This is illustrated in the following figure.  
T
OI  
T
HYST  
SMI#  
*
*
*Interrupt Reset when Interrupt Status Registers are read  
Figure 7-19 SMI Mode of SYSTIN II  
7.7.1.3.2  
Temperature Sensor 2(CPUTIN) SMI# Interrupt  
The SMI# pin has two interrupt modes with CPUTIN.  
(1) Comparator Interrupt Mode  
This mode is enabled by setting Bank0 Index 4Ch, bit 6, to one.  
In this mode, the SMI# pin can create an interrupt when the current temperature exceeds TO  
(Over Temperature) and continues to create interrupts until the temperature falls below THYST  
.
This interrupt can be reset by reading all the interrupt status registers, or subsequent events do  
not generate interrupts. This is illustrated in the figure below.  
Publication Release Date: May 25, 2007  
-51-  
Revision 1.0  
W83627UHG  
T
OI  
T
OI  
T
HYST  
T
HYST  
SMI#  
SMI#  
*
*
*
*
*
*
*
*
*Interrupt Reset when Interrupt Status Registers are read  
Figure 7-20 SMI Mode of CPUTIN  
(2) Two-Times Interrupt Mode  
This mode is enabled by setting Bank0 Index 4Ch, bit 6, to zero.  
In this mode, the SMI# pin can create an interrupt when the current temperature rises above TO  
or when the current temperature falls below THYST. Once the temperature rises above TO,  
however, and generates an interrupt, this mode does not generate additional interrupts, even if  
the temperature remains above TO, until the temperature falls below THYST. This interrupt must be  
reset by reading all the interrupt status registers, or subsequent events do not generate interrupts.  
This is illustrated in the figure above.  
7.7.2  
OVT# Interrupt Mode  
The SMI#/OVT# pin is a multi-function pin. It can be in SMI# mode or in OVT# mode by setting  
Configuration Register CR[29h], bit 6 to one or zero, respectively. In OVT# mode, it can monitor  
temperatures, and it is enabled or disabled for SYSTIN and CPUTIN by Bank0 Index 18h, bit 6; and  
Bank0, Index 4Ch, bit 3.  
The OVT# pin has two interrupt modes, comparator and interrupt. The modes are illustrated in this  
figure.  
-52-  
 
W83627UHG  
To  
T
HYST  
OVT#  
(Comparator Mode; default)  
OVT#  
(Interrupt Mode)  
*
*
*
*Interrupt Reset when Temperature sensor registers are read  
Figure 7-21 OVT# Modes of Temperature Inputs  
If Bank0, Index 18h, bit 6, and Bank2 Index 52h, bit1 are set to zero, the OVT# pin is in comparator  
mode. In comparator mode, the OVT# pin can create an interrupt once the current temperature  
exceeds TO and continues to create interrupts until the temperature falls below THYST. The OVT# pin is  
asserted once the temperature has exceeded TO and has not yet fallen below THYST  
.
If Bank0, Index 18h, bit 6, and Bank2 Index 52h, bit1 are set to one, the OVT# pin is in interrupt mode.  
In interrupt mode, the OVT# pin can create an interrupt once the current temperature rises above TO  
or when the temperature falls below THYST. Once the temperature rises above TO, however, and  
generates an interrupt, this mode does not generate additional interrupts, even if the temperature  
remains above TO, until the temperature falls below THYST. This interrupt must be reset by reading all  
the interrupt status registers. The OVT# pin is asserted when an interrupt is generated and remains  
asserted until the interrupt is reset.  
7.7.3  
Caseopen Detection  
The purpose of Caseopen function is used to detect whether the computer case has been opened and  
possibly tampered with. This feature must function even when there is no 5VSB power. Consequently,  
the power source for the circuit is from either Pin 74 (VBAT) or Pin 61 (5VSB). 5VSB is the default  
power source. If there is no 5VSB power, the power source is VBAT. This is designed to save power  
consumption of the battery.  
When the case is closed, CASEOPEN# (Pin 76) must be pulled high by an external 2MΩ resistor that  
is connected to VBAT (Pin 74). When the case is opened, CASEOPEN# will be switched from high to  
low. Meanwhile, the detection circuit inside the IC latches the signal. As a result, the interrupt status  
and the real-time status can be read at the registers next time when the computer is powered. The  
status will not be cleared unless Bank 0, Index 46h, bit 7, or CR[E6h] bit 5 at Logical Device A is set to  
“1” first and this bit is self-cleared to “0”.  
Publication Release Date: May 25, 2007  
-53-  
Revision 1.0  
 
W83627UHG  
CASEOPEN#  
CASEOPEN  
CLEAR  
CASEOPEN  
STATUS  
Figure 7-22 Caseopen Mechanism  
7.7.4  
BEEP Alarm Function  
The W83627UHG provides an alarm output function at the BEEP/GP21 pin. The BEEP/GP21 pin is a  
multi-function pin and can be configured as BEEP output, if Logical Device B, CR[F2h], bit 1 is set to  
zero.  
The BEEP outputs a warning tone when one of the monitored parameters in the following events is out  
of the preset range.  
z
Any voltage input of the eight pins (CPUVCORE, VIN[0..2], 5VCC, AVCC , 5VSB and VBAT) is  
out of the allowed range;  
z
z
z
z
Any temperature input of the three pins (SYSTIN and CPUTIN) exceeds the limit;  
Any fan input of the two pins (SYSFANIN and CPUFANIN) exceeds the limit;  
CASEOPEN# input pin is sampled low;  
User-defined bit (Bank 4, Index 53h, bit 5) is written to 1.  
The BEEP alarm function is enabled or disabled by the control bit at Hardware Monitor Device, Bank 0,  
Index 57h, bit 7. Also, each event has their individual enable bit at Hardware Monitor Device, Bank 0,  
Index 56h bit[7:0], Index 57h bit[6:0] and Bank 4, Index 53h, bit[1:0].  
BEEP/GP21 is an open-drain output pin and its default state is low. When the BEEP alarm function is  
activated, this pin repeatedly outputs 600 Hz square wave for 0.5 second and 1.2 KHz square wave  
for 0.5 second in turn until the enable bit or the abnormal event is cleared.  
-54-  
 
W83627UHG  
8. HARDWARE MONITOR REGISTER SET  
The base address of the Address Port and Data Port is specified in registers CR[60h] and CR[61h] of  
Logical Device B, the hardware monitor device. CR[60h] is the high byte, and CR[61h] is the low byte.  
The Address Port and Data Port are located at the base address, plus 5h and 6h, respectively. For  
example, if CR[60h] is 02h and CR[61h] is 90h, the Address Port is at 0x295h, and the Data Port is at  
0x296h.  
Remember that this access is from the host CPU I/O address range. To conserve space in the  
crowded CPU I/O addresses, many of the hardware monitor registers are “banked” with the bank  
number located at Index 4Eh. Indexes from 000h to 04Fh are “global” or accessible from all banks,  
while indexes 050h to 0FFh are specific to each bank.  
8.1 Address Port (Port x5h)  
Attribute:  
Size:  
Bit 6:0 Read/Write , Bit 7: Reserved  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
0
DATA  
NAME  
DEFAULT  
0
0
0
BIT  
7
DESCRIPTION  
RESERVED.  
6-0  
READ/WRITE.  
BIT  
7
6
5
4
3
2
1
0
ADDRESS  
DEFAULT  
Reserved  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
00h (Address Pointer)  
8.2 Data Port (Port x6h)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
0
3
0
2
0
1
0
0
0
DATA  
NAME  
DEFAULT  
0
BIT  
DESCRIPTION  
Data to be read from or to be written to Value RAM and Register.  
7-0  
Publication Release Date: May 25, 2007  
Revision 1.0  
-55-  
 
