W93910 [WINBOND]

ERMES PAGING DECODER; ERMES寻呼解码器
W93910
型号: W93910
厂家: WINBOND    WINBOND
描述:

ERMES PAGING DECODER
ERMES寻呼解码器

解码器 寻呼;传讯
文件: 总35页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W93910  
ERMES PAGING DECODER  
GENERAL DESCRIPTION  
The W93910 is a low-power ERMES (Enhanced Radio MEssage System) paging protocol decoder  
using a single 100 kHz crystal. The W93910 supports individual call, group call, long message,  
changing character set and remote programming functions. To enhance the sensitivity of the pager  
system, a digital filter and DPLL are incorporated to remove noise and lock the signal. For convenient  
pager programming, the W93910 provides fully software-programmable options and also offers an  
independent LED frequency output.  
With built-in flexible RF power saving control, frequency synthesizer enable control, quick charge  
controls, as well as automatic channel scan algorithm, the W93910 can combine with different RF  
receivers to construct a high performance, low power dissipation pager system.  
FEATURES  
· 100 kHz crystal  
· Built-in digital filter and digital phase lock loop  
· Built-in two addresses concurrently  
· One remote programming address  
· International roaming capability  
· Automatic channel scan algorithm  
· Built in de-interleaving circuit  
· 2-bit random error correction  
· Individual call, long message, changing character set and remote programming  
· CTAP group call  
m
· Serial interface with C  
· 2-bit signal input from RF receiver  
· RF and frequency synthesizer power saving control available  
· Quick charge-discharge timing control  
· Provides LED output  
· 2.5 to 3.5 volts operating voltage range  
· Packaged in 28-pin SSOP  
Publication Release Date: Auguest 1999  
Revision A1  
- 1 -  
W93910  
PIN CONFIGURATION  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OSCI  
OSCO  
GND  
VDD  
2
LEDO  
3
TEST2  
TEST1  
ENLED  
MCLK  
4
TCTL2  
D0  
5
6
D1  
7
QC2  
MDATA  
MSGVAL  
ADRDET  
SYNVAL  
XCNCG  
CHRS  
8
TCTL1  
QC1  
9
10  
11  
12  
13  
14  
RFEN  
PLEN  
TXCLK  
TXDATA  
ON  
PTEST  
XRST  
PIN DESCRIPTION  
SYMBOL  
OSCI  
OSCO  
GND  
TCTL2  
D0  
PIN  
1
I/O  
I
PIN DESCRIPTION  
100 kHz crystal input.  
100 kHz crystal output.  
Ground power.  
2
O
I
3
4
O
I
RF control pin. Inversion output of QC2.  
Demodulated data input bit0(LSB).  
Demodulated data input bit1(MSB).  
5
D1  
6
I
QC2  
7
O
Receiver quick charge 2 signal enable. Active high/low is dependent  
on QC2L option bit.  
TCTL1  
QC1  
8
9
O
O
RF control pin.  
Receiver quick charge 1 signal enable. Active high/low is dependent  
on QC1L option bit.  
RFEN  
PLEN  
10  
11  
O
O
Receiver power control. Active high/low is dependent on RFENL option  
bit.  
PLL frequency synthesizer power control. Active high/low depends on  
m
PLENL option bit. C must program the freq. synthesizer counter while  
PLEN inactive. W93910 internal channel will be decided during PLEN  
active edge.  
- 2 -  
W93910  
Pin Description, continued  
SYMBOL  
PIN  
I/O  
PIN DESCRIPTION  
TXCLK  
12  
I
m
192 option bits clock input from C. TXDATA will be latched by  
W93910 during TXCLK rising edge.  
TXDATA  
ON  
13  
14  
I/O  
I
m
192 option bits serial data input from C. Option bit address will be  
increased by one after each TXCLK period. After 192 option setting,  
the TXDATA pin will change to output pin for received OPID  
information access.  
Active high to enable W93910 chip operating. Oscillator starts  
oscillation after ON rising edge. OSCO will always stop while ON is  
low.  
XRST  
PTEST  
CHRS  
15  
16  
17  
I
I
I
Internal pull low, Active high to reset decoder.  
Internal pull low, Test mode only.  
Force roaming control pin. Connect to GND for normal operation. Pull  
high is only for test purpose.  
XCNCG  
18  
O
During PLEN pin high level, XCNCG (eXternal ChaNnel ChanGe)  
rising edge will inform mC to change channel according to channel  
scanning rule.  
19  
20  
21  
22  
O
O
O
O
Synchronization Indicator (out-of-range indicator output). Output low  
when synchronized with paging system.  
SYNVAL  
ADRDET  
Active high while the user IA detected in the address partition.  
(normally Low)  
MSGVAL  
MDATA  
MSGVAL will be active during MCLK, MDATA available period. Active  
high/low is dependent on MSGI option bit.  
m
Serial paging message output to C. Rising/falling edge is dependent  
-
on MCKEG option bit. UDI1 0 used to select interval per bytes  
MDATA.  
MCLK  
23  
O
m
Serial clock output to C for available paging message. MCKI used to  
select initial state, and MCK1, MCK0 used to select clock rate.  
Internal pull low, Active high to enable LEDO output.  
Test only. No connection for normal operation  
Test only. No connection for normal operation  
10/4 kHz or 40/16 kHz CMOS clock output.  
3 volts power supply.  
ENLED  
TEST1  
TEST2  
LEDO  
24  
25  
26  
27  
28  
I
I
O
O
I
DD  
V
Publication Release Date: Auguest 1999  
- 3 -  
Revision A1  
W93910  
BLOCK DIAGRAM  
PTEST  
VDD  
XRST  
GND  
TXCLK  
D0  
DATA INPUT  
FILTER & PLL  
128 OPTIONS  
BITS  
TXDATA  
D1  
MAIN  
CONTROL  
CIRCUIT &  
ERROR  
AIR PROGRAMMING  
REGISTER  
OSCI  
OSCILLATOR  
CORRECTION  
OSCO  
MSGVAL  
MDATA  
MCLK  
DATA OUTPUT  
BUFFER &  
CONTROL  
TIME OUT  
CONTROL  
ADRDET  
RFEN  
PLEN  
QC1  
LEDO  
CHANNEL  
STATUS  
CONTROL  
RECEIVEING  
ENABLE  
CONTROL  
LED & ALERT  
TYPE CONTROL  
ENLED  
QC2  
TEST2 TEST1  
TCTL1 TCTL2 ON  
SYNVAL CHRS XCNCG  
- 4 -  
W93910  
ADDRESS & OPTION LIST  
BIT NO. DATA BIT NO. DATA BIT NO. DATA BIT NO. DATA BIT NO. DATA BIT NO. DATA  
b0  
b1  
0
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
b49  
b50  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
FILT1  
GIA17  
GIA16  
GIA15  
GIA14  
GIA13  
GIA12  
GIA11  
GIA10  
GIA9  
GIA8  
GIA7  
GIA6  
GIA5  
GIA4  
GIA3  
GIA2  
GIA1  
GIA0  
CH3  
b64  
b65  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
b75  
b76  
b77  
b78  
b79  
b80  
b81  
b82  
b83  
b84  
b85  
b86  
b87  
b88  
b89  
b90  
b91  
b92  
b93  
b94  
b95  
1
ZC2  
ZC1  
ZC0  
CC6  
CC5  
CC4  
CC3  
CC2  
CC1  
CC0  
OP2  
OP1  
OP0  
FSN3  
FSN2  
FSN1  
FSN0  
0
b96  
b97  
SIEN  
b128  
1
b160  
1
QCON0  
IA17  
IA16  
IA15  
IA14  
IA13  
IA12  
IA11  
IA10  
IA9  
b129 RPIA17 b161 RPZC2  
b130 RPIA16 b162 RPZC1  
b131 RPIA15 b163 RPZC0  
b132 RPIA14 b164 RPCC6  
b2  
b98  
RFON  
PL1  
b3  
b99  
b4  
b100  
PL0  
b5  
b101 GIAEN b133 RPIA13 b165 RPCC5  
b102 PAEN b134 RPIA12 b166 RPCC4  
b103 GPAEN b135 RPIA11 b167 RPCC3  
b6  
b7  
b8  
b104  
b105  
MCKI  
MDAI  
b136 RPIA10 b168 RPCC2  
b9  
b137  
RPIA9 b169 RPCC1  
RPIA8 b170 RPCC0  
RPIA7 b171 RPOP2  
RPIA6 b172 RPOP1  
RPIA5 b173 RPOP0  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
