W981216DH-7 [WINBOND]

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54;
W981216DH-7
型号: W981216DH-7
厂家: WINBOND    WINBOND
描述:

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

动态存储器 光电二极管 内存集成电路
文件: 总44页 (文件大小:1221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W981216DH / W9812G6DH  
2M × 4 BANKS × 16 BIT SDRAM  
Table of Contents-  
1.  
GENERAL DESCRIPTION ......................................................................................................... 3  
FEATURES................................................................................................................................. 3  
PIN CONFIGURATION............................................................................................................... 4  
PIN DESCRIPTION..................................................................................................................... 5  
BLOCK DIAGRAM ...................................................................................................................... 6  
ABSOLUTE MAXIMUM RATINGS ............................................................................................. 7  
RECOMMENDED DC OPERATING CONDITIONS................................................................... 7  
CAPACITANCE........................................................................................................................... 7  
AC CHARACTERISTICS AND OPERATING CONDITION........................................................ 8  
DC CHARACTERISTICS............................................................................................................ 9  
OPERATION MODE ................................................................................................................. 12  
FUNCTIONAL DESCRIPTION.................................................................................................. 13  
12.1 Power Up and Initialization ........................................................................................... 13  
12.2 Programming Mode Register........................................................................................ 13  
12.3 Bank Activate Command .............................................................................................. 13  
12.4 Read and Write Access Modes .................................................................................... 14  
12.5 Burst Read Command .................................................................................................. 14  
12.6 Burst Write Command .................................................................................................. 14  
12.7 Read Interrupted by a Read ......................................................................................... 14  
12.8 Read Interrupted by a Write.......................................................................................... 14  
12.9 Write Interrupted by a Write.......................................................................................... 14  
12.10 Write Interrupted by a Read ........................................................................................ 15  
12.11 Burst Stop Command.................................................................................................. 15  
12.12 Addressing Sequence of Sequential Mode................................................................. 15  
12.13 Addressing Sequence of Interleave Mode .................................................................. 16  
12.14 Auto-Precharge Command.......................................................................................... 16  
12.15 Precharge Command .................................................................................................. 16  
12.16 Self Refresh Command............................................................................................... 17  
12.17 Power Down Mode...................................................................................................... 17  
12.18 No Operation Command ............................................................................................. 17  
12.19 Deselect Command..................................................................................................... 17  
12.20 Clock Suspend Mode .................................................................................................. 17  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
11.  
12.  
Publication Release Date: June 6, 2005  
- 1 -  
Revision A08  
W981216DH / W9812G6DH  
13.  
14.  
TIMING WAVEFORMS............................................................................................................. 18  
13.1 Command Input Timing ................................................................................................ 18  
13.2 Read Timing.................................................................................................................. 19  
13.3 Control Timing of Input/Output Data............................................................................. 20  
13.4 Mode Register Set Cycle.............................................................................................. 21  
OPERATING TIMING EXAMPLE ............................................................................................. 22  
14.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)...................................... 22  
14.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Autoprecharge)............ 23  
14.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)...................................... 24  
14.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Autoprecharge)............ 25  