W83627UHG  
8.3 SYSFANOUT PWM Output Frequency Configuration Register - Index 00h  
(Bank 0)  
Attribute:  
Size:  
BIT  
Read/Write  
8 bits  
7
6
5
0
4
0
3
2
1
1
0
0
0
PWM_CLK_SEL1  
PWM_SCALE1  
NAME  
DEFAULT  
0
0
0
The register is meaningful only when SYSFANOUT is programmed for PWM output (i.e., Bank0 Index  
04h, bit 0 is 0).  
BIT  
DESCRIPTION  
7
PWM_CLK_SEL1 (SYSFANOUT PWM Input Clock Source Select). This bit selects  
clock source for PWM output frequency.  
0: The clock source is 24 MHz.  
1: The clock source is 180 KHz.  
6-0  
PWM_SCALE1 (SYSFANOUT PWM Pre-Scale Divider). The clock source for PWM  
output is divided by this seven-bit value to calculate the actual PWM output frequency.  
Input Clock  
1
PWM output frequency =  
Pre_Scale Divider 256  
The maximum value of the divider is 127 (7Fh), and it should not be set to 0.  
8.4 SYSFANOUT Output Value Select Register - Index 01h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
SYSFANOUT Value  
NAME  
DEFAULT  
Strap by FAN_SET (Pin 119)  
FUNCTION MODE  
7
6
5
4
3
2
1
0
PWM Output  
(Bank 0, Index  
04h, bit 0 is 0)  
The PWM duty cycle is equal to this 8-bit value, divided by  
255, times 100%. FFh creates a duty cycle of 100%, and 00h  
creates a duty cycle of 0%.  
DESCRIPTION  
DEFAULT  
Strap by FAN_SET (Pin 119)  
DC Voltage Output  
(Bank 0, Index  
04h, bit 0 is 1)  
SYSFANOUT voltage control. The output  
voltage is calculated according to this  
equation:  
DESCRIPTION  
DEFAULT  
Reserved  
FANOUT  
OUTPUT Voltage = AVCC *  
64  
Strap by FAN_SET (Pin 119)  
-56-  
W83627UHG  
8.5 CPUFANOUT PWM Output Frequency Configuration Register - Index 02h  
(Bank 0)  
Attribute:  
Size:  
BIT  
Read/Write  
8 bits  
7
6
5
0
4
0
3
2
1
1
0
0
0
PWM_CLK_SEL2  
PWM_SCALE2  
NAME  
DEFAULT  
0
0
0
The register is meaningful only when CPUFANOUT is programmed for PWM output.  
BIT  
DESCRIPTION  
7
PWM_CLK_SEL2 (CPUFANOUT PWM Input Clock Source Select). This bit selects the  
clock source for PWM output.  
0: The clock source is 24 MHz.  
1: The clock source is 180 KHz.  
6-0  
PWM_SCALE2 (CPUFANOUT PWM Pre-Scale Divider). The clock source for PWM  
output is divided by this seven-bit value to calculate the actual PWM output frequency.  
Input Clock  
1
PWM output frequency =  
Pre_Scale Divider 256  
The maximum value of the divider is 127 (7Fh), and it should not be set to 0.  
8.6 CPUFANOUT Output Value Select Register - Index 03h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
CPUFANOUT0 Value  
NAME  
DEFAULT  
Strap by FAN_SET (Pin 119)  
FUNCTION MODE  
7
6
5
4
3
2
1
0
PWM Output  
(Bank 0, Index  
04h, bit 1 is 0)  
CPUFANOUT PWM Duty. The PWM duty cycle is equal to this  
8-bit value, divided by 255, times 100%. FFh creates a duty  
cycle of 100%, and creates a duty cycle of 0%.  
DESCRIPTION  
DEFAULT  
Strap by FAN_SET (Pin 119)  
DC Voltage  
Output (Bank 0,  
Index 04h, bit 1 is  
1)  
CPUFANOUT Voltage Control. The output  
voltage is calculated according to this equation:  
DESCRIPTION  
Reserved  
FANOUT  
OUTPUT Voltage = AVCC *  
64  
DEFAULT  
Strap by FAN_SET (Pin 119)  
Publication Release Date: May 25, 2007  
-57-  
Revision 1.0  
W83627UHG  
8.7 FAN Configuration Register I - Index 04h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
RESERVED  
CPUFANOUT_MODE SYSFAMOUT_MODE CPUFANOUT_SEL SYSFANOUT_SEL  
NAME  
DEFAULT  
0
0
0
0
0
0
0
1
BIT  
7-6  
5-4  
DESCRIPTION  
RESERVED.  
CPUFANOUT_MODE. CPUFANOUT mode control.  
Bits  
5 4  
0 0: CPUFANOUT is in Manual Mode. (Default)  
0 1: CPUFANOUT is in Thermal CruiseTM Mode.  
1 0: CPUFANOUT is in Fan Speed CruiseTM Mode.  
1 1: CPUFANOUT is in SMARTFANTM III Mode.  
3-2  
SYSFANOUT_MODE. SYSFANOUT mode control.  
Bits  
3 2  
0 0: SYSFANOUT is as Manual Mode. (Default)  
0 1: SYSFANOUT is as Thermal CruiseTM Mode.  
1 0: SYSFANOUT is as Fan Speed CruiseTM Mode.  
1 1: Reserved and no function.  
1
0
CPUFANOUT_SEL. CPUFANOUT output selection.  
0: CPUFANOUT pin produces a PWM output duty cycle. (Default)  
1: CPUFANOUT pin produces DC output.  
SYSFANOUT_SEL. SYSFANOUT output mode selection.  
0: SYSFANOUT pin produces a PWM duty cycle output.  
1: SYSFANOUT pin produces a DC output. (Default)  
8.8 SYSTIN Target Temperature Register/ SYSFANIN Target Speed Register -  
Index 05h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
FUNCTION MODE  
Thermal CruiseTM  
7
6
5
4
3
2
0
0
1
0
0
0
0
0
DESCRIPTION  
DEFAULT  
Reserved SYSTIN Target Temperature  
0
0
0
0
0
DESCRIPTION  
DEFAULT  
Fan Speed  
CruiseTM  
SYSFANIN Target Speed  
0
0
0
0
0
-58-  
W83627UHG  
8.9 CPUTIN Target Temperature Register/ CPUFANIN Target Speed Register -  
Index 06h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
1
0
0
0
CPUTIN Target Temperature / CPUFANIN Target Speed  
NAME  
DEFAULT  
0
0
0
0
FUNCTION MODE  
7
6
5
4
3
2
1
0
Thermal CruiseTM  
or SMART FANTM  
III  
Reserved CPUTIN Target Temperature  
DESCRIPTION  
DEFAULT  
0
0
0
0
0
0
0
0
0
0
0
0
0
Fan Speed  
CruiseTM  
CPUFANIN Target Speed  
DESCRIPTION  
DEFAULT  
0
0
0
8.10 Tolerance of Target Temperature or Target Speed Register - Index 07h (Bank  
0)  
Attribute:  
Size:  
Read/Write  
8 bits  
FUNCTION MODE  
7
6
5
4
3
2
1
0
Thermal CruiseTM  
or SMART FANTM  
III  
Tolerance of CPUTIN Target Tolerance of SYSTIN Target  
Temperature Temperature  
DESCRIPTION  
DEFAULT  
0
0
0
0
0
0
0
0
Fan Speed  
CruiseTM  
Tolerance of CPUFANIN Tolerance of SYSFANIN  
Target Speed Target Speed  
DESCRIPTION  
DEFAULT  
0
0
0
0
0
0
0
0
8.11 SYSFANOUT Stop Value Register - Index 08h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
1
SYSFANOUT Stop Value  
NAME  
DEFAULT  
0
0
0
Publication Release Date: May 25, 2007  
Revision 1.0  
-59-  
W83627UHG  
In Thermal CruiseTM mode, the SYSFANOUT value decreases to this eight-bit value if the temperature  
stays below the lowest temperature limit. This value should not be zero.  
Please note that Stop Value does not mean that fan really stops. It means that if the temperature  
keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum  
value, and this is Stop Value.  
8.12 CPUFANOUT Stop Value Register - Index 09h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
1
CPUFANOUT Stop Value  
NAME  
DEFAULT  
0
0
0
InThermal CruiseTM mode or SMART FANTM III mode, the CPUFANOUT value decreases to this eight-  
bit value if the temperature stays below the lowest temperature limit. This value should not be zero.  
Please note that Stop Value does not mean that fan really stops. It means that if the temperature  
keeps below low temperature limit, then the fan speed keeps on decreasing until reaching a minimum  
value, and this is Stop Value.  
8.13 SYSFANOUT Start-up Value Register - Index 0Ah (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
1
SYSFANOUT Start-up Value  
NAME  
DEFAULT  
0
0
0
In Thermal CruiseTM mode, SYSFANOUT value increases from zero to this eight-bit register value to  
provide a minimum value to turn on the fan.  
8.14 CPUFANOUT Start-up Value Register - Index 0Bh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
1
CPUFANOUT Start-up Value  
NAME  
DEFAULT  
0
0
0
In Thermal Cruise TM mode, CPUFANOUT value increases from zero to this eight-bit register value to  
provide a minimum value to turn on the fan.  
-60-  
W83627UHG  
8.15 SYSFANOUT Stop Time Register - Index 0Ch (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
1
1
0
0
0
SYSFANOUT Stop Time  
NAME  
DEFAULT  
1
1
1
In Thermal Cruise TM mode, if the stop value is enabled, this register determines the amount of time it  
takes the SYSFANOUT value to fall from the stop value to zero.  
(1)For PWM output:  
The units are intervals of 0.1 seconds. The default time is 6 seconds.  
(2)For DC output:  
The units are intervals of 0.4 seconds. The default time is 24 seconds.  
8.16 CPUFANOUT Stop Time Register - Index 0Dh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
1
1
0
0
0
CPUFANOUT Stop Time  
NAME  
DEFAULT  
1
1
1
In Thermal CruiseTM mode or SMART FANTM III mode, this register determines the amount of time it  
takes the CPUFANOUT value to fall from the stop value to zero.  
(1)For PWM output:  
The units are intervals of 0.1 seconds. The default time is 6 seconds.  
(2)For DC output:  
The units are intervals of 0.4 seconds. The default time is 24 seconds.  
8.17 Fan Output Step Down Time Register - Index 0Eh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
1
0
0
FANOUT Value Step Down Time  
NAME  
DEFAULT  
0
0
1
Publication Release Date: May 25, 2007  
Revision 1.0  
-61-  
W83627UHG  
In SMART FANTM mode, this register determines the amount of time it takes FANOUT to decrease its  
value by one step.  
(1)For PWM output:  
The units are intervals of 0.1 seconds. The default time is 1 seconds.  
(2)For DC output:  
The units are intervals of 0.4 seconds. The default time is 4 seconds.  
8.18 Fan Output Step Up Time Register - Index 0Fh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
0
6
0
5
4
3
2
0
1
1
0
0
FANOUT Value Step Up Time  
NAME  
DEFAULT  
0
0
1
In SMART FANTM mode, this register determines the amount of time it takes FANOUT to increase its  
value by one step.  
(1)For PWM output:  
The units are intervals of 0.1 second. The default time is 1 seconds.  
(2)For DC output:  
The units are intervals of 0.4 second. The default time is 4 seconds.  
8.19 Reserved Registers - Index 10h (Bank 0)  
8.20 Reserved Registers - Index 11h (Bank 0)  
8.21 FAN Configuration Register II - Index 12h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
0
2
1
0
0
RESERVED.  
SYSFANOUT_MIN_VALUE CPUFANOUT_MIN_VALUE  
RESERVED  
NAME  
DEFAULT  
0
0
0
0
0
0
BIT  
7-6  
5
DESCRIPTION  
RESERVED.  
SYSFANOUT_MIN_VALUE.  
0: SYSFANOUT value decreases to zero when the temperature goes below the target  
range.  
1: SYSFANOUT value decreases to the value specified in Index 08h when the  
temperature goes below the target range.  
-62-  
W83627UHG  
Continued  
BIT  
DESCRIPTION  
4
CPUFANOUT_MIN_VALUE.  
0: CPUFANOUT value decreases to zero when the temperature goes below the target  
range.  
1: CPUFANOUT value decreases to the value specified in Index 09h when the  
temperature goes below the target range.  
3-0  
RESERVED.  
8.22 Reserved Registers - Index 13h (Bank 0)  
8.23 Reserved Registers - Index 14h (Bank 0)  
8.24 Reserved Registers - Index 15h (Bank 0)  
8.25 Reserved Registers - Index 16h (Bank 0)  
8.26 Reserved Registers - Index 17h (Bank 0)  
8.27 OVT# Configuration Register - Index 18h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
0
2
0
1
0
1
RESERVED DIS_OVT1 RESERVED OVT1_MODE  
RESERVED  
NAME  
DEFAULT  
0
1
0
0
1
BIT  
7
DESCRIPTION  
RESERVED.  
DIS_OVT1.  
6
0: Enable SYSTIN OVT# output.  
1: Disable temperature sensor SYSTIN over-temperature (OVT#) output.  
5
4
RESERVED.  
OVT1_MODE.  
0: Compare Mode. (Default)  
1: Interrupt Mode.  
3-0  
RESERVED.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-63-  
W83627UHG  
8.28 Reserved Registers - Index 19h ~ 1Fh (Bank 0)  
8.29 Value RAM Index 20h ~ 3Fh (Bank 0)  
ADDRESS A6-A0  
DESCRIPTION  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
CPUVCORE reading  
VIN0 reading  
AVCC reading  
5VCC reading  
VIN1 reading  
VIN2 reading  
Reserved  
SYSTIN temperature sensor reading  
SYSFANIN reading  
28h  
29h  
Note: This location stores the number of counts of the internal clock per  
revolution.  
CPUFANIN reading  
Note: This location stores the number of counts of the internal clock per  
revolution.  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
Reserved  
CPUVCORE High Limit  
CPUVCORE Low Limit  
VIN0 High Limit  
VIN0 Low Limit  
AVCC High Limit  
AVCC Low Limit  
5VCC High Limit  
5VCC Low Limit  
VIN1 High Limit  
VIN1 Low Limit  
VIN2 High Limit  
VIN2 Low Limit  
Reserved  
Reserved  
SYSTIN temperature sensor High Limit  
-64-  
W83627UHG  
Value RAM Index 20h ~ 3Fh (Bank 0), continued  
ADDRESS A6-A0  
DESCRIPTION  
3Ah  
SYSTIN temperature sensor Hysteresis Limit  
SYSFANIN Fan Count Limit  
3Bh  
Note: It is the number of counts of the internal clock for the Low Limit of  
the fan speed.  
CPUFANIN Fan Count Limit  
3Ch  
Note: It is the number of counts of the internal clock for the Low Limit of  
the fan speed.  
3Dh  
3Eh  
3Fh  
Reserved  
Reserved  
Reserved  
8.30 Configuration Register - Index 40h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
4
0
3
2
1
0
INITIALIZATION  
RESERVED  
INT_CLEAR RESERVED SMI#ENABLE  
START  
NAME  
DEFAULT  
0
0
0
0
1
1
BIT  
DESCRIPTION  
7
INITIALIZATION. A one restores the power-on default values to some registers. This bit  
clears itself since the power-on default value of this bit is zero.  
6-4  
3
RESERVED.  
INT_CLEAR. A one disables the SMI# output without affecting the contents of Interrupt  
Status Registers. The device will stop monitoring. It will resume upon clearing of this bit.  
2
1
0
RESERVED.  
SMI#ENABLE. A one enables the SMI# Interrupt output.  
START. A one enables startup of monitoring operations. A zero puts the part in standby  
mode.  
Note: The outputs of Interrupt pins will not be cleared if the user writes a zero to this location after an  
interrupt has occurred unlike "INT_Clear'' bit.  
Publication Release Date: May 25, 2007  
-65-  
Revision 1.0  
W83627UHG  
8.31 Interrupt Status Register 1 - Index 41h (Bank 0)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
CPUFANIN SYSFANIN  
CPUTIN  
SYSTIN  
5VCC  
AVCC  
VIN0  
CPUVCORE  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
7
DESCRIPTION  
CPUFANIN. A one indicates that the fan count limit of CPUFANIN has been exceeded.  
SYSFANIN. A one indicates the fan count limit of SYSFANIN has been exceeded.  
CPUTIN. A one indicates the high limit of CPUTIN temperature has been exceeded.  
SYSTIN. A one indicates the high limit of SYSTIN temperature has been exceeded.  
5VCC. A one indicates the high or low limit of 5VCC has been exceeded.  
6
5
4
3
2
AVCC (PIN 97). A one indicates the high or low limit of AVCC has been exceeded.  
VIN0. A one indicates the high or low limit of VIN0 has been exceeded.  
1
0
CPUVCORE. A one indicates the high or low limit of CPUVCORE has been exceeded.  
8.32 Interrupt Status Register 2 - Index 42h (Bank 0)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
TAR2  
TAR1  
RESERVED CASEOPEN RESERVED  
VIN2  
RESERVED  
VIN1  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
DESCRIPTION  
7
TAR2. A one indicates that the CPUTIN temperature has been over the target  
temperature for three minutes at full fan speed in the Thermal CruiseTM mode.  
6
TAR1. A one indicates that the SYSTIN temperature has been over the target  
temperature for three minutes at full fan speed in the Thermal CruiseTM mode.  
5
4
3
2
1
0
RESERVED.  
CASEOPEN. A one indicates that the case has been opened.  
RESERVED.  
VIN2. A one indicates the high or low limit of VIN2 has been exceeded.  
RESERVED.  
VIN1. A one indicates the high or low limit of VIN1 has been exceeded.  
-66-  
W83627UHG  
8.33 SMI# Mask Register 1 - Index 43h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
AVCC  
(PIN 97)  
CPUFANIN SYSFANIN  
CPUTIN  
SYSTIN  
5VCC  
VIN0  
CPUVCORE  
NAME  
DEFAULT  
1
1
0
1
1
1
1
0
BIT  
7
DESCRIPTION  
CPUFANIN.  
SYSFANIN.  
CPUTIN.  
6
5
A one disables the corresponding interrupt  
4
SYSTIN.  
status bit for the SMI interrupt. (See  
Interrupt Status Register 1 – Index 41h  
(Bank 0)).  
3
5VCC.  
2
AVCC (PIN 97).  
VIN0.  
1
0
CPUVCORE.  
8.34 SMI# Mask Register 2 - Index 44h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
1
0
TAR1  
TAR2  
RESERVED CASEOPEN  
RESERVED  
VIN2  
VIN1  
NAME  
DEFAULT  
1
1
1
1
1
1
1
BIT  
7
DESCRIPTION  
TAR2  
6
TAR1  
A one disables the corresponding interrupt  
5
RESERVED  
CASEOPEN  
RESERVED  
VIN2  
status bit for the SMI interrupt. (Please see  
Interrupt Status Register 2 – Index 42h  
(Bank 0)).  
4
3-2  
1
0
VIN1  
Publication Release Date: May 25, 2007  
Revision 1.0  
-67-  
W83627UHG  
8.35 Reserved Register - Index 45h (Bank 0)  
8.36 SMI# Mask Register 3 - Index 46h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
CASEOPEN  
CLEAR  
RESERVED  
NAME  
DEFAULT  
0
0
BIT  
DESCRIPTION  
7
CASEOPEN CLEAR. Caseopen Clear Control. Write 1 to this bit will clear CASEOPEN  
status. This bit will be self-cleared after an event is cleared. The function is the same as  
LDA, CR[E6h] bit 5.  
6-0  
RESERVED.  
8.37 Fan Divisor Register I - Index 47h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
0
2
1
0
0
1
CPUFANIN CPUFANIN  
DIV_B1  
SYFANIN  
DIV_B1  
SYSFANIN  
DIV_B0  
RESERVED  
NAME  
DIV_B0  
DEFAULT  
0
1
0
1
1
BIT  
7
DESCRIPTION  
CPUFANIN DIV_B1 (CPUFANIN Divisor).  
CPUFANIN CIV_B0 (CPUFANIN Divisor).  
SYSFANIN DIV_B1 (SYSFANIN Divisor).  
SYSFANIN DIV_B0 (SYSFANIN Divisor).  
RESERVED.  
6
Please see VBAT Monitor Control  
Register – Index 5Dh (Bank 0).  
5
4
3-0  
8.38 Serial Bus Address Register - Index 48h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
-68-  
W83627UHG  
BIT  
7
6
0
5
1
4
0
3
2
1
1
0
0
1
RESERVED  
SERIAL BUS ADDRESS  
NAME  
DEFAULT  
0
1
BIT  
7
DESCRIPTION  
RESERVED (Read Only).  
Serial Bus Address <7:1>.  
6-0  
8.39 CPUFANOUT monitor Temperature source select register - Index 49h (Bank  
0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
0
3
2
1
0
CPUFANOUT  
TEMP_SEL[2] TEMP_SEL[1] TEMP_SEL[0]  
CPUFANOUT  
CPUFANOUT  
RESERVED  
NAME  
DEFAULT  
0
0
0
0
0
0
0
BIT  
7-3  
2
DESCRIPTION  
RESERVED.  
CPUFANOUT TEMP_SEL[2].  
CPUFANOUT TEMP_SEL[1].  
CPUFANOUT TEMP_SEL[0].  
CPUFANOUT Temperature Source Select.  
Bits  
2 1 0  
0 0 0: Select CPUTIN as CPUFANOUT Monitor Source.  
(Default)  
0 0 1: Reserved.  
0 1 0: Select PECI Agent 1 as CPUFANOUT monitor  
source.  
0 1 1: Select PECI Agent 2 as CPUFANOUT monitor  
source.  
1 0 0: Select PECI Agent 3 as CPUFANOUT monitor  
source.  
1
0
1 0 1: Select PECI Agent 4 as CPUFANOUT monitor  
source.  
Publication Release Date: May 25, 2007  
-69-  
Revision 1.0  
W83627UHG  
8.40 SYSFANOUT monitor Temperature source select register - Index 4Ah (Bank  
0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
0
2
1
0
0
0
SYSFANOUT  
TEMP_SEL[2] TEMP_SEL[1] TEMP_SEL[0]  
SYSFANOUT  
SYSFANOUT  
RESERVED  
NAME  
DEFAULT  
0
0
0
0
0
BIT  
DESCRIPTION  
7
SYSFANOUT TEMP_SEL[2].  
SYSFANOUT TEMP_SEL[1].  
SYSFANOUT TEMP_SEL[0[.  
RESERVED.  
SYSFANOUT Temperature Source Select.  
Bits  
7 6 5  
0 0 0: Select SYSTIN as SYSFANOUT monitor source.  
(Default)  
0 0 1: Select CPUTIN as SYSFANOUT monitor source.  
0 1 0: Reserved.  
0 1 1: Reserved.  
1 0 0: Select PECI Agent 1 as SYSFANOUT monitor  
source.  
1 0 1: Select PECI Agent 2 as SYSFANOUT monitor  
source.  
1 1 0: Select PECI Agent 3 as SYSFANOUT monitor  
source.  
1 1 1: Select PECI Agent 4 as SYSFANOUT monitor  
source.  
6
5
4-0  
8.41 Fan Divisor Register II - Index 4Bh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
1
5
0
4
0
3
0
2
1
1
0
0
0
RESERVED  
ADCOVSEL  
RESERVED  
NAME  
DEFAULT  
0
-70-  
W83627UHG  
BIT  
7-6  
5-4  
DESCRIPTION  
RESERVED.  
ADCOVSEL (A/D Converter Clock Input Select).  
Bits  
5 4  
0 0: ADC clock select 22.5 KHz. (Default)  
0 1: ADC clock select 5.6 KHz. (22.5K/4)  
1 0: ADC clock select 1.4 KHz. (22.5K/16)  
1 1: ADC clock select 0.35 KHz. (22.5K/64)  
3-2  
1-0  
RESERVED. These two bits should be set to the default value 01h.  
RESERVED.  
8.42 SMI#/OVT# Control Register - Index 4Ch (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
T2T3_INT  
MODE  
RESERVED  
EN_T1_ONE RESERVED DIS_OVT2  
OVTPOL  
RESERVED  
NAME  
DEFAULT  
0
0
0
1
0
0
0
0
BIT  
7
DESCRIPTION  
RESERVED.  
6
T2T3_INT MODE.  
1: SMI# output type of Temperature CPUTIN is in Comparator Interrupt mode.  
0: SMI# output type is in Two-time Interrupt mode. (Default)  
5
EN_T1_ONE.  
1: SMI# output type of temperature SYSTIN is One-time Interrupt mode.  
0: SMI# output type is Two-time Interrupt mode.  
4
3
RESERVED.  
DIS_OVT2.  
1: Disable temperature sensor CPUTIN over-temperature (OVT) output.  
0: Enable CPUTIN OVT output through pin OVT#. (Default)  
2
OVTPOL (Over-temperature polarity).  
1: OVT# is active high.  
0: OVT# is active low. (Default)  
1-0  
RESERVED.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-71-  
W83627UHG  
8.43 FAN IN/OUT Control Register - Index 4Dh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
1
3
2
1
0
RESERVED  
FANOPV2  
FANINC2  
FANOPV1  
FANNC1  
NAME  
DEFAULT  
1
0
1
0
1
BIT  
7-4  
3
DESCRIPTION  
RESERVED.  
FANOPV2 (CPUFANIN output value, only if bit 2 is set to zero).  
1: Pin 112 (CPUFANIN) generates a logic-high signal.  
0: Pin 112 generates a logic-low signal. (Default)  
2
1
0
FANINC2 (CPUFANIN Input Control).  
1: Pin 112 (CPUFANIN) acts as a FAN tachometer input. (Default)  
0: Pin 112 acts as a FAN control signal, and the output value is set by bit 3.  
FANOPV1 (SYSFANIN output value, only if bit 0 is set to zero).  
1: Pin 113 (SYSFANIN) generates a logic-high signal.  
0: Pin 113 generates a logic-low signal. (Default)  
FANINC1 (SYSFANIN Input Control).  
1: Pin 113 (SYSFANIN) acts as a FAN tachometer input. (Default)  
0: Pin 113 acts as a FAN control signal, and the output value is set by bit 1.  
8.44 Register 50h ~ 5Fh Bank Select Register - Index 4Eh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
4
0
3
0
2
1
0
HBACS  
RESERVED  
BANKSEL2 BANKSEL1 BANKSEL0  
NAME  
DEFAULT  
1
0
0
0
0
BIT  
DESCRIPTION  
7
HBACS (High Byte Access).  
1: Access Index 4Fh high-byte register. (Default)  
0: Access Index 4Fh low-byte register.  
6
5-4  
3
RESERVED. This bit should not be set to zero.  
RESERVED.  
RESERVED. This bit should not be set to zero.  
BANKSEL2.  
2
Bank Select for Index Ports 0x50h~0x5Fh. The three-bit binary value  
corresponds to the bank number. For example, “010” selects bank 2.  
1
BANKSEL1.  
BANKSEL0.  
0
-72-  
W83627UHG  
8.45 Winbond Vendor ID Register - Index 4Fh (Bank 0)  
Power on Default Value:  
<15:0> = 5CA3h  
Read Only  
16 bits  
Attribute:  
Size:  
BIT  
15  
0
14  
1
13  
12  
1
11  
1
10  
1
9
0
8
0
VIDL  
VIDH  
NAME  
DEFAULT  
0
BIT  
7
1
6
0
5
1
4
0
3
0
2
0
1
1
0
1
NAME  
DEFAULT  
BIT  
15-8  
7-0  
DESCRIPTION  
Vendor ID High-Byte, if Index 4Eh, bit7 is 1. Default 5Ch.  
Vendor ID Low Byte, if Index 4Eh, bit 7 is 0. Default A3h.  
8.46 Reserved Register - Index 50h ~ 55h (Bank 0)  
8.47 BEEP Control Register 1 - Index 56h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
EN_  
EN_  
CPUTIN  
_BP  
EN_  
SYSTIN  
_BP  
EN_  
5VCC  
_BP  
EN_  
AVCC  
_BP  
EN_  
VIN0  
_BP  
EN_  
CPUVCORE  
_BP  
EN_  
NAME  
CPUFANIN  
SYSFANIN  
_BP  
_BP  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
DESCRIPTION  
EN_CPUFANIN_BP. BEEP output control 1: Enable BEEP output.  
7
for CPUFANIN if the monitored value  
exceeds the limit.  
0: Disable BEEP output. (Default)  
6
5
EN_SYSFANIN_BP. BEEP output control  
fro SYSFANIN if the monitored value  
exceeds the limit.  
EN_CPUTIN_BP. BEEP output control for  
temperature CPUTIN if the monitored value  
exceeds the limit.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-73-  
W83627UHG  
Continued  
BIT  
DESCRIPTION  
EN_SYSTIN_BP. BEEP output control for  
4
temperature SYSTIN if the monitored value  
exceeds the limit.  
3
2
1
0
EN_5VCC_BP. BEEP output control for  
5VCC if the monitored value exceeds the  
limit.  
EN_AVCC_BP. BEEP output control for  
AVCC if the monitored value exceeds the  
limit.  
EN_VIN0_BP. BEEP output control for  
VIN0 if the monitored value exceeds the  
limit.  
EN_CPUVCORE_BP. BEEP output control  
for CPUVCORE if the monitored value  
exceeds the limit.  
8.48 BEEP Control Register 2 - Index 57h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
EN_GBP  
RESERVED  
EN_CASEOPEN_BP  
RESERVED  
EN_VIN2_BP EN_VIN1_BP  
NAME  
DEFAULT  
1
0
0
0
0
0
0
0
BIT  
DESCRIPTION  
7
EN_GBP. Global BEEP Control.  
1: Enable global BEEP output. (Default)  
0: Disable all BEEP output.  
6-5  
4
RESERVED.  
EN_CASEOPEN_BP. BEEP output control for CASEOPEN if the case has been opened.  
1: Enable BEEP output.  
0: Disable BEEP output. (Default)  
3-2  
1
RESERVED.  
EN_VIN2_BP. BEEP output control for VIN2 if the monitored value exceeds the limit.  
1: Enable BEEP output.  
0: Disable BEEP output. (Default)  
0
EN_VIN1_BP. BEEP output control for VIN1 if the monitored value exceeds the limit.  
1: Enable BEEP output.  
0: Disable BEEP output. (Default)  
-74-  
W83627UHG  
8.49 Chip ID - Index 58h (Bank 0)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
1
5
0
4
0
3
0
2
0
1
0
0
1
CHIPID  
NAME  
DEFAULT  
1
BIT  
DESCRIPTION  
Winbond Chip ID Number. Default C1h.  
7-0  
8.50 Diode Selection Register - Index 59h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
1
5
4
3
0
2
0
1
0
0
RESERVED  
SELPIIV2  
SELPIIV1  
RESERVED  
NAME  
DEFAULT  
0
1
1
0
BIT  
7-6  
5
DESCRIPTION  
RESERVED.  
SELPIIV2. Diode mode selection for temperature CPUTIN, if Index 5Dh, bit 2 is set to 1.  
1: CPU-compatible thermal diode.  
0: Reserved.  
4
SELPIIV1. Diode mode selection for temperature SYSTIN, if Index 5Dh, bit 1 is set to 1.  
1: CPU-compatible thermal diode.  
0: Reserved.  
3-0  
RESERVED.  
8.51 Reserved Register - Index 5Ah ~ 5Ch (Bank 0)  
8.52 VBAT Monitor Control Register - Index 5Dh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
Publication Release Date: May 25, 2007  
Revision 1.0  
-75-  
W83627UHG  
BIT  
7
6
5
4
3
0
2
1
0
EN_  
CPUFANIN SYSFANIN  
DIV_B2  
RESERVED  
RESERVED  
DIODES2  
DIODES1  
NAME  
DIV_B2  
VBAT_MNT  
DEFAULT  
0
0
0
0
1
0
0
BIT  
7
DESCRIPTION  
RESERVED.  
6
CPUFANIN DIV_B2. CPUFANIN Divisor, bit 2.  
SYSFANIN DIV_B2. SYSFANIN Divisor, bit 2.  
RESERVED.  
5
4-3  
2
DIODES2. Sensor type selection for CPUTIN.  
1: Diode sensor.  
0: Thermistor sensor.  
1
0
DIODES1. Sensor type selection for SYSTIN.  
1: Diode sensor.  
0: Thermistor sensor.  
EN_VBAT_MINT.  
1: Enable battery voltage monitor. When this bit changes from zero to one, it takes one  
monitor cycle time to update the VBAT reading value register.  
0: Disable battery voltage monitor.  
Fan divisor table:  
BIT 2  
BIT 1  
BIT 0  
FAN DIVISOR  
BIT 2  
BIT 1  
BIT 0  
FAN DIVISOR  
0
0
0
0
0
0
1
1
0
1
0
1
1
2
4
8
1
1
1
1
0
0
1
1
0
1
0
1
16  
32  
64  
128  
8.53 Critical Temperature enable register - Index 5Eh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
RESERVED  
0
2
1
0
EN_CPUFAN  
OUT  
CRITICAL  
TEMP  
EN_CPUTIN  
CURRENT  
MODE  
EN_SYSTIN  
CURRENT  
MODE  
EN_SYSFANOUT  
CRITICAL TEMP  
RESERVED  
RESERVED  
NAME  
DEFAULT  
0
0
0
0
1
0
0
-76-  
W83627UHG  
BIT  
7-6  
5
DESCRIPTION  
RESERVED.  
EN_CPUFANOUT CRITICAL TEMP.  
1: Enable CPUFANOUT critical temperature protection.  
0: Disable CPUFANOUT critical temperature protection. (Default)  
4
EN_SYSFANOUT CRITICAL TEMP.  
1: Enable SYSFANOUT critical temperature protection.  
0: Disable SYSFANOUT critical temperature protection. (Default)  
3
2
RESERVED.  
EN_CPUTIN CURRENT MODE. Enable CPUTIN Current Mode.  
1: Temperature sensing of CPUTIN by Current Mode. (Default)  
0: Temperature sensing of CPUTIN depends on setting of Index 5Dh and 59h. (Default)  
1
0
EN_SYSTIN CURRENT MODE. Enable SYSTIN Current Mode.  
1: Temperature sensing of SYSTIN by Current Mode.  
0: Temperature sensing of SYSTIN depends on setting of Index 5Dh and 59h. (Default)  
RESERVED.  
8.54 Reserved Register - Index 5Fh (Bank 0)  
8.55 Reserved Registers - Index 60h (Bank 0)  
8.56 Reserved Registers - Index 61h (Bank 0)  
8.57 Reserved Registers - Index 62h (Bank 0)  
8.58 Reserved Registers - Index 63h (Bank 0)  
8.59 Reserved Registers - Index 64h (Bank 0)  
8.60 Reserved Registers - Index 65h (Bank 0)  
8.61 Reserved Registers - Index 66h (Bank 0)  
8.62 CPUFANOUT Maximum Output Value Register - Index 67h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
4
3
2
1
0
Publication Release Date: May 25, 2007  
Revision 1.0  
-77-  
W83627UHG  
BIT  
7
1
6
1
5
1
4
3
2
1
1
1
0
1
CPUFANOUT Max. Value  
NAME  
DEFAULT  
1
1
In SMART FANTM III mode, the CPUFANOUT value increases to this value. This value cannot be zero,  
and it cannot be lower than the CPUFANOUT Stop value.  
8.63 CPUFANOUT Output Step Value Register - Index 68h (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
3
2
0
1
0
0
1
CPUFANOUT STEP  
NAME  
DEFAULT  
0
0
0
In SMART FANTM III mode, the CPUFANOUT value decreases or increases by this eight-bit value,  
when needed.  
8.64 Reserved Registers - Index 69h (Bank 0)  
8.65 Reserved Registers - Index 6Ah (Bank 0)  
8.66 SYSFANOUT Critical Temperature register - Index 6Bh (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
1
5
4
3
2
1
1
0
1
SYSFANOUT CRITICAL TEMPERATURE  
NAME  
DEFAULT  
1
1
1
1
1
In Thermal CruiseTM mode, when SYSFANOUT critical temperature is enabled and monitor  
temperature over the critical temperature then SYSFANOUT will full drive.  
8.67 CPUFANOUT Critical Temperature register - Index 6Ch (Bank 0)  
Attribute:  
Size:  
Read/Write  
8 bits  
-78-  
W83627UHG  
BIT  
7
1
6
1
5
4
3
2
1
1
0
1
CPUFANOUT CRITICAL TEMPERATURE  
NAME  
DEFAULT  
1
1
1
1
In Thermal CruiseTM mode, when CPUFANOUT critical temperature is enabled and monitor  
temperature over the critical temperature then CPUFANOUT will full drive.  
8.68 Reserved Registers - Index 6Dh (Bank 0)  
8.69 Reserved Registers - Index 6Eh (Bank 0)  
8.70 CPUTIN/PECI Temperature (High Byte) Register - Index 50h (Bank 1)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
TEMP<8:1>  
NAME  
BIT  
DESCRIPTION  
7-0  
TEMP<8:1>.Temperature <8:1> of the CPUTIN/PECI sensor. The nine-bit value is in  
units of 0.5°C.  
( See CPUFANOUT monitor Temperature source select register – Index 49h(Bank 0) )  
8.71 CPUTIN/PECI Temperature (Low Byte) Register - Index 51h (Bank 1)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
TEMP<0>  
RESERVED  
NAME  
BIT  
DESCRIPTION  
7
TEMP<0>. Temperature <0> of the CPUTIN/PECI sensor. The nine-bit value is in units of  
0.5°C.  
6-0  
RESERVED.  
( See CPUFANOUT monitor Temperature source select register – Index 49h(Bank 0) )  
Publication Release Date: May 25, 2007  
Revision 1.0  
-79-  
W83627UHG  
8.72 CPUTIN Configuration Register - Index 52h (Bank 1)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
5
0
4
0
3
0
2
1
0
RESERVED  
FAULT  
RESERVED  
OVTMOD  
STOP  
NAME  
DEFAULT  
0
0
0
0
0
BIT  
7-5  
4-3  
DESCRIPTION  
RESERVED. These bits should be set to 0.  
FAULT. Number of faults to detect before setting OVT# output. This avoids false tripping  
due to noise.  
2
1
RESERVED. This bit should be set to 0.  
OVTMOD. OVT# mode select.  
0: Compared mode. (Default)  
1: Interrupt mode.  
0
STOP.  
0: Monitor CPUTIN.  
1: Stop monitoring CPUTIN.  
8.73 CPUTIN Hysteresis (High Byte) Register - Index 53h (Bank 1)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
1
5
0
4
3
1
2
0
1
1
0
1
THYST<8:1>  
NAME  
DEFAULT  
0
0
BIT  
DESCRIPTION  
THYST<8:1>. Hysteresis temperature bits 8-1. The nine-bit value is in units of 0.5°C, and  
7-0  
the default is 75°C.  
8.74 CPUTIN Hysteresis (Low Byte) Register - Index 54h (Bank 1)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
THYST<0>  
RESERVED  
NAME  
DEFAULT  
0
0
-80-  
W83627UHG  
BIT  
7
DESCRIPTION  