b30  
b31  
IA8  
b106 MCKEG b138  
b107 RFENL b139  
b108 PLENL b140  
IA7  
IA6  
IA5  
b109  
b110  
b111  
b112  
b113  
b114  
b115  
b116  
b117  
b118  
b119  
b120  
b121  
b122  
b123  
b124  
b125  
b126  
b127  
QC1L  
QC2L  
D0IV  
b141  
b142  
b143  
b144  
b145  
b146  
b147  
b148  
b149  
b150  
IA4  
RPIA5 b174  
RPIA3 b175  
RPIA2 b176  
RPIA1 b177  
RPIA0 b178  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
0
IA3  
IA2  
D1IV  
IA1  
MCK1  
MCK0  
LKR1  
LKR0  
0
IA0  
BN3  
BN2  
BN1  
BN0  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
0
1
RPI  
b179  
b180  
b181  
b182  
CH2  
0
RSVD  
RSVD  
RSVD  
CH1  
1
CH0  
1
LEDF  
MSGI  
UDI1  
UDI0  
QC1WTH  
GPA5  
GPA4  
GPA3  
0
b151 RPPA5 b183  
b152 RPPA4 b184  
b153 RPPA3 b185  
b154 RPPA2 b186  
b155 RPPA1 b187  
b156 RPPA0 b188  
0
0
GPA2  
GPA1  
GPA0  
LPWR  
QCON1  
0
0
0
0
0
0
0
0
0
b157  
b158  
b159  
RSVD  
RSVD  
0
b189  
b190  
b191  
0
0
0
0
0
Table 1  
Publication Release Date: Auguest 1999  
Revision A1  
- 5 -  
W93910  
192 OPTION BITS  
Detailed description given in Function Description section.  
RIC format  
-
IA17 IA0: Basic RIC initial address  
-
-
BN3 BN0: Basic RIC batch number A(0000) P(1111)  
-
-
PA5 PA0: Basic RIC paging area code (000000 111111)  
PAEN: Enable PA5- PA0 while PAEN active  
-
GIA17 GIA0: Second RIC initial address  
-
-
CH3 CH0: Home channel initial value from Channel 0 (0000) Channel F (1111)  
-
-
GPA5 GPA0: Second RIC paging area code (000000 111111)  
-
GPAEN: Enable GPA5 GPA0 while GPAEN active  
-
GIAEN: Enable GIA17 GIA0 initial address  
-
ZC2 ZC0: Receiver zone code  
CC6- CC0: Receiver country code  
-
OP2 OP0: Receiver operator code  
-
-
FSN3 FSN0: Frequency subset number (0000 1111)  
-
RPIA17 RPIA0: Remote programming initial address  
-
-
RPPA5 RPPA0: Remote programming paging area code (000000 111111)  
-
RPZC2 RPZC0: Remote programming zone code  
-
RPCC6 RPCC0: Remote programming country code  
RPOP2- RPOP0: Remote programming operation code  
RPI: Remote programming index  
RF Interface:  
RFENL: RFEN pin active level option bit  
PLENL: PLEN pin active level option bit  
QC1L: QC1 active level option bit  
QC2L: QC2 active level option bit  
D0IV: D0 input polarity option bit  
D1IV: D1 input polarity option bit  
-
-
PL1 0, RFON, QCON1 0, QC1WTH: RFEN, PLEN, QC1 and QC2 active timing control bits.  
uC Interface:  
MSGI, MCKI, MDA I: MSGVAL, MCLK, MDATA pin initial state option bit  
MCKEG: MCLK active edge;  
-
MCK1 MCK0: MCLK output clock option bits  
-
UDI1 0: MCLK stop clock option  
LEDF: LED freq. output selection(1:10/40 kHz; 0:4/16 kHz)  
Others:  
-
LKR1 LKR0: SYNC lost hold time option  
SIEN: System information output enable option  
LPWR: Power saving option  
FILT1: Digital filter option  
- 6 -  
W93910  
FUNCTION DESCRIPTION  
The W93910 ERMES paging decoder can be used to easily construct an ERMES pager with RF  
m
receiver and C. To initialize the decoder, first, 192 option bits must be programmed through TXCLK,  
m
TXDATA pin by C. After the oscillator has been turned on and is stable, the decoder can then receive  
and decode the 2 bit digital QFSK signal from the RF receiver. With built-in PLEN, RFEN, QC1 and QC2  
controls, the decoder can warm up and shut down the frequency synthesizer and IF demodulator for  
optimum reception in different stages.  
While starting, the pager will begin to search the home channel. If system synchronization can't occur in  
the current channel, the pager will change to the next channel according to the channel scan algorithm  
until synchronization occurs. Once synchronized with the channel, the pager will lock to its own batch,  
ready to receive paging message. If an address-matched message is received, the de-interleaved data  
m
will be transferred to C through MDATA and MCLK pin. With the automatic channel scan algorithm, the  
decoder will inform mC by PLEN and XCNCG to change channel during channel scan and normal  
mode.  
RECEIVING OPERATION FLOW  
Power on  
and XREST  
192 options  
setting  
ON  
Oscillator stable  
CHANNEL  
SCANNING MODE  
IDLE MODE  
SYNC MODE  
LOCK MODE NORMAL MODE  
Figure 1. Operating Flow Chart  
Publication Release Date: Auguest 1999  
- 7 -  
Revision A1  
W93910  
192 OPTION BITS PROGRAMMING  
m
After power on and XRST pin active, the C should send 192 clock inputs to TXCLK pin and 192 options  
to TXDATA pin. Figure 2 shows the TXCLK and TXDATA programming timing. The data values in  
TXDATA are latched at TXCLK rising edge. The clock rate of TXCLK should be smaller than 1 MHz.  
Txrst  
XRST  
Ttdst  
TXCLK  
......  
Ttdhd  
Ttxck  
TXDATA  
PLEN  
b1  
......  
b190  
b191  
b0  
b189  
Low  
Ton  
ON  
OSCO  
Tosc  
Figure 2. 192 option bits programming timing  
RECEIVING ENABLE CONTROL  
After the W93910 has received the 192 options, it will start the operation if the ON pin is high, or in  
stand-by mode if ON pin is low. The On pin can be pulled high at any time to activate the oscillator. After  
oscillator is stable, the decoder will activate the PLEN. RFEN, QC1, QC2, TCTL1, and TCTL2 to control  
the frequency synthesizer and IF demodulator, based on the option setting as shown in Figure 3. The  
frequency synthesizer need to be programmed to the right channel (normally home channel) before  
m
PLEN active. The PLEN is used to control the frequency synthesizer power, and inform C of the  
receiving status. The output levels of RFEN, PLEN, QC1 and QC2 are defined by the option bits RFENL,  
PLENL, QC1L and QC2L as shown in Table 2. TCTL2 is the inversion output of QC2. The TCTL1 active  
level is fixed. The TCTL1 and TCTL2 output will be activated only when the LEDF option bit is set to 1.  
-
-
Option bit PL1 0, RFON, QCON1 0 and QC1WTH provides different set up time for PLEN, RFEN,  
QC1, QC2, TCTL1 and TCTL2, as shown in Table 3, to meet different RF receiver requirements.  
- 8 -  
W93910  
PLEN  
RFEN  
Tqc1w  
QC1  
TCTL1  
QC2  
TCTL2  
Tplst  
Batch n  
High  
Batch n+1  
Trfdy  
ON  
(While RFENL, PLENL, QC1L and QC2L are "0")  
Figure 3. PLEN, RFEN, QC1, QC2, TCTL1 and TCTL2 timing  
OPTION BIT  
FUNCTION  
RFENL, PLEN, QC1L, QC2L  
RFEN, PLEN, QC1, and QC2 pin voltage level  
0
1
Active high  
Active low  
Table 2. RF interface active option bits  
OPTION BIT  
FUNCTION  
Tplst setting  
9.6 mS  
PL1  
0
PL0  
0
0
1
19.2 mS  
1
0
28.8 mS  
1
1
Reserved  
Table 3. PLL enable timing  
Publication Release Date: Auguest 1999  
Revision A1  
- 9 -  
W93910  
OPTION BIT  
FUNCTION  
Trfdy  
RFON  
0
1
4.8 mS  
9.6 mS  
Table 4. RF interface timing control option bit  
OPTION BIT  
FUNCTION  
Tqc1w  
QC1WTH  
0
1
3.8 mS  
2.5 mS  
Table 5. Quick-charge duration option bit  
OPTION BIT  
FUNCTION  
QCON1  
QCON0  