14.5 Interleaved Bank Write (Burst Length = 8) ................................................................... 26  
14.6 Interleaved Bank Write (Burst Length = 8, Autoprecharge).......................................... 27  
14.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)............................................... 28  
14.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)................................... 29  
14.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)........................................ 30  
14.10 Auto Precharge Write (Burst Length = 4).................................................................... 31  
14.11 Auto Refresh Cycle ..................................................................................................... 32  
14.12 Self Refresh Cycle....................................................................................................... 33  
14.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)............................ 34  
14.14 PowerDown Mode....................................................................................................... 35  
14.15 Autoprecharge Timing (Read Cycle)........................................................................... 36  
14.16 Autoprecharge Timing (Write Cycle)........................................................................... 37  
14.17 Timing Chart of Read to Write Cycle........................................................................... 38  
14.18 Timing Chart of Write to Read Cycle........................................................................... 38  
14.19 Timing Chart of Burst Stop Cycle (Burst Stop Command).......................................... 39  
14.20 Timing Chart of Burst Stop Cycle (Precharge Command).......................................... 39  
14.21 CKE/DQM Input Timing (Write Cycle)......................................................................... 40  
14.22 CKE/DQM Input Timing (Read Cycle)......................................................................... 41  
14.23 Self Refresh/Power Down Mode Exit Timing .............................................................. 42  
PACKAGE DIMENSION ........................................................................................................... 43  
15.1 54L TSOP (II)-400 mil................................................................................................... 43  
REVISION HISTORY................................................................................................................ 44  
15.  
16.  
- 2 -  
W981216DH/ W9812G6DH  
1. GENERAL DESCRIPTION  
W981216DH is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
2M words × 4 banks × 16 bits. Using pipelined architecture and 0.13 µm process technology,  
W981216DH delivers a data bandwidth of up to 166M words per second (-6). For different application,  
W981216DH is sorted into four speed grades: -6, -7, -75, and -8H. The –6 is compliant to the  
166Mhz/CL3 specification, the -7 is compliant to the 143 MHz/CL3 or PC133/CL2 specification, the -  
75 is compliant to the PC133/CL3 specification, the -8H is compliant to the PC100/CL2 specification.  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle. The  
multiple bank nature enables interleaving among internal banks to hide the precharging time.  
By having a programmable Mode Register, the system can change burst length, latency cycle,  
interleave or sequential burst to maximize its performance. W981216DH is ideal for main memory in  
high performance applications.  
2. FEATURES  
x
x
x
x
x
x
x
x
x
x
x
x
x
3.3V ± 0.3V Power Supply  
Up to 166 MHz Clock Frequency  
2,097,152 Words × 4 banks × 16 bits organization  
Self Refresh Mode: Standard and Low Power  
CAS Latency: 2 and 3  
Burst Length: 1, 2, 4, 8, and full page  
Burst Read, Single Writes Mode  
Byte Data Controlled by DQM  
Auto-precharge and Controlled Precharge  
4K Refresh cycles / 64 mS  
Interface: LVTTL  
Packaged in TSOP II 54 pin, 400 mil - 0.80  
W9812G6DH is using Lead free materials, RoHS compliant  
AVAILABLE PART NUMBER  
MAXIMUM SELF REFRESH  
OPERATING  
PART NUMBER  
SPEED  
CURRENT  
3 mA  
TEMPERATURE  
W981216DH-6  
W981216DH-7  
W981216DH-75  
W981216DH-8H  
166MHz/CL3  
PC133/CL2  
PC133/CL3  
PC100/CL2  
0°C - 70°C  
0°C - 70°C  
0°C - 70°C  
0°C - 70°C  
3 mA  
3mA  
3 mA  
Publication Release Date: June 6, 2005  
Revision A08  
- 3 -  
W981216DH / W9812G6DH  
3. PIN CONFIGURATION  
VCC  
VSS  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
DQ15  
DQ0  
2
VSSQ  
3
VCCQ  
DQ1  
DQ14  
DQ13  
4
DQ2  
5
VSSQ  
VCCQ  
6
DQ12  
DQ11  
DQ3  
DQ4  
7
8
V
CCQ  
V
SSQ  
9
DQ10  
DQ9  
DQ5  
DQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
V
SSQ  
VCCQ  
DQ8  
VSS  
NC  
DQ7  
VCC  
LDQM  
WE  
UDQM  
CLK  
CKE  
NC  
CAS  
RAS  
CS  
A11  
A9  
BS0  
BS1  
A10/AP  
A0  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
VSS  
A3  
VCC  
- 4 -  
W981216DH/ W9812G6DH  
4. PIN DESCRIPTION  
PIN NUMBER PIN NAME  
FUNCTION  
DESCRIPTION  
Multiplexed pins for row and column address.  
Row address: A0 A11. Column address: A0 A8.  
23 26, 22,  
A0 A11  
29 35  
Address  
Select bank to activate during row address latch time,  
or bank to read/write during address latch time.  
20, 21  
BS0, BS1  
Bank Select  
2, 4, 5, 7, 8,  
10, 11, 13, 42,  
44, 45, 47, 48,  
50, 51, 53  
Data Input/  
Output  
DQ0 −  
Multiplexed pins for data output and input.  
DQ15  
Disable or enable the command decoder. When  
19  
18  
Chip Select command decoder is disabled, new command is  
ignored and previous operation continues.  
CS  
Command input. When sampled at the rising edge of  
Row Address  
RAS  