THYST<0>. Hysteresis temperature bit 0. The nine-bit value is in units of 0.5°C.  
6-0  
RESERVED.  
8.75 CPUTIN Over-temperature (High Byte) Register - Index 55h (Bank1)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
1
5
0
4
1
3
0
2
0
1
0
0
0
TOVF<8:1>  
NAME  
DEFAULT  
0
BIT  
DESCRIPTION  
TOVF<8:1>. Over-temperature bits 8-1. The nine-bit value is in units of 0.5°C, and the  
7-0  
default is 80°C.  
8.76 CPUTIN Over-temperature (Low Byte) Register - Index 56h (Bank 1)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
0
3
2
0
1
0
0
0
TOVF<0>  
RESERVED  
NAME  
DEFAULT  
0
0
BIT  
7
DESCRIPTION  
TOVF<0>. Over-temperature bit 0. The nine-bit value is in units of 0.5°C.  
6-0  
RESERVED.  
8.77 SYSTIN/CPUTIN/PECI Temperature (High Byte) Register - Index 50h (Bank 2)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
TEMP<8:1>  
NAME  
BIT  
DESCRIPTION  
7-0  
TEMP<8:1>. Temperature <8:1> of the SYSTIN/CPUTIN/PECI sensor. The nine-bit value  
is in units of 0.5°C.  
( See SYSFANOUT monitor Temperature source select register – Index 4Ah(Bank 0) )  
Publication Release Date: May 25, 2007  
Revision 1.0  
-81-  
W83627UHG  
8.78 SYSTIN/CPUTIN/PECI Temperature (Low Byte) Register – Index 51h (Bank 2)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
TEMP<0>  
RESERVED  
NAME  
BIT  
DESCRIPTION  
7
TEMP<0>. Temperature <0> of the SYSTIN/CPUTIN/PECI sensor. The nine-bit value is  
in units of 0.5°C.  
6-0  
RESERVED.  
( See SYSFANOUT monitor Temperature source select register – Index 4Ah(Bank 0) )  
8.79 Reserved Registers – Index 52h (Bank 2)  
8.80 Reserved Registers – Index 53h (Bank 2)  
8.81 Reserved Registers – Index 54h (Bank 2)  
8.82 Reserved Registers – Index 55h (Bank 2)  
8.83 Reserved Registers – Index 56h (Bank 2)  
8.84 Interrupt Status Register 3 – Index 50h (Bank 4)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
0
5
0
4
0
3
0
2
0
1
0
RESERVED  
VBAT  
5VSB  
NAME  
DEFAULT  
0
0
0
BIT  
7-2  
1
DESCRIPTION  
RESERVED.  
VBAT. A one indicates the high or low limit of VBAT has been exceeded.  
5VSB. A one indicates the high or low limit of 5VSB has been exceeded.  
0
-82-  
W83627UHG  
8.85 SMI# Mask Register 4 – Index 51h (Bank 4)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
1
3
0
2
0
1
0
RESERVED  
VBAT  
5VSB  
NAME  
DEFAULT  
0
1
1
BIT  
7-2  
1
DESCRIPTION  
RESERVED.  
VBAT.  
A one disables the corresponding interrupt  
status bit for the SMI interrupt. (Please see  
Interrupt Status Register 3 – Index 50h  
(Bank 4)).  
0
5VSB.  
8.86 Reserved Register - Index 52h (Bank 4)  
8.87 BEEP Control Register 3 - Index 53h (Bank 4)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
4
0
3
2
0
1
0
EN_  
EN_  
EN_  
RESERVED  
RESERVED  
NAME  
USER_BP  
VBAT_BP  
5VSB_BP  
DEFAULT  
0
0
0
0
0
BIT  
7-6  
5
DESCRIPTION  
RESERVED.  
EN_USER_BP. User-defined BEEP output function.  
0: Make BEEP inactive. (Default)  
1: Make BEEP active.  
4-2  
1
RESERVED.  
EN_VBAT_BP. BEEP output control for VBAT if the monitored value exceeds the limit.  
1: Enable BEEP output.  
0: Disable BEEP output. (Default)  
0
EN_5VSB_BP. BEEP output control for 5VSB if the monitored value exceeds the limit.  
1: Enable BEEP output.  
0: Disable BEEP output. (Default)  
Publication Release Date: May 25, 2007  
-83-  
Revision 1.0  
W83627UHG  
8.88 SYSTIN Temperature Sensor Offset Register - Index 54h (Bank 4)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
OFFSET<7:0>  
NAME  
DEFAULT  
0
0
BIT  
DESCRIPTION  
7-0  
SYSTIN temperature offset value. The value in this register is added to the monitored  
value so that the read value will be the sum of the monitored value and this offset value.  
8.89 CPUTIN Temperature Sensor Offset Register - Index 55h (Bank 4)  
Attribute:  
Size:  
Read/Write  
8 bits  
BIT  
7
6
0
5
0
4
3
0
2
0
1
0
0
0
OFFSET<7:0>  
NAME  
DEFAULT  
0
0
BIT  
DESCRIPTION  
7-0  
CPUTIN Temperature Offset Value. The value in this register will be added to the  
monitored value so that the read value is the sum of the monitored value and this offset  
value.  
8.90 Reserved Registers - Index 56h (Bank 4)  
8.91 Reserved Register - Index 57h-58h (Bank 4)  
8.92 Real Time Hardware Status Register I - Index 59h (Bank 4)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
2
1
0
CPUFANIN SYSFANIN  
CPUTIN  
_STS  
SYSTIN  
_STS  
5VCC  
_STS  
AVCC  
_STS  
VIN0  
CPUVCORE  
_STS  
NAME  
_STS  
_STS  
_STS  
DEFAULT  
0
0
0
0
0
0
0
0
-84-  
W83627UHG  
BIT  
DESCRIPTION  
7
CPUFANIN_STS. CPUFANIN status.  
1: Fan speed count is over the limit value.  
0: Fan speed count is in the allowed range.  
6
5
4
3
2
1
0
SYSFANIN_STS.  
1: Fan speed count is over the limit value.  
0: Fan speed count is in the allowed range.  
CPUTIN_STS.  
1: Temperature exceeds the over-temperature value.  
0: Temperature is under the hysteresis value.  
SYSTIN_STS.  
1: Temperature exceeds the over-temperature value.  
0: Temperature is under the hysteresis value.  
5VCC_STS.  
1: 5VCC voltage is over or under the allowed range.  
0: 5VCC voltage is in the allowed range.  
AVCC_STS.  
1: AVCC voltage is over or under the allowed range.  
0: AVCC voltage is in the allowed range.  
VIN0_STS.  
1: VIN0 voltage is over or under the allowed range.  
0: VIN0 voltage is in the allowed range.  
CPUVCORE_STS.  
1: CPUVCORE voltage is over or under the allowed range.  
0: CPUVCORE voltage is in the allowed range.  
8.93 Real Time Hardware Status Register II - Index 5Ah (Bank 4)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
5
4
3
0
2
1
0
0
TAR2_STS TAR1_STS RESERVED CASEOPEN_STS  
RESERVED  
VIN1_STS  
NAME  
DEFAULT  
0
0
0
0
0
0
Publication Release Date: May 25, 2007  
Revision 1.0  
-85-  
W83627UHG  
BIT  
DESCRIPTION  
7
TAR2_STS. Smart Fan of CPUFANIN Warning Status.  
1: Selected temperature has been over the target temperature for three minutes at full  
speed in Thermal CruiseTM mode.  
0: Selected temperature has not reached the warning range.  
6
TAR1_STS. Smart Fan of SYSFANIN Warning Status.  
1: SYSTIN temperature has been over the target temperature for three minutes at full  
speed in Thermal CruiseTM mode.  
0: SYSTIN temperature has not reached the warning range.  
5
4
RESERVED.  
CASEOPEN_STS. Caseopen Status.  
1: Caseopen is detected and latched.  
0: Caseopen is not latched.  
3-1  
0
RESERVED.  
VIN1_STS. VIN1 Voltage Status.  
1: VIN1 voltage is over or under the allowed range.  
0: VIN1 voltage is in the allowed range.  
8.94 Real Time Hardware Status Register III - Index 5Bh (Bank 4)  
Attribute:  
Size:  
Read Only  
8 bits  
BIT  
7
6
0
5
4
0
3
2
0
1
0
RESERVED  
VIN2_STS  
RESERVED  
VBAT_STS 5VSB_STS  
NAME  
DEFAULT  
0
0
0
0
0
BIT  
7-6  
5
DESCRIPTION  
RESERVED.  
VIN2_STS. VIN2 Voltage Status.  
1: VIN2 voltage is over or under the allowed range.  
0: VIN2 voltage is in the allowed range.  
4-2  
1
RESERVED.  
VBAT_STS. VBAT Voltage Status.  
1: VBAT voltage is over or under the allowed range.  
0: VBAT voltage is in the allowed range.  
0
5VSB_STS. 5VSB Voltage Status.  
1: 5VSB voltage is over or under the allowed range.  
0: 5VSB voltage is in the allowed range.  
-86-  
W83627UHG  
8.95 Reserved Register - Index 5Ch - 5Fh (Bank 4)  
8.96 Value RAM 2 Index 50h-59h (Bank 5)  
ADDRESS A6-A0  
DESCRIPTION  
50h  
5VSB reading  
VBAT reading. The reading is meaningless unless EN_VBAT_MN (Bank0  
Index 5Dh, bit0) is set.  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
Reserved  
Reserved  
5VSB High Limit  
5VSB Low Limit  
VBAT High Limit  
VBAT Low Limit  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8.97 Reserved Register - Index 50h - 57h (Bank 6)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-87-  
W83627UHG  
9. FLOPPY DISK CONTROLLER  
9.1 FDC Functional Description  
The floppy disk controller (FDC) of the W83627UHG integrates all of the logic required for floppy disk  
control. The FDC implements a FIFO, which provides better system performance in multi-master  
systems, and the digital data separator supports data rates up to 2 M bits/sec.  
The FDC includes the following blocks: Precompensation, Data Rate Selection, Digital Data Separator,  
FIFO, and FDC Core. The rest of this section discusses these blocks through the following topics:  
FIFO, Data Separator, Write Precompensation, Perpendicular Recording mode, FDC core, FDC  
commands, and FDC registers.  
9.1.1  
FIFO (Data)  
The FIFO is 16 bytes in size and has programmable threshold values. All command parameter  
information and disk data transfers go through the FIFO. Data transfers are governed by the RQM  
(Request for Master) and DIO (Data Input/Output) bits in the Main Status Register.  
The FIFO is defaulted to disabled mode after any form of reset, which maintains PC/AT hardware  
compatibility. The default values can be changed through the configure command. The advantage of  
the FIFO is that it allows a larger DMA latency in the system without causing disk errors. The following  
tables give several examples of the delays with the FIFO. The data are based upon the following  
formula:  
DELAY = THRESHOLD # × (1 / DATA RATE) * 8 - 1.5 μs  
Table 9-1 The Delays of the FIFO  
FIFO THRESHOLD  
MAXIMUM DELAY UNTIL SERVICING AT 500K BPS  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 16 μs - 1.5 μs = 14.5 μs  
2 × 16 μs - 1.5 μs = 30.5 μs  
8 × 16 μs - 1.5 μs = 6.5 μs  
15 × 16 μs - 1.5 μs = 238.5 μs  
MAXIMUM DELAY UNTIL SERVICING AT 1M BPS  
FIFO THRESHOLD  
Data Rate  
1 Byte  
2 Byte  
8 Byte  
15 Byte  
1 × 8 μs - 1.5 μs = 6.5 μs  
2 × 8 μs - 1.5 μs = 14.5 μs  
8 × 8 μs - 1.5 μs = 62.5 μs  
15 × 8 μs - 1.5 μs = 118.5 μs  
At the start of a command, the FIFO is always disabled, and command parameters must be sent  
based upon the RQM and DIO bit settings in the Main Status Register. When the FDC enters the  
command execution phase, it clears the FIFO off any data to ensure that invalid data are not  
transferred.  
-88-  
W83627UHG  
An overrun or underrun terminates the current command and data transfer. Disk writes complete the  
current sector by generating a 00 pattern and valid CRC. Reads require the host to remove the  
remaining data so that the result phase may be entered.  
DMA transfers are enabled by the specify command and are initiated by the FDC when the LDRQ pin  
is activated during a data transfer command.  
9.2 Data Separator  
The function of the data separator is to lock onto incoming serial read data. When a lock is achieved,  
the serial front-end logic in the chip is provided with a clock that is synchronized with the read data.  
The synchronized clock, called the Data Window, is used to internally sample the serial data portion of  
the bit cell, and the alternate state samples the clock portion. Serial-to-parallel conversion logic  
separates the read data into clock and data bytes.  
The Digital Data Separator (DDS) has three parts: control logic, error adjustment, and speed tracking.  
The control logic generates RDD and RWD for every pulse input, and any data pulse input is  
synchronized and then adjusted immediately by error adjustment. A digital integrator keeps track of  
the speed changes in the input data stream.  
9.2.1  
Write Precompensation  
The write precompensation logic minimizes bit shifts in the RDDATA stream from the disk drive.  
Shifting of bits is a known phenomenon in magnetic media and depends on the disk media and the  
floppy drive.  
The FDC monitors the bit stream that is being sent to the drive. The data patterns that require  
precompensation are well known, so, depending on the pattern, the bit is shifted either early or late,  
relative to the surrounding bits.  
9.2.2  
Perpendicular Recording Mode  
The FDC is also capable of interfacing directly to perpendicular recording floppy drives. Perpendicular  
recording differs from the traditional longitudinal method in that the magnetic bits are oriented vertically.  
This scheme packs more data bits into the same area.  
FDCs with perpendicular recording drives can read standard 3.5" floppy disks and can read and write  
perpendicular media. Some manufacturers offer drives that can read and write standard and  
perpendicular media in a perpendicular media drive.  
A single command puts the FDC into perpendicular mode. All other commands operate as they  
normally do. Perpendicular mode requires a 1 Mbps data rate for the FDC, and, at this data rate, the  
FIFO manages the host interface bottleneck due to the high speed of data transfer to and from the  
disk.  
Publication Release Date: May 25, 2007  
-89-  
Revision 1.0  
W83627UHG  
9.2.3  
FDC Core  
The W83627UHG FDC is capable of performing twenty commands. Each command is initiated by a  
multi-byte transfer from the microprocessor, and the result may be a multi-byte transfer back to the  
microprocessor. Each command consists of three phases: command, execution, and result.  
Command  
The microprocessor issues all required information to the controller to perform a specific operation.  
Execution  
The controller performs the specified operation.  
Result  
After the operation is completed, status information and other housekeeping information are provided  
to the microprocessor.  
The next section introduces each of the commands.  
9.2.4  
FDC Commands  
Command Symbol Descriptions:  
C:  
Cylinder Number 0 - 256  
D:  
Data Pattern  
DIR:  
Step Direction  
DIR = 0: step out  
DIR = 1: step in  
DS0:  
DS1:  
DTL:  
EC:  
Disk Drive Select 0  
Disk Drive Select 1  
Data Length  
Enable Count  
EFIFO:  
EIS:  
Enable FIFO  
Enable Implied Seek  
EOT:  
FIFOTHR:  
GAP:  
GPL:  
H:  
End of Track  
FIFO Threshold  
Gap Length Selection  
Gap Length  
Head Number  
HDS:  
HLT:  
HUT:  
LOCK:  
MFM:  
MT:  
Head Number Select  
Head Load Time  
Head Unload Time  
Lock EFIFO, FIFOTHR, and PTRTRK bits to prevent being affected by software reset  
MFM or FM Mode  
Multitrack  
N:  
NCN:  
The number of data bytes written in a sector  
New Cylinder Number  
-90-  
W83627UHG  
ND:  
Non-DMA Mode  
OW:  
PCN:  
POLL:  
PRETRK:  
R:  
Overwritten  
Present Cylinder Number  
Polling Disable  
Precompensation Start Track Number  
Record  
RCN:  
R/W:  
SC:  
Relative Cylinder Number  
Read/Write  
Sectors per Cylinder  
Skip deleted data address mark  
Step Rate Time  
Status Register 0  
Status Register 1  
Status Register 2  
Status Register 3  
SK:  
SRT:  
ST0:  
ST1:  
ST2:  
ST3:  
WG:  
Write gate alters timing of WE  
(1) Read Data  
PHASE  
R/W  
W
D7  
D6 D5 D4  
D3  
0
D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
1
0
Command codes  
W
0
0
0
0
HDS DS1 DS0  
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
Sector ID information prior  
to command execution  
W
W
---------------------- R ------------------------  
---------------------- N ------------------------  
W
W
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
W
-------------------- DTL -----------------------  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
command execution  
R
R
R
R
R
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Sector ID information after  
command execution  
Publication Release Date: May 25, 2007  
Revision 1.0  
-91-  
W83627UHG  
(2) Read Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM SK  
0
0
1
0
1
0
0
Command codes  
W
0
0
0
HDS DS1 DS0  
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
Sector ID information prior  
to command execution  
W
W
---------------------- R ------------------------  
---------------------- N ------------------------  
W
W
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
W
-------------------- DTL -----------------------  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
command execution  
R
R
R
R
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Sector ID information after  
command execution  
(3) Read A Track  
D7 D6 D5 D4 D3 D2 D1 D0  
PHASE  
R/W  
REMARKS  
Command  
W
W
0
0
MFM  
0
0
0
0
0
0
0
0
1
0
Command codes  
HDS DS1 DS0  
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
Sector ID information prior  
to command execution  
W
W
---------------------- R ------------------------  
---------------------- N ------------------------  
W
W
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
W
-------------------- DTL -----------------------  
Execution  
Data transfer between the  
FDD and system; FDD  
reads contents of all  
cylinders from index hole to  
EOT  
-92-  
W83627UHG  
Read A Track, continued  
D7 D6 D5 D4 D3 D2 D1 D0  
PHASE  
Result  
R/W  
REMARKS  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
command execution  
R
R
R
R
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Sector ID information after  
command execution  
(4) Read ID  
PHASE  
R/W  
REMARKS  
D7 D6 D5 D4 D3 D2 D1 D0  
Command  
W
W
0
0
MFM  
0
0
0
0
0
1
0
0
1
0
Command codes  
HDS DS1 DS0  
Execution  
Result  
The first correct ID  
information on the cylinder  
is stored in the Data  
Register  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
R
R
R
R
Disk status after the  
command has been  
completed  
(5) Verify  
PHASE  
R/W  
REMARKS  
D7 D6 D5 D4 D3 D2 D1 D0  
Command  
W
W
W
W
W
W
W
W
MT MFM SK  
EC  
1
0
0
0
1
1
0
Command codes  
0
0
HDS DS1 DS0  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL/SC -------------------  
Sector ID information prior  
to command execution  
Execution  
No data transfer takes  
place  
Publication Release Date: May 25, 2007  
Revision 1.0  
-93-  
W83627UHG  
Verify, continued  
PHASE  
R/W  
REMARKS  
D7 D6 D5 D4 D3 D2 D1 D0  
Result  
R
R
R
R
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Status information after  
command execution  
Sector ID information after  
command execution  
(6) Version  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command code  
Command  
Result  
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
R
Enhanced controller  
(7) Write Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
0
0
1
0
1
Command codes  
W
0
0
HDS DS1 DS0  
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
Sector ID information prior  
to Command execution  
W
W
---------------------- R ------------------------  
---------------------- N ------------------------  
W
W
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
W
-------------------- DTL -----------------------  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
Command execution  
R
R
R
R
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Sector ID information after  
Command execution  
-94-  
W83627UHG  
(8) Write Deleted Data  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
MT MFM  
0
0
0
0
1
0
0
1
Command codes  
W
0
0
0
HDS DS1 DS0  
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
Sector ID information prior  
to command execution  
W
W
---------------------- R ------------------------  
---------------------- N ------------------------  
W
W
W
-------------------- EOT -----------------------  
-------------------- GPL -----------------------  
-------------------- DTL -----------------------  
Execution  
Result  
Data transfer between the  
FDD and system  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
command execution  
R
R
R
R
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Sector ID information after  
command execution  
(9) Format A Track  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
MFM  
0
0
0
0
0
1
0
1
0
1
Command codes  
W
HDS DS1 DS0  
W
W
---------------------- N ------------------------  
--------------------- SC -----------------------  
Bytes per Sector  
Sectors per Cylinder  
W
W
--------------------- GPL ---------------------  
---------------------- D ------------------------  
Gap 3  
Filler Byte  
Execution  
for Each  
Sector:  
W
W
W
W
---------------------- C ------------------------  
---------------------- H ------------------------  
---------------------- R ------------------------  
---------------------- N ------------------------  
Input Sector Parameters  
(Repeat)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-95-  
W83627UHG  
Format A Track, continued  
PHASE  
Result  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
R
R
R
-------------------- ST0 -----------------------  
-------------------- ST1 -----------------------  
-------------------- ST2 -----------------------  
Status information after  
command execution  
R
R
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
---------------- Undefined -------------------  
R
R
(10) Recalibrate  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
0
0
0
0
0
0
1
1
1
Command codes  
0
0
DS1 DS0  
Execution  
Head retracted to Track 0  
Interrupt  
(11) Sense Interrupt Status  
PHASE  
Command  
Result  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
0
0
0
0
1
0
0
0
Command code  
R
R
---------------- ST0 -------------------------  
---------------- PCN -------------------------  
Status information at the end  
of each seek operation  
(12) Specify  
PHASE  
R/W  
D7  
D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
0
0
0
0
0
0
1
1
Command codes  
W
W
| ---------SRT ----------- | --------- HUT ---------- |  
|------------ HLT ----------------------------------| ND  
(13) Seek  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
0
0
0
0
0
0
0
0
1
0
1
1
1
Command codes  
W
W
HDS DS1 DS0  
-------------------- NCN -----------------------  
Execution  
R
Head positioned over proper  
cylinder on diskette  
(14) Configure  
-96-  
W83627UHG  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
Configure information  
W
W
W
0
0
EIS EFIFO POLL | ------ FIFOTHR ----|  
| --------------------PRETRK ----------------------- |  
Execution  
Internal registers written  
(15) Relative Seek  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
1
0
DIR  
0
0
0
0
0
1
0
1
1
1
Command codes  
W
W
HDS DS1 DS0  
| -------------------- RCN ---------------------------- |  
(16) Dumpreg  
PHASE  
Command  
Result  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
W
0
0
0
0
1
1
1
0
Registers placed in FIFO  
R
R
R
R
R
R
R
R
R
R
----------------------- PCN-Drive 0--------------------  
----------------------- PCN-Drive 1 -------------------  
----------------------- PCN-Drive 2--------------------  
----------------------- PCN-Drive 3 -------------------  
--------SRT ------------------ | --------- HUT --------  
----------- HLT -----------------------------------| ND  
------------------------ SC/EOT ----------------------  
LOCK 0 D3 D2 D1 D0 GAP WG  
0 EIS EFIFO POLL | ------ FIFOTHR --------  
-----------------------PRETRK -------------------------  
(17) Perpendicular Mode  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
W
0
0
0
1
0
0
1
0
Command Code  
OW  
0
D3  
D2 D1 D0 GAP WG  
(18) Lock  
PHASE  
Command  
Result  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
LOCK 0  
0
0
1
0
0
1
0
0
0
0
Command Code  
R
0
0
LOCK  
0
(19) Sense Drive Status  
Publication Release Date: May 25, 2007  
Revision 1.0  
-97-  
W83627UHG  
PHASE  
R/W  
W
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
0
0
0
0
0
0
0
0
0
1
0
0
Command Code  
W
0
HDS DS1 DS0  
Result  
R
---------------- ST3 -------------------------  
Status information about  
disk drive  
(20) Invalid  
PHASE  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
REMARKS  
Command  
W
------------- Invalid Codes -----------------  
Invalid codes (no operation-  
FDC goes to standby state)  
Result  
R
-------------------- ST0 ----------------------  
ST0 = 80H  
9.3 Register Descriptions  
There are several status, data, and control registers in the W83627UHG. These registers are defined  
below, and the rest of this section provides more detail about each one of them.  
Table 9-2 FDC Registers  
ADDRESS  
OFFSET  
REGISTER  
READ  
WRITE  
base address + 0  
base address + 1  
base address + 2  
base address + 3  
base address + 4  
base address + 5  
base address + 7  
SA REGISTER  
SB REGISTER  
DO REGISTER  
TD REGISTER  
TD REGISTER  
MS REGISTER  
DR REGISTER  
DT (FIFO) REGISTER  
DI REGISTER  
DT (FIFO) REGISTER  
CC REGISTER  
9.3.1  
Status Register A (SA Register) (Read base address + 0)  
Along with the SB register, the SA register is used to monitor several disk-interface pins in PS/2 and  
Model 30 modes. In PS/2 mode, the bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
INIT  
PENDING  
DRV 2#  
STEP  
TRAK0#  
HEAD  
INDEX#  
WP#  
DIR  
NAME  
DEFAULT  
0
0
NA  
1
NA  
1
1
NA  
BIT  
DESCRIPTION  
-98-  
W83627UHG  
BIT  
7
DESCRIPTION  
INIT PENDING. Indicates the value of the floppy disk interrupt output.  
6
DRV2#.  
0: A second drive has been installed.  
1: No second drive is installed.  
5
4
3
STEP. Indicates the complement of the STEP# output.  
TRAK0#. Indicates the value of the TRAK# input.  
HEAD. Indicates the complement of the HEAD# output.  
0: Side 0.  
1: Side 1.  
2
1
INDEX#. Indicates the value of the INDEX# output.  
WP#.  
0: The disk is write-protected.  
1: The disk is not write-protected.  
0
DIR. Indicates the direction of head movement.  
0: Outward direction.  
1: Inward direction.  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
INIT  
PENDING  
DRQ  
STEP F/F  
TRAK0  
HEAD#  
INDEX  
WP  
DIR#  
NAME  
DEFAULT  
0
0
NA  
0
NA  
0
0
NA  
BIT  
7
DESCRIPTION  
INIT PENDING. Indicates the value of the floppy disk interrupt output.  
DRQ. Indicates the value of the DRQ output pin.  
6
5
SETP F/F. indicates the complement of latched STEP# output.  
TRAK0. Indicates the complement of the TRAK0# input.  
4
3
HEAD#. Indicates the value of the HEAD# output.  
0: Side 1.  
1: Side 0.  
2
1
INDEX. Indicates the complement of the INDEX# output.  
WP.  
0: The disk is not write-protected.  
1: The disk is write-protected.  
0
DIR#. Indicates the direction of the head movement.  
0: Inward direction.  
1: Outward direction.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-99-  
W83627UHG  
9.3.2  
Status Register B (SB Register) (Read base address + 1)  
Along with the SA register, the SB register is used to monitor several disk interface pins in PS/2 and  
Model 30 modes. In PS/2 mode, the bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
Drive  
SEL0  
WDTA  
Toggle  
RDTA  
Toggle  
MOT EN  
B
MOT EN  
A
WE  
NAME  
DEFAULT  
1
1
0
0
0
0
0
0
BIT  
DESCRIPTION  
7
6
5
4
3
2
1
0
1
1
Drive SEL0. Indicates the status of the DO Register, bit 0 (drive-select bit 0).  
WDATA Toggle. Changes state on every rising edge of the WD# output pin.  
RDATA Toggle. Changes state on every rising edge of the RDATA# output pin.  
WE. Indicates the complement of the WE# output pin.  
MOT EN B. Indicates the complement of the MOB# output pin.  
MOT EN A. Indicates the complement of the MOA# output pin.  
In PS/2 Model 30 mode, the bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
RDATA  
F/F  
DRV 2#  
RESERVED.  
DSA#  
WD F/F  
WE F/F  
DSD#  
DSC#  
NAME  
DEFAULT  
0
1
1
0
0
0
1
1
BIT  
DESCRIPTION  
7
DRV 2#.  
0: A second drive has been installed.  
1: No second drive is installed.  
6
5
4
Reserved.  
DSA#. Indicates the status of the DSA# output pin.  
WD F/F. Indicates the complement of the WD# output pin, which is latched on every rising  
edge of the WD# output pin.  
3
2
RDATA F/F. Indicates the complement of the latched RDATA# output pin.  
WE F/F. Indicates the complement of the latched WE# output pin.  
Reserved.  
1-0  
-100-  
W83627UHG  
9.3.3  
Digital Output Register (DO Register) (Write base address + 2)  
The Digital Output Register is a write-only register that controls drive motors, drive selection,  
DRQ/IRQ enable, and FDC reset. All the bits in this register are cleared by the MR pin. The bit  
definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
MOTOR  
ENABLE A  
DMA&INT  
ENABLE  
FDC  
RESET  
RESERVED  
DRIVE SELECT  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
7-5  
4
DESCRIPTION  
Reserved.  
MOTOR ENABLE A. A logical 1 enables Motor A.  
DMA & INT ENABLE. A logical 1 enables DRQ/IRQ.  
3
2
FDC RESET. Floppy Disk Controller Reset. A logical 0 resets the FDC.  
1-0  
DRIVE SELECT.  
Bits  
1 0  
0 0: Select Drive A.  
0 1: Select Drive B.  
1 0: Select Drive C.  
1 1: Select Drive D.  
9.3.4  
Tape Drive Register (TD Register) (Read base address + 3)  
This register is used to assign a particular drive number to the tape drive support mode of the data  
separator. This register also holds the media ID, drive type, and floppy boot drive information for the  
floppy disk drive.  
In normal floppy mode, this register only has bits 0 and 1, and the bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
RESERVED  
Tape sel 1 Tape sel 0  
NAME  
DEFAULT  
NA  
NA  
NA  
NA  
NA  
NA  
0
0
BIT  
7-2  
1
DESCRIPTION  
RESERVED.  
Tape sel 1.  
Tape sel 0.  
0
If the three-mode FDD function is enabled (EN3MODE = 1 in LD0 CRF0, Bit 0), the bit definitions are  
as follows:  
Publication Release Date: May 25, 2007  
-101-  
Revision 1.0  
W83627UHG  
BIT  
7
6
5
4
3
2
1
0
Floppy  
Boot  
Drive 1  
Floppy  
Boot  
Drive 0  
Drive  
Type ID1  
Drive  
Type ID0  
Tape Sel  
1
Tape Sel  
0
Media ID1  
Media ID0  
NAME  
DEFAULT  
0
0
1
1
0
0
0
0
BIT  
7
DESCRIPTION  
Media ID1. Read only. Reflects the value of LD0, CRF1, bit 5.  
Media ID0. Read only. Reflects the value of LD0, CRF1, bit 4.  
Drive Type ID1.  
6
5
Reflect the bit in LD0, CRF2. Which bit is  
reflected depends on the last drive selected  
in the PO register.  
4
Drive Type ID0.  
3
2
1
Floppy Boot Drive 1. Reflects the value of LD0, CRF1, bit 7.  
Floppy Boot Drive 0. Reflects the value of LD0, CRF1, bit 6.  
Tape Sel 1.  
Assign a logical drive number to the tape  
drive. Drive 0 is not available as a tape  
drive and is reserved for the floppy disk  
boot drive.  
0
Tape Sel 0.  
TAPE SEL 1  
TAPE SEL 0  
DRIVE SELECTED  
0
0
1
1
0
1
0
1
None  
1
2
3
9.3.5  
Main Status Register (MS Register) (Read base address + 4)  
The Main Status Register is used to control the flow of data between the microprocessor and the  
controller. The bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
Non-DMA  
mode  
FDD 3  
Busy  
FDD 2  
Busy  
FDD 1  
Busy  
FDD 0  
Busy  
RQM  
DIO  
FDC Busy  
NAME  
DEFAULT  
0
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-102-  
W83627UHG  
BIT  
DESCRIPTION  
7
Request for Master (RQM). A high on this bit indicates Data Register is ready to send or  
receive data to or from the processor.  
6
5
DATA INPUT/OUTPUT (DIO). If DIO = HIGH, then the transfer is from Data Register to  
the processor. If DIO = LOW, the transfer is from processor to Data Register.  
Non-DMA mode. The FDC is in the non-DMA mode, this bit is set only during the  
execution phase in non-DMA mode.  
4
3
2
1
0
FDC Busy (CB). A read or write command is in the process when CB = HIGH.  
FDD 3 Busy. (D3B = 1) FDD number 3 is in the SEEK mode.  
FDD 2 Busy. (D2B = 1) FDD number 2 is in the SEEK mode.  
FDD 1 Busy. (D1B = 1) FDD number 1 is in the SEEK mode.  
FDD 0 Busy. (D0B = 1) FDD number 0 is in the SEEK mode.  
9.3.6  
Data Rate Register (DR Register) (Write base address + 4)  
The Data Rate Register is used to set the transfer rate and write precompensation. However, in PC-  
AT and PS/2 Model 30 and PS/2 modes, the data rate is controlled by the CC register, not by the DR  