QC1 duration  
QC2 duration  
1
0
0
0
0
1
Tplst + Trfdy + Tqc1w  
Trfdy + Tqc1w  
Tqc1w  
Tplst + Trfdy + 9.6ms  
Trfdy + 9.6ms  
9.6 ms  
Table 6. Quick-charge active timing control option bits  
CHANNEL SCAN MODE  
In this mode, decoder will enable the receiver to search the available channel in different frequency  
channels based on the channel scan control algorithm.  
...  
RFEN  
...  
XCNCG  
+
Home channel 2  
CHANNEL NO  
Home channel  
Change channel  
Change channel  
Figure 4. Channel Scan Mode  
- 10 -  
W93910  
CHANNEL SCAN CONTROL  
The channel scanning and switching are controlled by the decoder. Table 7 shows the channel number  
and frequency. In channel scan mode, the decoder will first search the home channel, defined by the  
-
CH3 CH0. Therefore, the synthesizer should be programmed to home channel before the channel  
scan mode. If the pager can not detect a valid signal in the home channel, the pager will change to the  
next channel to search until the decoder lock to the signal. The scanning sequence is shown in Figure 5,  
and needs to be followed to avoid losing signal.  
OPTION BIT  
FUNCTION  
Home channel number  
RF center frequency  
169.425 MHz  
169.475 MHz  
169.525 MHz  
169.575 MHz  
169.625 MHz  
169.675 MHz  
169.725 MHz  
169.775 MHz  
169.800 MHz  
169.750 MHz  
169.700 MHz  
169.650 MHz  
169.600 MHz  
169.550 MHz  
169.500 MHz  
169.450 MHz  
-
CH3 CH0  
0000  
0010  
0100  
0110  
1000  
1010  
1100  
1110  
1111  
1101  
1011  
1001  
0111  
0101  
0011  
0001  
0
2
4
6
8
A
C
E
F
D
B
9
7
5
3
1
Table 7. Channel number and frequency  
Ch 0  
Ch 2  
Ch A  
Ch C  
Ch 3  
Ch 1  
Figure 5. Channel scan sequence  
Publication Release Date: Auguest 1999  
Revision A1  
- 11 -  
W93910  
m
The frequency channel adjustment is implemented by XCNCG, PLEN, and C. XCNCG is used to  
m
m
output a high pulse to inform C of the frequency channel increment request. C needs to count the  
XCNCG high pulse during the PLEN active period. Each XCNCG pulse indicates one frequency channel  
m
increment. During the PLEN inactive period, the C should program the synthesizer with suitable data  
based on the previous XCNCG counting result to ensure the receiver can catch the right channel.  
During the lock mode, the pager will fix at the same channel as shown in Figure 6 and 7. The normal  
mode operation is described in Figure 8 and 9. The batch number setting is shown in Table 8.  
OPTION BIT  
FUNCTION  
Batch Number  
-
bn3 bn0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Table 8. bn3 bn0 batch number format  
-
IDLE MODE  
If there is no meaningful signal after scanning the channel several times, the decoder will enter idle  
mode to save power, and will re-enter the channel scan mode after a period of time.  
SYNC MODE  
SYNVAL  
While synchronizing with the paging system, the decoder enters sync mode and the  
pin  
outputs LOW The decoder will then change to lock mode or normal mode based on the receiving  
information.  
- 12 -  
W93910  
LOCK MODE  
In lock mode, the decoder will stay at the same channel. If matching addresses appear, all the available  
paging messages will be received until messages are finished or time out occurs.  
PLEN  
receiving message  
no message  
Figure 6. Lock Mode  
Status  
Lock mode  
Top  
Channel scanning mode  
Lock mode  
ON  
PLEN  
XCNCG  
Txcncg:XCNCG pulse  
9 7  
due to XCNCG rising  
uC  
internal  
channel  
5
7
9
7
3
9
Tpll:uC change frequency synthesizer counter  
PLL freq.  
synthesizer  
channel  
7
5
9
9
9
7
due to PLEN active edge  
Decoder  
channel  
9
7
7
7
5
9
9
7
The above example shows the home channel of the pager is  
channel 9 (CH3-CH0 = 1001) and pager locks to channel 7.  
Figure 7. Channel Scan mode and lock mode  
Publication Release Date: Auguest 1999  
Revision A1  
- 13 -  
W93910  
NORMAL MODE (NON-LOCK)  
Decoder will enter normal mode while not in the home network or the border area indication condition.  
In this mode, the decoder will switch and listen to different frequency channel based on the channel  
scan control algorithm. The PLEN operating timing is shown in Figure 8.  
PLEN  
Batch A of Batch A of  
channel 2 channel 4  
Batch A of  
channel 6  
Batch A of  
channel 1  
Batch A of  
channel 0  
Status  
The batch number is set to batch A  
Figure 8. Normal Mode  
High  
ON  
PLEN  
XCNCG  
uc  
internal  
channel  
2
2
4
6
8
A
A
C
E
F
E
D
B
9
PLL freq.  
synthesizer  
channel  
6
C
B
4
Decoder  
channel  
2
4
6
A
C
E
B
Notes:  
1. uC need to count the number of XCNCG pulse during the PLEN active  
period, and program the synthesizer with suitable data during the  
PLEN inactive period.  
2. PLEN will be the dash line if there is no paging message.  
Figure 9. Channel scan in NORMAL MODE  
- 14 -  
W93910  
LOST SYNCHCONIZATION  
If synchronization is lost for several minutes (pre-defined by option bit LKR1 LKR0 ), the pager will  
SYNVAL  
-
change to the channel scan mode. The  
pin will keep low during the lock mode and normal  
SYNVAL  
mode unless the synchronization lost duration exceeds the hold time condition, then the  
will change to high level and the decoder will go back to the channel scan mode.  
pin  
OPTION BIT  
FUNCTION  
LKR1  
LKR0  
Synchronization lost hold time  
0
0
1
1
0
1
0
1
1 min.  
2 min.  
3 min.  
4 min.  
Table 9. Lock re-try option bits  
RIC (Radio Identify Code) FORMAT  
For ERMES system, RIC has 35 bits and is defined by ZC2 ZC0, CC6 CC0, OP2 OP0, IA17 IA0, and  
-
-
-
-
-
BN3 BN0 option bits as shown in Table 10.  
Radio Identify Code  
Function  
OPID  
LOCAL ADDRESS  
Zone Code Country Code Operator Code Initial Address Batch Number Paging area  
OPTION  
bit  
-
-
-
-
-
-
PA5 PA0  
ZC2 ZC0  
CC6 CC0  
OP2 OP0  
IA17 IA0  
BN3 BN0  
-
-
GPA5 GPA0  
GIA17 GIA0  
Table 10. RIC format  
-
The W93910 provides two initial addresses with corresponding paging area code, IA17 IA0 with  
-
-
-
PA5 PA0 and GIA17 GIA0 with GPA5 GPA0, for the same OPID. The first one is dedicated for the  
-
basic RIC. Each pager has one unique batch number, defined by BN3 BN0, and will only turn on and  
listen at that specific batch except where a message continues over one batch. If PAEN option bit is set  
-
to "1", the received message must match to the pre--defined paging area code, PA5 PA0. Other than in  
-
this situation, the received paging area code doesn't need to match the pre-defined PA5 PA0, but must  
-
be consistent throughout the whole message. The second IA, GIA17 GIA0, is enabled by setting the  
-
GIAEN option bit to 1. GPAEN has the same function as PAEN, but for GIA17 GIA0 address only.  
OPTION BIT  
FUNCTION  
Second user address (GPA+GIA)  
Disable  
GIAEN  
0
1
Enable  
Table 11-1. Second initial address setting option bits  