the clock, RAS , CAS and WE define the operation  
Strobe  
to be executed.  
Column Address  
17  
16  
CAS  
WE  
Referred to RAS  
Strobe  
Write Enable  
Referred to RAS  
The output buffer is placed at Hi-Z (with latency of 2)  
UDQM/  
LDQM  
Input/Output when DQM is sampled high in read cycle. In write  
39, 15  
Mask  
cycle, sampling DQM high will block the write operation  
with zero latency.  
System clock used to sample inputs on the rising edge  
of clock.  
38  
37  
CLK  
CKE  
Clock Inputs  
CKE controls the clock activation and deactivation.  
Clock Enable When CKE is low, Power Down mode, Suspend mode  
or Self Refresh mode is entered.  
1, 14, 27  
28, 41, 54  
VCC  
VSS  
Power (+3.3V) Power for input buffers and logic circuit inside DRAM.  
Ground  
Ground for input buffers and logic circuit inside DRAM.  
Power (+3.3V) Separated power from VCC, used for output buffers to  
for I/O Buffer improve noise.  
3, 9, 43, 49  
VCCQ  
Ground for I/O Separated ground from VSS, used for output buffers to  
6, 12, 46, 52  
36, 40  
VSSQ  
NC  
Buffer  
improve noise.  
No Connection No connection  
Publication Release Date: June 6, 2005  
Revision A08  
- 5 -  
W981216DH / W9812G6DH  
5. BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CS  
CONTROL  
SIGNAL  
GENERATOR  
RAS  
COMMAND  
DECODER  
CAS  
COLUMN DECODER  
COLUMN DECODER  
WE  
R
R
O
W
O
W
D
E
C
O
D
E
R
D
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
E
A10  
C
O
D
E
R
MODE  
REGISTER  
A0  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
DMn  
A11  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
BUFFER  
DQ15  
REFRESH  
COUNTER  
COLUMN  
COUNTER  
UDQM  
LDQM  
COLUMN DECODER  
COLUMN DECODER  
R
R
O
W
O
W
CELL ARRAY  
BANK #3  
CELL ARRAY  
BANK #2  
D
E
C
O
D
E
R
D
E
C
O
D
E
R
SENSE AMPLIFIER  
SENSE AMPLIFIER  
Note: The cell array configuration is 4096 * 512 * 16.  
- 6 -  
W981216DH/ W9812G6DH  
6. ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
VIN, VOUT  
VCC, VCCQ  
TOPR  
RATING  
-0.3 VCC +0.3  
-0.3 4.6  
0 70  
UNIT  
V
Input/Output Voltage  
Power Supply Voltage  
V
Operating Temperature(-6/-7/-75/-8H)  
Storage Temperature  
°C  
°C  
°C  
W
TSTG  
-55 150  
260  
Soldering Temperature (10s)  
Power Dissipation  
TSOLDER  
PD  
1
Short Circuit Output Current  
IOUT  
50  
mA  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
7. RECOMMENDED DC OPERATING CONDITIONS  
(Ta = 0 to 70°C for -6/-7/-75/-8H)  
PARAMETER  
Power Supply Voltage  
Power Supply Voltage (for I/O Buffer)  
Input High Voltage  
SYMBOL  
VCC  
MIN.  
3.0  
3.0  
2.0  
-0.3  
TYP.  
3.3  
3.3  
-
MAX.  
3.6  
3.6  
UNIT  
V
V
V
V
VCCQ  
VIH  
VCC +0.3  
0.8  
Input Low Voltage  
VIL  
-
Note: VIH(max) = VCC/ VCCQ+1.2V for pulse width < 5 nS  
VIL(min) = VSS/ VSSQ-1.2V for pulse width < 5 nS  
8. CAPACITANCE  
(VCC = 3.3V, f = 1 MHz, Ta 25°C)  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
Input Capacitance  
(A0 to A11, BS0, BS1, CS, RAS , CAS , WE , DQM,  
CKE)  
CI  
-
3.8  
pf  
Input Capacitance (CLK)  
Input/Output capacitance  
CCLK  
CIO  
-
-
3.5  
6.5  
pf  
pf  
Note: These parameters are periodically sampled and not 100% tested.  
Publication Release Date: June 6, 2005  
Revision A08  
- 7 -  
W981216DH / W9812G6DH  
9. AC CHARACTERISTICS AND OPERATING CONDITION  
(Vcc = 3.3V ± 0.3V, Ta = 0 to 70°C for -6/-7/-75//-8H ; Notes: 5, 6, 7, 8)  
UNIT  
PARAMETER  
SYM.  
-6  
-7  
-75  
-8H  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Ref/Active to Ref/Active Command  
Period  
60  
63  
65  
68  
tRC  
tRAS  
tRCD  
tCCD  
tRP  
Active to precharge Command  
42 100000 42 100000 45 100000 48 100000  
nS  
Period  
Active to Read/Write Command  
Delay Time  
15  
1
15  
1
20  
1
20  
1
Read/Write(a) to Read/Write(b)  
tCK  
Command Period  
Precharge to Active Command  
Period  
15  
12  
15  
15  
2
20  
15  
2
20  
20  
Active(a) to Active(b) Command  
nS  
tRRD  
Period  
Write Recovery Time  
CLK Cycle Time  
CL* = 2  
CL* = 3  
CL* = 2  
CL* = 3  
2
2
tCK  
tWR  
tCK  
7.5 1000  
7.5  
7
2.5  
2.5  
1000  
1000  
10  
7.5  
2.5  
2.5  
1000 10 1000  
6
2
2
1000  
1000  
8
3
3
1000  
CLK High Level width  
CLK Low Level width  
Access Time from  
CLK  
tCH  
tCL  
tAC  
CL* = 2  
CL* = 3  
5.4  
5
5.4  
5.4  
6
5.4  
6
6
nS  
2.7  
5
Output Data Hold Time  
3
3
3
3
3
3
tOH  
tHZ  
2.7  
Output Data High Impedance Time  
6
7
7.5  
8
5
Output Data Low Impedance Time  
Power Down Mode Entry Time  
0
0
0
0
0
0
0
0
tLZ  
tSB  
6
1
7
1
7.5  
1
8
1
Transition Time of CLK  
0.  
0.5  
0.5  
0.5  
tT  
(Rise and Fall)  
5
Data-in Set-up Time  
Data-in Hold Time  
Address Set-up Time  
Address Hold Time  
CKE Set-up Time  
1.5  
0.7  
1.5  
0.7  
1.5  
0.7  
1.5  
0.7  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
2
1
2
1
2
1
2
1
tDS  
tDH  
tAS  
tAH  
tCKS  
tCKH  
tCMS  
tCMH  
tREF  
tRSC  
CKE Hold Time  
Command Set-up Time  
Command Hold Time  
Refresh Time  
Mode register Set Cycle Time  
*CL = CAS Latency  
64  
64  
64  
64  
mS  
nS  
12  
14  
15  
16  
- 8 -  
W981216DH/ W9812G6DH  
10. DC CHARACTERISTICS  
(VCC = 3.3V ± 0.3V, Ta = 0 to 70°C for -6/-7/-75/-8H)  
PARAMETER  
SYM.  
-6  
-7  
-75  
-8H UNIT NOTES  
MAX. MAX. MAX. MAX.  
Operating Current  
t
CK = min., tRC = min.  
1 bank  
ICC1  
85  
80  
75  
70  
3
Active precharge command  
cycling without burst  
operation  
operation  
Standby Current  
CKE = VIH  
ICC2  
ICC2P  
ICC2S  
45  
3
40  
3
35  
3
30  
3
3
3
tCK = min, CS = VIH  
CKE = VIL  
(Power Down  
mode)  
VIH/L = VIH(min)/VIL(max.)  
Bank: Inactive state  
Standby Current  
CKE = VIH  
10  
10  
10  
10  
CLK = VIL, CS = VIH  
CKE = VIL  
(Power down  
mode)  
VIH/L = VIH(min)/VIL(max)  