register. As a result, the real data rate is determined by the most recent write to either the DR or CC  
register. The bit definitions for this register are as follows:  
BIT  
7
6
5
4
3
2
1
0
S/W  
RESET  
POWER  
DOWN  
PRECOMP2 PRECOMP1 PRECOMP0  
DRATE1  
DRATE0  
NAME  
DEFAULT  
0
0
0
0
0
0
1
0
BIT  
7
DESCRIPTION  
S/W RESET. The software reset bit.  
6
POWER DOWN.  
0: FDC in normal mode.  
1: FDC in power-down mode.  
5
4
0
PRECOMP 2.  
Selects the value of write precompensation.  
The  
following  
tables  
values  
show  
for  
the  
every  
3
2
PRECOMP 1.  
PRECOMP 0.  
precompensation  
combination of these bits. Please see the  
tables below.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-103-  
W83627UHG  
Continued  
BIT  
DESCRIPTION  
1
DRATE 1.  
Select the data rate of the FDC and  
reduced write-current control.  
Bits  
1 0  
0 0: 500 KB/S (MFM), 250 KB/S (FM),  
RWC# = 1  
0
DRATE 0.  
0 1: 300 KB/S (MFM), 150 KB/S (FM),  
RWC# = 0  
1 0: 250 KB/S (MFM), 125 KB/S (FM),  
RWC# = 0  
1 1: 1 MB/S (MFM), Illegal (FM), RWC# = 1  
The 2 MB/S data rate for the tape drive is only supported by setting DRATE1 and DRATE0 to 01, as  
well as setting DRT1 and DRT0 (CRF4 and CRF5 for logical device 0) to 10. Please see the functional  
description of CRF4 or CRF5 and the data rate table for individual data-rate settings.  
PRECOMP  
PRECOMPENSATION DELAY  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
250K - 1 Mbps  
2 Mbps Tape drive  
Default Delays  
20.8 ns  
Default Delays  
41.67 ns  
83.34 ns  
41.17 ns  
125.00 ns  
62.5ns  
166.67 ns  
83.3 ns  
208.33 ns  
104.2 ns  
250.00 ns  
125.00 ns  
0.00 ns (disabled)  
0.00 ns (disabled)  
DATA RATE  
250 KB/S  
300 KB/S  
500 KB/S  
1 MB/S  
DEFAULT PRECOMPENSATION DELAYS  
125 ns  
125 ns  
125 ns  
41.67ns  
20.8 ns  
2 MB/S  
-104-  
W83627UHG  
9.3.7  
FIFO Register (R/W base address + 5)  
The FIFO register consists of four status registers in a stack, and only one register is presented to the  
data bus at a time. The FIFO register stores data, commands, and parameters, and it provides disk-  
drive status information. In addition, data bytes pass through the data register to program or obtain  
results after a command. In the W83627UHG, this register is disabled after reset. The FIFO can  
enable it and change its values through the configure command.  
BIT  
7
6
5
4
3
2
1
0
EC  
Equipment  
Check  
SE Seek  
End  
NR Not  
Ready  
HD Head  
Address  
IC Interrupt Code  
US1, US0 Drive Select  
NAME  
Status Register 0 (ST0)  
BIT  
DESCRIPTION  
7-6  
IC Interrupt Code.  
Bits  
7 6  
0 0: Normal termination of the command.  
0 1: Abnormal termination of the command.  
1 0: Invalid command issue.  
1 1: Abnormal termination because the ready signal from FDD changed state during  
command execution.  
5
4
SE (Seek End).  
1: Seek end.  
0: Seek error.  
EC (Equipment Check).  
1: When a fault signal is received from the FDD or the track.  
0: Signal fails to occur after 77 step pulses.  
0: No error.  
3
2
NR (Not Ready).  
1: Drive is not ready.  
0: Drive is ready.  
HD Head Address. (The current head address)  
1: Head selected.  
0: Head selected.  
1-0  
US 1, US0 Drive Select.  
Bits  
1 0  
0 0: Drive A selected.  
0 1: Drive B selected.  
1 0: Drive C selected.  
1 1: Drive D selected.  
Publication Release Date: May 25, 2007  
-105-  
Revision 1.0  
W83627UHG  
Status Register 1 (ST1)  
BIT  
7
6
5
4
3
2
1
0
EN  
Not Used  
OE  
OR  
Not Used  
ND  
NW  
MAM  
NAME  
BIT  
DESCRIPTION  
7
EN (End of Track). 1 will be written to this bit if the FDC tries to access a sector beyond  
the final sector or a cylinder.  
6
5
Not Used. This bit is always 0.  
DE (Data Error). 1 will be written to this bit if the FDC detects a CRC error in either the ID  
field or the data field.  
4
OR (Over Run). 1 will be written to this bit if the FDC is not served by the host system  
within a certain time interval during data transfer.  
3
2
Not Used. This bit is always 0.  
ND (No Data). 1 will be written to this bit if the specified sector cannot be found during  
execution of a read, write or verity data.  
1
0
NW (Not Writable). 1 will be written to this bit if a write protect signal is detected from the  
diskette drive during execution of write data.  
MAM (Missing Address Mark). 1 will be written to this bit if the FDC cannot detect the  
data address mark or the data address mark has been deleted.  
Status Register 2 (ST2)  
BIT  
7
6
5
4
3
2
1
0
CM  
DD  
WC  
SH  
SN  
BC  
MD  
NAME  
BIT  
7
DESCRIPTION  
Not used. This bit is always 0.  
6
CM (Control Mark).  
1: During execution of the read data or scan command.  
0: No error.  
5
DD (Data error in the Data field).  
1: If the FDC detects a CRC error in the data field.  
0: No error.  
4
3
WC (Wrong Cylinder).  
1: Indicates wrong cylinder.  
SH (Scan Equal Hit).  
1: During execution of the Scan command, if the equal condition is satisfied.  
0: No error.  
2
SN (Scan Not Satisfied).  
1: During execution of the Scan command.  
0: No error.  
-106-  
W83627UHG  
BIT  
DESCRIPTION  
1
BC (Bad Cylinder).  
1: Bad Cylinder.  
0: No error.  
0
MD (Missing Address Mark in Data Field).  
1: If FDC cannot find a data address mark (or the address mark has been deleted) when  
reading data from the media.  
0: No error.  
Status Register 3 (ST3)  
BIT  
7
6
5
4
3
2
1
0
FT  
WP  
RY  
T0  
TS  
HD  
US1  
US0  
NAME  
BIT  
7
DESCRIPTION  
FT. Fault.  
6
WP. Write protected.  
RY. Ready.  
5
4
T0. Track 0.  
3
TS. Two-side.  
2
HD. Head Address.  
US1. Unit Select 1.  
US0. Unit Select 0.  
1
0
9.3.8  
Digital Input Register (DI Register) (Read base address + 7)  
The Digital Input Register is an 8-bit, read-only register used for diagnostic purposes. In PC/XT or  
PC/AT mode, only bit 7 is checked by the BIOS. When the register is read, bit 7 shows the  
complement of DSKCHG#, while the other bits remain in tri-state. The bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
DSKCHG  
RESERVED  
NAME  
DEFAULT  
0
NA  
NA  
NA  
NA  
NA  
NA  
NA  
BIT  
7
DESCRIPTION  
DSKCHG.  
6-0  
RESERVED. Reserved for the hard disk controller. During a read of this register, these  
bits are in tri-state.  
Publication Release Date: May 25, 2007  
-107-  
Revision 1.0  
W83627UHG  
In PS/2 mode, the bit definitions are as follows:  
BIT  
7
6
5
4
1
3
1
2
1
0
HIGH  
DENS#  
DSKCHG  
DRATE1  
DRATE0  
NAME  
DEFAULT  
0
1
1
1
0
1
BIT  
7
DESCRIPTION  
DSKCHG. Indicates the complement of the DSKCHG# input.  
6-3  
2
Always 1 during a read.  
DRATE 1.  
Select the data rate of the FDC. See DR  
register bits 1 and 0 (Data Rate Register  
(DR Register) (Write base address + 4)) for  
how the settings correspond to individual  
data rates.  
1
0
DRATE 0.  
HIGHDENS#.  
0: 500 KB/S or 1 MB/S data rate (high-density FDD).  
1: 250 KB/S or 300 KB/S data rate.  
In PS/2 Model 30 mode, the bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
DSKCHG#  
DMAEN  
NOPREC  
DRATE1  
DRATE0  
NAME  
DEFAULT  
1
0
0
0
0
0
1
0
BIT  
7
DESCRIPTION  
DSKCHG. Indicates the status of the DSKCHG# input.  
Always 0 during a read.  
6-4  
3
DMAEN. Indicates the value of DO register, bit 3.  
2
NOPREC. Indicates the value of the NOPREC bit in the CC REGISTER.  
1
DRATE 1.  
Select the data rate of the FDC. See DR  
register bits 1 and 0 (Data Rate Register  
(DR Register) (Write base address +4)) for  
how the settings correspond to individual  
data rates.  
0
DRATE 0.  
-108-  
W83627UHG  
9.3.9  
Configuration Control Register (CC Register) (Write base address + 7)  
This register is used to control the data rate. In PC/AT and PS/2 mode, the bit definitions are as  
follows:  
BIT  
7
6
5
4
3
2
1
0
RESERVED  
DRATE1  
DRATE0  
NAME  
DEFAULT  
NA  
NA  
NA  
NAN  
NA  
NA  
1
0
BIT  
7-2  
1
DESCRIPTION  
RESERVED. Should be set to 0.  
DRATE 1.  
Select the data rate of the FDC. See DR  
register bits 1 and 0 (Data Rate Register  
(DR Register) (Write base address + 4) for  
how the settings correspond to individual  
data rates.  
0
DRATE 0.  
In the PS/2 Model 30 mode, the bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
RESERVED  
NOPREC  
DRATE1  
DRATE0  
NAME  
DEFAULT  
NA  
NA  
NA  
NA  
NA  
0
1
0
BIT  
7-3  
2
DESCRIPTION  
RESERVED. Should be set to 0.  
NOPREC. Disables the precompensation function. This bit can be set by the software.  
1
DRATE1.  
Select the data rate of the FDC. See DR  
register bits 1 and 0 (Data Rate Register  
(DR Register) (Write base address + 4)) for  
0
DRATE0.  
how the settings correspond to individual  
data rates.  
Publication Release Date: May 25, 2007  
-109-  
Revision 1.0  
W83627UHG  
10. UART PORT  
10.1 Universal Asynchronous Receiver/Transmitter (UART A, B, C, D, E, F)  
The UARTs are used to convert parallel data into serial format for transmission and to convert serial  
data into parallel format during reception. The serial data format is a start bit, followed by five to eight  
data bits, a parity bit (if programmed) and one, one-and-a-half (five-bit format only) or two stop bits.  
The UARTs are capable of handling divisors of 1 to 65535 and producing a 16x clock for driving the  
internal transmitter logic. Provisions are also included to use this 16x clock to drive the receiver logic.  
The UARTs also support the MIDI data rate. Furthermore, the UARTs also include a complete  
modem control capability and 16-byte FIFOs for reception and transmission to reduce the number of  
interrupts presented to the CPU.  
10.2 Register Address  
10.2.1  
UART Control Register (UCR) (Read/Write)  
The UART Control Register defines and controls the protocol for asynchronous data communications,  
including data length, stop bit, parity, and baud rate selection.  
BIT  
7
6
5
4
3
2
1
0
BDLAB  
SSE  
PBFE  
EPE  
PBE  
MSBE  
DLS1  
DLS0  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
DESCRIPTION  
7
BDLAB (Baud Rate Divisor Latch Access Bit). When this bit is set to logic 1, designers  
can access the divisor (in 16-bit binary format) from the divisor latches of the baud-rate  
generator during a read or write operation. When this bit is set to logic 0, the Receiver  
Buffer Register, the Transmitter Buffer Register, and the Interrupt Control Register can be  
accessed.  
6
5
SSE (Set Silence Enable). A logic 1 forces the Serial Output (SOUT) to a silent state (a  
logical 0). Only IRTX is affected by this bit; the transmitter is not affected.  
PBFE (Parity Bit Fixed Enable). When PBE and PBFE of UCR are both set to logic 1,  
(1) if EPE is logic 1, the parity bit is logical 0 when transmitting and checking;  
(2) if EPE is logic 0, the parity bit is logical 1 when transmitting and checking.  
4
3
EPE (Even Parity Enable). When PBE is set to logic 1, this bit counts the number of logic  
1’s in the data word bits and determines the parity bit. When this bit is set to logic 1, the  
parity bit is set to logic 1 if an even number of logic 1’s are sent or checked. When the bit  
is set to logic 0, the parity bit is logic 1, if an odd number of logic 1’s are sent or checked.  
PBE (Parity Bit Enable). When this bit is set to logic 1, the transmitter inserts a stop bit  
between the last data bit and the stop bit of the SOUT, and the receiver checks the parity  
bit in the same position.  
-110-  
W83627UHG  
Continued  
BIT  
DESCRIPTION  
2
MSBE (Multiple Stop Bit Enable). Defines the number of stop bits in each serial  
character that is transmitted or received.  
(1) If MSBE is set to logic 0, one stop bit is sent and checked.  
(2) If MSBE is set to logic 1 and the data length is 5 bits, one-and-a-half stop bits  
are sent and checked.  
(3) If MSBE is set to logic 1 and the data length is 6, 7, or 8 bits, two stop bits are  
sent and checked.  
1
0
DLS1 (Data Length Select Bit 1). Defines the number of data bits that are sent or  
checked in each serial character.  
DLS0 (Data Length Select Bit 0). Defines the number of data bits that are sent or  
checked in each serial character.  
DLS1  
DLS0  
DATA LENGTH  
5 bits  
0
0
1
1
0
1
0
1
6 bits  
7 bits  
8 bits  
The following table identifies the remaining UART registers. Each one is described separately in the  
following sections.  
Publication Release Date: May 25, 2007  
-111-  
Revision 1.0  
W83627UHG  
Table 10-1 Register Summary for UART  
Bit Number  
Register Address Base  
0
1
2
3
4
5
6
7
+ 0  
BDLAB = 0  
Receiver  
Buffer  
Register  
RBR  
TBR  
RX Data  
Bit 0  
RX Data  
Bit 1  
RX Data  
Bit 2  
RX Data  
Bit 3  
RX Data  
Bit 4  
RX Data  
Bit 5  
RX Data  
Bit 6  
RX Data  
Bit 7  
(Read Only)  
+ 0  
BDLAB = 0  
Transmitter  
Buffer Register  
(Write Only)  
TX Data  
Bit 0  
TX Data  
Bit 1  
TX Data  
Bit 2  
TX Data  
Bit 3  
TX Data  
Bit 4  
TX Data  
Bit 5  
TX Data  
Bit 6  
TX Data  
Bit 7  
+ 1  
BDLAB = 0  
Interrupt Control ICR  
Register  
RBR Data  
Ready  
Interrupt  
Enable  
TBR  
Empty  
Interrupt  
Enable  
(ETBREI)  
USR  
Interrupt  
Enable  
HSR  
Interrupt  
Enable  
0
0
0
0
(EUSRI)  
(EHSRI)  
(ERDRI)  
+ 2  
+ 2  
Interrupt Status  
Register  
(Read Only)  
ISR  
"0" if  
Interrupt  
Pending  
Interrupt  
Status  
Bit (0)  
Interrupt  
Status  
Bit (1)  
Interrupt  
Status  
Bit (2)**  
0
0
FIFOs  
Enabled  
**  
FIFOs  
Enabled  
**  
UART FIFO  
Control  
Register  
UFR  
FIFO  
Enable  
RCVR  
FIFO  
Reset  
XMIT  
FIFO  
Reset  
DMA  
Mode  
Select  
Reserved  
Reversed  
RX  
Interrupt  
Active Level Active Level  
RX  
Interrupt  
(Write Only)  
(LSB)  
(MSB)  
+ 3  
UART Control  
Register  
UCR  
Data  
Length  
Select  
Bit 0  
Data  
Length  
Select  
Bit 1  
Multiple  
Stop Bits  
Enable  
Parity  
Bit  
Enable  
Even  
Parity  
Enable  
Parity  
Bit Fixed  
Enable  
Set  
Silence  
Enable  
Baudrate  
Divisor  
Latch  
Access Bit  
(BDLAB)  
(MSBE)  
(PBE)  
(EPE)  
PBFE)  
(SSE)  
(DLS0)  
(DLS1)  
+ 4  
+ 5  
Handshake  
Control  
Register  
HCR  
USR  
HSR  
Data  
Terminal  
Ready  
(DTR)  
Request  
to  
Send  
(RTS)  
Loopback  
RI  
Input  
IRQ  
Enable  
Internal  
Loopback  
Enable  
0
0
0
UART Status  
Register  
RBR Data  
Ready  
(RDR)  
Overrun  
Error  
(OER)  
Parity Bit  
Error  
(PBER)  
No Stop  
Bit  
Error  
Silent  
Byte  
Detected  
(SBD)  
TBR  
Empty  
(TBRE)  
TSR  
Empty  
(TSRE)  
RX FIFO  
Error  
Indication  
(RFEI) **  
(NSER)  
+ 6  
+ 7  
Handshake  
Status Register  
CTS  
Toggling  
(TCTS)  
DSR  
Toggling  
(TDSR)  
RI Falling  
Edge  
(FERI)  
DCD  
Toggling  
(TDCD)  
Clear  
to Send  
(CTS)  
Data Set  
Ready  
(DSR)  
Ring  
Indicator  
(RI)  
Data Carrier  
Detect  
(DCD)  
User Defined  
Register  
UDR  
BLL  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
+ 0  
BDLAB = 1  
Baudrate  
Divisor Latch  
Low  
Bit 0  
Bit 8  
Bit 1  
Bit 9  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
+ 1  
BDLAB = 1  
Baudrate  
Divisor Latch  
High  
BHL  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
*: Bit 0 is the least significant bit. The least significant bit is the first bit serially transmitted or received.  
**: These bits are always 0 in 16450 Mode.  
-112-  
W83627UHG  
10.2.2  
UART Status Register (USR) (Read/Write)  
This 8-bit register provides information about the status of data transfer during communication.  
BIT  
7
6
5
4
3
2
1
0
RF EI  
TSRE  
TBRE  
SBD  
NSER  
PBER  
OER  
PDR  
NAME  
DEFAULT  
0
1
1
0
0
0
0
0
BIT  
DESCRIPTION  
7
RF EI (RX FIFO Error Indication). In 16450 mode, this bit is always set to logical 0. in  
16550 mode, this bit is set to logical 1 when there is at least one parity-bit error and no  
stop0bit error or silent-byte detected in the FIFO. In 16550 mode, this bit is cleared to  
logical 0 by reading from the USR if there are no remaining errors left in the FIFO.  
6
5
TSRE (Transmitter Shift Register Empty). In 16450 mode, this bit is set to logical 1  
when TBR and TSR are both empty. In 16550 mode, it is set to logical 1 when the  
transmit FIFO and TSR are both empty. Otherwise, this bit is set to logical 0.  
TBRE (Transmitter Buffer Register Empty). In 16450 mode, when a data character is  
transferred from TBR to TSR, this bit is set to logical 1. If ETREI of ICR is high, and  
interrupt is generated to notify the CPU to write next data. In 16550 mode, this bit is set to  
logical 1 when the transmit FIFO is empty. It is set to logical 0 when the CPU writes data  
into TBR or the FIFO.  
4
SBD (Silent Byte Detected). This bit is set to logical 1 to indicate that received data are  
kept in silent state for the time it takes to receive a full word, which includes the start bit,  
data bits, parity bit, and stop bits. In 16550 mode, it indicates the same condition for the  
data on the top of the FIFO. When the CPU reads USR, it sets this bit to logical 0.  
3
2
1
NSER (No Stop Bit Error). This bit is set to logical 1 to indicate that the received data  
have no stop bit. In 16550 mode, it indicates the same condition for the data on the top of  
the FIFO. When the CPU reads USR, it sets this bit to logical 0.  
PBER (Parity Bit Error). This bit is set to logical 1 to indicate that the received data has  
the wrong parity bit. In 16550 mode, it indicates the same condition for the data on the top  
of the FIFO. When the CPU reads USR, it sets this bit to logical 0.  
OER (Overrun Error). This bit is set to logical 1 to indicate that the received data have  
been overwritten by the next received data before they were read by the CPU. In 16550  
mode, it indicates the same condition, instead of FIFO full. When the CPU reads USR, it  
sets this bit to logical 0.  
0
RDR (RBR Data Ready). This bit is set to logical 1 to indicate that the received data are  
ready to be read by the CPU in the RBR or FIFO. When no data are left in the RBR or  
FIFO, the bit is set to logical 0.  
Publication Release Date: May 25, 2007  
-113-  
Revision 1.0  
W83627UHG  
10.2.3  
Handshake Control Register (HCR) (Read/Write)  
This register controls pins used with handshaking peripherals such as modems and also controls the  
diagnostic mode of the UART.  
BIT  
7
6
5
4
3
2
1
0
INTERNAL  
LOOPBACK  
ENABLE  
IRQ  
ENABLE  
LOOPBACK  
RI INPUT  
RTS  
DTR  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
7
DESCRIPTION  
0
0
0
6
5
Internal Loopback Enable. When this bit is set to logic 1, the UART enters diagnostic  
mode, as follows:  
4
(1) SOUT is forced to logic 1, and SIN is isolated from the communication link.  
(2) The modem output pins are set to their inactive state.  
(3) The modem input pins are isolated from the communication link and connect internally  
as DTR (bit 0 of HCR) DSR#, RTS ( bit 1 of HCR) CTS#, Loopback RI input ( bit 2 of  
HCR) RI# and IRQ enable ( bit 3 of HCR) DCD#.  
Aside from the above connections, the UART operates normally. This method allows the  
CPU to test the UART in a convenient way.  
3
2
1
0
IRQ Enable. The UART interrupt output is enabled by setting this bit to logic 1. In  
diagnostic mode, this bit is internally connected to the modem control input DCD#.  
Loopback RI Input. This bit is only used in the diagnostic mode. In diagnostic mode, this  
bit is internally connected to the modem control input RI#.  
RTS (Request to Send). This bit controls the RTS# output. The value of this bit is  
inverted and output to RTS#.  
DTR (Data Terminal Ready). This bit controls the DTR# output. The value of this bit is  
inverted and output to DTR#.  
10.2.4  
Handshake Status Register (HSR) (Read/Write)  
This register reflects the current state of four input pins used with handshake peripherals such as  
modems and records changes on these pins.  
BIT  
7
6
5
4
3
2
1
0
DCD  
RI  
DSR  
CTS  
TDCD  
FERI  
TDSR  
TCTS  
NAME  
DEFAULT  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
-114-  
W83627UHG  
BIT  
DESCRIPTION  
7
DCD (Data Carrier Detect). This bit is the inverse of the DCD# input and is equivalent to  
bit 3 of HCR in Loopback mode.  
6
5
4
3
2
1
0
RI (Ring Indicator). This bit is the inverse of the RI# input and is equivalent to bit 2 of  
HCR in Loopback mode.  
DSR (Data Set Ready). This bit is the inverse of the DSR# input and is equivalent to bit 0  
of HCR in Loopback mode.  
CTS (Clear to Send). This bit is the inverse of the CTS# input and is equivalent to bit 1 of  
HCR in Loopback mode.  
TDCD (DCD# Toggling). This bit indicates that the state of the DCD# pin has changed  
after HSR is read by the CPU.  
FERI (RI Falling Edge). This bit indicates that the RI# pin has changed from low to high  
after HSR is read by the CPU.  
TDSR (DSR# Toggling). This bit indicates that the state of the DSR# pin has changed  
after HSR is read by the CPU.  
TCTS (CTS# Toggling). This bit indicates that the state of the CTS# pin has changed  
after HSR is read by the CPU.  
10.2.5  
This register is used to control the FIFO functions of the UART  
BIT  
7
6
5
4
3
2
1
0
DMA  
MODE  
SELECT  
RECEIVER  
FIFO  
RESET  
TRANSMITTER  
FIFO RESET  
FIFO  
ENABLE  
MSB  
LSB  
RESERVED  
NAME  
DEFAULT  
0
0
NA  
NA  
0
0
0
0
BIT  
DESCRIPTION  
7
MSB (RX Interrupt Active Level).  
LSB (RX Interrupt Active Level).  
RESERVED.  
These two bits are used to set the active  
level of the receiver FIFO interrupt. The  
active level is the number of bytes that  
must be in the receiver FIFO to generate  
an interrupt.  
6
5-4  
3
DMS MODE SELECT. When this bit is set to logic 1, DMA mode changes from mode 0 to  
mode 1 if UFR bit 0 = 1.  
2
1
0
TRANSMITTER FIFO RESET. Setting this bit to logic 1 resets the TX FIFO counter logic  
to its initial state. This bit is automatically cleared afterwards.  
RECEIVER FIFO RESET. Setting this bit to logic 1 resets the RX FIFO counter logic to its  
initial state. This bit is automatically cleared afterwards.  
FIFO ENABLE. This bit enables 16550 (FIFO) mode. This bit should be set to logic 1  
before other UFR bits are programmed.  
Publication Release Date: May 25, 2007  
-115-  
Revision 1.0  
W83627UHG  
BIT 7  
BIT 6  
RX FIFO INTERRUPT ACTIVE LEVEL (BYTES)  
0
0
1
1
0
1
0
1
01  
04  
08  
14  
10.2.6  
Interrupt Status Register (ISR) (Read only)  
This register reflects the UART interrupt status.  
BIT  
7
6
5
4
3
2
1
0
INTERRUPT INTERRUPT INTERRUPT  
0 IF  
FIFOS ENABLED  
STATUS  
BIT 2  
STATUS  
BIT 1  
STATUS  
BIT 0  
INTERRUPT  
PENDING  
NAME  
DEFAULT  
0
0
0
0
0
0
0
1
BIT  
7-6  
5
DESCRIPTION  
FIFOS ENABLED. Set to logical 1 when UFR, bit 0 = 1.  
0
0
4
3
INTERRUPT STATUS BIT 2. In 16450 mode, this bit is logical 0. In 16550 mode, bits 3  
and 2 are set to logical 1 when a time-out interrupt is pending. Please see the table  
below.  
2
1
0
INTERRUPT STATUS BIT 1.  
These two bits identify the priority level of  
the pending interrupt, as shown in the table  
below.  
INTERRUPT STATUS BIT 0.  
0 IF INTERRUPT PENDING. This bit is logic 1 if there is no interrupt pending. If one of  
the interrupt sources has occurred, this bit is set to logical 0.  
ISR  
INTERRUPT SET AND FUNCTION  
Bit Bit Bit Bit Interrupt  
Interrupt Type  
Interrupt Source  
Clear Interrupt  
3
2
1
0
priority  
0
0
0
1
0
1
1
0
-
-
No Interrupt pending  
-
First  
UART Receive  
Status  
1. OER = 1 2. PBER =1  
3. NSER = 1 4. SBD = 1  
Read USR  
0
1
0
0
Second  
RBR Data Ready  
1. RBR data ready  
1. Read RBR  
2. FIFO interrupt active level  
reached  
2. Read RBR until FIFO  
data under active level  
-116-  
W83627UHG  
Continued  
ISR  
INTERRUPT SET AND FUNCTION  
Bit Bit Bit Bit Interrupt  
Interrupt Type  
Interrupt Source  
Clear Interrupt  
3
2
1
0
priority  
1
1
0
0
Second  
FIFO Data Timeout  
TBR Empty  
Data present in RX FIFO for 4  
characters period of time since last  
access of RX FIFO.  
Read RBR  
0
0
0
0
1
0
0
0
Third  
TBR empty  
1. Write data into TBR  
2. Read ISR (if priority is  
third)  
Fourth  
Handshake status  
1. TCTS = 1 2. TDSR = 1  
3. FERI = 1 4. TDCD = 1  
Read HSR  
** Bit 3 of ISR is enabled when bit 0 of UFR is logical 1.  
10.2.7  
Interrupt Control Register (ICR) (Read/Write)  
This 8-bit register enables and disables the five types of controller interrupts separately. A selected  
interrupt can be enabled by setting the appropriate bit to logical 1. The interrupt system can be totally  
disabled by setting bits 0 through 3 to logical 0.  
BIT  
7
6
5
4
3
2
1
0
EHSRI  
EUSRI  
ETBREI  
ERDRI  
NAME  
DEFAULT  
0
0
0
0
0
0
0
0
BIT  
DESCRIPTION  
7
6
5
4
3
0
0
0
0
EHSRI (Handshake Status Interrupt Enable). Set this bit to logical 1 to enable the  
handshake status register interrupt.  
2
1
0
EUSRI (UART Receive Status Interrupt Enable). Set this bit to logical 1 to enable the  
UART status register interrupt.  
ETBREI (TBR Empty Interrupt Enable). Set this bit to logical 1 to enable the TBR empty  
interrupt.  
ERDRI (RBR Data Ready Interrupt Enable). Set this bit to logical 1 to enable the RBR  
data ready interrupt.  
Publication Release Date: May 25, 2007  
-117-  
Revision 1.0  
W83627UHG  
11. PARALLEL PORT  
11.1 Printer Interface Logic  
The W83627UHG parallel port can be attached to devices that accept eight bits of parallel data at  
standard TTL level. The W83627UHG supports the IBM XT/AT compatible parallel port (SPP), the bi-  
directional parallel port (BPP), the Enhanced Parallel Port (EPP), and the Extended Capabilities  
Parallel Port (ECP).  
The following tables show the pin definitions for different modes of the parallel port.  
Table 11-1 Pin Descriptions for SPP, EPP, and ECP Modes  
HOST  
PIN NUMBER  
PIN ATTRIBUTE  
SPP  
EPP  
ECP  
CONNECTOR  
OF W83627UHG  
1
36  
O
I/O  
I
Nstb  
PD<7:0>  
nACK  
BUSY  
PE  
nWrite  
PD<7:0>  
Intr  
nSTB, HostClk2  
PD<7:0>  
nACK, PeriphClk2  
BUSY, PeriphAck2  
PEerror, nAckReverse2  
SLCT, Xflag2  
2-9  
10  
11  
12  
13  
14  
15  
16  
17  
31-26, 24-23  
22  
21  
19  
18  
35  
34  
33  
32  
I
nWait  
PE  
I
I
SLCT  
Nafd  
Select  
nDStrb  
nError  
nInit  
O
I
nAFD, HostAck2  
nERR  
Ninit  
nFault1, nPeriphRequest2  
nINIT1, nReverseRqst2  
nSLIN1, ECPMode2  
O
O
nSLIN  
nAStrb  
Notes:  
n<name > : Active Low  
1. Compatible Mode  
2. High Speed Mode  
3. For more information, refer to the IEEE 1284 standard.  
11.2 Enhanced Parallel Port (EPP)  
The following table lists the registers used in the EPP mode, and identifies the bit map of the parallel  
port and EPP registers. Some registers are also used in other modes.  
Table 11-2 EPP Register Addresses  
A2  
0
A1  
0
A0  
0
REGISTER  
NOTE  
Data pot (R/W)  
1
1
1
1
2
0
0
1
Printer status buffer (Read)  
Printer control latch (Write)  
Printer control swapper (Read)  
EPP address port (R/W)  
0
1
0
0
1
0
0
1
1
-118-  
W83627UHG  
EPP Register Addresses, continued  
1
1
1
1
0
0
1
1
0
1
0
1
EPP data port 0 (R/W)  
EPP data port 1 (R/W)  
EPP data port 2 (R/W)  
EPP data port 2 (R/W)  
2
2
2
2
Notes:  
1. These registers are available in all modes.  
2. These registers are available only in EPP mode.  
Table 11-3 Address and Bit Map for SPP and EPP Modes  
REGISTER  
7
PD7  
BUSY#  
1
6
PD6  
ACK#  
1
5
4
PD4  
SLCT  
IRQEN  
IRQ  
3
PD3  
2
1
PD1  
0
PD0  
Data Port (R/W)  
PD5  
PE  
PD2  
1
Status Buffer (Read)  
Control Swapper (Read)  
Control Latch (Write)  
EPP Address Port (R/W)  
EPP Data Port 0 (R/W)  
EPP Data Port 1 (R/W)  
EPP Data Port 2 (R/W)  
EPP Data Port 3 (R/W)  
ERROR#  
SLIN  
SLIN  
PD3  
1
TMOUT  
STROBE#  
STROBE#  
PD0  
1
INIT#  
INIT#  
PD2  
PD2  
PD2  
PD2  
PD2  
AUTOFD#  
AUTOFD#  
PD1  
1
1
DIR  
PD5  
PD5  
PD5  
PD5  
PD5  
PD7  
PD7  
PD7  
PD7  
PD7  
PD6  
PD6  
PD6  
PD6  
PD6  
PD4  
PD4  
PD4  
PD4  
PD4  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
PD3  
PD1  
PD0  
Each register (or pair of registers, in some cases) is discussed below.  
11.2.1  
Data Port (Data Swapper)  
The CPU reads the contents of the printer's data latch by reading the data port.  
11.2.2  
Printer Status Buffer  
The CPU reads the printer status by reading the printer status buffer. The bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
1
1
0
BUSY#  
ACK#  
PE  
SLCT  
ERROR#  
TMOUT  
NAME  
DEFAULT  
NA  
NA  
NA  
NA  
NA  
0
Publication Release Date: May 25, 2007  
Revision 1.0  
-119-  
W83627UHG  
BIT  
DESCRIPTION  
7
BUSY#. This signal is active during data entry, when the printer is off-line during printing,  
when the print head is changing position, or during an error state. When this signal is  
active, the printer is busy and cannot accept data.  
6
ACK#. This bit represents the current state of the printer’s ACK# signal. A logical 0  
means the printer has received a character and is ready to accept another. Normally, this  
signal is active for approximately 5 μs before BUSY# stops.  
5
4
3
2
1
0
PE. A logical 1 means the printer has detected the end of paper.  
SLCT. A logical 1 means the printer is selected.  
ERROR#. A logical 0 means the printer has encountered an error condition.  
1
1
TMOUT. This bit is only valid in EPP mode. A logical 1 indicates that a 10-μs time-out has  
occurred on the EPP bus; a logical 0 means hat no time-out error has occurred. Writing a  
logical 1 to this bit clears the time-out status bit; writing a logical 0 has no effect.  
11.2.3  
Printer Control Latch and Printer Control Swapper  
The CPU reads the contents of the printer control latch by reading the printer control swapper. The bit  
definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
DIR  
IRQ ENABLE  
SLCT IN  
INIT#  
AUTO FD  
STROBE  
NAME  
DEFAULT  
1
1
NA  
0
NA  
NA  
NA  
NA  
BIT  
7-6  
5
DESCRIPTION  
These two bits are always read as logical 1 and can be written.  
DIR (Direction Control Bit). When this bit is logical 1, the parallel port is in the input mode  
(read). When it is logical 0, the parallel port is in the output mode (write). This bit can be  
read and written. In SPP mode, this bit is invalid and fixed at zero.  
4
IRQ ENABLE. A logical 1 allows an interrupt to occur when ACK# changes from low to  
high.  
3
2
1
0
SLCT IN. a logical 1 selects the printer.  
INIT#. A logical 0 starts the printer (50 microsecond pulse, minimum).  
AUTO FD. A logical 1 causes the printer to line-feed after a line is printed.  
STROBE. A logical 1 generates an active-high pulse for a minimum of 0.5 μs to clock  
data into the printer. Valid data must be presented for a minimum of 0.5 μs before and  
after the strobe pulse.  
-120-  
W83627UHG  
11.2.4  
EPP Address Port  
The address port is available only in EPP mode. Bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
NAME  
The contents of DB0-DB7 are buffered (non-inverting) and output to ports PD0-PD7 during a write  
operation. The leading edge of IOW# causes an EPP address write cycle to be performed, and the  
trailing edge of IOW# latches the data for the duration of the EPP write cycle.  
PD0-PD7 ports are read during a read operation. The leading edge of IOR# causes an EPP address  
read cycle to be performed and the data to be output to the host CPU.  
11.2.5  
EPP Data Port 0-3  
These four registers are available only in EPP mode. The bit definitions for each data port are the  
same and as follows:  
BIT  
7
6
5
4
3
2
1
0
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
NAME  