Publication Release Date: Auguest 1999  
Revision A1  
- 15 -  
W93910  
OPTION  
FUNCTION  
PAEN, GPAEN  
PA5- PA0, GPA5- GPA0  
Don't care  
0
1
Enable  
Table 11-2. Paging area setting  
REMOTE PROGRAMMING  
The W93910 provides remote programming addresses including initial address, paging area, zone  
code, and country code to support the remote programming function. These option bits are listed in  
Table 12. These temporary addresses can be programmed during the initial setting or modified by the  
air message. While receiving the remote programming address message, W93910 will automatic  
m
C
update the internal remote programming addresses and also pass the programming message to  
through MDATA pin. The data should be stored for re-initialization purpose. Please refer to Summary of  
Data Output Format. If the remote programming data is less than 18 bits, the dummy "0" is filled in the  
-
other low bits of rd17 rd0. For the first time initialization, all the option bits should be "0" including the  
RPI. The RPI is the remote programming index, which can be read out from MDW while receiving the  
remote programming message.  
OPTION BIT  
FUNCTION  
Initial Address  
-
RPIA17 RPIA0  
Paging Area  
-
RPPA5 RPPA0  
Zone Code  
-
RPZC2 RPZC0  
Country Code  
-
RPCC6 RPCC0  
Operator Code  
Remote Programming Index  
-
RPOP2 RPOP0  
RPI  
Table 12. Remote programming register  
SYSTEM INFORMATION  
By setting the SIEN option bit to 1, the system information can also be read out from TXDATA pin. After  
m
m
192 option bits setting, if the C decides to read out the received system information, the C needs to  
send 31 clocks to TXCLK pin. The first clock pulse will switch TXDATA pin from input to output, and the  
last clock pulse will disable this function. At the falling edge of the each clock pulse except the first and  
last clock one, the system information (batch no, country code, operator code, cycle no., hour) can be  
read out from the TXDATA pin. The best timing to read out the system information is right after PLEN  
falling edge. The format and timing are shown in Figure 10. This function is disabled if SIEN is set to 0.  
- 16 -  
W93910  
TXCLK  
TXDATA  
Start Batch3-0  
CC6-0  
Op2-0  
Cycle No5-0  
Hour4-0 Reserved Stop  
Figure 10. System information read out format  
DATA INPUT  
The 4 level FSK signal is converted to 2 bit digital signal by IF demodulator, as shown in Figure 11,  
where fn is the carrier frequency from 169.425 MHz to 169.8 MHz. The 2 bit digital signal should be  
connected to the D1(MSB), D0(LSB) inputs of W93910. The D1 and D0 inputs could be inverted by  
setting the D1IV, and D0IV option bits to provide some flexibility.  
OPTION BIT  
FUNCTION  
D1 input, D0 input  
Non-inversion  
Inversion  
D1IV, D0IV  
0
1
Table 13. D1, D0 relative option bits  
10  
(fn-4687.5Hz)  
11  
(fn-1562.5Hz)  
01  
(fn+1562.5Hz)  
00  
(fn+4687.5Hz)  
D1  
D0  
:
:
0
1
0
0
1
0
1
1
0
1
1
0
Figure 11. 4 PAM mapping to D1, D0(fn is the channel carrier frequency)  
Publication Release Date: Auguest 1999  
Revision A1  
- 17 -  
W93910  
DIGITAL FILTER & POWER SAVING  
The W93910 provides different digital filter to remove the noise of the 4FSK signal. The enhanced  
filtering require higher power consumption. Table 14 shows different combinations of digital filtering and  
power saving.  
OPTION BIT  
FUNCTION  
FILT1  
LPWR  
Digital filter & power saving  
0
1
0
1
Low power consumption, normal filtering  
Enhanced filtering, high power consumption  
Table 14. Digital filter and power saving option  
DE-INTERLEAVER AND ERROR CORRECTION  
The W93910 performs 2 bits random error correction for system information, address partition as well  
as message partition, and codeword de-interleaving for message partition.  
TIME OUT CONTROL  
When the decoder recognizes a valid initial address it will start to search the associated paging  
message. Time out criteria will stop message searching at once. While the searching is stopped due to  
time out issue, the "epa" and "etm" in EDW format will be set to indicated the time out situation. At the  
mean time, the RF control signal will become inactive at once when ending message delimiter (MD) has  
been detected.  
For Individual calls  
·
Two time out criteria shall apply. The earliest detected shall prevail:  
-
1. If PA5 PA0 in paging message is not consistent throughout the receiving, then the epa flag will be  
set to "1".  
2. If the paging message lasts more than 12 sec, then etm flag will be set to "1".  
For group calls  
·
Individual member shall cease message search if:  
-
1. If PA5 PA0 in paging message is not consistent throughout the receiving, then the epa flag will be  
set to "1".  
2. If the paging message lasts more than 12 sec, then etm flag will be set to "1".  
For long message calls  
·
The time out criteria for each sub-message is the same as for individual call. The time out of the whole  
long message should be proceeded by the software to meet the ERMES protocol.  
- 18 -  
W93910  
DATA OUTPUT CONTROL  
When the chip detects the proper address, the chip will first activate ADRVAL pin to inform the C and  
m
m
then send the de-interleaved paging message and related system information to the C through MCLK  
and MDATA pin. The format and timing of the data output is shown in Figure 12. The data output is  
Function Code,  
packed into a 3-byte word format. The function of each word is defined by the  
the first  
4 bits of byte3, as shown in Table 15. The format of the rest 20 bits will depend on the function code.  
HIGH NIBBLE OF BYTE 3  
FUNCTION CODE  
System Information Word (SIW)  
ComMand Word (CMW)  
Addition Information Word (AIW)  
Message data Word (MDW)  
EnD message Word (EDW)  
RESERVED  
0000  
0010  
010x  
0110  
1110  
Others  
Table 15. Data Output Function Code  
Publication Release Date: Auguest 1999  
Revision A1  
- 19 -  
W93910  
ADRDET  
MSGVAL  
Taddt  
Message 1  
AIW  
Message 2  
Tint  
MDATA  
MCLK  
Tmsgv  
MDW0  
SIW  
CMW  
EDW  
SIW  
EDW  
Tudi  
Tudi  
D23-17  
byte3  
D15-D8  
byte2  
D7-D0  
byte 1  
D23-17  
MDATA  
MCLK  
Tint  
(MCKEG=1)  
Tunit  
MCKI=0  
....  
....  
MDATA  
D23 D22  
Tmdst  
D17  
D16 D15  
D8  
....  
....  
....  
MCLK  
(MCKEG=1)  
Tmclk  
....  
MCLK  
(MCKEG=0)  
MCKI=1  
....  
....  
D23 D22  
D17  
D15  
....  
D8  
D16  
MDATA  
Tmclk  
....  
MCLK  
(MCKEG=1)  
Tmclk  
....  
....  
MCLK  
(MCKEG=0)  
Figure 12. Data Output Timing  
- 20 -  
W93910  
-
Table 16 Table 19 list the active level and timing option bit settings of the data output format. MCLK  
-
clock rate is defined by option bit MCK1 0. The duration between each word, Tint, and the duration  
-
between each byte, Tudi, are defined by option bit UDI1 UDI0. Option bit MCKEG defines MCLK active  