BANK: Inactive state  
ICC2PS  
ICC3P  
ICC3P  
3
3
3
3
mA  
No Operating Current  
tCK = min., CS = VIH(min)  
CKE = VIH  
65  
10  
60  
10  
55  
10  
50  
10  
CKE = VIL  
(Power down  
mode)  
BANK: Active state  
(4 banks)  
Burst Operating Current  
tCK = min.  
Read/ Write command cycling  
Auto Refresh Current  
ICC4  
ICC5  
ICC6  
105 100  
95  
90  
3, 4  
3
tCK = min.  
180 170 160 150  
Auto refresh command cycling  
Self Refresh Current  
Self Refresh Mode  
CKE = 0.2V  
Normal  
3
3
3
3
(-6/-7/-75/-8H)  
Publication Release Date: June 6, 2005  
Revision A08  
- 9 -  
W981216DH / W9812G6DH  
PARAMETER  
Input Leakage Current  
SYMBOL  
MIN. MAX. UNIT NOTES  
II(L)  
-5  
-5  
2.4  
-
5
5
µA  
µA  
V
(0V VIN VCC, all other pins not under test = 0V)  
Output Leakage Current  
IO(L)  
VOH  
VOL  
(Output disable , 0V VOUT VCCQ)  
LVTTL Output H Level Voltage  
(IOUT = -2 mA )  
-
LVTTL Output L Level Voltage  
(IOUT = 2 mA )  
0.4  
V
Notes:  
1. Operation exceeds “ABSOLUTE MAXIMUM RATING” may cause permanent damage to the  
devices.  
2. All voltages are referenced to VSS  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the  
minimum values of tCK and tRC.  
4. These parameters depend on the output loading conditions. Specified values are obtained with  
output open.  
5. Power up sequence is further described in the “Functional Description” section.  
6. AC Testing Conditions  
PARAMETER  
CONDITIONS  
1.4V/1.4V  
Output Reference Level  
Output Load  
See diagram below  
2.4V/0.4V  
2 nS  
Input Signal Levels  
Transition Time (Rise and Fall) of Input Signal  
Input Reference Level  
1.4V  
- 10 -  
W981216DH/ W9812G6DH  
1.4 V  
50 ohms  
Z = 50 ohms  
Output  
50 pF  
AC TEST LOAD  
7. Transition times are measured between VIH and VIL.  
8. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to  
output level.  
9. Assumed input rise and fall time (tr & tf) = 1ns.  
If tr & tf is longer than 1ns, transient time compensation should be considered,  
i.e.,[(tr + tf)/2-1]ns should be added to the parameter  
( The tT maximum can’t be more than 10nS for low frequency application. )  
Publication Release Date: June 6, 2005  
- 11 -  
Revision A08  
W981216DH / W9812G6DH  
11. OPERATION MODE  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
Table 1 Truth Table (Note (1), (2))  
DEVICE  
STATE  
A0A9  
COMMAND  
Bank Active  
Bank Precharge  
Precharge All  
Write  
CKEN-1 CKEN DQM BS0, 1 A10  
CS RAS CAS  
WE  
A11  
Idle  
Any  
Any  
H
H
H
H
x
x
x
x
x
x
x
x
v
v
x
v
v
L
H
L
v
x
x
v
L
L
L
L
L
L
L
H
H
H
L
H
L
L
L
Active (3)  
H
Write with  
Active (3)  
Active (3)  
Active (3)  
H
H
H
x
x
x
x
x
x
v
v
v
H
L
v
v
v
L
L
L
H
H
H
L
L
L
L
H
H
Autoprecharge  
Read  
Read with  
H
Autoprecharge  
Mode Register Set  
No – Operation  
Burst Stop  
Device Deselect  
Auto – Refresh  
Self – Refresh Entry  
Idle  
Any  
Active (4)  
Any  
H
H
H
H
H
H
x
x
x
x
H
L
x
x
x
x
x
x
v
x
x
x
x
x
v
x
x
x
x
x
v
x
x
x
x
x
L
L
L
H
L
L
L
H
H
x
L
L
L
H
H
x
L
L
L
H
L
x
Idle  
Idle  
H
H
x
x
X
idle  
(S.R.)  
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
H
x
H
Self Refresh Exit  
Clock suspend Mode  
Entry  
Active  
H
L
x
x
x
x
x
x
x
x
x
x
X
Idle  
Active (5)  
H
H
L
L
x
x
x
x
x
x
x
x
H
L
x
H
x
H
Power Down Mode  
Entry  
Clock Suspend Mode  
Exit  
Active  
Any  
L
H
x
x
x
x
x
x
x
x
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
H
x
H
x
x
Power Down Mode  
Exit  
(power  
down)  
Data write/Output  
Enable  
Data Write/Output  
Disable  
Active  
Active  
H
H
x
x
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
- 12 -  
W981216DH/ W9812G6DH  
Notes:  
(1) v = valid  
x = Don’t care  
L = Low Level H = High Level  
(2) CKEn signal is input level when commands are provided.  
CKEn-1 signal is the input level one clock cycle before the command is issued.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
12. FUNCTIONAL DESCRIPTION  
12.1 Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all Vcc and VccQ pins must be ramp up simultaneously to the specified voltage  
when the input signals are held in the “NOP” state. The power up voltage must not exceed VCC +0.3V  
on any of the input pins or Vcc supplies. After power up, an initial pause of 200 µS is required followed  
by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus  
during power up, it is required that the DQM and CKE pins be held high during the initial pause period.  
Once all banks have been precharged, the Mode Register Set Command must be issued to initialize  
the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required before or after  
programming the Mode Register to ensure proper subsequent operation.  
12.2 Programming Mode Register  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS, CAS, CS and WE at the positive edge of the clock. The address input data during this  
cycle defines the parameters to be set as shown in the Mode Register Operation table. A new  
command may be issued following the mode register set command once a delay equal to tRSC has  
elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
12.3 Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as tRAS (max).  
Publication Release Date: June 6, 2005  
- 13 -  
Revision A08  
W981216DH / W9812G6DH  
12.4 Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting  
RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage level  
defines whether the access cycle is a read operation (WE high), or a write operation (WE low). The  
address inputs determine the starting column address.  
Reading or writing to a different row within an activated bank requires the bank be precharged and a  
new Bank Activate command be issued. When more than one bank is activated, interleaved bank  