When any EPP data port is accessed, the contents of DB0-DB7 are buffered (non-inverting) and  
output to ports PD0-PD7 during a write operation. The leading edge of IOW# causes an EPP data  
write cycle to be performed and the trailing edge of IOW# latches the data for the duration of the EPP  
write cycle.  
During a read operation, ports PD0-PD7 are read, and the leading edge of IOR# causes an EPP read  
cycle to be performed and the data to be output to the host CPU.  
Publication Release Date: May 25, 2007  
-121-  
Revision 1.0  
W83627UHG  
11.2.6  
EPP Pin Descriptions  
EPP NAME  
TYPE  
EPP DESCRIPTION  
Denotes read or write operation for address or data.  
Bi-directional EPP address and data bus.  
NWrite  
PD<7:0>  
Intr  
O
I/O  
I
Used by peripheral devices to interrupt the host.  
NWait  
Inactivated to acknowledge that data transfer is complete. Activated to  
indicate that the device is ready for the next transfer.  
I
PE  
I
I
Paper end; same as SPP mode.  
Select  
NDStrb  
Nerror  
Ninits  
Printer-select status; same as SPP mode.  
This signal is active low. It denotes a data read or write operation.  
Error; same as SPP mode.  
O
I
This signal is active low. When it is active, the EPP device is reset to its  
initial operating mode.  
O
O
NAStrb  
This signal is active low. It denotes an address read or write operation.  
11.2.7  
EPP Operation  
When EPP mode is selected, the PDx bus is in standard or bi-directional mode when no EPP read,  
write, or address cycle is being executed. In this situation, all output signals are set by the SPP  
Control Port and the direction is controlled by DIR of the Control Port.  
A watchdog timer is required to prevent system lockup. The timer indicates that more than 10 μS have  
elapsed from the start of the EPP cycle to the time WAIT# is deasserted. The current EPP cycle is  
aborted when a time-out occurs. The time-out condition is indicated in status bit 0.  
The EPP operates on a two-phase cycle. First, the host selects the register within the device for  
subsequent operations. Second, the host performs a series of read and/or write byte operations to the  
selected register. Four operations are supported on the EPP: Address Write, Data Write, Address  
Read, and Data Read. All operations on the EPP device are performed asynchronously.  
11.2.7.1 EPP Version 1.9 Operation  
The EPP read/write operation can be completed under the following conditions:  
a. If nWait is active low, the read cycle (nWrite inactive high, nDStrb/nAStrb active low) or write cycle  
(nWrite active low, nDStrb/nAStrb active low) starts, proceeds normally, and is completed when nWait  
goes inactive high.  
b. If nWait is inactive high, the read/write cycle cannot start. It must wait until nWait changes to active  
low, at which time it starts is as described above.  
-122-  
W83627UHG  
11.2.7.2 EPP Version 1.7 Operation  
The EPP read/write cycle can start without checking whether nWait is active or inactive. Once the  
read/write cycle starts, however, it does not finish until nWait changes from active low to inactive high.  
11.3 Extended Capabilities Parallel (ECP) Port  
This port is software- and hardware-compatible with existing parallel ports, so the W83627UHG  
parallel port may be used in standard printer mode if ECP is not required. It provides an automatic  
high burst-bandwidth channel that supports DMA for ECP in both the forward (host-to-peripheral) and  
reverse (peripheral-to-host) directions.  
Small FIFOs are used in both forward and reverse directions to improve the maximum bandwidth  
requirement. The size of the FIFO is 16 bytes. The ECP port supports an automatic handshake for the  
standard parallel port to improve compatibility mode transfer speed.  
The ECP port hardware supports run-length-encoded (RLE) decompression.  
Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates  
how many times the next byte is to be repeated. RLE compression is required; the hardware support  
is optional.  
For more information about the ECP Protocol, refer to the Extended Capabilities Port Protocol and ISA  
Interface Standard.  
The W83627UHG ECP supports the following modes.  
Table 11-4 ECP Mode Description  
MODE  
000  
001  
010  
011  
100  
101  
110  
111  
DESCRIPTION  
SPP mode  
PS/2 Parallel Port mode  
Parallel Port Data FIFO mode  
ECP Parallel Port mode  
EPP mode (If this option is enabled in the CRF0h to select ECP/EPP mode)  
Reserved  
Test mode  
Configuration mode  
The mode selection bits are bits 7-5 of the Extended Control Register.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-123-  
W83627UHG  
11.3.1  
ECP Register and Bit Map  
The next two tables list the registers used in ECP mode and provide a bit map of the parallel port and  
ECP registers.  
Table 11-5 ECP Register Addresses  
NAME  
data  
ADDRESS  
Base+000h  
Base+000h  
Base+001h  
Base+002h  
Base+400h  
Base+400h  
Base+400h  
Base+400h  
Base+401h  
Base+402h  
I/O  
R/W  
R/W  
R
ECP MODES  
000-001  
011  
FUNCTION  
Data Register  
ecpAFifo  
dsr  
ECP FIFO (Address)  
Status Register  
All  
dcr  
R/W  
R/W  
R/W  
R/W  
R
All  
Control Register  
cFifo  
010  
Parallel Port Data FIFO  
ECP FIFO (DATA)  
Test FIFO  
ecpDFifo  
tFifo  
011  
110  
cnfgA  
cnfgB  
ecr  
111  
Configuration Register A  
Configuration Register B  
Extended Control Register  
R/W  
R/W  
111  
All  
Note: The base addresses are specified by CR60 and 61, which are determined by configuration register or hardware setting.  
Table 11-6 Bit Map of the ECP Registers  
D7  
PD7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Data  
ecpAFifo  
Dsr  
Address or RLE field  
Addr/RLE  
nBusy  
1
2
1
1
2
2
2
nAck  
1
PError  
Select  
nFault  
1
1
1
Directio  
ackIntEn  
SelectIn  
nInit  
Autofd  
strobe  
Dcr  
Parallel Port Data FIFO  
ECP Data FIFO  
Test FIFO  
cFifo  
ecpFifo  
tFifo  
0
0
0
1
1
1
0
1
0
1
0
1
0
1
cnfgA  
cnfgB  
Ecr  
compress  
MODE  
intrValue  
nErrIntrEn  
dmaEn  
serviceIntr  
full  
empty  
Notes:  
1. These registers are available in all modes.  
2. All FIFOs use one common 16-byte FIFO.  
Each register (or pair of registers, in some cases) is discussed below.  
-124-  
W83627UHG  
11.3.2  
Data and ecpAFifo Port  
Modes 000 (SPP) and 001 (PS/2) (Data Port)  
During a write operation, the Data Register latches the contents of the data bus on the rising edge of  
the input, and the contents of this register are output to PD0-PD7. During a read operation, ports PD0-  
PD7 are read and output to the host. The bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
NAME  
Mode 011 (ECP FIFO-Address/RLE)  
A data byte written to this address is placed in the FIFO and tagged as an ECP Address/RLE. The  
hardware at the ECP port transmits this byte to the peripheral automatically. This operation is defined  
only for the forward direction. The bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
0
Address/RLE  
Address or RLE  
NAME  
11.3.3  
Device Status Register (DSR)  
These bits are logical 0 during a read of the Printer Status Register. The bits of this status register are  
defined as follows:  
BIT  
7
6
5
4
3
2
1
0
nBusy  
nAck  
PError  
Select  
nFault  
1
1
1
NAME  
BIT  
7
DESCRIPTION  
nBusy. This bit reflects the complement of the Busy input.  
nAck. This bit reflects the nAck input.  
6
5
PError. This bit reflects the PError input.  
Select. This bit reflects the Select input.  
nFault. This bit reflects the nFault input.  
4
3
2-0  
These three bits are not implemented and are always logical 1 during a read.  
11.3.4  
Device Control Register (DCR)  
The bit definitions are as follows:  
BIT  
7
1
6
1
5
4
3
2
1
0
Director  
ackInEn  
SelectIn  
nInit  
Autofd  
Strobe  
NAME  
DEFAULT  
NA  
NA  
NA  
NA  
NA  
NA  
Publication Release Date: May 25, 2007  
Revision 1.0  
-125-  
W83627UHG  
BIT  
DESCRIPTION  
7-6  
These two bits are always read as logical 1 and cannot be written.  
Director. If the mode is 000 or 010, this bit has no effect and the direction is always out.  
In other modes,  
0: The parallel port is in the output mode.  
1: The parallel port is in the input mode.  
5
ackInEn (Interrupt Request Enable). When this bit is set to logical 1, it enables interrupt  
requests from the parallel port to the CPU on the low-to-high transition on ACK#.  
4
3
SelectIn. This bit is inverted and output to the SLIN# output.  
0: The printer is not selected.  
1: The printer is selected.  
2
1
0
nInit. This bit is output to the INIT# output.  
Autofd. This bit is inverted and output to the AFD# output.  
Strobe. This bit is inverted and output to the STB# output.  
11.3.5  
CFIFO (Parallel Port Data FIFO) Mode = 010  
This mode is defined only for the forward direction. Bytes written or DMAed to this FIFO are  
transmitted by a hardware handshake to the peripheral using the standard parallel port protocol.  
Transfers to the FIFO are byte-aligned.  
11.3.6  
ECPDFIFO (ECP Data FIFO) Mode = 011  
When the direction bit is 0, bytes written or DMAed to this FIFO are transmitted by a hardware  
handshake to the peripheral using the ECP parallel port protocol. Transfers to the FIFO are byte-  
aligned.  
When the direction bit is 1, data bytes from the peripheral are read via automatic hardware handshake  
from ECP into this FIFO. Reads or DMAs from the FIFO return bytes of ECP data to the system.  
11.3.7  
TFIFO (Test FIFO Mode) Mode = 110  
Data bytes may be read, written, or DMAed to or from the system to this FIFO in any direction. Data in  
the tFIFO is not transmitted to the parallel port lines. However, data in the tFIFO may be displayed on  
the parallel port data lines.  
11.3.8  
CNFGA (Configuration Register A) Mode = 111  
This register is a read-only register. When it is read, 10H is returned. This indicates that this is an 8-bit  
implementation.  
-126-  
W83627UHG  
11.3.9  
CNFGB (Configuration Register B) Mode = 111  
The bit definitions are as follows:  
BIT  
7
6
5
4
3
2
1
1
1
0
1
COMPRESS  
intrVALUE  
IRQx2  
IRQx1  
IRQx0  
NAME  
DEFAULT  
0
0
0
0
0
BIT  
DESCRIPTION  
7
Compress. This bit is read-only. It is logical 0 during a read, which means that this chip  
does not support hardware RLE compression.  
6
5
intrValue. Returns the value on the ISA IRQ line to determine possible conflicts.  
IRQx2.  
Reflects the IRQ resource assigned for ECP port.  
cnfgB[5:3]  
IRQ resource  
000  
Reflects other IRQ resources selected by PnP  
register (default)  
4
3
IRQx1.  
IRQx0.  
001  
010  
011  
100  
101  
110  
111  
IRQ7  
IRQ9  
IRQ10  
IRQ11  
IRQ14  
IRQ15  
IRQ5  
2-0  
These three bits are logical 1 during a read and can be written.  
11.3.10 ECR (Extended Control Register) Mode = all  
This register controls the extended ECP parallel port functions. The bit definitions are follows:  
BIT  
7
6
5
4
3
2
1
0
MODE  
MODE  
MODE  
nErrIntrEn  
dmaEn  
ServiceIntr  
Full  
Empty  
NAME  
DEFAULT  
0
0
0
1
0
1
0
1
Publication Release Date: May 25, 2007  
Revision 1.0  
-127-  
W83627UHG  
BIT  
DESCRIPTION  
Mode. Read/Write. These bits select the mode.  
7-5  
000  
001  
Standard Parallel Port (SPP) mode. The FIFO is reset in this mode.  
PS/2 Parallel Port mode. This is the same as SPP mode except that  
direction may be used to tri-state the data lines. Furthermore, reading the  
data register returns the value on the data lines, not the value in the data  
register.  
010  
011  
Parallel Port FIFO mode. This is the same as SPP mode except that bytes  
are written or DMAed to the FIFO. FIFO data are automatically transmitted  
using the standard parallel port protocol. This mode is useful only when  
direction is 0.  
ECP Parallel Port Mode. When the direction is 0 (forward direction), bytes  
placed into the ecpDFifo and bytes written to the ecpAFifo are placed in a  
single FIFO and automatically transmitted to the peripheral using the ECP  
Protocol. When the direction is 1 (reverse direction), bytes are moved from  
the ECP parallel port and packed into bytes in the ecpDFifo.  
100  
101  
110  
EPP Mode. EPP mode is activated if the EPP mode is selected.  
Reserved.  
Test Mode. The FIFO may be written and read in this mode, but the data is  
not transmitted on the parallel port.  
111  
Configuration Mode. The confgA and confgB registers are accessible at  
0x400 and 0x401 in this mode.  
4
nErrIntrEn. Read/Write (Valid only in ECP Mode)  
0: Enables the interrupt generated on the falling edge of nFault. This prevents interrupts  
from being lost in the time between the read of the ECR and the write of the ECR.  
1: Disables the interrupt generated on the asserting edge of nFault.  
3
2
dmaEn. Read/Write.  
0: Disable DMA unconditionally.  
1: Enable DMA.  
serviceIntr. Read/Write.  
0: Enable one of the following cases of interrupts. When one of the serviced interrupts  
occurs, this bit is set to logical 1 by the hardware. This bit must be reset to logical 0 to  
re-enable the interrupts.  
(a) dmaEn = 1: During DMA, this bit is set to logical 1 when terminal count is reached.  
(b) dmaEn = 0, direction = 0: This bit is set to logical 1 whenever there are writeIntr  
threshold or more bytes free in the FIFO.  
(c) dmaEn = 0, direction = 1: This bit is set to logical 1 whenever there are readIntr  
threshold or more valid bytes to be read from the FIFO.  
1: Disable DMA and all of the service interrupts. Writing a logical 1 to this bit does not  
cause an interrupt.  
-128-  
W83627UHG  
Continued  
BIT  
DESCRIPTION  
1
Full. Read Only.  
0: The FIFO has at least one free byte.  
1: The FIFO is completely full; it cannot accept another byte.  
0
Empty. Read Only.  
0: The FIFO contains at least one byte of data.  
1: The FIFO is completely empty.  
11.3.11 ECP Pin Descriptions  
NAME  
TYPE  
DESCRIPTION  
NStrobe (HostClk)  
This pin loads data or address into the slave on its asserting edge  
during write operations. This signal handshakes with Busy.  
O
I/O  
I
PD<7:0>  
These signals contain address, data or RLE data.  
nAck (PeriphClk)  
This signal indicates valid data driven by the peripheral when  
asserted. This signal handshakes with nAutoFd in reverse.  
Busy (PeriphAck)  
This signal deasserts to indicate that the peripheral can accept  
data. In the reverse direction, it indicates whether the data lines  
contain ECP command information or data. Normal data are  
transferred when Busy (PeriphAck) is high, and an 8-bit command  
is transferred when it is low.  
I
PError (nAckReverse)  
This signal is used to acknowledge a change in the direction of the  
transfer (asserted = forward). The peripheral drives this signal low  
to acknowledge nReverseRequest. The host relies upon  
nAckReverse to determine when it is permitted to drive the data  
bus.  
I
I
Select (Xflag)  
Indicates printer on-line.  
NautoFd (HostAck)  
Requests a byte of data from the peripheral when it is asserted. In  
the forward direction, this signal indicates whether the data lines  
contain ECP address or data. Normal data are transferred when  
nAutoFd (HostAck) is high, and an 8-bit command is transferred  
when it is low.  
O
nFault  
(nPeriphReuqest)  
Generates an error interrupt when it is asserted. This signal is valid  
only in the forward direction. The peripheral is permitted (but not  
required) to drive this pin low to request a reverse transfer during  
ECP mode.  
I
nInit  
This signal sets the transfer direction (asserted = reverse,  
deasserted = forward). This pin is driven low to place the channel  
in the reverse direction.  
(nReverseRequest)  
O
O
nSelectIn (ECPMode)  
This signal is always deasserted in ECP mode.  
Publication Release Date: May 25, 2007  
-129-  
Revision 1.0  
W83627UHG  
11.3.12 ECP Operation  
The host must negotiate on the parallel port to determine if the peripheral supports the ECP protocol  
before ECP operation. After negotiation, it is necessary to initialize some of the port bits.  
(a) Set direction = 0, enabling the drivers.  
(b) Set strobe = 0, causing the nStrobe signal to default to the deasserted state.  
(c) Set autoFd = 0, causing the nAutoFd signal to default to the deasserted state.  
(d) Set mode = 011 (ECP Mode)  
ECP address/RLE bytes or data bytes may be sent automatically by writing the ecpAFifo or ecpDFifo,  
respectively.  
11.3.12.1 Mode Switching  
The software must handle P1284 negotiation and all operations prior to a data transfer in SPP or PS/2  
modes (000 or 001). The hardware provides an automatic control line handshake, moving data  
between the FIFO and the ECP port, only in the data transfer phase (mode 011 or 010).  
If the port is in mode 000 or 001, it may switch to any other mode. If the port is not in mode 000 or 001,  
it can only be switched into mode 000 or 001. The direction can only be changed in mode 001.  
In extended forward mode, the software should wait for the FIFO to be empty before switching back to  
mode 000 or 001. In ECP reverse mode, the software should wait for all the data to be read from the  
FIFO before changing back to mode 000 or 001.  
11.3.12.2 Command/Data  
ECP mode allows the transfer of normal 8-bit data or 8-bit commands. In the forward direction, normal  
data are transferred when HostAck is high, and an 8-bit command is transferred when HostAck is low.  
The most significant bits of the command indicate whether it is a run-length count (for compression) or  
a channel address.  
In the reverse direction, normal data are transferred when PeriphAck is high, and an 8-bit command is  
transferred when PeriphAck is low. The most significant bit of the command is always zero.  
11.3.12.3 Data Compression  
The W83627UHG hardware supports RLE decompression and can transfer compressed data to a  
peripheral. Odd (RLE) compression is not supported in the hardware, however. In order to transfer  
data in ECP mode, the compression count is written to ecpAFifo and the data byte is written to  
ecpDFifo.  
11.3.12.4 FIFO Operation  
The FIFO threshold is set in CR5. All data transferred to or from the parallel port can proceed in DMA  
or Programmed I/O (non-DMA) mode, as indicated by the selected mode. The FIFO is used in Parallel  
Port FIFO mode or ECP Parallel Port Mode. After a reset, the FIFO is disabled.  
-130-  
W83627UHG  
11.3.13 DMA Transfers  
DMA transfers are always to or from the ecpDFifo, tFifo, or CFifo. DMA uses the standard PC DMA  
services. The ECP requests DMA transfers from the host by activating the PDRQ pin. The DMA  
empties or fills the FIFO using the appropriate direction and mode. When the terminal count in the  
DMA controller is reached, an interrupt is generated, and serviceIntr is asserted, which will disable the  
DMA.  
11.3.14 Programmed I/O (NON-DMA) Mode  
The ECP and parallel port FIFOs can also be operated using interrupt-driven, programmed I/O.  
Programmed I/O transfers are  
1. To the ecpDFifo at 400H and ecpAFifo at 000H  
2. From the ecpDFifo located at 400H  
3. To / from the tFifo at 400H.  
The host must set dmaEn and serviceIntr to 0 and also must set the direction and state accordingly in  
the programmed I/O transfers.  
The ECP requests programmed I/O transfers from the host by activating the IRQ pin. The  
programmed I/O empties or fills the FIFO using the appropriate direction and mode.  
Publication Release Date: May 25, 2007  
-131-  
Revision 1.0  
W83627UHG  
12. KEYBOARD CONTROLLER  
The W83627UHG KBC (8042 with licensed KB BIOS) circuit is designed to provide the functions  
®-  
needed to interface a CPU with a keyboard and/or a PS/2 mouse and can be used with IBM  
compatible personal computers or PS/2-based systems. The controller receives serial data from the  
keyboard or PS/2 mouse, checks the parity of the data, and presents the data to the system as a byte  
of data in its output buffer. Then, the controller asserts an interrupt to the system when data are  
placed in its output buffer. The keyboard and PS/2 mouse are required to acknowledge all data  
transmissions. No transmission should be sent to the keyboard or PS/2 mouse until an  
acknowledgement is received for the previous data byte.  
P24  
P25  
P21  
P20  
KIRQ  
MIRQ  
GATEA20  
KBRST  
KINH  
P17  
KDAT  
KCLK  
P27  
P10  
P26  
8042  
T0  
GP I/O PINS  
Multiplex I/O PINS  
MCLK  
MDAT  
P23  
T1  
P12~P16  
P22  
P11  
Figure 12-1 Keyboard and Mouse Interface  
12.1 Output Buffer  
The output buffer is an 8-bit, read-only register at I/O address 60H (Default, PnP programmable I/O  
address LD5-CR60 and LD5-CR61). The keyboard controller uses the output buffer to send the scan  
code (from the keyboard) and required command bytes to the system. The output buffer can only be  
read when the output buffer full bit in the register (in the status register) is logical 1.  
12.2 Input Buffer  
The input buffer is an 8-bit, write-only register at I/O address 60h or 64h (Default, PnP programmable  
I/O address LD5-CR60, LD5-CR61, LD5-CR62, and LD5-CR63). Writing to address 60h sets a flag to  
indicate a data write; writing to address 64h sets a flag to indicate a command write. Data written to  
I/O address 60h is sent to the keyboard (unless the keyboard controller is expecting a data byte)  
through the controller's input buffer only if the input buffer full bit (in the status register) is logical 0.  
-132-  
W83627UHG  
12.3 Status Register  
The status register is an 8-bit, read-only register at I/O address 64H (Default, PnP programmable I/O  
address LD5-CR62 and LD5-CR63) that holds information about the status of the keyboard controller  
and interface. It may be read at any time.  
Table 12-1 Bit Map of Status Register  
BIT  
BIT FUNCTION  
DESCRIPTION  
0: Output buffer empty  
1: Output buffer full  
0
Output Buffer Full  
0: Input buffer empty  
1: Input buffer full  
1
2
Input Buffer Full  
System Flag  
This bit may be set to 0 or 1 by writing to the system flag bit in the  
command byte of the keyboard controller. It defaults to 0 after a  
power-on reset.  
0: Data byte  
1: Command byte  
3
4
5
6
7
Command/Data  
Inhibit Switch  
0: Keyboard is inhibited  
1: Keyboard is not inhibited  
Auxiliary Device  
Output Buffer  
0: Auxiliary device output buffer empty  
1: Auxiliary device output buffer full  
General Purpose  
Time-out  
0: No time-out error  
1: Time-out error  
0: Odd parity  
1: Even parity (error)  
Parity Error  
Publication Release Date: May 25, 2007  
-133-  
Revision 1.0  
W83627UHG  
12.4 Commands  
Table 12-2 KBC Command Sets  
COMMAND  
20h  
FUNCTION  
Read Command Byte of Keyboard Controller  
Write Command Byte of Keyboard Controller  
60h  
BIT  
BIT DEFINITION  
7
6
Reserved  
IBM Keyboard Translate Mode  
Disable Auxiliary Device  
Disable Keyboard  
5
4
3
2
1
Reserve  
System Flag  
Enable Auxiliary Interrupt  
Enable Keyboard Interrupt  
0
A4h  
Test Password  
Returns 0Fah if Password is loaded  
Returns 0F1h if Password is not loaded  
Load Password  
Load Password until a logical 0 is received from the system  
Enable Password  
A5h  
A6h  
Enable the checking of keystrokes for a match with the password  
Disable Auxiliary Device Interface  
A7h  
A8h  
A9h  
Enable Auxiliary Device Interface  
Interface Test  
BIT  
BIT DEFINITION  
No Error Detected  
00  
01  
Auxiliary Device "Clock" line is stuck low  
Auxiliary Device "Clock" line is stuck high  
Auxiliary Device "Data" line is stuck low  
02  
03  
04  
Auxiliary Device "Data" line is stuck low  
AAh  
Self-test  
Returns 055h if self-test succeeds  
-134-  
W83627UHG  
KBC Command Sets, continued  
COMMAND  
FUNCTION  
ABh  
Interface Test  
BIT DEFINITION  
No Error Detected  
BIT  
00  
01  
Keyboard "Clock" line is stuck low  
02  
03  
04  
Keyboard "Clock" line is stuck high  
Keyboard "Data" line is stuck low  
Keyboard "Data" line is stuck high  
ADh  
AEh  
C0h  
C1h  
C2h  
D0h  
D1h  
D2h  
D3h  
D4h  
E0h  
FXh  
Disable Keyboard Interface  
Enable Keyboard Interface  
Read Input Port (P1) and send data to the system  
Continuously puts the lower four bits of Port1 into the STATUS register  
Continuously puts the upper four bits of Port1 into the STATUS register  
Send Port 2 value to the system  
Only set / reset GateA20 line based on system data bit 1  
Send data back to the system as if it came from the Keyboard  
Send data back to the system as if it came from Auxiliary Device  
Output next received byte of data from system to Auxiliary Device  
Reports the status of the test inputs  
Pulse only RC (the reset line) low for 6μs if the Command byte is even  
12.5 Hardware GATEA20/Keyboard Reset Control Logic  
The KBC includes hardware control logic to speed-up GATEA20 and KBRESET. This control logic is  
controlled by LD5-CRF0 as follows:  
12.5.1  
KB Control Register (Logic Device 5, CR-F0)  
BIT  
7
6
5
4
3
0
2
1
0
KCLKS1  
KCLKS0  
RESERVED  
P92EN  
HGA20  
HKBRST  
NAME  
DEFAULT  
1
0
0
0
0
0
0
Publication Release Date: May 25, 2007  
Revision 1.0  
-135-  
W83627UHG  
BIT  
DESCRIPTION  
7
KCLKS1.  
KCLKS0.  
Select the KBC clock rate.  
Bits  
7 6  
0 0: KBC clock input is 6 MHz.  
0 1: KBC clock input is 8 MHz.  
1 0: KBC clock input is 12 MHz.  
1 1: KBC clock input is 16 MHz.  
6
5-3  
2
RESERVED.  
P92EN (Port 92 Enable).  
1: Enables Port 92 to control GATEA20 and KBRESET.  
0: Disables Port 92 functions.  
1
0
HGA20 (Hardware GATEA 20).  
1: Selects hardware GATE A20 control logic to control GATE A20 signal.  
0: Disables GATEA20 control logic functions.  
HKBRST (Hardware Keyboard Reset).  
1: Selects hardware KB RESET control logic to control KBRESET signal.  
0: Disables hardware KB RESET control logic function.  
When the KBC receives data that follows a "D1" command, the hardware control logic sets or clears  
GATE A20 according to received data bit 1. Similarly, the hardware control logic sets or clears  
KBRESET depending on received data bit 0. When the KBC receives an "FE" command, the  
KBRESET is pulse low for 6 μs (Min.) with a 14 μs (Min.) delay.  
GATE A20 and KBRESET are controlled by either software or hardware logic, and they are mutually  
exclusive. Then, GATE A20 and KBRESET are merged with Port92 when the P92EN bit is set.  
-136-  
W83627UHG  
12.5.2  
Port 92 Control Register (Default Value = 0x24)  
BIT  
7
6
5
4
3
2
1
0
RES. (0)  
RES. (1)  
RES. (0)  
RES. (1)  
SGA20  
PLKBRST  
NAME  
DEFAULT  
0
0
1
0
0
1
0
0
BIT  
7-6  
5
DESCRIPTION  
RES. (0)  
RES. (1)  
RES. (0)  
RES. (1)  
4-3  
2
1
SGA20 (Special GATE A20 Control)  
1: Drives GATE A20 signal to high.  
0: Drives GATE A20 signal to low.  
0
PLKBRST (Pulled-low KBRESET). A logical 1 on this bit causes KBRESET to drive low  
for 6 μS(Min.) with a 14 μS(Min.) delay. Before issuing another keyboard-reset command,  
the bit must be cleared.  
Publication Release Date: May 25, 2007  
-137-  
Revision 1.0  
W83627UHG  
13. POWER MANAGEMENT EVENT  
The PME# (pin 86) signal is connected to the South Bridge and is used to wake up the system from  
S1 ~ S5 sleeping states.  
One control bit and four registers in the W83627UHG are associated with the PME function. The  
control bit is at Logical Device A, CR[F2h], bit[0] and is for enabling or disabling the PME function. If  
this bit is set to “0”, the W83627UHG won’t output any PME signal when any of the wake-up events  
has occurred and is enabled. The four registers are divided into PME status registers and PME  
interrupt registers of wake-up events Note.1  
1) The PME status registers of wake-up event:  
.
-
-
-
At Logical Device A, CR[F3h] and CR[F4h]  
Each wake-up event has its own status  
The PME status should be cleared by writing a “1” before enabling its corresponding bit in  
the PME interrupt registers  
2) The PME interrupt registers of wake-up event:  
-
-
At Logical Device A, CR[F6h] and CR[F7h]  
Each wake-up event can be enabled / disabled individually to generate a PME# signal  
Note.1 PME wake-up events that the W83627UHG supports include:  
z
z
z
z
z
z
z
z
z
z
z
z
z
Mouse IRQ event  
Keyboard IRQ event  
Printer IRQ event  
Floppy IRQ event  
UART A IRQ event  
UART B IRQ event  
UART C IRQ event  
UART D IRQ event  
UART E IRQ event  
UART F IRQ event  
Hardware Monitor IRQ event  
WDTO# event  
RIB (UARTB Ring Indicator) event  
13.1 Power Control Logic  
This chapter describes how the W83627UHG implements its ACPI function via these power control  
pins: PSIN# (Pin 68), PSOUT# (Pin 67), SUSB# (i.e. SLP_S3#; Pin 73) and PSON# (Pin 72). The  
following figure illustrates the relationships.  
-138-  
W83627UHG  
PSON#  
53VSB/VBAT  
53VCC  
PSON#  
PWRBTN#  
PSOUT#  
PSIN#  
VCC ON  
Power  
W83627UHG  
Supply  
South Bridge  
IOCLK  
48 / 24 MHz  
SUSB#  
SLP_S3#  
Figure 13-1 Power Control Mechanism  
13.1.1  
PSON# Logic  
13.1.1.1 Normal Operation  
The PSOUT# signal will be asserted low if the PSIN# signal is asserted low. The PSOUT# signal is  
held low for as long as the PSIN# is held low. The South Bridge controls the SUSB# signal through the  
PSOUT# signal. The PSON# is directly connected to the power supply to turn on or off the power.  
Figure 13-2 shows the power on and off sequences.  
The ACPI state changes from S5 to S0, then to S5  
PSON#  
SUSB# (Intel Chipset)  
SUSB# (Other Chipset)  
PSOUT#  
PSIN#  
5VSB  
S0 State  
S5 State  
S5 State  
Figure 13-2 Power Sequence from S5 to S0, then back to S5.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-139-  
W83627UHG  
13.1.2  
AC Power Failure Resume  
By definition, AC power failure means that the standby power is removed. The power failure resume  
control logic of the W83627UHG is used to recover the system to a pre-defined state after AC power  
failure. Two control bits at Logical Device A, CR[E4h], bits[6:5] indicate the pre-defined state. The  
definition of these two bits is listed in the following table:  
Table 13-1 Bit Map of Logical Device A, CR[E4h], bits [6:5]  
LOGICAL DEVICE A, CR[E4H],  
BITS[6:5]  
DEFINITION  
00  
01  
System always turns off when it returns from AC power failure  
System always turns on when it returns from AC power failure  
System turns off / on when it returns from power failure  
depending on the state before the power failure. (Please see  
Note 1)  
10  
11  
User defines the state before the power failure. (The previous  
state is set at CRE6[4]. Please see Note 2)  
Note1. The W83627UHG detects the state before power failure (on or off) through the SUSB# signal and  
the 5VCC power. The relation is illustrated in the following two figures.  
5VCC  
SUSB#  
The previous state is “on”, if 5VCC falls to 3.75V and SUSB# keeps at 2.0V.  
5VCC  
SUSB#  
The previous state is “off”, if 5VCC falls to 3.75V and SUSB# keeps at 0.8V.  
Note 2.  
Logical Device A, CR[E6h]  
bit [4]  
Definition  
0
1
User defines the state to be “on”  
User defines the state to be “off”  
-140-  
W83627UHG  
To ensure that VCC does not fall faster than VSB in various ATX Power Supplies, the W83627UHG  
adds the option of “user define mode” for the pre-defined state before AC power failure. BIOS can set  
the pre-defined state to be “On” or “Off”. According to this setting, the system is returned to the pre-  
defined state after the AC power recovery.  