edge. MCKI, MSGI and MDAI option bits set MCLK, MSGVAL and MDATA pin initial and active state.  
The output sequence of MDATA pin is SIW, CMW, MDW0, MDW1...MDWn, EDW for all the message  
types except long message. For long message, an extra AIW is added between CMW and MDW0.  
Summary of Data Output Format  
Please refer to  
for different paging message format.  
OPTION BIT  
FUNCTION  
MCKEG  
MCLK active edge  
Falling edge active  
Rising edge active  
0
1
Table 16. Data output pin option  
OPTION BIT  
FUNCTION  
MSGVAL active level  
active low  
MSGI  
0
1
active high  
Table 17. Data output pin option  
OPTION BIT  
FUNCTION  
MDATA, MCKI pin initial state  
Initial low  
MDAI, MCKI  
0
1
Initial high  
Table 18. Data output pin option  
Publication Release Date: Auguest 1999  
Revision A1  
- 21 -  
W93910  
OPTION  
FUNCTION  
MCK1, MCK0  
00  
UD1, UD0  
00  
Tudi timing  
0
Tint timing  
2.08 mS  
1.76 mS  
1.44 mS  
01  
m
160 S  
10  
m
m
320 S  
Tmclk = 80 S  
11  
m
m
640 S  
800 S  
00  
0
3.04 mS  
2.72 mS  
1.76 mS  
1.04 mS  
3.52 mS  
3.2 mS  
01  
01  
m
160 S  
10  
m
m
Tmclk = 40 S  
640 S  
11  
1 mS  
0
00  
10  
01  
m
160 S  
10  
2.24 mS  
1.2 mS  
m
m
Tmclk = 20 S  
640 S  
11  
1.16 mS  
0
00  
3.88 mS  
3.72 mS  
2.66 mS  
1.33 mS  
11  
01  
m
80 S  
10  
m
m
Tmclk = 5 S  
640 S  
11  
1.275 mS  
Table 19. Tudi and Tint timing option (where Tunit = 4 mS minimum)  
SIW Definition  
When the W93910 receives a message, the MSGVAL pin will be activated first, and then SIW will be the  
first word to output from the MDATA pin. System information, such as year, month, date, hour, day and  
OPID, may resolve from SIW.  
SIW  
byte3  
byte2  
byte1  
b7  
0
b6  
0
b5  
0
b4  
b3  
fsi  
s9  
s1  
b2  
sn2  
s8  
b1  
sn1  
s7  
b0  
sn0  
s6  
0
s13  
s5  
s12  
s4  
s11  
s3  
s10  
s2  
s0  
X
X
Table 20. SIW format  
- 22 -  
W93910  
SIW Description:  
fsi  
0
s13 s12 s11 s10  
s9  
s8  
s7  
s6  
s5  
d4  
s4  
d3  
s3  
d2  
s2  
d1  
s1  
d0  
s0  
rv  
z2  
z1  
z0  
h4  
h3  
h2  
h1  
h0  
1
w2  
w1  
w0  
mt3 mt2 mt1 mt0 yr6  
yr5  
yr4  
yr3  
yr2  
yr1  
yr0  
Table 21. s13 s0 format  
-
-
sn2 sn0 is the subsequence number 0(000) to 4(100) that existed in SI field.  
fsi is the function bit of s13- s0 that provides all transmitter time base information.  
1. fsi = 0 while SSIT is equal "0000" in SSI field  
-
-
z2 z0: RIC zone code from 000 111  
-
-
h4 h0: Local hour from 0(00000) 23(10111)  
-
-
d4 d0: Local date from 1(00001) 31(11111)  
rv: reserve bit for future  
-
(Note: minute will be shown as cy5 cy0 in EDW)  
2. fsi = 1 while SSIT is equal "0001" in SSI field  
-
-
w2 w0: Local day of week from Monday(001) Sunday(111)  
-
-
mt4 mt0: Month from January(0001) December(1100)  
-
-
yr6 yr0: Year from 1990(0000000) 2117(1111111)  
CMW Definition  
The second word is CMW, which indicates the message type, message number, paging category, and  
alert type of received paging message.  
CMW  
byte3  
byte2  
byte1  
b7  
0
b6  
0
b5  
1
b4  
0
b3  
b2  
b1  
b0  
cm3  
mn3  
ain3  
cm2  
mn2  
ain2  
cm1  
mn1  
ain1  
cm0  
mn0  
ain0  
eb  
0
g1  
0
g0  
mn4  
pc0 / f0  
pc1 / f1  
Table 22. CMW format  
Publication Release Date: Auguest 1999  
Revision A1  
- 23 -  
W93910  
CMW Description:  
cm3 cm0  
message type description  
-
0000  
1000  
1001  
1010  
1100  
1101  
1110  
1111  
Others  
individual call  
long message w/o C.S--First submessage.  
long message w/o C.S--Others submessage.  
remote programming  
retransmit latest message no#  
long message with C.S--Others submessage.  
long message with C.S--First submessage.  
Change Character Set (C.S.)  
Reserved  
Table 23. Message type description (cm3 cm0)  
-
eb  
0
External flag  
Home Receiver  
External receiver  
1
Table 24. External receiver index  
g1 g0  
00  
RIC address index of received message  
-
IA17 IA0 available  
01  
Air Programming RIC  
GIA17- GIA0 available  
10  
11  
Group call by CTAP method  
Table 25. Received message address index  
Message number  
mn4- mn0  
00000  
For group calls the reserved dummy value 00000 shall be used. The reserved  
dummy value may also be used when the message numbering is deactivated,  
as with remote programming.  
Others  
-
For individual calls the initial value shall be 00001; then mn4 mn0 will be  
increased by 1 continuously for the following message.  
Table 26. Message number description (mn4 mn0)  
-
- 24 -  
W93910  
pc1 pc0  
00  
Paging category  
Tone only  
01  
Numeric  
10  
Alphanumeric  
transparent data  
11  
Table 27. Paging category index  
-
The ain3 ain0 is used to indicated the alert type of the message, except in the remote programming  
situation.  
Alert type description  
non-urgent alert type 0  
non-urgent alert type 1  
non-urgent alert type 2  
non-urgent alert type 3  
non-urgent alert type 4  
non-urgent alert type 5  
non-urgent alert type 6  
non-urgent alert type 7  
urgent alert type 0  
ain3- ain0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
urgent alert type 1  
urgent alert type 2  
urgent alert type 3  
urgent alert type 4  
urgent alert type 5  
urgent alert type 6  
urgent alert type 7  
Table 28. Alert type index  
CMW for remote programming  
When the pager receives the remote programming message, the W93910 will program the internal  
remote programming addresses automatically, and will also inform the mC by sending out the received  
-
-
-
message. For remote programming, the cm3 cm0 of CMW is equal to 1010, the f1 f0 and ain3 ain0 of  
-
m
CMD, and rd17 rd0 of MDW will send out the received programming message to C as shown below.  
Publication Release Date: Auguest 1999  
- 25 -  
Revision A1  
W93910  
Programmable function  
ain3-  
0 of CMW  
rd17-rd0 definition in MDW  
0001  
Initial Address  
Paging Area  
-
RIA17 RIA0  
0010  
-
RPA5 RPA0 + 12 dummy '"0"  
RZC3 + RCC7 + ROP3 + 5 dummy "0"  
SM5 + HNL3 + 12 dummy "0"  
0100  
OPID  
1000  
Home receiver battery saving  
External receiver battery saving  
0111  
SM5 + ENL3 + 12 dummy "0"  
Table 29. Remote programming MDW format only  
Function description  
Add RIA, RPA, ROPID or replace SM  
Remove RIA, RIA, ROPID  
Restore SM, ENL, HNL to Table 1  
Reserve  
f1-f0  
00  
01  
10  
11  
Table 30. Remote programming MDW format only  
AIW Definition  
AIW  
byte3  
byte2  
byte1  
b7  
b6  
b5  
0
b4  
b3  
cs3  
lc11  
lc3  
b2  
cs2  
lc10  
lc2  
b1  
cs1  
lc9  
lc1  
b0  
cs0  
lc8  
lc0  
0
1
cs4  
lc12  
lc15  
lc7  
lc14  
lc6  
lc13  
lc5  
lc4  
Table 31. AIW format  
The AIW is only available for long message (cm3- cm0 = 1000,1001,1101,1110) or changing character  
-
-
-
set (cm3 cm0 = 1111), otherwise it's absent. The cs4 0 indicate character set and lc15 lc0 indicate link  