Read or Write operations are possible. By using the programmed burst length and alternating the  
access and precharge operations between multiple banks, seamless data access operation among  
many different pages can be realized. Read or Write Commands can also be issued to the same bank  
or between active banks on every clock cycle.  
12.5 Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding RAS  
and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequential mode.  
12.6 Burst Write Command  
The Burst Write command is initiated by applying logic low level to CS, CAS and WE while holding  
RAS high at the rising edge of the clock. The address inputs determine the starting column address.  
Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle that the  
Write Command is issued. The remaining data inputs must be supplied on each subsequent rising  
clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes will be  
ignored.  
12.7 Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS latency from the  
interrupting Read Command the is satisfied.  
12.8 Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
12.9 Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
- 14 -  
W981216DH/ W9812G6DH  
12.10 Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
12.11 Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open  
for future Read or Write Commands to the same page of the active bank, if the burst length is full page.  
Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of the clock.  
The data DQs go to a high impedance state after a delay which is equal to the CAS Latency in a burst  
read cycle interrupted by Burst Stop. If a Burst Stop Command is issued during a full page burst write  
operation, then any residual data from the burst write cycle will be ignored.  
12.12 Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
ACCESS ADDRESS  
BURST LENGTH  
n
BL = 2 (disturb address is A0)  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
Publication Release Date: June 6, 2005  
- 15 -  
Revision A08  
W981216DH / W9812G6DH  
12.13 Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
Data 0  
Data 1  
ACCESS ADDRESS  
BUST LENGTH  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 2  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
BL = 4  
BL = 8  
12.14 Auto-Precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the auto-precharge function is  
entered. During auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS latency.  
A Read or Write Command with auto-precharge can not be interrupted before the entire burst  
operation is completed. Therefore, use of a Read, Write, or Precharge Command is prohibited during  
a read or write cycle with auto-precharge. Once the precharge operation has started, the bank cannot  
be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-Precharge command is  
illegal if the burst is set to full page length. If A10 is high when a Write Command is issued, the Write  
with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation  
two clocks delay from the last burst write cycle. This delay is referred to as Write tWR. The bank  
undergoing auto-precharge can not be reactivated until tWR and tRP are satisfied. This is referred to as  
tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-precharge Command, the interval  
between the Bank Activate Command and the beginning of the internal precharge operation must  
satisfy tRAS (min).  
12.15 Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS, RAS and WE are low and CAS is high at the rising edge of  
the clock. The Precharge Command can be used to precharge each bank separately or all banks  
simultaneously. Three address bits, A10, BS0, and BS1, are used to define which bank(s) is to be  
precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
- 16 -  
W981216DH/ W9812G6DH  
12.16 Self Refresh Command  
The Self Refresh Command is defined by having CS, RAS, CAS and CKE held low with WE high at  
the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command. Once  
the command is registered, CKE must be held low to keep the device in Self Refresh mode. When the  
SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are disabled.  
The clock is internally disabled during Self Refresh Operation to save power. The device will exit Self  
Refresh operation after CKE is returned high. A minimum delay time is required when the device exits  
Self Refresh Operation and before the next command can be issued. This delay is equal to the tAC  
cycle time plus the Self Refresh exit time.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
12.17 Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCKS (min) + tCK (min).  
12.18 No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS, CAS, and WE held high at the rising edge of the  
clock. A No Operation Command will not terminate a previous operation that is still executing, such as  
a burst read or write cycle.  
12.19 Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS, CAS, and WE signals become don’t cares.  
12.20 Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
Publication Release Date: June 6, 2005  
- 17 -  
Revision A08  
W981216DH / W9812G6DH  
13. TIMING WAVEFORMS  
13.1 Command Input Timing  
t
CL  
tCH  
t
CK  
V
V
IH  
IL  
CLK  
CS  
t
T
tT  
t
CMS  
tCMH  
t
CMH  
tCMS  
t
CMS  
t
CMH  
RAS  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
CAS  
WE  
t
AS  
tAH  
A0-A11  
BS0, 1  
t
CKS  
t
CKH  
tCKH  
t
CKS  
t
CKS  
t
CKH  
CKE  
- 18 -  
W981216DH/ W9812G6DH  
Timing Waveforms, continued  
13.2 Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A11  
BS0, 1  
t
AC  
t
AC  
t
HZ  
t
OH  
t
OH  
t
LZ  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