13.2 Wake Up the System by Keyboard and Mouse  
The W83627UHG generates a low pulse through the PSOUT# pin to wake up the system when it  
detects a key code pressed or mouse button clicked. The following sections describe how the  
W83627UHG works.  
13.2.1  
Waken up by Keyboard events  
The keyboard Wake-Up function is enabled by setting Logical Device A, CR[E0h], bit 6 to “1”.  
There are two keyboard events that can be used for the wake-up  
1) Any key – Set bit 0 at Logical Device A, CR[E0h] to “1” (Default).  
2) Specific keys (Password) - Set bit 0 at Logical Device A, CR[E0h] to “0”.  
Three sets of specific key combinations are stored at Logical Device A. CR[E1h] is an index register to  
indicate which byte of key code storage (0x00h ~ 0x0Eh, 0x30h ~ 0x3Eh, 0x40h ~ 0x4Eh) is going to  
be read or written through CR[E2h]. According to IBM 101/102 keyboard specification, a complete key  
code contains a 1-byte make code and a 2-byte break code. For example, the make code of “0” is  
0x45h, and the corresponding break code is 0xF0h, 0x45h.  
The approach to implement Keyboard Password Wake-Up Function is to fill key codes into the  
password storage. Assume that we want to set “012” as the password. The storage should be filled as  
below. Please note that index 0x09h ~ 0x0Eh must be filled as 0x00h since the password has only  
three numbers.  
Index(CRE1)Æ  
Data(CRE2)Æ  
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E  
1E F0 1E 16 F0 16 45 F0 45 00 00 00 00 00 00  
First-pressed key “0”  
Second-pressed key “1”  
Third-pressed key “2”  
Publication Release Date: May 25, 2007  
-141-  
Revision 1.0  
W83627UHG  
13.2.2  
Waken up by Mouse events  
The mouse Wake-Up function is enabled by setting Logical Device A, CR[E0h], bit 5 to “1”.  
The following specific mouse events can be used for the wake-up:  
z
z
z
z
z
z
Any button clicked or any movement  
One click of the left or the right button  
One click of the left button  
One click of the right button  
Two clicks of the left button  
Two clicks of the right button.  
Three control bits (ENMDAT_UP, MSRKEY, MSXKEY) define the combinations of the mouse wake-up  
events. Please see the following table for the details.  
Table 13-2 Definitions of Mouse Wake-Up Events  
MSXKEY  
ENMDAT_UP  
MSRKEY  
(LOGICAL  
DEVICE A,  
CR[E0H], BIT 1)  
WAKE-UP EVENT  
(LOGICAL DEVICE A, (LOGICAL DEVICE A,  
CR[E6H], BIT 7)  
CR[E0H], BIT 4)  
Any button clicked or any  
movement.  
1
1
x
x
1
0
One click of the left or right  
button.  
0
0
0
0
0
1
0
1
1
1
0
0
One click of the left button.  
One click of the right button.  
Two clicks of the left button.  
Two clicks of the right button.  
13.3 Resume Reset Logic  
The RSMRST# (Pin 75) signal is a reset output and is used as the 5VSB power on reset signal for the  
South Bridge.  
When the W83627UHG detects the 5VSB voltage rises to “V1”, it then starts a delay – “t1” before the  
rising edge of RSMRST# asserting. If the 5VSB voltage falls below “V2”, the RSMRST# de-asserts  
immediately.  
Timing and voltage parameters are shown in Figure 13-3 and Table 13-3.  
-142-  
W83627UHG  
t1  
RSMRST#  
V1  
V2  
5VSB  
Figure 13-3 Mechanism of Resume Reset Logic  
Table 13-3 Timing and Voltage Parameters of RSMRST#  
NAME  
PARAMETER  
MIN.  
-
MAX.  
4.3  
-
UNIT  
V
V1  
V2  
t1  
5VSB Valid Voltage  
5VSB Ineffective Voltage  
2.6  
100  
V
Valid 5VSB to RSMRST# inactive  
200  
mS  
13.4 PWROK Generation  
The PWROK (Pin 71) signal is an output and is used as both the 5VCC and 3VCC power-on reset  
signal.  
When the W83627UHG detects both of the 5VCC and 3VCC voltages rise to “V3” and “V5”, it then  
starts a delay – “t2” before the rising edge of PWROK assertion. If both of the 5VCC and 3VCC  
voltages fall below “V4” and “V6”, the PWROK de-asserts immediately.  
Timing and the voltage parameters are shown in Figure 13-4 and Table 13-4.  
Figure 13-4 PWROK Generation Mechanism  
t2  
PWROK  
V3  
V4  
V6  
5VCC  
3VCC  
V5  
Publication Release Date: May 25, 2007  
Revision 1.0  
-143-  
W83627UHG  
Table 13-4 Timing and the Voltage Parameters of PWROK  
NAME  
PARAMETER  
5VCC Valid Voltage  
MIN.  
-
MAX.  
4.3  
-
UNIT  
V
V3  
5VCC Ineffective Voltage  
2.6  
-
V
V4  
V5  
V6  
t2  
3VCC Valid Voltage  
2.9  
V
3VCC Ineffective Voltage  
2.1  
300  
V
Valid 5VCC and 3VCC to PWROK active  
500  
mS  
Originally, the t2 timing is between 300 mS to 500 mS, but it can be changed to 200 mS to 300 mS by  
programming Logical Device A, CR[E6h], bit 3 to “1”. Furthermore, the W83627UHG provides four  
different extra delay time of PWROK for various demands. The four extra delay time are designed at  
Logical Device A, CR[E6h], bits 2~1. The following table shows the definitions of Logical Device A,  
CR[E6h] bits 3 ~1.  
LOGICAL DEVICE A,  
DEFINITION  
CR[E6H] BIT  
PWROK_DEL (first stage) (VSB)  
Set the delay time when rising from PWROK_LP to PWROK_ST.  
3
0: 300 ~ 500 mS.  
1: 200 ~ 300 mS.  
PWROK_DEL (VSB)  
Set the delay time when rising from PWROK_ST to PWROK.  
2~1  
00: No delay time.  
10: 96 ms  
01: Delay 32 ms  
11: Delay 250 ms  
For example, if Logical Device A, CR[E6h] bit 2 is set to “0” and bits 2~1 are set to “10”, the range of t2  
timing is from 396(300 + 96) mS to 596(500 + 96) mS.  
-144-  
W83627UHG  
14. SERIALIZED IRQ  
The W83627UHG supports a serialized IRQ scheme. This allows a signal line to be used to report the  
parallel interrupt requests. Since more than one device may need to share the signal serial SERIRQ  
signal, an open drain signal scheme is employed. The clock source is the PCI clock. The serialized  
interrupt is transferred on the SERIRQ signal, one cycle consisting of three frames types: the Start  
Frame, the IRQ/Data Frame, and the Stop Frame.  
14.1 Start Frame  
There are two modes of operation for the SERIRQ Start Frame: the Quiet mode and the Continuous  
mode.  
In the Quiet mode, the W83627UHG drives the SERIRQ signal active low for one clock, and then tri-  
states it. This brings all the state machines of the W83627UHG from idle to active states. The host  
controller (the South Bridge) then takes over driving SERIRQ signal low in the next clock and  
continues driving the SERIRQ low for programmable 3 to 7 clock periods. This makes the total number  
of clocks low 4 to 8 clock periods. After these clocks, the host controller drives the SERIRQ high for  
one clock and then tri-states it.  
In the Continuous mode, the START Frame can only be initiated by the host controller to update the  
information of the IRQ/Data Frame. The host controller drives the SERIRQ signal low for 4 to 8 clock  
periods. Upon a reset, the SERIRQ signal is defaulted to the Continuous mode for the host controller  
to initiate the first Start Frame.  
Please see the diagram below for more details.  
IRQ1 FRAME  
SMI# FRAME  
IRQ0 FRAME  
START FRAME  
SL  
or  
H
H
R
T
S
R
T
S
R
T
S
R
T
PCICLK  
SERIRQ  
START 1  
2
None  
None  
IRQ1  
Drive Source  
IRQ1  
Host Controller  
Figure 14-1 Start Frame Timing with Source Sampled A Low Pulse on IRQ1  
H=Host Control  
SL=Slave Control  
R=Recovery  
T=Turn-around  
S=Sample  
Note:  
1. The Start Frame pulse can be 4-8 clocks wide.  
2. The first clock of Start Frame is driven low by the W83627UHG because IRQ1 of the W83627UHG  
needs an interrupt request. Then the host takes over and continues to pull the SERIRQ low.  
Publication Release Date: May 25, 2007  
-145-  
Revision 1.0  
W83627UHG  
14.2 IRQ/Data Frame  
Once the Start Frame has been initiated, the W83627UHG must start counting frames based on the  
rising edge of the start pulse. Each IRQ/Data Frame has three clocks: the Sample phase, the  
Recovery phase, and the Turn-around phase.  
During the Sample phase, the W83627UHG drives SERIRQ low if the corresponding IRQ is active. If  
the corresponding IRQ is inactive, then SERIRQ must be left tri-stated. During the Recovery phase,  
the W83627UHG device drives the SERIRQ high. During the Turn-around phase, the W83627UHG  
device leaves the SERIRQ tri-stated. The W83627UHG starts to drive the SERIRQ line from the  
beginning of "IRQ0 FRAME" based on the rising edge of PCICLK.  
The IRQ/Data Frame has a specific numeral order, as shown in Table 14-1.  
Table 14-1 SERIRQ Sampling Periods  
SERIRQ SAMPLING PERIODS  
IRQ/DATA FRAME  
SIGNAL SAMPLED  
# OF CLOCKS PAST  
START  
EMPLOYED BY  
1
2
IRQ0  
IRQ1  
2
-
5
Keyboard  
3
SMI#  
8
-
4
IRQ3  
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
53  
56  
59  
62  
95  
UART B  
5
IRQ4  
UART A  
6
IRQ5  
-
7
IRQ6  
FDC  
8
IRQ7  
LPT  
9
IRQ8  
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
32:22  
IRQ9  
-
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IOCHCK#  
INTA#  
INTB#  
INTC#  
INTD#  
Unassigned  
-
-
Mouse  
-
-
-
-
-
-
-
-
-
-146-  
W83627UHG  
14.3 Stop Frame  
After all IRQ/Data Frames have completed, the host controller will terminates SERIRQ with a Stop  
frame. Only the host controller can initiate the Stop Frame by driving SERIRQ low for 2 or 3 clocks. If  
the Stop Frame is low for 2 clocks, the Sample mode of next SERIRQ cycle’s Sample mode is the  
Quiet mode. If the Stop Frame is low for 3 clocks, the Sample mode of next SERIRQ cycle is the  
Continuous mode.  
Please see the diagram below for more details.  
IRQ14  
FRAME  
IRQ15  
FRAME  
IOCHCK#  
FRAME  
STOP FRAME  
NEXT CYCLE  
START2  
I 1  
S
R
T
S
R
T
S
R
T
H
R
T
PCICLK  
SERIRQ  
STOP  
Driver  
None  
IRQ15  
None  
Host Controller  
Figure 14-2 Stop Frame Timing with Host Using 17 SERIRQ Sampling Period  
H=Host Control  
R=Recovery  
T=Turn-around  
S=Sample  
I= Idle.  
Note:  
1. There may be none, one or more Idle states during the Stop Frame.  
2. The Start Frame pulse of next SERIRQ cycle may or may not start immediately after the  
turn-around clock of the Stop Frame.  
Publication Release Date: May 25, 2007  
-147-  
Revision 1.0  
W83627UHG  
15. WATCHDOG TIMER  
Pin 77 is the WDTO# pin in the W83627UHG.  
The Watchdog Timer of the W83627UHG consists of an 8-bit programmable time-out counter and a  
control and status register. The time-out counter ranges from 1 to 255 minutes in the minute mode, or  
1 to 255 seconds in the second mode. The units of Watchdog Timer counter are selected at Logical  
Device 8, CR[F5h], bit[3]. The time-out value is set at Logical Device 8, CR[F6h]. Writing zero disables  
the Watchdog Timer function. Writing any non-zero value to this register causes the counter to load  
this value into the Watchdog Timer counter and start counting down.  
The W83627UHG outputs a low signal to the WDTO# pin (pin 77) when a time-out event occurs. In  
other words, when the value is counted down to zero, the timer stops, and the W83627UHG sets the  
WDTO# status bit in Logical Device 8, CR[F7h], bit[4], outputting a low signal to the WDTO# pin(pin  
77). Writing a zero will clear the status bit and the WDTO# pin returns to high. Writing a zero will clear  
the status bit. This bit will also be cleared if LRESET# or PWROK# signal is asserted.  
Please note that the output type of WDTO# (pin 77) is open-drain.  
-148-  
W83627UHG  
16. GENERAL PURPOSE I/O  
16.1 GPIO Architecture  
The W83627UHG provides 45 input/output ports that can be individually configured to perform a  
simple basic I/O function or an alternative, pre-defined function. GPIO ports 1 ~2 are configured  
through control registers in Logical Device 9, GPIO ports 3~4 in Logical Device 7, and GPIO ports 5~6  
in Logic Device 8. Users can configure each individual port to be an input or output port by  
programming respective bit in the selection register ( 0 = output, 1 = input). Invert port value by setting  
inversion register ( 0 = non -inverse, 1 = inverse). The port value is read / written through data  
registers.  
In addition, only GP25, GP26 and GP27 are designed to be able to assert PSOUT# or PME# signal to  
wake up the system if any of them has any transitions. The rising or falling edge can be set to perform  
the wake-up function. The following table gives a more detailed register map on GP25, GP26 and  
GP27.  
Table 16-1 Relative Control Registers of GPIO 25, 26 and 27 that Support Wake-Up Function  
EVENTROUTE I  
(PSOUT#)  
EVENTROUTE II  
(PME#)  
EVENT POLARITY  
EVENT STATUS  
0: DISABLE  
1: ENABLE  
0: DISABLE  
1: ENABLE  
0 : RISING  
1 : FALLING  
GP25  
GP26  
GP27  
LDA,  
LDA,  
LD9,  
LD9,  
CR[FEh]  
bit4  
CR[FEh]  
bit0  
CR[E6h]  
bit5  
CR[E7h]  
bit5  
LDA,  
LDA,  
LD9,  
LD9,  
CR[FEh]  
bit5  
CR[FEh]  
bit1  
CR[E6h]  
bit6  
CR[E7h]  
bit6  
LDA,  
LDA,  
LD9,  
LD9,  
CR[FEh]  
bit6  
CR[FEh]  
bit2  
CR[E6h]  
bit7  
CR[E7h]  
bit7  
16.2 Access Channels  
There are two different channels to set up/access the GPIO ports. The first one is the indirect access  
via register 2E/2F (4E/4F, it depends by HEFRAS trapping). The registers can be read / written only  
when the respective logical device ID and port number are selected.  
The other is the direct access through GPIO register table that can be configured by {CR61, CR60} of  
logic device 8. The mapped 5 registers are defined in table 11.2. Since the base address is set, the  
GPIO number can be selected by writing the group number to GSR [INDEX] (GPIO Select Register,  
#1~#6 for GPIO1 ~ GPIO6 respectively; #0 and #7 is invalid for GSR [INDEX]). Then the I/O register,  
the Data register and the Inversion register are mapped to addresses Base+0, Base+1 and Base+2  
respectively. Only one GPIO can be accessed at one time. The chip will ignore more than one “1”  
written in GSR. The most significant bit (MSB) is with higher priority.  
Publication Release Date: May 25, 2007  
-149-  
Revision 1.0  
W83627UHG  
Table 16-2 GPIO Register Addresses  
BIT NUMBER  
ADDRESS ABBR  
7
6
5
4
3
2
1
0
Base + 0  
Base + 1  
Base + 2  
Base + 3  
Base + 4  
GSR  
IOR  
DAT  
INV  
Reserved  
INDEX  
GPIO I/O Register  
GPIO Data Register  
GPIO Inversion Register  
GPIO Status Register  
DST  
-150-  
W83627UHG  
17. CONFIGURATION REGISTER  
17.1 Chip (Global) Control Register  
CR 02h. (Software Reset; Write Only)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0
Write “1” Only Software RESET.  
CR 07h. (Logical Device; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
DESCRIPTION  
7~0  
R / W  
Logical Device Number.  
CR 20h. (Chip ID, MSB; Read Only)  
BIT  
READ / WRITE  
7~0  
Read Only  
Chip ID number = A2h (high byte).  
CR 21h. (Chip ID, LSB; Read Only)  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
Read Only  
Chip ID number = 3xh (low byte). x is the IC version  
CR 22h. (Device Power Down; Default FFh)  
BIT  
7
READ / WRITE  
Reserved.  
R / W  
DESCRIPTION  
6
HM Power Down.  
0: Powered down 1: Not powered down  
5
R / W  
UARTB Power Down. 0: Powered down 1: Not powered down  
UARTA Power Down. 0: Powered down 1: Not powered down  
4
R / W  
3
R / W  
PRT Power Down.  
0: Powered down 1: Not powered down  
2~1 Reserved.  
R / W  
0
FDC Power Down.  
0: Powered down 1: Not powered down  
CR 23h. (IPD&Device Power Down; Default F0h)  
BIT  
7
READ / WRITE  
R / W  
DESCRIPTION  
UARTF Power Down 0: Powered down 1: Not powered down  
UARTE Power Down 0: Powered down 1: Not powered down  
UARTD Power Down. 0: Powered down 1: Not powered down  
6
R / W  
5
R / W  
Publication Release Date: May 25, 2007  
Revision 1.0  
-151-  
W83627UHG  
CR 23h. (IPD&Device Power Down; Default F0h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
4
R / W  
UARTC Power Down. 0: Powered down 1: Not powered down  
3~1 Reserved.  
R / W  
IPD (Immediate Power Down). When set to 1, the whole chip is put into  
power-down mode immediately.  
0
CR 24h. (Global Option; Default 0100_0ss0b)  
s: value by strapping  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
CLKSEL => Input clock rate selection  
6
5
4
R / W  
Reserved.  
R / W  
= 0 The clock input on pin 18 is 24 MHz.  
= 1 The clock input on pin 18 is 48 MHz. (Default)  
Select output type of SYSFANOUT  
=0 SYSFANOUT is Open-drain. (Default)  
=1 SYSFANOUT is Push-pull.  
Select output type of CPUFANOUT0  
=0 CPUFANOUT is Open-drain. (Default)  
=1 CPUFANOUT is Push-pull.  
3
2
R / W  
ENKBC => Enable keyboard controller  
= 0 KBC is disabled after hardware reset.  
= 1 KBC is enabled after hardware reset.  
Read Only  
This bit is read-only, and it is set or reset by a power-on strapping pin (Pin  
54, SOUTA).  
ENFDC => Enable FDC interface  
= 0 FDC is enabled after hardware reset.  
= 1 FDC is disabled after hardware reset.  
This bit is set or reset by a power-on strapping pin (Pin 52, DTRA#).  
Note 1  
1
R / W  
0
Reserved.  
Note1:  
Disable FDC interface  
Pin 5 Æ CTSF#  
Pin 6 Æ GP64  
Enable FDC interface  
Pin 5 Æ DRVDEN0  
Pin 6 Æ INDEX#  
Pin 7 Æ MOA#  
Pin 7 Æ DSRF#  
Pin 8 Æ RTSF#  
Pin 8 Æ DSA#  
-152-  
W83627UHG  
Disable FDC interface  
Pin 9 Æ DTRF#  
Pin 10 Æ SINF  
Pin 11Æ SOUTF  
Pin 13 Æ DCDF#  
Pin 14 Æ GP63  
Pin 15 Æ GP62  
Pin 16 Æ GP61  
Pin 17Æ RIF#  
Enable FDC interface  
Pin 9 Æ DIR#  
Pin 10 Æ STEP#  
Pin 11Æ WD#  
Pin 13 Æ WE#  
Pin 14 Æ TRAK0#  
Pin 15 Æ WP#  
Pin 16 Æ RDATA#  
Pin 17Æ HEAD#  
Pin 18Æ DSKCHG#  
Pin 18Æ GP60  
CR 25h. (Interface Tri-state Enable; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~6 Reserved.  
UARTBTRI =>  
5
4
3
R / W  
R / W  
R / W  
=0 Tri-state disabled  
=1 Tri-state enabled  
UARTATRI =>  
=0 Tri-state disabled  
=1 Tri-state enabled  
PRTTRI =>  
=0 Tri-state disabled  
=1 Tri-state enabled  
2~1 Reserved.  
R / W  
FDCTRI. =>  
0
=0 Tri-state disabled  
=1 Tri-state enabled  
CR 26h. (Global Option; Default 0s000000b)  
s: value by strapping  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
HEFRAS =>  
= 0 Write 87h to location 2E twice.  
= 1 Write 87h to location 4E twice.  
6
5
R / W  
R / W  
The corresponding power-on strapping pin is RTSA# (Pin 51).  
LOCKREG =>  
= 0 Enable R/W configuration registers.  
= 1 Disable R/W configuration registers.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-153-  
W83627UHG  
CR 26h. (Global Option; Default 0s000000b), continued  
BIT  
READ / WRITE  
DESCRIPTION  
4
Reserved.  
DSFDLGRQ =>  
= 0 Enable FDC legacy mode for IRQ and DRQ selection. Then DO  
register (base address + 2) bit 3 is effective when selecting IRQ.  
3
2
1
0
R / W  
R / W  
R / W  
R / W  
= 1 Disable FDC legacy mode for IRQ and DRQ selection. Then DO  
register (base address + 2) bit 3 is not effective when selecting IRQ.  
DSPRLGRQ =>  
= 0 Enable PRT legacy mode for IRQ and DRQ selection. Then DCR  
register (base address + 2) bit 4 is effective when selecting IRQ.  
= 1 Disable PRT legacy mode for IRQ and DRQ selection. Then DCR  
register (base address + 2) bit 4 is not effective when selecting IRQ.  
DSUALGRQ =>  
= 0 Enable UART A legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
= 1 Disable UART A legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
DSUBLGRQ =>  
= 0 Enable UART B legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
= 1 Disable UART B legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
CR 27h. (Reserved)  
CR 28h. (Global Option; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
DSUFLGRQ =>  
= 0 Enable UART F legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
R/W  
7
= 1 Disable UART F legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
DSUELGRQ =>  
= 0 Enable UART E legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
6
R/W  
= 1 Disable UART E legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
-154-  
W83627UHG  
CR 28h. (Global Option; Default 00h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
DSUDLGRQ =>  
= 0 Enable UART D legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
5
R/W  
= 1 Disable UART D legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
DSUCLGRQ =>  
= 0 Enable UART C legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
4
R/W  
= 1 Disable UART C legacy mode for IRQ selection. Then HCR register  
(base address + 4) bit 3 is not effective when selecting IRQ.  
3
Reserved.  
R / W  
PRTMODS2 ~ 0 =>  
= 0xx Parallel Port Mode.  
= 1xx Reserved.  
2~0  
CR 29h. (OVT#/HM_SMI#, PLED & GPIO3, 4, 5, 6 Output Type Select; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Select output type of GPIO 6  
7
R/W  
=0 GPIO6 (pins 6, 14, 15, 16 & 18) are open-drain. (Default)  
=1 GPIO6 are push-pull.  
Pin 95 function select  
= 0 OVT#  
= 1 SMI#  
6
5
4
3
R / W  
R/W  
R/W  
R/W  
Select output type of GPIO 5  
= 0 GPIO 5 (pins 125 ~ 4) are open-drain. (Default)  
= 1 GPIO 5 are push-pull.  
Select output type of GPIO 4  
= 0 GPIO 4 (pins 117 ~ 124) are open-drain. (Default)  
= 1 GPIO 4 are push-pull.  
Select output type of GPIO 3  
= 0 GPIO 3 (pins 109 ~ 116) are open-drain. (Default)  
= 1 GPIO 3 are push-pull.  
Select Power LED mode.  
00: Power LED pin is tri-stated.  
2~1  
0
R / W  
01: Power LED pin is driven low.  
10: Power LED pin outputs 1Hz pulse with 50% duty cycle.  
11: Power LED pin outputs 1/4Hz pulse with 50% duty cycle.  
Reserved.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-155-  
W83627UHG  
CR 2Ah. (I2C Pin Select; Default 00h)  
BIT READ / WRITE  
7~4 Reserved.  
(VSB Power)  
DESCRIPTION  
SDA_filter_EN:  
3
2
R/W  
0: Enable SDA input to a filter  
1: Disable SDA input to a filter  
SCL_filter_EN:  
0: Enable SCL input to a filter  
R / W  
1: Disable SCL input to a filter  
Pin 69, Pin 70 function select (I2C interface)  
= 0 Pin 69, 70 Æ GP25, GP26 (Default)  
= 1 Pin 69, 70 Æ SDA, SCL  
1
0
R / W  
Reserved.  
CR 2Bh. (Reserved)  
CR 2Ch. (GPIO1 Multi-function and GPIO1, 2 Output Type Select; Default 02h)  
(VSB Power)  
BIT  
READ / WRITE  
DESCRIPTION  
Select output type of GPIO 2  
= 0 GPIO 2 (pins 108, 107, 106, 96, 94, 70, 69, 58) are open-drain.  
(Default)  
7
R / W  
= 1 GPIO 2 are push-pull.  
Select output type of GPIO 1  
6
R / W  
= 0 GPIO 1 (pins 78 ~ 85) are open-drain. (Default)  
= 1 GPIO 1 are push-pull.  
5~3 Reserved.  
EN_PWRDN. (VBAT)  
2
R / W  
= 0 Disable thermal shutdown function.  
= 1 Enable thermal shutdown function.  
Pins 78 ~ 85 function select  
Bit-1  
Bit-0  
Pins 78 ~ 85 function  
Pin 82 Æ Reserved (tri-state)  
0
0
Pin 83 Æ Reserved (always low)  
Others Æ GPIO1  
1~0  
R / W  
Pin 82 Æ IRRX  
Pin 83 Æ IRTX  
Others Æ GPIO1  
0
1
1
1
0
1
Pins 78 ~ 85 Æ GPIO1  
Pins 78 ~ 85 Æ UART B  
CR 2Dh. (Default 00h)  
-156-  
W83627UHG  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
0: Enable GP27 input de-bouncer.  
6
5
R / W  
R / W  
1: Disable GP27 input de-bouncer.  
0: Enable GP26 input de-bouncer.  
1: Disable GP26 input de-bouncer.  
0: Enable GP25 input de-bouncer.  
1: Disable GP25 input de-bouncer.  
4
3
2
R / W  
Reserved.  
R / W  
0: GP27 trigger type :edge  
1: GP27 trigger type :level  
0: GP26 trigger type :edge  
1: GP26 trigger type :level  
1
0
R / W  
R / W  
0: GP25 trigger type :edge  
1: GP25 trigger type :level  
CR 2Eh. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
R / W  
Test Mode Bits: Reserved.  
Test Mode Bits: Reserved.  
CR 2Fh. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
DESCRIPTION  
7~0  
R / W  
17.2 Logical Device 0 (FDC)  
CR 30h. (Default 01h)  
BIT  
READ / WRITE  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 03h,F0h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select FDC I/O base address <100h : FF8h> on 8-  
byte boundary.  
7~0  
R / W  
Publication Release Date: May 25, 2007  
-157-  
Revision 1.0  
W83627UHG  
CR 70h. (Default 06h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for FDC.  
CR 74h. (Default 02h)  
BIT READ / WRITE  
7~3 Reserved.  
DESCRIPTION  
These bits select DRQ resource for FDC.  
2~0  
R / W  
000: DMA0.  
001: DMA1.  
010: DMA2.  
011: DMA3.  
1xx: No DMA active.  
CR F0h. (Default 8Eh)  
BIT  
READ / WRITE  
DESCRIPTION  
FIPURDWN  
This bit controls the internal pulled-up resistors of the FDC input pins  
RDATA#, INDEX#, TRAK0#, DSKCHG# and WP#.  
7
R / W  
0: The internal pulled-up resistors of FDC are turned on.  
1: The internal pulled-up resistors of FDC are turned off. (Default)  
This bit determines the polarity of all FDD interface signals.  
0: FDD interface signals are active low.  
6
R / W  
1: FDD interface signals are active high.  
When this bit is logic 0, it indicates a second drive is installed and is  
reflected in status register A. (PS2 mode only)  
5
4
R / W  
R / W  
R / W  
R / W  
R / W  
Swap Drive 0, 1 Mode =>  
0: No Swap.  
1: Drive and Motor select 0 and 1 are swapped.  
Interface Mode.  
00: Model 30.  
10: Reserved.  
01: PS/2.  
3~2  
1
11: AT Mode  
FDC DMA Mode.  
Floppy Mode.  
0: Burst Mode is enabled  
1: Non-Burst Mode.  
0: Normal Floppy Mode.  
0
1: Enhanced 3-mode FDD.  
-158-  
W83627UHG  
CR F1h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
00: FDD A.  
10: FDD C.  
Boot Floppy.  
01: FDD B.  
11: FDD D.  
7~6  
R / W  
Media ID1, Media ID0. These bits will be reflected on FDC’s Tape Drive  
Register bit 7, 6.  
5~4  
3~2  
R / W  
R / W  
Density Select.  
00: Normal.  
01 Normal.  
10: 1 (Forced to logic 1).  
11: 0 (Forced to logic 0).  
DISFDDWR =>  
1
0
R / W  
R / W  
0: Enable FDD write.  
1: Disable FDD write (forces pins WE, WD stay high).  
SWWP =>  
0: Normal, use WP to determine whether the FDD is write protected or  
not.  
1: FDD is always write-protected.  
CR F2h. (Default FFh)  
BIT  
7~6  
5~4  
3~2  
1~0  
READ / WRITE  
R / W  
DESCRIPTION  
FDD D Drive Type.  
R / W  
FDD C Drive Type.  
R / W  
FDD B Drive Type.  
R / W  
FDD A Drive Type.  
CR F4h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
0: Enable FDC Pre-compensation.  
1: Disable FDC Pre-compensation.  
6
5
R / W  
Reserved.  
Data Rate Table selection (Refer to TABLE A).  
00: Select regular drives and 2.88 format.  
4~3  
R / W  
01: 3-mode drive.  
10: 2 Meg Tape.  
11: Reserved.  
2
Reserved.  
R / W  
1~0  
Drive Type selection (Refer to TABLE B).  
Publication Release Date: May 25, 2007  
Revision 1.0  
-159-  
W83627UHG  
CR F5h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
R / W  
Same as FDD0 of CR F5h.  
TABLE A  
DRIVE RATE TABLE  
SELECT  
DATA RATE  
SELECTED DATA RATE  
SELDEN  
DRTS1  
DRTS0  
DRATE1  
DRATE0  
MFM  
1Meg  
500K  
300K  
250K  
1Meg  
500K  
500K  
250K  
1Meg  
500K  
2Meg  
250K  
FM  
---  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
250K  
150K  
125K  
---  
0
0
250K  
250K  
125K  
---  
0
1
1
0
250K  
---  
125K  
TABLE B  
DTYPE0  
DTYPE1  
DRVDEN0 (pin 2)  
SELDEN  
DRVDEN1 (pin 3)  
DRIVE TYPE  
4/2/1 MB 3.5”“  
2/1 MB 5.25”  
0
0
DRATE0  
2/1.6/1 MB 3.5” (3-MODE)  
0
1
1
1
0
1
DRATE1  
DRATE0  
DRATE0  
DRATE1  
SELDEN  
DRATE0  
-160-  
W83627UHG  
17.3 Logical Device 1 (Parallel Port)  
CR 30h. (Default 01h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 03h, 78h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select PRT I/O base address.  
<100h : FFCh> on 4-byte boundary (EPP not supported) or  
<100h : FF8h> on 8-byte boundary (all modes supported, EPP is only  
available when the base address is on 8-byte boundary).  
7~0  
R / W  
CR 70h. (Default 07h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for PRT.  
CR 74h. (Default 04h)  
BIT READ / WRITE  
7~3 Reserved.  
DESCRIPTION  
These bits select DRQ resource for PRT.  
2~0  
R / W  
000: DMA0.  
001: DMA1.  
010: DMA2.  
011: DMA3.  
1xx: No DMA active.  
CR F0h. (Default 3Fh)  
BIT  
7
READ / WRITE  
Reserved.  
R / W  
DESCRIPTION  
6~3  
ECP FIFO Threshold.  
Parallel Port Mode selection (CR28 bit2 PRTMODS2 = 0).  
000: Standard and Bi-direction (SPP) mode.  
001: EPP – 1.9 and SPP mode.  
010: ECP mode.  
2~0  
R / W  
011: ECP and EPP – 1.9 mode.  
100: Printer Mode.  
101: EPP – 1.7 and SPP mode.  
110: Reserved.  
111: ECP and EPP – 1.7 mode.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-161-  
W83627UHG  
17.4 Logical Device 2 (UART A)  
CR 30h. (Default 01h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 03h, F8h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 1 I/O base address <100h: FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 04h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port A.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
0: Delay RXCLK for 5 ns for LG issue.  
1: No delay of 5 ns for RXCLK.  
7
R / W  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
5
R / W  
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
4~2 Reserved.  
00: UART A clock source is 1.8462 MHz (24 MHz / 13).  
01: UART A clock source is 2 MHz (24 MHz / 12).  
00: UART A clock source is 24 MHz (24 MHz / 1).  
00: UART A clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
-162-  
W83627UHG  
17.5 Logical Device 3 (UART B)  
CR 30h. (Default 01h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 02h, F8h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 2 I/O base address <100h: FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 03h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port B.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
0: Delay RXCLK for 5 ns for LG issue.  
1: No delay of 5 ns for RXCLK.  
7
R / W  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
5
4
R / W  
Reserved.  
0: No reception delay when SIR is changed from TX mode to RX mode.  
3
2
R / W  
R / W  
1: Reception delay 4 characters’ time (40 bit-time) when SIR is changed  
from TX mode to RX mode.  
0: No transmission delay when SIR is changed from RX mode to TX  
mode.  
1: Transmission delay 4 characters’ time (40 bit-time) when SIR is  
changed from RX mode to TX mode.  
00: UART B clock source is 1.8462 MHz (24 MHz / 13).  
01: UART B clock source is 2 MHz (24 MHz / 12).  
00: UART B clock source is 24 MHz (24 MHz / 1).  
00: UART B clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
Publication Release Date: May 25, 2007  
-163-  
Revision 1.0  
W83627UHG  
CR F1h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
R / W  
Reserved.  
IRLOCSEL => IR I/O pins’ location selection.  
0: Through SINB / SOUTB.  
6
5~3  
2
R / W  
R / W  
R / W  
1: Through IRRX / IRTX.  
IRMODE => IR function mode selection. See the table below.  
IR half / full duplex function selection.  
0: IR function is Full Duplex.  
1: IR function is Half Duplex.  
0: SOUTB pin of UART B function or IRTX pin of IR function is in normal  
condition.  
1
0
R / W  
R / W  
1: Inverse SOUTB pin of UART B function or IRTX pin of IR function.  
0: SINB pin of UART B function or IRRX pin of IR function is in normal  
condition.  
1: Inverse SINB pin of UART B function or IRRX pin of IR function.  
IR MODE  
IR FUNCTION  
IRTX  
IRRX  
00X  
Disable  
Tri-state  
High  
010*  
011*  
100  
IrDA  
IrDA  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
Routed to SINB/IRRX  
Active pulse 1.6 μS  
Active pulse 3/16 bit time  
Inverting IRTX/SOUTB pin  
ASK-IR  
Inverting IRTX/SOUTB & 500  
KHZ clock  
101  
110  
ASK-IR  
ASK-IR  
ASK-IR  
Routed to SINB/IRRX  
Inverting IRTX/SOUTB  
Demodulation into SINB/IRRX  
Demodulation into SINB/IRRX  
Inverting IRTX/SOUTB & 500  
KHZ clock  
111*  
Note: The notation is normal mode in the IR function.  
-164-  
W83627UHG  