counter. The different formats of AIW for the four different types of long message and changing  
character set are listed in Summary of Data Output Format.  
-
Each long message is divided into many submessages. The first submessage (cm3 cm0 = 1000 or  
1110) must be transmitted first, then other submessages follow in sequence. Each submessage has its  
-
own link counter lc15 lc0, which indicates how many message bits remain to be transmitted. The ter  
flag is defined to indicate the end of the long message as shown in Table 28. When ter flag is 1, it  
means the long message is completed. Otherwise, it means there are still some other submessages in  
the coming signal.  
For a long message, the W93910 will store all the received submessages including the EOM and filler  
bits in MDW and then send to UC. The filler bits and EOM are the last message part of MDW group,  
MDW1, MDW2...MDWn, and need to be removed to construct the long message. The following  
equation shows how many message bits of the previous MDW group need to be truncated. The long  
message can then be reproduced by connecting all the submessages except the truncated parts.  
- 26 -  
W93910  
No. of message bits needing to be truncated in previous MDW group  
-
-
= Total message bits of previous MDW group - [ (lc15 lc0)previous - (lc15 lc0)current  
]
ter flag in EDW  
ter = 1  
Status  
long message is completed  
ter = 0  
long message is not completed  
Table 32. ter flag of EDW for long message  
MDW Definition  
The received paging message will be output as MDW1, MDW2 ....MDWn format (MDW group).  
-
md17 md0 are the actual paging message data resolved from the message partition, including  
terminator character EOM and any dummy bit such as a filler. For any submessage of a long message,  
m
-
-
C needs to use AIW's lc15 lc0 to truncate terminator or dummy bit from md17 md0 according to AIW  
-
description. While remote programming, rd17 rd0 is used for remote programming data only. RPI is the  
remote programming index received from system. This bit should be loaded into b147 of option bit  
during the re-initialization stage if the remote address is programmed.  
MDW  
byte3  
b7  
0
b6  
1
b5  
1
b4  
0
b3  
b2  
b1  
b0  
md17/  
rd17  
md16/  
rd16  
md15/  
rd15  
md14/  
rd14  
byte2  
byte1  
md13/  
rd13  
md12/  
rd12  
md11/  
rd11  
md10/  
rd10  
md9/  
rd9  
md8/  
rd8  
md7/  
rd7  
md6/  
rd6  
md5/rd5 md4/rd4 md3/rd3 md2/rd2 md1/rd1 md0/rd0  
er1  
RPI  
Table 33. MDW format  
MDW Description:  
BIT  
FUNCTION  
Available paging message  
Remote programming data only  
-
md17 md0 (normal message)  
-
rd17 rd0 (remote programming)  
er1  
set to 1 if the random error can't be corrected in this message  
word  
rsv  
don't care, reserved for future  
Table 34. MDW bit description  
Any paging message such as 7 bit alphanumeric, 4 numeric or transparent data will be placed  
-
continuously in the 18 bit information field, md17 md0. After the last character (or bit) of message the  
following message termination procedures shall be used:  
·
·
·
Alphanumeric: an EOM character (0010001) shall be appended;  
Numeric: no terminating character required;  
Transparent data: a single bit set to one shall be appended;  
Publication Release Date: Auguest 1999  
Revision A1  
- 27 -  
W93910  
Unused bit in message shall be set as the following default values:  
·
·
·
Alphanumeric: EOM character and partial EOM character (MSB used first) shall be repeated to fill the  
remaining bits;  
Numeric: space character and partial space character ( MSB used first ) shall be repeated to fill the  
remaining bits;  
Transparent data: binary zeros shall be used to fill the remaining bits;  
The bit mapping in MDW unit for numeric and 7 bit alphanumeric are as follows.  
For numeric format, bit17- 14 of MDW0 construct the first numeric, bit13- 10 are the second... bit1- 0 of  
-
MDW0 and bit17 16 of MDW1 are the fifth numeric.... Therefore, two MDWs will construct 9 numeric.  
-
-
For 7 bit alphanumeric format, bit17 11 of MDW0 construct the first character, bit10 4 of MDW0 are the  
-
-
second character, bit 3 0 of MDW0 and bit17 15 of MDW1 are the third character... The alphanumeric  
definition is depended on Character Set (C.S.). The default C.S. is 00000.  
EDW Definition  
The EDW will follow the last MDW while the paging message is completed. Normally, the ter flag is  
"0" except in a long message completion situation. For any submessage of a long message except the  
last one, the ter flag of EDW is "0". Only when the long message is completed will the ter flag of EDW  
be "1". There is some other system information in byte2 of EDW such as eti flag, bai flag and current  
-
-
cycle number, cy5 cy0. The ch3 0 of byte3 indicate which frequency channel the current paging  
message is caught from and the bn3- bn0 of byte3 indicate which batch the message is completed in.  
EDW  
byte3  
byte2  
byte1  
b7  
1
b6  
1
b5  
1
b4  
b3  
0
b2  
ter  
b1  
b0  
etm  
cy0  
ch0  
0
epa  
cy1  
ch1  
eti  
bai  
bn2  
cy5  
bn1  
cy4  
bn0  
cy3  
ch3  
cy2  
ch2  
bn3  
Table 35. EDW format  
EDW description:  
BIT  
FUNCTION  
ter  
set to "1" while current long message is completed, otherwise ter flag is "0" for any  
individual call or submessage.  
epa  
etm  
set to "1" if paging message searching is stopped due to PA inconsistency  
set to "1" if paging message searching is stopped due to 12 sec time out  
.
cy5- cy0 cycle number from 0(000000) - 59(111011) as minute index  
eti  
External Traffic indicator in SI field  
Border Area Indicator flag in SI field  
bai  
Table 36. EDW description  
- 28 -  
W93910  
Summary of Data Output Format  
message type  
byte  
SIW  
(D23- D0)  
CMW  
AIW  
MDW  
(D23- D0)  
EDW  
(D23- D0)  
(cm3- 0)  
(D23- D0)  
(D23- D0)  
Individual  
3
2
1
0000 fsi sn2- sn0  
s13- s6  
0010 cm3- cm0  
X
X
X
0110 md17- md14  
md13- md6  
1110 0 ter epa etm  
eti bai cy5- cy0  
bn3- bn0 ch3- ch0  
0000  
eb g1 g0 mn4- mn0  
s5- s0 0 0  
0 0 pc1- pc0 ain3- ain0  
md5- md0 er1 rsv  
0XXX(Reserved)  
Long w/o C.S.  
(First submessage)  
1000  
3
2
1
3
2
0000 fsi sn2- sn0  
s13- s6  
0010 cm3- cm0  
010 xxxxx  
lc15- lc8  
lc7- lc0  
0110 md17- md14  
md13- md6  
1110 0 ter epa etm  
eti bai cy5- cy0  
eb g1 g0 mn4- mn0  
0 0 pc1- pc0 ain3- ain0  
0010 cm3- cm0  
s5- s0 0 0  
md5- md0 er1 rsv  
0110 md17- md14  
md13- md6  
bn3- bn0 ch3- ch0  
1110 0 ter epa etm  
eti bai cy5- cy0  
Long w/o C.S.  
0000 fsi sn2- sn0  
s13- s6  
010 xxxxx  
lc15- lc8  
(Other  
eb g1 g0 mn4- mn0  
submessages)  
1001  
1
3
2
1
s5- s0 0 0  
0 0 pc1- pc0 ain3- ain0  
0010 cm3- cm0  
lc7- lc0  
md5- md0 er1 rsv  
bn3- bn0 ch3- ch0  
Remote  
0000 fsi sn2- sn0  
s13- s6  
X
X
X
0110 md17- md14 1110 0 ter epa etm  