Publication Release Date: June 6, 2005  
Revision A08  
- 19 -  
W981216DH / W9812G6DH  
Timing Waveforms, continued  
13.3 Control Timing of Input/Output Data  
Control Timing of Input Data  
(Word Mask)  
CLK  
t
CMS  
tCMH  
t
CMH  
tCMS  
DQM  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0 -15  
(Clock Mask)  
CLK  
tCKH  
t
CKS  
t
CKH  
tCKS  
CKE  
t
DS  
t
DH  
t
DS  
t
DH  
t
DS  
t
DH  
tDS  
tDH  
Valid  
Valid  
Data-in  
Valid  
Valid  
DQ0 -15  
Data-in  
Data-in  
Data-in  
Control Timing of Output Data  
(Output Enable)  
CLK  
t
CMH  
t
CMS  
tCMS  
t
CMH  
DQM  
t
AC  
t
HZ  
tAC  
t
AC  
t
AC  
t
LZ  
t
OH  
t
OH  
t
OH  
t
OH  
Valid  
Data-Out  
Valid  
Valid  
Data-Out  
Data-Out  
OPEN  
DQ0 -15  
(Clock Mask)  
CLK  
t
CKH  
t
CKS  
t
CKH  
tCKS  
CKE  
t
AC  
t
AC  
tAC  
t
AC  
t
OH  
t
OH  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0 -15  
- 20 -  
W981216DH/ W9812G6DH  
Timing Waveforms, continued  
13.4 Mode Register Set Cycle  
t
RSC  
CLK  
t
CMS  
tCMH  
CS  
t
CMS  
tCMH  
RAS  
CAS  
WE  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
t
AS  
tAH  
Register  
set data  
A0-A11  
BS0,1  
next  
command  
A
BurstLength  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9
A10  
A11  
A2 A1A0  
Sequential  
Interleave  
Burst Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
1
1
2
4
8
2
4
8
Addressing Mode  
CAS Latency  
0
Reserved  
Reserved  
1
A10  
FullAP0age  
A3  
0
A10  
Addressing Mode  
Sequential  
InteArle0ave  
"0" (Test Mode)  
"0"  
Reserved  
A6 A5A4  
CAS Latency  
Reserved  
Reserved  
2
0
0
0
0
1
0
A00  
1
1
A00  
0
1
0
1
0
WriteMode  
"0"  
"0"  
3
Reserved  
BS0 "0"  
"0"  
Reserved  
A9
0
A10  
Single Write Mode  
Burst read andBurst write  
Burst read anAd0single write  
BS1  
Publication Release Date: June 6, 2005  
Revision A08  
- 21 -  
W981216DH / W9812G6DH  
14. OPERATING TIMING EXAMPLE  
14.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
tRC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
RP  
tRP  
t
RAS  
t
tRAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAa  
RAa  
RBb  
RAc  
RAc  
RBd  
RBd  
A10  
RAe  
RAe  
A0-A9,  
A11  
CBx  
RBb  
CAy  
CAw  
CBz  
DQM  
CKE  
DQ  
t
AC  
t
AC  
t
AC  
t
AC  
bx3  
bx1  
aw0  
aw2 aw3  
bx0  
bx2  
cy0 cy1  
cy2 cy3  
aw1  
t
RRD  
t
RRD  
tRRD  
t
RRD  
Precharge  
Read  
Active  
Read  
Precharge  
Active  
Bank #0  
Bank #1  
Read  
Active  
Precharge  
Read  
Active  
Active  
Bank #2  
Bank #3  
Idle  
- 22 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Autoprecharge)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
t
t
RP  
RAS  
t
RAS  
RP  
t
WE  
BS0  
BS1  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAe  
RBd  
RAa  
RBb  
RAc  
A10  
A0-A9,  
A11  
CBz  
RAa  
CAw  
CAy  
RAe  
CBx  
RBb  
RAc  
RBd  
DQM  
CKE  
t
AC  
t
AC  
t
AC  
t
AC  
aw0 aw1 aw2  
aw3  
bx0 bx1  
bx2 bx3  
cy0  
cy1  
cy2  
cy3  
dz0  
DQ  
t
RRD  
tRRD  
t
RRD  
tRRD  
Read  
AP*  
Active  
AP*  
Read  
Active  
Active  
Active  
AP*  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Read  
Read  
Active  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: June 6, 2005  
Revision A08  
- 23 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
RAS  
t
RAS  
t
RP  
tRAS  
t
RP  
t
RAS  
tRP  
CAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
tRCD  
RAa  
RAa  
RAc  
RAc  
A10  
RBb  
RBb  
A0-A9,  
A11  
CAx  
CBy  
CAz  
DQM  
CKE  
t
AC  
t
AC  
t
AC  
ax0 ax1  
ax2  
ax3  
ax4  
ax5 ax6  
by0  
by1  
by4 by5  
by6  
by7  
DQ  
CZ0  
t
RRD  
t
RRD  
Read  
Active  
Precharge  
Active  
Read  
Precharge  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Precharge  
Read  
Idle  
- 24 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Autoprecharge)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
tRAS  
t
RAS  
tRP  
WE  
BS0  
BS1  
A10  
t
RCD  
t
RCD  
t
RCD  
RBb  
RBb  
RAc  
RAc  
RAa  
RAa  
A0-A9,  
A11  
CAz  
CAx  
CBy  
DQM  
CKE  
DQ  
t
CAC  
t
CAC  
t
CAC  
ax3  
ax4  
ax0  
ax2  
ax5 ax6  
ax7  
by0  
by1  
by4  
by5  
by6  
ax1  
CZ0  
t
RRD  
t
RRD  
AP*  
Read  
Read  
Active  
Bank #0 Active  
Bank #1  
Read  
Active  
AP*  
Bank #2  
Idle  
* AP is the internal precharge start timing  
Bank #3  
Publication Release Date: June 6, 2005  
Revision A08  
- 25 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.5 Interleaved Bank Write (Burst Length = 8)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
RAS  
CAS  
t
RAS  
t
RAS  
t
RP  
tRP  
t
RAS  
t
RCD  
t
RCD  
t
RCD  
WE  
BS0  
BS1  
RBb  
RAc  
RAc  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
RBb  
CBy  
CAz  
DQM  
CKE  
DQ  
ax0 ax1  
RRD  
ax4  
ax5  
ax6 ax7 by0  
by1 by2  
RRD  
by3  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
CZ2  
t
t
Active  
Write  
Precharge  
Active  
Write  
Bank #0  
Active  
Write  
Precharge  
Bank #1  
Bank #2  
Bank #3  
Idle  
- 26 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.6 Interleaved Bank Write (Burst Length = 8, Autoprecharge)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11 12  
13 14  
15 16  
17  
18  
19  
20 21  
22 23  
CLK  
CS  
RC  
t
RAS  
CAS  
RAS  
t
RP  
t
RAS  
t
WE  
BS0  
BS1  
RCD  
RCD  
RCD  
t
t
t
RAa  
RAa  
RBb  
RBb  
RAb  
A10  
CAx  
CBy  
CAz  
RAc  
A0-A9  
DQM  
CKE  
DQ  
ax4  
by2  
by5  
ax0 ax1  
ax5 ax6 ax7 by0 by1  
by3  
by4  
by6 by7 CZ0 CZ1  
CZ2  
RRD  
RRD  
t
t
AP*  
Write  
AP*  
Active  
Active  
Write  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Write  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: June 6, 2005  
Revision A08  
- 27 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
t
CCD  
t
CCD  
tCCD  
t
RAS  
tRP  