17.6 Logical Device 5 (Keyboard Controller)  
CR 30h. (Default 01h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 00h,60h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select the first KBC I/O base address <100h: FFFh>  
on 1-byte boundary.  
7~0  
R / W  
CR 62h, 63h. (Default 00h,64h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select the second KBC I/O base address <100h:  
FFFh> on 1-byte boundary.  
7~0  
R / W  
CR 70h. (Default 01h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for KINT. (Keyboard interrupt)  
CR 72h. (Default 0Ch)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for MINT. (PS/2 Mouse interrupt)  
CR F0h. (Default 83h)  
BIT  
READ / WRITE  
DESCRIPTION  
KBC clock rate selection  
00: 6MHz  
7~6  
R / W  
01: 8MHz  
10: 12MHz  
11: 16MHz  
5~3 Reserved.  
Publication Release Date: May 25, 2007  
-165-  
Revision 1.0  
W83627UHG  
CR F0h. (Default 83h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
0: Port 92 disabled.  
1: Port 92 enabled.  
2
R / W  
0: Gate A20 software control.  
1
0
R / W  
R / W  
1: Gate A20 hardware speed up.  
0: KBRST software control.  
1: KBRST hardware speeds up.  
-166-  
W83627UHG  
17.7 Logical Device 6 (UART C)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 03h, E0h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 1 I/O base address <100h : FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 04h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port C.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
0: Delay RXCLK for 5 ns for LG issue.  
1: No delay of 5 ns for RXCLK.  
7
R / W  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
5
R / W  
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
4~2 Reserved.  
00: UART C clock source is 1.8462 MHz (24 MHz / 13).  
01: UART C clock source is 2 MHz (24 MHz / 12).  
00: UART C clock source is 24 MHz (24 MHz / 1).  
00: UART C clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
Publication Release Date: May 25, 2007  
-167-  
Revision 1.0  
W83627UHG  
17.8 Logical Device 7 (GPIO3, GPIO4)  
CR 30h. (Default 03h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~2 Reserved.  
1
0
R / W  
R / W  
0: GPIO4 is inactive.  
0: GPIO3 is inactive.  
1: GPIO4 is active.  
1: GPIO3 is active.  
CR E0h. (GPIO3 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO3 I/O register  
7~0  
R / W  
0: The respective GPIO3 PIN is programmed as an Output port  
1: The respective GPIO3 PIN is programmed as an Input port.  
CR E1h. (GPIO3 Data Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO3 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E2h. (GPIO3 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO3 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
CR E3h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO3 Event Status  
Bit 7-0 corresponds to GP37-GP30, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
-168-  
W83627UHG  
CR E4h. (GPIO4 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO4 I/O register  
7~0  
R / W  
0: The respective GPIO4 PIN is programmed as an Output port  
1: The respective GPIO4 PIN is programmed as an Input port.  
CR E5h. (GPIO4 Data Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO4 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E6h. (GPIO4 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO4 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
CR E7h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO4 Event Status  
Bits 7-0 correspond to GP47-GP40, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
Publication Release Date: May 25, 2007  
Revision 1.0  
-169-  
W83627UHG  
17.9 Logical Device 8 (WDTO#, PLED, GPIO5, 6 & GPIO Base Address)  
CR 30h. (Default 02h)  
BIT READ / WRITE  
7~3 Reserved.  
DESCRIPTION  
2
1
0
R / W  
R / W  
R / W  
0: GPIO6 is inactive.  
0: GPIO5 is inactive.  
1: GPIO6 is active.  
1: GPIO5 is active.  
0: WDTO# and PLED are inactive. 1: WDTO# and PLED are active.  
CR 60h 61h. (Default 00h, 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select GPIO base address <100h: FF8h> on 4-byte  
boundary.  
7~0  
R / W  
CR E0h. (GPIO5 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO5 I/O register  
7~0  
R / W  
0: The respective GPIO5 PIN is programmed as an Output port  
1: The respective GPIO5 PIN is programmed as an Input port.  
CR E1h. (GPIO5 Data Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO5 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E2h. (GPIO5 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO5 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
-170-  
W83627UHG  
CR E3h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO5 Event Status  
Bits 7-0 correspond to GP57-GP50, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
CR E4h. (GPIO6 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO6 I/O register  
7~0  
R / W  
0: The respective GPIO6 PIN is programmed as an Output port  
1: The respective GPIO6 PIN is programmed as an Input port.  
CR E5h. (GPIO6 Data Register; Default 1Fh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO6 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E6h. (GPIO6 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO6 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
CR E7h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO6 Event Status  
Bits 7-0 correspond to GP67-GP60, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
Publication Release Date: May 25, 2007  
Revision 1.0  
-171-  
W83627UHG  
CR F5h. (WDTO# and KBC P20 Control Mode Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~5 Reserved.  
1000 times faster in WDTO# count mode.  
0: Disable.  
1: Enable.  
4
R / W  
(If bit-3 is Second Mode, the count mode is 1/1000 Sec.)  
(If bit-3 is Minute Mode, the count mode is 1/1000 Min.)  
Select WDTO# count mode.  
0: Second Mode.  
3
2
R / W  
R / W  
1: Minute Mode.  
Enable the rising edge of KBC reset (P20) to issue time-out event.  
0: Disable.  
1: Enable.  
Disable / Enable the WDTO# output low pulse to the KBRST# pin (PIN60)  
1
0
R / W  
0: Disable.  
1: Enable.  
Reserved.  
CR F6h. (WDTO# Counter Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Watch Dog Timer Time-out value. Writing a non-zero value to this  
register causes the counter to load the value to Watch Dog Counter  
and start counting down. If bits 7 and 6 of CR F7h are set, any  
Mouse Interrupt or Keyboard Interrupt event will also cause the  
reload of previously-loaded non-zero value to Watch Dog Counter  
and start counting down. Reading this register returns current value  
in Watch Dog Counter instead of Watch Dog Timer Time-out value.  
7~0  
R / W  
00h: Time-out Disable  
01h: Time-out occurs after 1 second/minute  
02h: Time-out occurs after 2 second/minutes  
03h: Time-out occurs after 3 second/minutes  
……………………….......................................  
FFh: Time-out occurs after 255 second/minutes  
-172-  
W83627UHG  
CR F7h. (WDTO# Control & Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Mouse interrupt reset watch-dog timer enable  
0: Watchdog timer is not affected by mouse interrupt.  
1: Watchdog timer is reset by mouse interrupt.  
7
R / W  
Keyboard interrupt reset watch-dog timer enable  
6
5
R / W  
0: Watchdog timer is not affected by keyboard interrupt.  
1: Watchdog timer is reset by keyboard interrupt.  
Write “1” Only Trigger WDTO# event. This bit is self-clearing.  
WDTO# status bit  
R / W  
4
0: Watchdog timer is running.  
Write “0” Clear  
1: Watchdog timer issues time-out event.  
3~0  
R / W  
These bits select IRQ resource for WDTO#. (02h for SMI# event.)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-173-  
W83627UHG  
17.10 Logical Device 9 (GPIO1, GPIO2 and SUSLED)  
CR 30h. (Default 03h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~2 Reserved.  
1
0
R / W  
R / W  
0: GPIO2 is inactive.  
0: GPIO1 is inactive.  
1: GPIO2 is active.  
1: GPIO1 is active.  
CR E0h. (GPIO1 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO1 I/O register  
7~0  
R / W  
0: The respective GPIO1 PIN is programmed as an Output port  
1: The respective GPIO1 PIN is programmed as an Input port.  
CR E1h. (GPIO1 Data Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO1 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E2h. (GPIO1 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO1 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
CR E3h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO1 Event Status  
Bits 7-0 correspond to GP17-GP10, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
-174-  
W83627UHG  
CR E4h. (GPIO2 I/O Register; Default FFh)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO2 I/O register  
7~0  
R / W  
0: The respective GPIO2 PIN is programmed as an Output port  
1: The respective GPIO2 PIN is programmed as an Input port.  
CR E5h. (GPIO2 Data Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO2 Data register  
R / W  
For Output ports, the respective bits can be read and written by the pins.  
7~0  
For Input ports, the respective bits can be read only from pins. Write  
accesses will be ignored.  
Read Only  
CR E6h. (GPIO2 Inversion Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO2 Inversion register  
0: The respective bit and the port value are the same.  
7~0  
R / W  
1: The respective bit and the port value are inverted. (Both Input & Output  
ports)  
CR E7h. (Status Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO2 Event Status  
Bit 4-0 corresponds to GP24-GP20, respectively.  
0 : No active edge(rising/falling) has been detected  
1 : An active edge(rising/falling) has been detected  
Reading the status bit clears it to 0.  
Read Only  
Read-Clear  
7~0  
CR F3h. (Suspend LED Mode Register; Default 00h)  
(VBAT power)  
BIT  
READ / WRITE  
DESCRIPTION  
Select Suspend LED mode.  
00: Suspend LED pin is driven low.  
01: Suspend LED pin is tri-stated.  
7~6  
R / W  
10: Suspend LED pin outputs 1Hz pulse with 50% duty cycle.  
11: Suspend LED pin outputs 1/4Hz pulse with 50% duty cycle.  
5~0 Reserved.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-175-  
W83627UHG  
17.11 Logical Device A (ACPI)  
(CR30, CR70 are VCC powered; CRE0~F7 and CRFE are VRTC powered)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 70h. (Default 00h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for PME#.  
CR E0h. (Default 01h) (VBAT Power)  
BIT  
READ / WRITE  
DESCRIPTION  
DIS_PSIN => Disable panel switch input to turn system power supply on.  
0: PSIN# is wire-AND and connected to PSOUT#.  
7
R / W  
1: PSIN# is blocked and cannot affect PSOUT#.  
Enable KBC wake-up  
6
5
R / W  
R / W  
0: Disable keyboard wake-up function via PSOUT#.  
1: Enable keyboard wake-up function via PSOUT#.  
Enable Mouse wake-up  
0: Disable mouse wake-up function via PSOUT#.  
1: Enable mouse wake-up function via PSOUT#.  
MSRKEY =>  
3 keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1])  
define the combinations of the mouse wake-up events. Please refer to the  
following table for the details.  
ENMDAT_UP MSRKEY MSXKEY  
Wake-up event  
1
1
x
x
1
0
Any button clicked or movement.  
4
R / W  
One click of either left or right MS  
button.  
0
0
0
0
0
1
0
1
1
1
0
0
One click of the MS left button.  
One click of the MS right button.  
Two clicks of the MS left button.  
Two clicks of the MS right button.  
-176-  
W83627UHG  
CR E0h. (Default 01h) (VBAT Power), continued  
BIT  
READ / WRITE  
DESCRIPTION  
3
Reserved.  
Keyboard / Mouse swap enable  
2
1
R / W  
R / W  
0: Normal mode.  
1: Keyboard / Mouse ports are swapped.  
MSXKEY =>  
3 keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1])  
define the combinations of the mouse wake-up events. Please refer to the  
table in CRE0[4] for the details.  
KBXKEY =>  
0: Only the pre-determined key combination in sequence can wake up the  
system.  
0
R / W  
1: Any character received from the keyboard can wake up the system.  
CR E1h. (KBC Wake-Up Index Register; Default 00h) (VSB Power)  
BIT  
READ / WRITE  
DESCRIPTION  
Keyboard wake-up index register.  
It is the index register of CRE2, which is the access window of keyboard  
pre-determined key combination characters. The first set of wake up key  
combination is in the range of 0x00 - 0x0E, the second set 0x30 – 0x3E,  
and the third set 0x40 – 0x4E. Incoming key combination can be read  
through 0x10 – 0x1E.  
7~0  
R / W  
CR E2h. (KBC Wake-Up Data Register; Default FFh) (VSB Power)  
BIT  
READ / WRITE  
DESCRIPTION  
Keyboard wake-up data register.  
7~0  
R / W  
It is the data register of the keyboard pre-determined key combination  
characters, which is indexed by CRE1.  
CR E3h. (Event Status Register; Default 08h)  
BIT READ / WRITE  
DESCRIPTION  
7~6 Reserved.  
Read Only  
5
This event status is caused by VSB power off/on.  
Read-Clear  
Publication Release Date: May 25, 2007  
Revision 1.0  
-177-  
W83627UHG  
CR E3h. (Event Status Register; Default 08h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
If E4[7] is 1 =>  
This bit is 0: When power loss occurs and VSB power is on, it indicates  
that the system power is turned on.  
This bit is 1: When power loss occurs and VSB power is on, it indicates  
that the system power is turned off.  
Read Only  
Read-Clear  
4
If E4[7] is 0 => This bit is always 0.  
Thermal shutdown status.  
0: No thermal shutdown event is issued.  
1: The thermal shutdown event is issued.  
Read Only  
Read-Clear  
3
2
1
0
PSIN_STS  
0: No PSIN event is issued.  
1: The PSIN event is issued.  
Read Only  
Read-Clear  
MSWAKEUP_STS => The bit is latched by the mouse wake-up event.  
0: No mouse wake-up event is issued.  
1: The mouse wake-up event is issued.  
Read Only  
Read-Clear  
KBWAKEUP_STS => The bit is latched by the keyboard wake-up event.  
0: No keyboard wake-up event is issued.  
1: The keyboard wake-up event is issued.  
Read Only  
Read-Clear  
CR E4h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Disable / Enable power loss control function (LDA: CRE4[6:5]) for Intel  
chipset. (VBAT)  
0: Disable.  
7
R / W  
1: Enable.  
Power-loss control bits => (VBAT)  
00: System always turns off when it returns from the power-loss state.  
01: System always turns on when it returns from the power-loss state.  
10: System turns off / on when it returns from the power-loss state  
depending on the state before the power loss.  
6~5  
R / W  
11: User defines the state before power loss.(i.e. the last state set of  
CRE6[4])  
4
3
Reserved.  
R / W  
Keyboard wake-up options. (LRESET#)  
0: Password or sequence hot keys programmed in the registers.  
1: Any key.  
Enable the hunting mode for all wake-up events set in CRE0. This bit is  
cleared when any wake-up events is captured. (LRESET#)  
0: Disable.  
1: Enable.  
2
R / W  
1~0  
Reserved.  
-178-  
W83627UHG  
CR E5h. (GPIOs Reset Source Register; Default 00))  
BIT  
READ / WRITE  
DESCRIPTION  
GPIO 6 reset source control bit.  
7
R / W  
=0 Enable GPIO 6 reset source by LRESET#  
=1 Disable GPIO 6 reset source by LRESET#  
GPIO 5 reset source control bit.  
6
5
4
3
R / W  
R / W  
R / W  
R / W  
=0 Enable GPIO 5 reset source by LRESET#  
=1 Disable GPIO 5 reset source by LRESET#  
GPIO 4 reset source control bit.  
=0 Enable GPIO 4 reset source by LRESET#  
=1 Disable GPIO 4 reset source by LRESET#  
GPIO 3 reset source control bit.  
=0 Enable GPIO 3 reset source by LRESET#  
=1 Disable GPIO 3 reset source by LRESET#  
GPIO 2 reset source control bit.  
=0 Enable GPIO 2 reset source by LRESET#  
=1 Disable GPIO 2 reset source by LRESET#  
GP25~27 reset source control bit.  
=0 LRESET#  
2
R / W  
=1 RSMRST#  
1-0  
Reserved.  
CR E6h. (Default 1Ch)  
BIT READ / WRITE  
DESCRIPTION  
ENMDAT => (VSB)  
3 keys (ENMDAT_UP, CRE6[7]; MSRKEY, CRE0[4]; MSXKEY, CRE0[1])  
define the combinations of the mouse wake-up events. Please refer to the  
table in CRE0[4] for the details.  
7
R / W  
6
5
Reserved.  
R / W  
CASEOPEN Clear Control. (VSB)  
Write 1 to this bit will clear CASEOPEN status. This bit will clear the status  
itself. The function is the same as Index 46h bit 7 of H/W Monitor part.  
Power-loss Last State Flag. (VBAT)  
4
R / W  
0: ON  
1: OFF.  
Publication Release Date: May 25, 2007  
-179-  
Revision 1.0  
W83627UHG  
CR E6h. (Default 1Ch), continued  
BIT READ / WRITE  
DESCRIPTION  
PWROK_DEL (first stage) (VSB)  
Set the delay time when rising from PWROK_LP to PWROK_ST.  
0: 300 ~ 500 ms.  
1: 200 ~ 300 ms.  
3
R / W  
PWROK_DEL (VSB)  
Set the delay time when rising from PWROK_ST to PWROK.  
2~1  
0
R / W  
00: No delay time.  
10: 96 ms  
01: Delay 32 ms  
11: Delay 250 ms  
PWROK_TRIG =>  
Write 1 to re-trigger the PWROK signal from low to high.  
R / W-Clear  
CR E7h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
ENKD3 => (VSB)  
Enable the third set of keyboard wake-up key combination. Its values are  
accessed through keyboard wake-up index register (CRE1) and keyboard  
wake-up data register (CRE2) at the index from 40h to 4eh.  
0: Disable the third set of the key combinations.  
7
R / W  
1: Enable the third set of the key combinations.  
ENKD2 => (VSB)  
Enable the second set of keyboard wake-up key combination. Its values  
are accessed through keyboard wake-up index register (CRE1) and  
keyboard wake-up data register (CRE2) at the index from 30h to 3eh.  
0: Disable the second set of the key combinations.  
6
5
R / W  
R / W  
1: Enable the second set of the key combinations.  
ENWIN98KEY => (VSB)  
Enable Win98 keyboard dedicated key to wake-up the system via  
PSOUT# when keyboard wake-up function is enabled.  
0: Disable Win98 keyboard wake-up.  
1: Enable Win98 keyboard wake-up.  
EN_ONPSOUT (VBAT)  
Disable/Enable to issue a 0.5s long PSOUT# pulse when the system  
returns from the power-loss state and is supposed to be on as described  
in CRE4[6:5], logic device A. (for SiS & VIA chipsets)  
0: Disable.  
4
3
R / W  
R / W  
1: Enable.  
Select WDTO# reset source (VSB)  
0: Watchdog timer is reset by LRESET#.  
1: Watchdog timer is reset by PWROK.  
2~1 Reserved.  
R / W  
Hardware Monitor RESET source select (VBAT)  
0: PWROK.  
0
1: LRESET#.  
-180-  
W83627UHG  
CR E8h. (Reserved)  
CR E9h. (Reserved.)  
CR F2h. (Default 3Eh) (VSB Power)  
BIT  
7~1 Reserved.  
R / W  
READ / WRITE  
DESCRIPTION  
0
EN_PME =>  
0: Disable PME.  
1: Enable PME.  
CR F3h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
PME status of the URC IRQ event.  
Write 1 to clear this status.  
6
5
4
3
2
1
0
R /W-Clear  
R / W-Clear  
R / W-Clear  
R / W-Clear  
R / W-Clear  
R / W-Clear  
R / W-Clear  
PME status of the Mouse IRQ event.  
Write 1 to clear this status.  
PME status of the KBC IRQ event.  
Write 1 to clear this status.  
PME status of the PRT IRQ event.  
Write 1 to clear this status.  
PME status of the FDC IRQ event.  
Write 1 to clear this status.  
PME status of the URA IRQ event.  
Write 1 to clear this status.  
PME status of the URB IRQ event.  
Write 1 to clear this status.  
CR F4h. (Default 00h)  
BIT READ / WRITE  
7~6 Reserved.  
DESCRIPTION  
PME status of the URF IRQ event.  
Write 1 to clear this status.  
5
4
3
R / W-Clear  
PME status of the URE IRQ event.  
Write 1 to clear this status.  
R / W-Clear  
R / W-Clear  
PME status of the HM IRQ event.  
Write 1 to clear this status.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-181-  
W83627UHG  
CR F4h. (Default 00h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
PME status of the WDTO# event.  
2
R / W-Clear  
Write 1 to clear this status.  
PME status of the URD IRQ event.  
Write 1 to clear this status.  
1
0
R / W-Clear  
R / W-Clear  
PME status of the RIB event.  
Write 1 to clear this status.  
CR F6h. (Default 00h) (VSB Power)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
0: Disable PME interrupt of the URC IRQ event.  
1: Enable PME interrupt of the URC IRQ event.  
6
5
4
3
2
1
0
R / W  
R / W  
R / W  
R / W  
R / W  
R / W  
R / W  
0: Disable PME interrupt of the Mouse IRQ event.  
1: Enable PME interrupt of the Mouse IRQ event.  
0: Disable PME interrupt of the KBC IRQ event.  
1: Enable PME interrupt of the KBC IRQ event.  
0: Disable PME interrupt of the PRT IRQ event.  
1: Enable PME interrupt of the PRT IRQ event.  
0: Disable PME interrupt of the FDC IRQ event.  
1: Enable PME interrupt of the FDC IRQ event.  
0: Disable PME interrupt of the URA IRQ event.  
1: Enable PME interrupt of the URA IRQ event.  
0: Disable PME interrupt of the URB IRQ event.  
1: Enable PME interrupt of the URB IRQ event.  
CR F7h. (Default 00h) (VSB Power)  
BIT READ / WRITE  
7~6 Reserved.  
DESCRIPTION  
0: Disable PME interrupt of the URF IRQ event.  
1: Enable PME interrupt of the URF IRQ event.  
5
4
3
R / W  
R / W  
R / W  
0: Disable PME interrupt of the URE IRQ event.  
1: Enable PME interrupt of the URE IRQ event.  
0: Disable PME interrupt of the HM IRQ event.  
1: Enable PME interrupt of the HM IRQ event.  
-182-  
W83627UHG  
CR F7h. (Default 00h) (VSB Power), continued  
BIT  
READ / WRITE  
DESCRIPTION  
0: Disable PME interrupt of the WDTO# event.  
1: Enable PME interrupt of the WDTO# event.  
2
R / W  
0: Disable PME interrupt of the URD IRQ event.  
1: Enable PME interrupt of the URD IRQ event.  
1
0
R / W  
R / W  
0: Disable PME interrupt of the RIB event.  
1: Enable PME interrupt of the RIB event.  
CR FEh. (GPIO2 Event Route Selection Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
R / W  
Reserved.  
0: Disable GP27 event route to PSOUT#.  
1: Enable GP27 event route to PSOUT#.  
6
5
R / W  
R / W  
0: Disable GP26 event route to PSOUT#.  
1: Enable GP26 event route to PSOUT#.  
0: Disable GP25 event route to PSOUT#.  
1: Enable GP25 event route to PSOUT#.  
4
3
2
R / W  
Reserved.  
R / W  
0: Disable GP27 event route to PME#.  
1: Enable GP27 event route to PME#.  
0: Disable GP26 event route to PME#.  
1: Enable GP26 event route to PME#.  
1
0
R / W  
R / W  
0: Disable GP25 event route to PME#.  
1: Enable GP25 event route to PME#.  
Publication Release Date: May 25, 2007  
Revision 1.0  
-183-  
W83627UHG  
17.12 Logical Device B (Hardware Monitor)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 00h, 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select HM base address <100h : FFEh> on 2-byte  
boundary.  
7~0  
R / W  
CR 70h. (Default 00h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for HM.  
CR F0h. (Reserved.)  
CR F1h. (Reserved.)  
CR F2h. (Multi-function Select & FAN Strapping Status Register; Default 00h) (VCC Power)  
BIT READ / WRITE DESCRIPTION  
7~2 Reserved.  
GPI_MUL strapping status.  
This bit is strapped by pin 122 (SOUTD / GP42).  
0: PIN 107,108 Æ BEEP, PLED  
1
0
Read Only  
Read Only  
1: PIN 107,108 Æ GP20, GP21  
FAN_SET strapping status.  
This bit is strapped by pin 119 (RTSD# / GP45).  
0: The initial speed is 100%.  
1: The initial speed is 50%.  
-184-  
W83627UHG  
17.13 Logical Device C (PECI, SST)  
CR E0h. (Agent Configuration Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Agt4EN (Agent 4 Enable Bit)  
0: Agent 4 is disabled.  
1: Agent 4 is enabled.  
7
R / W  
Agt3EN (Agent 3 Enable Bit)  
0: Agent 3 is disabled.  
1: Agent 3 is enabled.  
6
5
4
R / W  
R / W  
R / W  
Agt2EN (Agent 2 Enable Bit)  
0: Agent 2 is disabled.  
1: Agent 2 is enabled.  
Agt1EN (Agent 1 Enable Bit)  
0: Agent 1 is disabled.  
1: Agent 1 is enabled.  
RTD4 (Agent 4 Return Domain 1 Enable Bit, Functions only when CR E5h  
bit 7 is set to 1)  
3
2
1
0
R / W  
R / W  
R / W  
R / W  
0: Agent 4 always returns the relative temperature from domain 0.  
1: Agent 4 always returns the relative temperature from domain 1.  
RTD3 (Agent 3 Return Domain 1 Enable Bit, Functions only when CR E5h  
bit 6 is set to 1)  
0: Agent 3 always returns the relative temperature from domain 0.  
1: Agent 3 always returns the relative temperature from domain 1.  
RTD2 (Agent 2 Return Domain 1 Enable Bit, Functions only when CR E5h  
bit 5 is set to 1)  
0: Agent 2 always returns the relative temperature from domain 0.  
1: Agent 2 always returns the relative temperature from domain 1.  
RTD1 (Agent 1 Return Domain 1 Enable Bit, Functions only when CR E5h  
bit 4 is set to 1)  
0: Agent 1 always returns the relative temperature from domain 0.  
1: Agent 1 always returns the relative temperature from domain 1.  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 1 (Low  
Byte)).  
Note. Agent 1 ~ Agent 4 represent the addresses of PECI devices from 0x30h to 0x33h  
respectively.  
Publication Release Date: May 25, 2007  
-185-  
Revision 1.0  
W83627UHG  
CR E1h. (Agent 1 TControl Register; Default 48h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
Agent 1 TBase must always be a positive value; a negative value will  
introduce abnormal temperature response. (Note1)  
6~0  
R / W  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 1 (High  
Byte))  
CR E2h. (Agent 2 TControl Register; Default 48h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
Agent 2 TBase must always be a positive value; a negative value will  
introduce abnormal temperature response. (Note1)  
6~0  
R / W  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 2 (Low  
Byte))  
CR E3h. (Agent 3 TControl Register; Default 48h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
Agent 3 TBase must always be a positive value; a negative value will  
introduce abnormal temperature response. (Note1)  
6~0  
R / W  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 2 (High  
Byte))  
CR E4h. (Agent 4 TControl Register; Default 48h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved.  
Agent 4 TBase must always be a positive value; a negative value will  
introduce abnormal temperature response. (Note1)  
6~0  
R / W  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 3 (Low  
Byte))  
Note1: TBase is a temperature reference based on the experiment of the processor actual  
temperature. For more details, please refer to section 7.5.  
-186-  
W83627UHG  
CR E5h. (PECI Domain Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Agt4D1 (Agent 4 Domain 1 Enable Bit)  
7
R / W  
0: Agent 4 does not have domain 1.  
1: Agent 4 has domain 1.  
Agt3D1 (Agent 3 Domain 1 Enable Bit)  
0: Agent 3 does not have domain 1.  
1: Agent 3 has domain 1.  
6
5
4
R / W  
R / W  
R / W  
Agt2D1 (Agent 2 Domain 1 Enable Bit)  
0: Agent 2 does not have domain 1.  
1: Agent 2has domain 1.  
Agt1D1 (Agent 1 Domain 1 Enable Bit)  
0: Agent 1 does not have domain 1.  
1: Agent 1 has domain 1.  
3~2 Reserved.  
Return High Temperature  
0: The temperature of each Agent is returned from domain 0 or domain 1, which is  
controlled by CRE0 bit 0~3.  
1
R / W  
1: Return the highest temperature in domain 0 and domain 1 of each  
individual Agent.  
0
Reserved.  
(When CR E8 [3] is set to 1, this register is used to read the relative temperature of Agent 3 (High  
Byte))  
CR E6h. (Agent 4 Relative Temperature (Low Byte))  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
Read Only  
Agent 4 Relative Temperature (Low Byte)  
Before reading this register, this must be set to 1 in CR E8[3]  
CR E7h. (Agent 4 Relative Temperature (High Byte))  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
Read Only  
Agent 4 Relative Temperature (High Byte)  
Before reading this register, this must be set to 1 in CR E8[3]  
Publication Release Date: May 25, 2007  
Revision 1.0  
-187-  
W83627UHG  
CR E8h. (PECI Warning Flag Register; Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
Agent 4 Alert Bit (When CR E8[3] is 0)  
0: Agent 4 has valid FCS.  
1: Agent 4 has invalid FCS in the previous 3 transactions.  
7
R / W  
Agent 4 Absent Bit (When CR E8[3] is 1)  
0: Agent 4 is detected.  
1: Agent 4 cannot be detected.  
Agent 3 Alert Bit (When CR E8[3] is 0)  
0: Agent 3 has valid FCS.  
1: Agent 3 has invalid FCS in the previous 3 transactions.  
6
5
4
R / W  
R / W  
R / W  
Agent 3 Absent Bit (When CR E8[3] is 1)  
0: Agent 3 is detected.  
1: Agent 3 cannot be detected.  
Agent 2 Alert Bit (When CR E8[3] is 0)  
0: Agent 2 has valid FCS.  
1: Agent 2 has invalid FCS in the previous 3 transactions.  
Agent 2 Absent Bit (When CR E8[3] is 1)  
0: Agent 2 is detected.  
1: Agent 2 cannot be detected.  
Agent 1 Alert Bit (When CR E8[3] is 0)  
0: Agent 1 has valid FCS.  
1: Agent 1 has invalid FCS in the previous 3 transactions.  
Agent 1 Absent Bit (When CR E8[3])  
0: Agent 1 is detected.  
1: Agent 1 cannot be detected.  
Bank Select. This bit is used in Bank index selection. The relative data  
delivered over PECI interface and PECI Agent Absent Bit can be read  
from the registers below by setting Bank selection.  
Agt1RelTemp: CR E0 (Low Byte), CR E1 (High Byte)  
Agt2RelTemp: CR E2 (Low Byte), CR E3 (High Byte)  
Agt3RelTemp: CR E4 (Low Byte), CR E5 (High Byte)  
Agt4RelTemp: CR E6 (Low Byte), CR E7 (High Byte)  
Agent 4 Absent Bit: CR E8 bit 7  
3
2
R / W  
Agent 3 Absent Bit: CR E8 bit 6  
Agent 2 Absent Bit: CR E8 bit 5  
Agent 1 Absent Bit: CR E8 bit 4  
Reserved.  
-188-  
W83627UHG  
CR E8h. (PECI Warning Flag Register; Default 00h), continued  
BIT  
READ / WRITE  
DESCRIPTION  
PECI Speed Select.  
00: The PECI speed is 1.5 MHz  
01: The PECI speed is 750 KHz  
10: The PECI speed is 375 KHz  
11: The PECI speed is 187 KHz  
1~0  
R / W  
BANK SELECT  
CR E8 BIT 3 = 0  
Agent Configuration Register  
Agent 1 TBase Register  
Agent 2 TBase Register  
Agent 3 TBase Register  
Agent 4 TBase Register  
PECI Domain Register  
Reserved  
CR E8 BIT 3 = 1  
CR E0  
CR E1  
CR E2  
CR E3  
CR E4  
CR E5  
CR E6  
CR E7  
Agt1RelTemp (Low Byte)  
Agt1RelTemp (High Byte)  
Agt2RelTemp (Low Byte)  
Agt2RelTemp (High Byte)  
Agt3RelTemp (Low Byte)  
Agt3RelTemp (High Byte)  
Agt4RelTemp (Low Byte)  
Agt4RelTemp (High Byte)  
Agent Absent Bit  
Reserved  
CR E8 (bit 4 ~ 7)  
Agent Alert Bit  
CR F1h. (SST Address Register; Default 48h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~0  
R / W  
SST address  
CR F2h. (SST Vendor ID Low Byte; Default 50h)  
BIT  
READ / WRITE  
DESCRIPTION  
SST Vendor ID Low Byte. (Note 2)  
7~0  
R / W  
Publication Release Date: May 25, 2007  
Revision 1.0  
-189-  
W83627UHG  
CR F3h. (SST Vendor ID High Byte; Default 10h)  
BIT  
READ / WRITE  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
7~0  
R / W  
SST Vendor ID High Byte. (Note 2)  
CR FEh. (SST Device ID Low Byte; Default 23h)  
BIT  
READ / WRITE  
7~0  
R / W  
SST Device ID Low Byte. (Note 3)  
CR FFh. (SST Device ID High Byte; Default 5Ah)  
BIT  
READ / WRITE  
7~0  
R / W  
SST Device ID High Byte. (Note 3)  
Note 2: Vendor ID identifies the device from a specific vendor. The PCI SIG or TBA assigns the  
contents of this value.  
Note 3: This value is assigned by vendor and must be exclusive to that vendor and to the device. It  
will be used in conjunction with the Vendor ID to associate the correct software driver with the  
sensor.  
-190-  
W83627UHG  
17.14 Logical Device D (UART D)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 02h, E0h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 1 I/O base address <100h : FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 03h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port D.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