Programming  
1010  
eb g1 g0 mn4- mn0  
0 0 f1- f0 ain3- ain0  
rd13- rd6  
eti bai cy5- cy0  
s5- s0 0 0  
rd5- rd0 er1 rsv  
bn3- bn0 ch3- ch0  
1011(reserved)  
Retransmit  
Latest msg no  
1100  
3
2
1
3
2
1
3
2
0000 fsi sn2- sn0  
s13- s6  
0010 cm3- cm0  
X
0110 md17- md14  
md13- md6  
1110 0 ter epa etm  
eti bai cy5- cy0  
eb g1 g0 mn4~mn0  
0 0 pc1- pc0 ain3- ain0  
0010 cm3- cm0  
X
s5- s0 0 0  
X
md5- md0 er1 rsv  
0110 md17- md14  
md13- md6  
bn3- bn0 ch3- ch0  
1110 0 ter epa etm  
eti bai cy5- cy0  
Long with C.S.  
(First submessage)  
1101  
0000 fsi sn2- sn0  
s13- s6  
010 cs5- cs0  
lc15- lc8  
lc7~lc0  
010 cs5- cs0  
lc15- lc8  
eb g1 g0 mn4- mn0  
0 0 pc1- pc0 ain3- ain0  
0010 cm3- cm0  
s5- s0 0 0  
md5~md0 er1 rsv  
0110 md17- md14  
md13- md6  
bn3- bn0 ch3- ch0  
1110 0 ter epa etm  
eti bai cy5- cy0  
Long with C.S.  
0000 fsi sn2- sn0  
s13- s6  
(Other  
eb g1 g0 mn4- mn0  
submessages)  
1110  
1
3
2
1
s5- s0 0 0  
0 0 pc1- pc0 ain3- ain0  
0010 cm3- cm0  
lc7- lc0  
md5- md0 er1 rsv  
0110 md17- md14  
md13- md6  
bn3- bn0 ch3- ch0  
1110 0 ter epa etm  
eti bai cy5- cy0  
Change  
Character Set  
1111  
0000 fsi sn2- sn0  
s13- s6  
010 cs5- cs0  
xxxx xxxx  
xxxx xxxx  
eb g1 g0 mn4- mn0  
0 0 pc1- pc0 ain3- ain0  
s5- s0 0 0  
md5- md0 er1 rsv  
bn3- bn0 ch3- ch0  
Table 37. MDATA output summary  
Note: where "x" means don't care  
Publication Release Date: Auguest 1999  
Revision A1  
- 29 -  
W93910  
LED CONTROL  
LEDO will output a frequency while ENLED is in high level. The LEDO output frequency is selected by  
option bit LEDF and PLEN condition as described in table 38. When the LEDF is set to 1, the TCTL1  
and TCTL2 control pin will also be activated to output the control signal. The TCTL1 and TCTL2 timing  
is shown in figure 3.  
PLEN  
ENLED  
.......  
LEDO  
10 kHZ  
40 kHZ  
Option bit LEDF = 1  
Figure 13. LEDO Timing  
OPTION BIT AND PLEN PIN  
FUNCTION  
LEDF  
PLEN Status  
inactive  
active  
LEDO output frequency  
0
0
1
1
4 kHz  
16 kHz  
10 kHZ  
40 kHZ  
inactive  
active  
Table 38. LED option bit  
RESET CONDITION  
The W93910 has two reset conditions.  
Power on & XRST active  
·
·
Reset all 192 option bits and all remote programming registers  
RFEN, PLEN, QC1, QC2, LOCK, MSGVAL, MCLK, MDATA in non-active state  
ON pin rising edge is occurred  
·
·
·
Oscillator start oscillation  
-
Reset channel number to CH3 CH0 of the 192 option bits  
The values of remote programming registers is not changed  
- 30 -  
W93910  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage to Ground Potential  
Applied Input/Output Voltage  
Power Dissipation  
RATING  
-0.3 to +7.0  
-0.3 to +7.0  
120  
UNIT  
V
V
mW  
Ambient Operating Temperature  
Storage temperature  
-20 to +70  
-55 to +155  
°
C
C
°
Note: The device should be operated under the above conditions. Operation beyond these conditions may result in permanent  
damage to the device.  
DC/AC ELECTRONIC CHARACTERISTICS  
(VDD = 3 volt, Fosc = 100 kHz, Ta = 25 C )  
°
SYMBOL  
PARAMETER  
Operating Voltage  
Operating Current  
Stand By current  
CONDITION  
MIN.  
TYP  
3
MAX.  
3.5  
UNIT NOTE  
DD  
V
2.5  
V
OP  
I
VDD = 3 volt  
ON = 0 volt  
25  
1
100  
2
m
A
SB  
I
m
A
OH  
V
Output high voltage  
Output Low voltage  
Input high voltage  
Input low voltage  
2.4  
2
V
OL  
V
0.4  
0.8  
V
V
IH  
V
IL  
V
V
OH  
O
I
Output High Current  
Output Low Current  
CHRS Active Width  
XCNCG Active Width  
TXCLK Period  
V = 2.1 volt  
500  
500  
1
mA  
mA  
mS  
mS  
OL  
I
O
V = 0.4 volt  
CHRS  
T
XCNCG  
T
4
4.5  
1
TXCK  
T
1
m
S
TDST  
T
TXDATA Setup Time  
TXDATA Hold Time  
OSCO Stable Time  
XRST Active Width  
Programming setup  
TXCLK to ON delay  
20  
20  
nS  
nS  
S
TDHD  
T
OSC  
T
XRST  
T
10  
1
m
S
PG  
T
m
S
ON  
T
3
Txclk  
Publication Release Date: Auguest 1999  
Revision A1  
- 31 -  
W93910  
DC/AC Electronic Charac, continued  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP  
MAX.  
UNIT NOTE  
OP  
T
ON active to PLEN  
active delay  
4
S
ADDT  
T
ADRDET active to  
MCLK active  
45  
mS  
MSGV  
T
MSGAVL active to  
MCLK active  
700  
m
S
MCLK  
T
MCLK Period  
80  
40  
20  
5
-
m
S
MCK1 0 = 00  
-
m
S
MCK1 0 = 01  
-
m
S
MCK1 0 = 10  
-
m
S
MCK1 0 = 11  
MDST  
T
MDATA Setup Time  
MDATA Hold Time  
PLEN Pre-Active Time  
MCLK active edge  
MCLK active edge  
1/4  
1/4  
Tmclk  
Tmclk  
mS  
MDHD  
T
PLST  
T
9.6  
19.2  
28.8  
38  
-
PL1 0 = 00  
mS  
-
PL1 0 = 01  
mS  
-
PL1 0 = 10  
mS  
-
PL1 0 = 11  
RFDY  
T
RFEN Delay to  
Preamble  
RFON = 0  
4.8  
mS  
RFON = 1  
QC1WTH = 0  
QC1WTH = 1  
9.6  
mS  
mS  
mS  
mS  
QC1W  
T
QC1 Active Width  
2.5  
3.8  
4
UNIT  
T
MDATA D23 to Next  
unit D23  
UDI  
T
MCLK Stop Clock per  
byte  
1.2  
2
1.3  
2.1  
mS  
mS  
-
MCK1 0 = 11  
-
UDI1 0 = 11  
INT  
T
MDATA D0 Delay to  
Next D23  
-
MCK1 0 = 00  
-
UDI1 0 = 00  
- 32 -  
W93910  
TYPICAL APPLICATION CIRCUIT  
LCD  
c1=20pf  
VDD  
OSCI  
LEDO  
XRS  
VDD  
100khz  
ENLED  
CHRS  
OSCO  
TXCLK  
TXDATA  
ON  
W93910  
UC  
VDD  
TCTL2  
3V  
1.5V  
ADRDET  
SYNVAL  
XCNCG  
MDATA  
MCLK  
TCTL1  
RFEN  
DC/DC  
QC1  
QC2  
D0  
RECEIVER  
MSGVAL  
D1  
M
1.5V  
PLEN  
VSS  
VSS  
VSS  
CLK  
DATA  
EN  
Publication Release Date: Auguest 1999  
Revision A1  
- 33 -  
W93910  
Package Information  
D
28  
DETAIL A  
E E1  
1
2
A2 A  
SEATING PLANE  
0.10  
A1  
b
e
e/2  
R1  
O
R1  
b/2  
ODD  
0.25  
L
EVEN  
DETAIL A  
L1  
Symbol  
Common Dimension (Millimeters)  
Nom.  
Common Dimension (Inches)  
Nom.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
2.0  
0.079  
0.05  
1.65  
0.22  
9.9  
0.002  
0.065  
0.009  
0.390  
0.291  
0.197  
1.75  
1.85  
0.38  
10.5  
8.20  
5.60  
0.069  
0.073  
0.015  
0.413  
0.323  
0.220  
D
10.2  
7.80  
5.30  
0.65  
0.75  
1.25  
0.401  
0.307  
0.209  
0.0256  
0.030  
0.050  
E
7.40  
5.00  
E1  
e
L
0.55  
0.95  
8
0.021  
0.037  
8
L1  
R1  
O
0.09  
0
0.004  
0
4
4
- 34 -  
W93910  
Winbond Electronics (H.K.) Ltd.  
Winbond Electronics North America Corp.  
Winbond Memory Lab.  
Winbond Microelectronics Corp.  
Winbond Systems Lab.  
2727 N. First Street, San Jose,  
CA 95134, U.S.A.  
Headquarters  
Rm. 803, World Trade Square, Tower II,  
123 Hoi Bun Rd., Kwun Tong,  
Kowloon, Hong Kong  
TEL: 852-27513100  
FAX: 852-27552064  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 886-3-5770066  
FAX: 886-3-5792766  
http://www.winbond.com.tw/  
TEL: 408-9436666  
FAX: 408-5441798  
Voice & Fax-on-demand: 886-2-27197006  
Taipei Office  
11F, No. 115, Sec. 3, Min-Sheng East Rd.,  
Taipei, Taiwan  
TEL: 886-2-27190505  
FAX: 886-2-27197502  
Note: All data and specifications are subject to change without notice.  
Publication Release Date: Auguest 1999  
Revision A1  
- 35 -  