t
RAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
A10  
A0-A9,  
A11  
CBx  
CAy  
CAm  
CBz  
CAI  
DQM  
CKE  
tAC  
t
AC  
t
AC  
t
AC  
tAC  
am1  
am2 bz0  
bz1  
bz2  
bz3  
a0  
a1  
a3  
bx0  
Ay0  
Ay1 Ay2  
am0  
a2  
bx1  
DQ  
t
RRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
AP*  
Active  
Read  
Read  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
- 28 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
CAy  
DQM  
CKE  
t
AC  
tWR  
ax5  
ay1  
ax0  
ax1  
ax3  
ay0  
ay2  
ay4  
ax2  
ax4  
ay3  
DQ  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Idle  
Read  
Write  
Precharge  
Publication Release Date: June 6, 2005  
Revision A08  
- 29 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
tRC  
tRC  
RAS  
t
RAS  
t
RP  
t
RAS  
tRP  
CAS  
WE  
BS0  
BS1  
A10  
t
RCD  
t
RCD  
RAa  
RAb  
A0-A9,  
A11  
CAx  
RAa  
CAw  
RAb  
DQM  
CKE  
DQ  
tAC  
tAC  
aw0  
aw1 aw2 aw3  
bx0  
bx1  
bx2 bx3  
Bank #0  
AP*  
Active  
Idle  
Read  
Active  
Read  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
- 30 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.10 Auto Precharge Write (Burst Length = 4)  
(CLK = 100 MHz)  
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
t
RC  
t
RC  
RAS  
CAS  
t
t
t
t
RP  
RP  
RAS  
RAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
RAc  
A10  
A0-A9  
DQM  
CKE  
RAa  
RAa  
RAb  
CAw  
RAb  
CAx  
RAc  
aw0 aw1 aw2 aw3  
bx0  
bx1  
bx3  
bx2  
DQ  
AP*  
Active  
Idle  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Write  
Active  
Write  
AP*  
Active  
* AP is the internal precharge start  
Publication Release Date: June 6, 2005  
Revision A08  
- 31 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.11 Auto Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
t
RP  
t
RC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Auto Refresh (Arbitrary Cycle)  
Refresh  
- 32 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.12 Self Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
t
CKS  
t
CKS  
t
SB  
CKE  
DQ  
t
CKS  
t
RC  
Self Refresh Cycle  
No Operation Cycle  
All Banks  
Self Refresh  
Entry  
Arbitrary Cycle  
Precharge  
Publication Release Date: June 6, 2005  
Revision A08  
- 33 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
t
RCD  
WE  
BS0  
BS1  
A10  
RBa  
A0-A9,  
A11  
CBz  
RBa  
CBv  
CBw  
CBx CBy  
DQM  
CKE  
t
AC  
tAC  
DQ  
av0  
av1  
av3  
aw0  
ax0  
ay0  
az1  
az2  
az3  
az0  
av2  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Read  
Active  
Single Write  
Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Idle  
- 34 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.14 PowerDown Mode  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
RAa  
A10  
A0-A9  
A11  
CAa  
CAx  
DQM  
t
SB  
tSB  
CKE  
DQ  
t
CKS  
t
CKS  
t
CKS  
t
CKS  
ax0  
ax2  
ax3  
ax1  
Active  
NOP Read  
Active Standby  
Precharge  
NOPActive  
Precharge Standby  
Power Down mode  
Power Down mode  
Note: The PowerDown Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the PowerDown mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
Publication Release Date: June 6, 2005  
Revision A08  
- 35 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.15 Autoprecharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Read AP  
Read  
Act  
t
RP  
DQ  
Q0  
( b ) burst length = 2  
Command  
AP  
Q0  
Act  
t
RP  
DQ  
Q1  
( c ) burst length = 4  
Command  
Read  
AP  
Q2  
Act  
Q4  
t
RP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q6  
Act  
t
RP  
DQ  
Q2  
Act  
Q3  
Act  
Q5  
Q7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Read AP  
Read  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
AP  
Command  
t
RP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Read  
Act  
Q4  
t
RP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q5  
Act  
t
RP  
DQ  
Q1  
Q6  
Q7  
Note )  
Read  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at least tRAS(min).  
- 36 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.16 Autoprecharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
(1) CAS Latency = 2  
(a) burst length = 1  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
AP  
tWR  
tRP  
DQ  
D1  
D1  
(c) burst length = 4  
Command  
Act  
D7  
Write  
D0  
tRP  
tWR  
DQ  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D2  
AP  
D4  
D5  
D6  
(2) CAS Latency = 3  
(a) burst length = 1  
Write  
D0  
Act  
Command  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D1  
D1  
(c) burst length = 4  
Command  
Write  
D0  
AP  
D5  
Act  
tWR  
tRP  
DQ  
D2  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D4  
D6  
D7  
Note )  
represents the Write with Auto precharge command.  
represents the start of internal precharing.  
represents the Bank Active command.  
Write  
AP  
Act  
When the /auto precharge command is asserted,the period from Bank Activate  
command to the start of intermal precgarging must be at least tRAS (min).  
Publication Release Date: June 6, 2005  
Revision A08  
- 37 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.17 Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
( a ) Command  
Read Write  
DQM  
DQ  
D0  
D1  
D2  
D1  
D3  
D2  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D3  
D3  
(2) CAS Latency=3  
( a ) Command  
DQM  
Read Write  
DQ  
D0  
D1  
Write  
D2  
D1  
D3  
D2  
( b ) Command  
Read  
DQM  
DQ  
D0  
Note: The Output data must be masked by DQM to avoid I/O conflict  
14.18 Timing Chart of Write to Read Cycle  
In the case of Burst Length=4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
Write Read  
( a ) Command  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
Q3  