0: Delay RXCLK for 5 ns for LG issue.  
1: No delay of 5 ns for RXCLK.  
7
R / W  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
5
R / W  
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
4~2 Reserved.  
00: UART D clock source is 1.8462 MHz (24 MHz / 13).  
01: UART D clock source is 2 MHz (24 MHz / 12).  
00: UART D clock source is 24 MHz (24 MHz / 1).  
00: UART D clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
Publication Release Date: May 25, 2007  
-191-  
Revision 1.0  
W83627UHG  
17.15 Logical Device E (UART E)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 03h, E8h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 1 I/O base address <100h : FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 04h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port E.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7
Reserved  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
5
R / W  
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
4~2 Reserved.  
00: UART E clock source is 1.8462 MHz (24 MHz / 13).  
01: UART E clock source is 2 MHz (24 MHz / 12).  
00: UART E clock source is 24 MHz (24 MHz / 1).  
00: UART E clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
-192-  
W83627UHG  
17.16 Logical Device F (UART F)  
CR 30h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
7~1 Reserved.  
0: Logical device is inactive.  
1: Logical device is active.  
0
R / W  
CR 60h, 61h. (Default 02h, E8h)  
BIT  
READ / WRITE  
DESCRIPTION  
These two registers select Serial Port 1 I/O base address <100h : FF8h>  
on 8-byte boundary.  
7~0  
R / W  
CR 70h. (Default 03h)  
BIT READ / WRITE  
7~4 Reserved.  
3~0 R / W  
DESCRIPTION  
These bits select IRQ resource for Serial Port F.  
CR F0h. (Default 00h)  
BIT  
READ / WRITE  
DESCRIPTION  
0: Delay RXCLK for 5 ns for LG issue.  
1: No delay of 5 ns for RXCLK.  
7
R / W  
0: IRQ is the level mode.  
1: IRQ is the pulse mode.  
6
5
R / W  
R / W  
0: Using the original RX FIFO Error Indication signal (USR bit 7).  
1: Using new RX FIFO Error Indication signal to solve some issues.  
4~2 Reserved.  
00: UART F clock source is 1.8462 MHz (24 MHz / 13).  
01: UART F clock source is 2 MHz (24 MHz / 12).  
00: UART F clock source is 24 MHz (24 MHz / 1).  
00: UART F clock source is 14.769 MHz (24 MHz / 1.625).  
1~0  
R / W  
Publication Release Date: May 25, 2007  
-193-  
Revision 1.0  
W83627UHG  
18. SPECIFICATIONS  
18.1 Absolute Maximum Ratings  
PARAMETER  
Power Supply Voltage (5V)  
Input Voltage  
RATING  
4.5 to 5.5  
UNIT  
V
-0.5 to 5VCC+0.5  
3.0 to 3.6  
V
RTC Battery Voltage VBAT  
Operating Temperature  
Storage Temperature  
V
0 to +70  
°C  
°C  
-55 to +150  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
18.2 DC CHARACTERISTICS  
(Ta = 0°C to 70°C, 5VCC = 5V ± 10%, VSS = 0V)  
PARAMETER  
SYM  
MIN  
TYP  
MAX. UNIT  
CONDITIONS  
RTC Battery Quiescent Current  
IBAT  
2.4  
VBAT = 2.5 V  
μA  
VSB = 5V, All  
ACPI pins are  
not  
ACPI Stand-by Power Supply Quiescent  
Current  
IsB  
2.0  
mA  
connected.  
I/O12tp3 – 5V TTL level bi-directional pin with 12mA source-sink capability  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
VOH  
ILIH  
ILIL  
0.8  
V
V
2.0  
2.4  
0.4  
V
IOL = 12 mA  
IOH = -12 mA  
VIN = 5V  
V
+10  
-10  
μA  
μA  
VIN = 0V  
I/O12ts - TTL level Schmitt-trigger bi-directional pin with 12mA source-sink capability  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VTH  
VOL  
VOH  
ILIH  
ILIL  
V
5VCC= 5V  
IOL = 12 mA  
IOH = -12 mA  
VIN = 5V  
Output Low Voltage  
Output High Voltage  
Input High Leakage  
Input Low Leakage  
0.4  
V
2.4  
V
+10  
-10  
μA  
μA  
VIN = 0V  
-194-  
W83627UHG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM  
MIN  
TYP  
MAX. UNIT  
CONDITIONS  
I/OD12t - TTL level bi-directional pin and open-drain output with 12mA sink capability  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
VOL  
ILIH  
ILIL  
0.8  
V
V
2.0  
0.4  
+10  
-10  
V
IOL = 12 mA  
VIN = 5V  
μA  
μA  
VIN = 0V  
I/OD12ts - TTL level Schmitt-trigger bi-directional pin and open drain output with 12mA sink  
capability  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VTH  
VOL  
ILIH  
ILIL  
V
5VCC= 5V  
IOL = 12 mA  
VIN = 5V  
Output Low Voltage  
Input High Leakage  
Input Low Leakage  
0.4  
+10  
-10  
V
μA  
μA  
VIN = 0V  
I/OD12tsu - TTL level Schmitt-trigger bi-directional pin with internal pull-up resistor and open  
drain output with 12mA sink capability  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VTH  
VOL  
ILIH  
ILIL  
V
5VCC= 5V  
IOL = 12 mA  
VIN = 5V  
Output Low Voltage  
Input High Leakage  
Input Low Leakage  
0.4  
+10  
-10  
V
μA  
μA  
VIN = 0V  
I/OD16ts - TTL level Schmitt-trigger bi-directional pin and open drain output with 16mA sink  
capability  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
VTH  
VOL  
ILIH  
ILIL  
V
5VCC= 5V  
IOL = 16 mA  
VIN = 5V  
Output Low Voltage  
Input High Leakage  
Input Low Leakage  
0.4  
+10  
-10  
V
μA  
μA  
VIN = 0V  
Publication Release Date: May 25, 2007  
Revision 1.0  
-195-  
W83627UHG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM  
MIN  
TYP  
MAX. UNIT  
CONDITIONS  
O8 - Output pin with 8mA source-sink capability  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
0.4  
V
V
IOL = 8 mA  
IOH = -8 mA  
2.4  
O12 - Output pin with 12mA source-sink capability  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
V
V
IOL = 12 mA  
IOH = -12 mA  
2.4  
O24 - Output pin with 24mA source-sink capability  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
0.4  
0.4  
V
V
IOL = 24 mA  
IOH = -24 mA  
2.4  
O12p3 - 5V output pin with 12mA source-sink capability  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
V
V
IOL = 12 mA  
IOH = -12 mA  
2.4  
OD12 - Open drain output pin with 12mA sink capability  
Output Low Voltage  
OD24 - Open drain output pin with 24mA sink capability  
VOL  
0.4  
0.4  
V
V
IOL = 12 mA  
IOL = 24 mA  
Output Low Voltage  
VOL  
INt - TTL level input pin  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
0.8  
V
V
2.0  
+10  
-10  
VIN = 5V  
VIN = 0 V  
μA  
μA  
INtu - TTL level input pin with internal pull-up resistor  
Input Low Voltage  
Input High Voltage  
Input High Leakage  
Input Low Leakage  
VIL  
VIH  
ILIH  
ILIL  
0.8  
V
V
2.0  
+10  
-10  
VIN = 5V  
VIN = 0 V  
μA  
μA  
INts  
- TTL level Schmitt-trigger input pin  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
0.8  
1.8  
0.8  
0.9  
1.9  
1.0  
1.0  
2.0  
V
V
V
5VCC = 5V  
5VCC = 5V  
5VCC = 5V  
VTH  
-196-  
W83627UHG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM  
ILIH  
ILIL  
MIN  
TYP  
MAX. UNIT  
CONDITIONS  
VIN = 5V  
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
VIN = 0 V  
INtsu - TTL level Schmitt-trigger input pin with internal pull-up resistor  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hystersis  
Vt-  
Vt+  
VTH  
ILIH  
ILIL  
0.8  
1.8  
0.8  
0.9  
1.9  
1.0  
1.0  
2.0  
V
V
5VCC = 5V  
5VCC = 5V  
5VCC = 5V  
VIN = 5V  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
VIN = 0 V  
INtsp3 - 3.3V TTL level Schmitt-trigger input pin  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Hysteresis  
Vt-  
Vt+  
VTH  
ILIH  
ILIL  
0.5  
1.6  
0.5  
0.8  
2.0  
1.2  
1.1  
2.4  
V
V
5VCC = 5 V  
5VCC = 5 V  
5VCC = 5 V  
VIN = 3.3 V  
VIN = 0 V  
V
Input High Leakage  
Input Low Leakage  
+10  
-10  
μA  
μA  
INcd  
- CMOS level input pin with internal pull-down resistor  
0.3  
5VCC  
Input Low Voltage  
Input High Voltage  
VIL  
VIH  
V
V
0.7  
5VCC  
Input High Leakage  
Input Low Leakage  
ILIH  
ILIL  
+10  
-10  
VIN = 5V  
VIN = 0 V  
μA  
μA  
I/OV3 – Bi-direction pin with source capability of 6 mA and sink capability of 1 mA for INTEL®  
PECI  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Hysteresis  
VIL  
0.275Vtt  
0.55Vtt  
0.5Vtt  
0.725Vtt  
0.25Vtt  
V
V
V
V
V
VIH  
VOL  
VOH  
VHys  
0.75Vtt  
0.1Vt t  
Publication Release Date: May 25, 2007  
Revision 1.0  
-197-  
W83627UHG  
DC CHARACTERISTICS, continued  
PARAMETER  
SYM  
MIN  
TYP  
MAX. UNIT  
CONDITIONS  
I/OV4 – Bi-direction pin with source capability of 6 mA and sink capability of 1 mA for INTEL®  
SST  
Input Low Threshold Voltage  
Input High Threshold Voltage  
Input High Leakage  
Input Low Leakage  
Vt-  
0.4  
0.65  
1.1  
V
Vt+  
ILIH  
ILIL  
VTH  
0.75  
V
+10  
-10  
VIN = 1.5 V  
VIN = 0V  
μA  
μA  
V
Hysteresis  
0.15  
-198-  
W83627UHG  
18.3 AC CHARACTERISTICS  
18.3.1  
Power On / Off Timing  
PSON#  
T3  
T4  
SUSB#  
(Intel Chipset)  
SUSB#  
(Other Chipset)  
PSOUT#  
PSIN#  
T2  
T5  
T1  
5VSB  
S0  
S5  
T1  
64m  
T2  
T3  
T4  
282m  
T5  
Over 64m at  
least  
IDEAL TIMING (SEC)  
16m  
32m  
Publication Release Date: May 25, 2007  
Revision 1.0  
-199-  
W83627UHG  
18.3.2  
AC Power Failure Resume Timing  
1. Logic device A CRE4 bit7 = “0” and CRE4 bits[6:5] are selected to “OFF” state  
(“OFF” means always turn off or last state is off)  
5VCC  
PSOUT#  
PSON#  
SUSB#  
RSMRST#  
5VSB  
ACLOSS  
-200-  
W83627UHG  
2. Logic device A CRE4 bit7 = “0” and CRE4 bits[6:5] are selected to “ON” state  
(“ON” means always turn on or last state is on)  
5VCC  
PSOUT#  
PSON#  
SUSB#  
RSMRST#  
5VSB  
ACLOSS  
Publication Release Date: May 25, 2007  
Revision 1.0  
-201-  
W83627UHG  
3. Logic device A CRE4 bit7 = “1” and CRE4 bits[6:5] are selected to “OFF” state  
(“OFF” means always turn off or last state is off)  
5VCC  
PSOUT#  
PSON#  
T ? 4S  
SUSB#  
RSMRST#  
5VSB  
ACLOSS  
-202-  
W83627UHG  
4. Logic device A CRE4 bit7 = “1” and CRE4 bits[6:5] are selected to “ON” state  
(“ON” means always turn on or last state is on)  
5VCC  
PSOUT#  
PSON#  
SUSB#  
RSMRST#  
5VSB  
ACLOSS  
Publication Release Date: May 25, 2007  
Revision 1.0  
-203-  
W83627UHG  
** What’s the definition of last state when AC power failure?  
1) Last state is “ON”  
5VCC is falling to 3.75V and SUSB# keeps VIH 2.0V  
5VCC  
SUSB#  
2) Last state is “OFF”  
5VCC is falling to 3.75V and SUSB# keeps VIL 0.8V  
5VCC  
SUSB#  
To prevent that VCC goes down faster than VSB in various ATX Power Supplies. W83627UHG add  
the “user define mode” option for AC power loss pre-state. BIOS can set the pre-state that is “On” or  
“Off” state, because the status of AC power resume depends on it.  
Logical Device A, CR E4h  
Power loss control bits => (VBAT)  
00: System always turns off when come back from power loss state.  
01: System always turns on when come back from power loss state.  
10: System turns off / on when come back from power loss state depend  
on the state before power loss.  
6~5  
R / W  
11: User define the state before power loss.(The last state set at CRE6[4])  
Logical Device A, CR E6h  
Power loss Last State Flag. (VBAT)  
4
R / W  
0: ON  
1: OFF  
-204-  
W83627UHG  
18.3.3  
Clock Input Timing  
PARAMETER  
48MHZ / 24MHZ  
UNIT  
MIN  
MAX  
300/500  
55  
Cycle to cycle jitter  
Duty cycle  
ps  
%
45  
t1  
t2  
t3  
48MHZ / 24MHZ  
TYP  
PARAMETER  
DESCRIPTION  
Clock cycle time  
UNIT  
MAX  
MIN  
t1  
t2  
20.8 / 41.7  
10 / 21  
ns  
ns  
Clock high time/low time  
9 / 19  
Clock rising time/falling time  
(0.4V~2.4V)  
t3  
3
ns  
Publication Release Date: May 25, 2007  
Revision 1.0  
-205-  
W83627UHG  
18.3.4  
PECI and SST Timing  
SST / PECI  
Logic - 1  
Minimum tH1  
Maximum tH1  
tBIT  
Next-bit  
Previous bit  
SST / PECI  
Logic - 0  
Minimum tH0  
Maximum tH0  
Previous bit  
Next-bit  
tBIT  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
μs  
Client  
0.495  
0.495  
500  
250  
tBIT  
Originator  
tH1  
0.6  
0.2  
3/4  
1/4  
0.8  
0.4  
× tBIT  
tH0  
× t BIT  
-206-  
W83627UHG  
18.3.5  
SMBus Timing  
TR  
TLOW  
TF  
SMBCLK  
THIGH  
TSU:DAT  
TSU:STO  
THD:STA  
TSU:STA  
THD:DAT  
SMBDAT  
TBUF  
P
S
S
P
18.3.6  
Floppy Disk Drive Timing  
FDC: Data rate = 1MB, 500KB, 300KB, 250KB/sec.  
TYP.  
PARAMETER  
DIR# setup time to STEP#  
DIR# hold time from STEP#  
SYM.  
TDST  
TSTD  
MIN.  
MAX.  
UNIT  
µS  
(NOTE 1)  
1.0/1.6  
/2.0/4.0  
24/40  
µS  
/48/96  
6.8/11.5  
7/11.7  
/14/28  
7.2/11.9  
STEP# pulse width  
STEP# cycle width  
INDEX# pulse width  
RDATA# pulse width  
WD# pulse width  
TSTP  
TSC  
µS  
mS  
nS  
nS  
nS  
/13.8/27.8  
/14.2/28.2  
NOTE 2  
NOTE 2  
NOTE 2  
125/250  
/417/500  
TIDX  
TRD  
TWD  
40  
100/185  
/225/475  
125/210  
/250/500  
150/235  
/275/525  
Notes:  
1. Typical values for T = 25°C and normal supply voltage.  
2. Programmable from 0.5 mS through 32 mS as described in step rate table.  
(Please refer to the description of the SPECIFY command set.)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-207-  
W83627UHG  
Step Rate Table  
DATA RATE  
SRT  
1MB/S  
500KB/S  
300KB/S  
250KB/S  
0
1
8
16  
15  
2
26.7  
25  
32  
30  
4
7.5  
E
F
1.0  
0.5  
3.33  
1.67  
1
2
Floppy Disk Driving Timing  
TSTD  
DIR#  
TSTP  
TDST  
TSC  
STEP#  
TIDX  
INDEX#  
RDATA#  
WD#  
TRD  
TWD  
-208-  
W83627UHG  
18.3.7  
UART/Parallel Port  
PARAMETER  
SYMBOL  
TEST  
MIN.  
MAX.  
UNIT  
CONDITIONS  
Delay from Stop to Set Interrupt  
TSINT  
9/16  
Baud  
Rate  
TRINT  
TIRS  
9
1000  
8/16  
nS  
Delay from IOR Reset Interrupt  
Delay from Initial IRQ Reset to  
Transmit Start  
1/16  
Baud  
Rate  
Delay from to Reset interrupt  
THR  
TSI  
175  
nS  
9/16  
16/16  
Baud  
Rate  
Delay from Initial IOW to interrupt  
Delay from Stop to Set Interrupt  
TSTI  
8/16  
Baud  
Rate  
TIR  
8
6
250  
200  
250  
nS  
nS  
nS  
Delay from IOR to Reset Interrupt  
Delay from IOR to Output  
TMWO  
TSIM  
Set Interrupt Delay from Modem  
Input  
18  
TRIM  
N
9
250  
nS  
Reset Interrupt Delay from IOR  
Baud Divisor  
216-1  
100 pF Loading  
UART Receiver Timing  
Receiver Timing  
SIN  
(RECEIVER  
INPUT DATA)  
START  
DATA BITS (5-8)  
PARITY  
STOP  
TSINT  
IRQ  
(INTERNAL SIGNAL)  
TSTI  
IRQ#  
(INTERNAL SIGNAL.  
READ RECEIVER  
BUFFER REGISTER)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-209-  
W83627UHG  
UART Transmitter Timing  
SOUT  
(SERIAL OUT)  
START  
START  
STOP  
(1-2)  
TSTI  
DATA BITS (5-8)  
PARITY  
TIRS  
IRQ  
(INTERNAL SIGNAL)  
THR  
TSI  
THR  
IOW#  
(INTERNAL SIGNAL,  
WRITE THR)  
TIR  
IOR#  
(INTERNAL SIGNAL,  
READ TIR)  
18.3.7.1 Modem Control Timing  
MODEM Control Timing  
START  
IOW#  
(INTERNAL SIGNAL,  
WRITE MCR)  
TMWO  
TMWO  
RTS#, DTR#  
CTS#, DSR#, DCD#  
TSIM  
TSIM  
IRQ  
TRIM  
TRIM  
(INTERNAL SIGNAL)  
IOR#  
(INTERNAL SIGNAL  
READ MSR)  
TSIM  
RI#  
-210-  
W83627UHG  
18.3.8  
Parallel Port Mode Parameters  
PARAMETER  
SYM.  
MIN.  
TYP.  
MAX.  
UNIT  
t1  
100  
nS  
PD0-7, INDEX, STROBE, AUTOFD Delay from  
IOW  
t2  
t3  
60  
nS  
nS  
IRQ Delay from ACK, nFAULT  
105  
IRQ Delay from IOW  
IRQ Active Low in ECP and EPP Modes  
t4  
t5  
200  
300  
105  
nS  
nS  
ERROR Active to IRQ Active  
PARAMETER  
SYM.  
t1  
MIN.  
TYP. MAX.  
100  
UNIT  
nS  
PD0-7, INDEX, STROBE, AUTOFD Delay from  
IOW  
t2  
t3  
60  
nS  
nS  
IRQ Delay from ACK, nFAULT  
105  
IRQ Delay from IOW  
IRQ Active Low in ECP and EPP Modes  
t4  
t5  
200  
300  
105  
nS  
nS  
ERROR Active to IRQ Active  
Publication Release Date: May 25, 2007  
Revision 1.0  
-211-  
W83627UHG  
18.3.9  
Parallel Port  
18.3.9.1 Parallel Port Timing  
IOW  
t1  
INIT, STROBE  
AUTOFD, SLCTIN  
PD<0:7>  
ACK  
t2  
IRQ (SPP)  
t3  
t4  
IRQ  
(EPP or ECP)  
nFAULT  
(ECP)  
ERROR  
(ECP)  
t5  
t4  
t2  
IRQ  
18.3.9.2 EPP Data or Address Read Cycle Timing Parameters  
PARAMETER  
WAIT Asserted to WRITE Deasserted  
Deasserted to WRITE Modified  
SYM.  
MIN.  
MAX.  
UNIT  
t14  
0
185  
nS  
t15  
t17  
60  
60  
190  
180  
nS  
nS  
WAIT Asserted to PD Hi-Z  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
t18  
t19  
t20  
0
0
nS  
nS  
nS  
60  
190  
WAIT Deasserted to PD Drive  
WRITE Deasserted to Command  
t21  
1
nS  
-212-  
W83627UHG  
EPP Data or Address Read Cycle Timing Parameters, continued  
PARAMETER  
SYM.  
t22  
MIN.  
0
MAX.  
20  
UNIT  
nS  
PBDIR Set to Command  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
t23  
0
30  
nS  
t24  
0
195  
180  
nS  
t25  
60  
nS  
WAIT Deasserted to Command Deasserted  
Time out  
t26  
t27  
10  
0
12  
nS  
nS  
PD Valid to WAIT Deasserted  
PD Hi-Z to WAIT Deasserted  
PARAMETER  
t28  
0
μS  
SYM.  
MIN.  
MAX.  
UNIT  
t1  
t2  
t3  
t4  
t5  
40  
0
nS  
nS  
nS  
Ax Valid to IOR Asserted  
IOCHRDY Deasserted to IOR Deasserted  
IOR Deasserted to Ax Valid  
10  
40  
0
10  
24  
IOR Deasserted to  
or IOR Asserted  
IOW  
nS  
IOR Asserted to IOCHRDY Asserted  
PD Valid to SD Valid  
t6  
t7  
0
0
75  
40  
nS  
μS  
nS  
nS  
IOR Deasserted to SD Hi-Z (Hold Time)  
SD Valid to IOCHRDY Deasserted  
t8  
t9  
0
85  
60  
160  
WAIT Deasserted to IOCHRDY Deasserted  
PD Hi-Z to PDBIR Set  
t10  
t13  
0
0
nS  
nS  
WRITE Deasserted to IOR Asserted  
WAIT Asserted to WRITE Deasserted  
Deasserted to WRITE Modified  
IOR Asserted to PD Hi-Z  
t14  
t15  
t16  
t17  
0
60  
0
185  
190  
50  
nS  
nS  
nS  
nS  
60  
180  
WAIT Asserted to PD Hi-Z  
Command Asserted to PD Valid  
Command Deasserted to PD Hi-Z  
t18  
t19  
t20  
0
0
nS  
nS  
nS  
60  
190  
WAIT Deasserted to PD Drive  
t21  
1
nS  
WRITE Deasserted to Command  
PBDIR Set to Command  
t22  
t23  
t24  
0
0
0
20  
30  
nS  
nS  
nS  
PD Hi-Z to Command Asserted  
Asserted to Command Asserted  
195  
Publication Release Date: May 25, 2007  
Revision 1.0  
-213-  
W83627UHG  
EPP Data or Address Read Cycle Timing Parameters, continued  
PARAMETER  
SYM.  
MIN.  
MAX.  
UNIT  
t25  
60  
180  
nS  
WAIT Deasserted to Command Deasserted  
Time out  
t26  
t27  
10  
0
12  
nS  
nS  
PD Valid to WAIT Deasserted  
PD Hi-Z to WAIT Deasserted  
t28  
0
μS  
18.3.9.3 EPP Data or Address Read Cycle (EPP Version 1.9)  
EPP Data or Address Read Cycle (EPP Version 1.9)  
t14  
t15  
STB# / WRITE  
PD<0:7>  
t17  
t18  
t19  
t20  
t21  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
BUSY / WAIT  
-214-  
W83627UHG  
18.3.9.4 EPP Data or Address Read Cycle (EPP Version 1.7)  
EPP Data or Address Read Cycle (EPP Version 1.7)  
t14  
t15  
STB# / WRITE  
t17  
t18  
t19  
t20  
PD<0:7>  
t21  
t23  
t25  
t24  
ADDRSTB  
DATASTB  
t27  
t28  
BUSY / WAIT  
Publication Release Date: May 25, 2007  
Revision 1.0  
-215-  
W83627UHG  
18.3.9.5 EPP Data or Address Write Cycle Timing Parameters  
PARAMETER  
PBDIR Low to WRITE Asserted  
WAIT Asserted to WRITE Asserted  
WAIT Asserted to WRITE Change  
SYM.  
MIN.  
MAX.  
UNIT  
t10  
0
-
nS  
t11  
t12  
t14  
60  
60  
0
185  
185  
-
nS  
nS  
nS  
WAIT Asserted to PD Invalid  
PD Invalid to Command Asserted  
t15  
t17  
10  
60  
-
nS  
nS  
210  
WAIT Asserted to Command Asserted  
t18  
t19  
t20  
t21  
t1  
60  
0
190  
10  
12  
-
nS  
WAIT Deasserted to Command Deasserted  
μS  
Command Asserted to WAIT Deasserted  
Time out  
10  
0
μS  
nS  
Command Deasserted to WAIT Asserted  
40  
-
nS  
Ax Valid to IOW Asserted  
SD Valid to Asserted  
t2  
t3  
10  
10  
-
-
nS  
nS  
IOW Deasserted to Ax Invalid  
t4  
t5  
0
10  
40  
0
-
-
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
WAIT Deasserted to IOCHRDY Deasserted  
Command Asserted to WAIT Deasserted  
IOW Deasserted to IOW or IOR Asserted  
IOCHRDY Deasserted to IOW Deasserted  
WAIT Asserted to Command Asserted  
IOW Asserted to WAIT Asserted  
PBDIR Low to WRITE Asserted  
t6  
-
t7  
24  
160  
70  
-
t8  
60  
0
t9  
t10  
t11  
t12  
t13  
t14  
0
60  
60  
0
185  
185  
50  
-
WAIT Asserted to WRITE Asserted  
WAIT Asserted to WRITE Change  
IOW Asserted to PD Valid  
0
WAIT Asserted to PD Invalid  
PD Invalid to Command Asserted  
t15  
t16  
10  
5
-
nS  
nS  
35  
IOW to Command Asserted  
t17  
t18  
t19  
t20  
t21  
t22  
60  
60  
0
210  
190  
10  
12  
-
nS  
nS  
μS  
WAIT Asserted to Command Asserted  
WAIT Deasserted to Command Deasserted  
Command Asserted to WAIT Deasserted  
Time out  
10  
0
μS  
nS  
Command Deasserted to WAIT Asserted  
0
-
nS  
IOW Deasserted to WRITE Deasserted and PD  
invalid  
t16  
5
35  
nS  
WRITE  
to Command Asserted  
-216-  
W83627UHG  
18.3.9.6 EPP Data or Address Write Cycle (EPP Version 1.9)  
EPP Data or Address Write Cycle (EPP Version 1.9)  
t11  
t10  
t12  
t14  
STB# / WRITE  
PD<0:7>  
t15  
t16  
t18  
t17  
ADDRSTB  
DATASTB  
t19  
t21  
BUSY / WAIT  
PBDIR  
t22  
Publication Release Date: May 25, 2007  
Revision 1.0  
-217-  
W83627UHG  
18.3.9.7 EPP Data or Address Write Cycle (EPP Version 1.7)  
EPP Data or Address Write Cycle (EPP Version 1.7)  
t11  
t10  
STB# / WRITE  
PD<0:7>  
t15  
t16  
t18  
t17  
DATAST  
ADDRSTB  
t19  
BUSY / WAIT  
18.3.9.8 Parallel Port FIFO Timing Parameters  
PARAMETER  
DATA Valid to nSTROBE Active  
nSTROBE Active Pulse Width  
DATA Hold from nSTROBE Inactive  
BUSY Inactive to PD Inactive  
SYMBOL  
MIN.  
600  
600  
450  
80  
MAX.  
UNIT  
nS  
t1  
t2  
t3  
t4  
t5  
t6  
-
-
nS  
-
nS  
-
-
nS  
BUSY Inactive to nSTROBE Active  
nSTROBE Active to BUSY Active  
680  
-
nS  
500  
nS  
-218-  
W83627UHG  
18.3.9.9 Parallel FIFO Timing  
t4  
t3  
PD<0:7>  
STB#  
t1  
t2  
t5  
t6  
BUSY  
18.3.9.10 ECP Parallel Port Forward Timing Parameters  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
60  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nAUTOFD Valid to nSTROBE Asserted  
PD Valid to nSTROBE Asserted  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
60  
BUSY Deasserted to nAUTOFD Changed  
BUSY Deasserted to PD Changed  
80  
80  
0
180  
180  
-
nSTROBE Deasserted to BUSY Deasserted  
BUSY Deasserted to nSTROBE Asserted  
nSTROBE Asserted to BUSY Asserted  
BUSY Asserted to nSTROBE Deasserted  
80  
0
200  
-
80  
180  
Publication Release Date: May 25, 2007  
Revision 1.0  
-219-  
W83627UHG  
18.3.9.11 ECP Parallel Port Forward Timing  
t3  
t4  
nAUTOFD  
PD<0:7>  
t1  
t2  
t6  
t8  
STB#  
t5  
t5  
t7  
BUSY  
18.3.9.12 ECP Parallel Port Reverse Timing Parameters  
PARAMETER  
PD Valid to nACK Asserted  
SYMBOL  
MIN.  
0
MAX.  
UNIT  
nS  
t1  
t2  
t3  
t4  
t5  
t6  
-
nAUTOFD Deasserted to PD Changed  
nAUTOFD Asserted to nACK Asserted  
nAUTOFD Deasserted to nACK Deasserted  
nACK Deasserted to nAUTOFD Asserted  
PD Changed to nAUTOFD Deasserted  
0
-
-
nS  
0
nS  
0
-
nS  
80  
80  
200  
200  
nS  
nS  
-220-  
W83627UHG  
18.3.9.13 ECP Parallel Port Reverse Timing  
t2  
PD<0:7>  
t1  
t3  
t4  
nACK  
t5  
t6  
t5  
nAUTOFD  
18.3.10 KBC Timing Parameters  
NO.  
T1  
DESCRIPTION  
MIN.  
MAX.  
UNIT  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
μS  
μS  
μS  
μS  
μS  
Address Setup Time from WRB  
Address Setup Time from RDB  
WRB Strobe Width  
0
0
-
-
T2  
T3  
20  
20  
0
-
T4  
RDB Strobe Width  
-
T5  
Address Hold Time from WRB  
Address Hold Time from RDB  
Data Setup Time  
-
T6  
0
-
T7  
50  
0
-
T8  
Data Hold Time  
-
T9  
Gate Delay Time from WRB  
RDB to Drive Data Delay  
RDB to Floating Data Delay  
Data Valid After Clock Falling (SEND)  
K/B Clock Period  
10  
-
30  
40  
20  
4
-
T10  
T11  
T12  
T13  
T14  
T15  
T16  
0
-
20  
10  
4
K/B Clock Pulse Width  
-
Data Valid Before Clock Falling (RECEIVE)  
K/B ACK After Finish Receiving  
-
20  
-
Publication Release Date: May 25, 2007  
Revision 1.0  
-221-  
W83627UHG  
KBC Timing Parameters, continued  
NO.  
DESCRIPTION  
MIN.  
-
MAX.  
2
UNIT  
mS  
μS  
T19  
T20  
T21  
T22  
T23  
T24  
Transmit Timeout  
Data Valid Hold Time  
0
-
63  
30  
30  
5
167  
50  
50  
25  
nS  
Input Clock Period (616 Mhz)  
Duration of CLK inactive  
Duration of CLK active  
μS  
μS  
μS  
Time from inactive CLK transition, used to time when  
the auxiliary device sample DATA  
T25  
T26  
T27  
T28  
T29  
Time of inhibit mode  
100  
5
300  
T28-5  
50  
μS  
μS  
μS  
μS  
μS  
Time from rising edge of CLK to DATA transition  
Duration of CLK inactive  
30  
30  
5
Duration of CLK active  
50  
Time from DATA transition to falling edge of CLK  
25  
18.3.10.1 Writing Cycle Timing  
A2, CSB  
T1  
T3  
T5  
WRB  
ACTIVE  
T7  
T8  
D0 ~ D7  
DATA IN  
T9  
GA20  
OUTPUT  
PORT  
-222-  
W83627UHG  
18.3.10.2 Read Cycle Timing  
A2, CSB  
AEN  
T6  
T2  
T4  
RDB  
ACTIVE  
T11  
T10  
D0 ~ D7  
DATA OUT  
18.3.10.3 Send Data to K/B  
CLOCK  
(KCLK)  
T14  
T13  
D4  
T26  
T12  
SERIAL DATA  
START D0  
D1  
D2  
D3  
D5  
D6  
D7  
P
STOP  
(KDAT)  
18.3.10.4 Receive Data from K/B  
CLOCK  
(KCLK)  
T14  
T13  
T15  
SERIAL DATA  
START D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
P
STOP  
(T1)  
T20  
Publication Release Date: May 25, 2007  
Revision 1.0  
-223-  
W83627UHG  
18.3.10.5 Input Clock  
CLOCK  
T21  
18.3.10.6 Send Data to Mouse  
MCLK  
T25  
T23  
T24  
D6  
T22  
D2  
START  
MDAT  
D0  
D1  
D3  
D4  
D5  
D7  
P
Bit  
STOP  
Bit  
18.3.10.7 Receive Data from Mouse  
MCLK  
T27  
T26  
T29  
T28  
D4  
MDAT  
START  
D0  
D1  
D2  
D3  
D5  
D6  
D7  
P
STOP  
Bit  
18.3.11 GPIO Timing Parameters  
SYMBOL  
tWGO  
PARAMETER  
Write data to GPIO update  
SWITCH pulse width  
MIN.  
-
MAX.  
UNIT  
ns  
300(Note 1)  
-
tSWP  
16  
msec  
Note: Refer to Microprocessor Interface Timing for Read Timing.  
-224-  
W83627UHG  
18.3.11.1 GPIO Write Timing  
GPIO Write Timing diagram  
A0 A15  
VALID  
IOW  
D0-7  
VALID  
GPIO 10-17  
PREVIOUS STATE  
VALID  
GPIO 20-25  
tWGO  
18.4 LRESET Timing  
LRESET Timing  
Vcc  
MR  
tVMR  
Publication Release Date: May 25, 2007  
Revision 1.0  
-225-  
W83627UHG  
19. TOP MARKING SPECIFICATION  
inbond  
W83627UHG  
606G9A28201234UB  
1st line: Winbond logo  
2nd line: part number: W83627UHG (Pb-free package)  
3rd line: tracking code 606G9A28201234UB  
606: packages made in '06, week 06  
G: assembly house ID; G means GR, A means ASE ... etc.  
9: code version; 9 means code 009  
A: IC revision; A means version A, B means version B  
28201234: wafer production series lot number  
UB: Winbond internal use.  
-226-  
W83627UHG  
20. PACKAGE SPECIFICATION  
Dimension in mm  
Dimension in inch  
HE  
E
Symbol  
Min  
0.25  
2.57  
Nom  
0.35  
Max  
0.45  
2.87  
Min Nom Max  
0.010 0.014 0.018  
0.101 0.107 0.113  
65  
102  
1
A
2
A
2.72  
64  
103  
0.10  
0.10  
0.20  
0.15  
0.30  
0.20  
0.004 0.008 0.012  
0.004 0.006 0.008  
0.547 0.551 0.555  
b
c
D
E
e
13.90  
19.90  
14.00  
20.00  
0.50  
14.10  
20.10  
0.783 0.787 0.791  
0.020  
HD  
D
D
H
17.20  
23.20  
0.669 0.677 0.685  
0.905 0.913 0.921  
17.40  
23.40  
0.95  
17.00  
23.00  
H
E
0.80  
1.60  
0.025 0.031 0.037  
0.063  
L
L
y
0.65  
39  
128  
1
0.08  
7
1
38  
0.003  
e
b
0
7
0
0
c
Note:  
A
1.Dimension D & E do not include interlead  
flash.  
A2  
2.Dimension b does not include dambar  
protrusion/intrusion  
.
3.Controlling dimension : Millimeter  
4.General appearance spec. should be based  
on final visual inspection spec.  
A1  
See Detail F  
Seating Plane  
L
y
L1  
Detail F  
5. PCB layout please use the "mm".  
(128-pin (QFP)  
Publication Release Date: May 25, 2007  
Revision 1.0  
-227-  
W83627UHG  
APPENDIX – ABBREVIATIONS  
A
G
ACLOSS – AC power failure  
GPIO – General-purpose Input and Output  
ACPI – Advanced Configuration and Power  
Interface  
H
ADC – Analog Digital Converter  
HM – Hardware Monitor  
ASK-IR – Amplitude Shift Keyed IR  
ATX – Advanced Technology Extended  
HSR – Handshake Status Register  
I
I2C – Inter-Integrated Circuit  
INIT# – Initialization (PRT Port)  
IOH – High Output Leakage  
IOL – Low Output Leakage  
IR – Infrared  
B
BPP – Bi-directional Parallel Port  
BIOS – Basic Input/Output System  
C
CRC – Cyclic Redundancy Check  
CLKSEL – Clock Select  
CTS – Clear to Send  
IrDA – Infrared Data Association  
IRQ – Interrupt  
IRRX – Infrared Receiver  
IRTX – Infrared Transmitter  
ISA – Industry Standard Architecture  
ISR – Interrupt Service Routine  
D
DCD – Data Carrier Detect  
DMA – Direct Memory Access  
DR Register – Data Rate Register  
DSR – Data Set Ready  
DTR – Data Terminal Ready  
K
KBRESET – Keyboard Reset  
KCLK – Keyboard Clock  
KDAT – Keyboard Data  
KINT – Keyboard Interrupt  
E
ECP – Extended Capabilities Port  
EPP – Enhanced Parallel Port  
L
LAD – LPC Address and Data  
LCLK – PCI Clock  
F
FCS – Frame Check Sequence  
FDC – Floppy Disk Controller  
FDD – Floppy Disk Drive  
FIFO – First-in First-out buffer  
LD – Logical Device  
LDRQ# – LPC DMA Request  
LFRAME# – LPC Frame  
LPC – Low Pin Count  
-228-  
W83627UHG  
LRESET# – LPC Reset  
R/W – Read / Write  
RI – Ring Indicator  
LSB – Least Significant Bit (Byte)  
RLE – Run Length Encoding/ Expanding  
RPM – Revolutions per Minute  
RSMRST# – Resume Reset  
RTC – Real Time Clock  
M
MCLK – Mouse Clock  
MDAT – Mouse Data  
MIDI – Musical Instrument Digital Interface  
MINT – Mouse Interrupt  
MSB – Most Significant Bit (Byte)  
RTS – Request to Send  
S
S/W Reset – Software Reset  
SCL – Serial Clock  
O
OVT# – Over Temperature  
SDA – Serial Data  
SERIRQ – Serialized IRQ  
SLCT – Select Status  
P
PANSWIN# – Panel Switch Input  
PANSWOUT# – Panel Switch Output  
PC – Personal Computer  
SLIN – Select Input  
SMI# - System Management Interrupt  
SPP – Standard Parallel Port  
SST – Simple Serial Transport  
SYSFANIN – System Fan Input  
SYSTIN – System Temperature Input  
PCI  
SIG  
Peripheral  
Component  
Interconnect Special Interest Group  
PD – Parallel Port Data  
PDRQ – Parallel Port DMA Request  
PE – Paper End  
T
PECI  
Platform Environment Control  
Tcontrol: a temperature spec. based on a  
temperature from the thermal diode  
Interface  
PLED – Power LED  
TTL – Transistor-Transistor Logic  
PME – Power Management Event  
PnP – Plug and Play  
U
PRT – Printer  
UART – Universal Asynchronous Receiver/  
Transmitter  
PS/2 – IBM Personal System/2  
PSIN_STS – PSIN# Status  
PWM – Pulse Width Modulation  
PWROK – Power OK  
V
VSB – Standby Supply Voltage  
VSS – GND  
Q
W
QFP – Quad Flat Package  
WDTO# – Watch Dog Timer Output  
R
Publication Release Date: May 25, 2007  
-229-  
Revision 1.0  
W83627UHG  
Please note that all data and specifications are subject to change without notice. All the trade marks  
of products and companies mentioned in this data sheet belong to their respective owners.  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control instruments,  
airplane or spaceship instruments, transportation instruments, traffic signal instruments,  
combustion control instruments, or for other applications intended to support or sustain life.  
Further more, Winbond products are not intended for applications wherein failure of Winbond  
products could result or lead to a situation wherein personal injury, death or severe property  
or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
-230-  

相关型号:

W83628AG

PCI TO ISA BRIDGE
NUVOTON

W83628AGEVB

PCI TO ISA BRIDGE
NUVOTON

W83628F

PCI TO ISA BRIDGE SET
WINBOND

W83629AG

PCI TO ISA BRIDGE
NUVOTON

W83629D

PCI TO ISA BRIDGE SET
WINBOND

W83637HF

LPC I/O
WINBOND
WINBOND
WINBOND

W83637HG

LPC I/O
WINBOND
WINBOND

W83697

WINBOND I/O
WINBOND

W83697F

WINBOND I/O
WINBOND