相关型号:

W93A8EWP/GDTG0L

Single Color LED, Green, Diffused, T-1, 3mm, SMT, 2 PIN
KINGBRIGHT

W93A8EWP/IDTG0L

Single Color LED, High Efficiency Red, Diffused Red, T-1, 3mm, SMT, 2 PIN
KINGBRIGHT

W93A8EWP/YDTG0L

Single Color LED, Yellow, Diffused, T-1, 3mm, SMT, 2 PIN
KINGBRIGHT

W93A8EWPSRDTG0L

Single Color LED, Super Bright Red, Diffused Red, T-1, 3mm,
KINGBRIGHT

W9412FADA-7

DDR DRAM Module, 16MX64, 0.75ns, CMOS, DIMM-184
WINBOND

W9412FADA-75

DDR DRAM Module, 16MX64, 0.75ns, CMOS, DIMM-184
WINBOND

W9412FASA-7

DDR DRAM Module, 16MX64, 0.75ns, CMOS, SODIMM-200
WINBOND

W9412FASA-75

DDR DRAM Module, 16MX64, 0.75ns, CMOS, SODIMM-200
WINBOND

W9412G2CB

1M 】 4 BANKS 】 32 BITS GDDR SDRAM
WINBOND

W9412G2IB

1M × 4 BANKS × 32 BITS GDDR SDRAM
WINBOND

W9412G2IB-5

DDR DRAM, 4MX32, 0.7ns, CMOS, PBGA144, 12 X 12 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LFBGA-144
WINBOND

W9412G2IB-6

DDR DRAM, 4MX32, 0.7ns, CMOS, PBGA144, 12 X 12 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LFBGA-144
WINBOND