(2) CAS Latency=3  
( a ) Command  
DQM  
Write Read  
DQ  
D0  
Write  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Read  
DQ  
Q3  
D0  
D1  
- 38 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a ) CAS latency =2  
Command  
Read  
BST  
Q3  
DQ  
Q4  
Q3  
Q0  
Q1  
Q0  
Q2  
Q1  
( b )CAS latency = 3  
Command  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write cycle  
Command  
Write  
Q0  
BST  
DQ  
Q1  
Q2  
Q3  
Q4  
Note: BST  
represents the Burst stop command  
14.20 Timing Chart of Burst Stop Cycle (Precharge Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
(a) CAS latency =2  
Read  
Read  
PRCG  
Q3  
Command  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b) CAS latency =3  
PRCG  
Q2  
Command  
DQ  
Q4  
(2) Write cycle  
(a) CAS latency =2  
PRCG  
PRCG  
Write  
Command  
tWR  
tWR  
DQM  
DQ  
Q0  
Q1  
Q1  
Q2  
Q2  
Q3  
Q4  
(b) CAS latency =3  
Write  
Command  
DQM  
DQ  
Q0  
Q3  
Q4  
Publication Release Date: June 6, 2005  
Revision A08  
- 39 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.21 CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
2
D3  
3
D5  
D6  
7
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
External  
4
5
6
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
D3  
D5  
D6  
DQM MASK  
( 2 )  
CKE MASK  
2
3
4
5
6
7
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
- 40 -  
W981216DH/ W9812G6DH  
Operating Timing Example, continued  
14.22 CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
7
Q1  
1
Q2  
2
Q3  
3
Q4  
Open  
Open  
( 1 )  
4
5
CLK cycle No.  
External  
6
CLK  
Internal  
CKE  
DQM  
DQ  
Q3  
Q4  
Q6  
7
Q1  
1
Q2  
Open  
( 2 )  
CLK cycle No.  
2
3
4
5
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q3  
Q1  
Q5  
Q4  
Q2  
( 3 )  
Publication Release Date: June 6, 2005  
Revision A08  
- 41 -  
W981216DH / W9812G6DH  
Operating Timing Example, continued  
14.23 Self Refresh/Power Down Mode Exit Timing  
Asynchronous Control  
Input Buffer turn on time ( Power down mode exit time ) is specified by tCKS(min) + tCK(min)  
A ) tCK < tCKS(min)+tCK(min)  
t
CK  
CLK  
CKE  
t
CKS(min)+tCK(min)  
Command  
Command  
NOP  
Input Buffer Enable  
B) tCK >= tCKS(min) + tCK (min)  
t
CK  
CLK  
CKE  
tCKS(min)+tCK(min)  
Command  
Input Buffer Enable  
Command  
Note )  
All Input Buffer(Include CLK Buffer) are turned off in the Power Down mode  
and Self Refresh mode  
NOP  
Represents the No-Operation command  
Represents one command  
Command  
- 42 -  
W981216DH/ W9812G6DH  
15. PACKAGE DIMENSION  
15.1 54L TSOP (II)-400 mil  
54  
28  
HE  
E
1
27  
e
b
C
D
L
A2  
A1  
A
L1  
ZD  
Y
SEATING PLANE  
Controlling Dimension: Millimeters  
DIMENSION  
DIMENSION  
(INCH)  
(MM)  
SYM.  
MIN.  
MAX.  
MIN.  
NOM.  
MAX.  
NOM.  
1.20  
0.15  
0.047  
0.006  
A
A1  
0.10  
0.05  
0.24  
0.002  
0.009  
0.004  
0.039  
1.00  
0.32  
0.15  
A2  
b
c
0.40  
0.016  
0.012  
0.006  
D
E
22.12  
10.06  
11.56  
22.62  
10.26  
11.96  
0.871  
0.396  
0.455  
0.875  
0.400  
0.905  
0.404  
0.471  
22.22  
10.16  
11.76  
0.80  
0.50  
0.80  
HE  
e
L
0.463  
0.0315  
0.020  
0.60  
0.10  
0.40  
0.016  
0.024  
0.004  
0.032  
L1  
Y
0.71  
0.028  
ZD  
Publication Release Date: June 6, 2005  
Revision A08  
- 43 -  
W981216DH / W9812G6DH  
16. REVISION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A01  
10/15/2003  
all  
Formal version  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
11/11/2003  
11/21/2003  
12/12/2003  
2/18/2004  
4/9/2004  
6,7  
1,7  
6
Adjust tT and Icc2ps spec  
Icc2P,Icc6 spec  
Adjust tRC spec  
8
Add note 9  
6
tDH, tCKH,tAH,tCMH adjust to 0.7nS  
Note 9  
4/16/2004  
1/6/2005  
8
Adjust tRC spec, remove -75I/-75L SPEC  
Add important notice  
6/6/2005  
44  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Headquarters  
Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.  
27F, 2299 Yan An W. Rd. Shanghai,  
200336 China  
2727 North First Street, San Jose,  
CA 95134, U.S.A.  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 1-408-9436666  
TEL: 86-21-62365999  
FAX: 86-21-62365998  
TEL: 886-3-5770066  
FAX: 1-408-5441798  
FAX: 886-3-5665577  
http://www.winbond.com.tw/  
Taipei Office  
Winbond Electronics Corporation Japan  
7F Daini-ueno BLDG, 3-7-18  
Shinyokohama Kohoku-ku,  
Yokohama, 222-0033  
Winbond Electronics (H.K.) Ltd.  
Unit 9-15, 22F, Millennium City,  
No. 378 Kwun Tong Rd.,  
Kowloon, Hong Kong  
9F, No.480, Rueiguang Rd.,  
Neihu District, Taipei, 114,  
Taiwan, R.O.C.  
TEL: 886-2-8177-7168  
FAX: 886-2-8751-3579  
TEL: 81-45-4781881  
TEL: 852-27513100  
FAX: 81-45-4781800  
FAX: 852-27552064  
Please note that all data and specifications are subject to change without notice.  
All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.  
- 44 -  

相关型号:

W981216DH-75

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54
WINBOND

W981216DH-8H

Synchronous DRAM, 8MX16, 6ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54
WINBOND

W981232DB-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, TFBGA-90
WINBOND

W981232DB75E

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, TFBGA-90
WINBOND

W9812G21B-6I

Synchronous DRAM, 4MX32, 5ns, CMOS, PBGA90, 8 X 13 MM, ROHS COMPLIANT, TFBGA-90
WINBOND

W9812G21B-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 8 X 13 MM, ROHS COMPLIANT, TFBGA-90
WINBOND

W9812G2DB-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-90
WINBOND

W9812G2DB75E

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-90
WINBOND

W9812G2GB

1M 】 4 BANKS 】 32BITS SDRAM
WINBOND

W9812G2GB-6

1M 】 4 BANKS 】 32BITS SDRAM
WINBOND

W9812G2GB-6I

1M 】 4 BANKS 】 32BITS SDRAM
WINBOND

W9812G2GB-75

1M 】 4 BANKS 】 32BITS SDRAM
WINBOND