W9864G2JH [WINBOND]

512K ? 4 BANKS ? 32BITS SDRAM; 512K ? 4银行呢? 32位SDRAM
W9864G2JH
型号: W9864G2JH
厂家: WINBOND    WINBOND
描述:

512K ? 4 BANKS ? 32BITS SDRAM
512K ? 4银行呢? 32位SDRAM

动态存储器
文件: 总43页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W9864G2JH  
512K 4 BANKS 32BITS SDRAM  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
GENERAL DESCRIPTION ......................................................................................................... 3  
FEATURES................................................................................................................................. 3  
AVAILABLE PART NUMBER...................................................................................................... 3  
PIN CONFIGURATION............................................................................................................... 4  
PIN DESCRIPTION..................................................................................................................... 5  
BLOCK DIAGRAM ...................................................................................................................... 6  
FUNCTIONAL DESCRIPTION.................................................................................................... 7  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Power Up and Initialization ............................................................................................. 7  
Programming Mode Register.......................................................................................... 7  
Bank Activate Command ................................................................................................ 7  
Read and Write Access Modes ...................................................................................... 7  
Burst Read Command .................................................................................................... 8  
Burst Command.............................................................................................................. 8  
Read Interrupted by a Read ........................................................................................... 8  
Read Interrupted by a Write............................................................................................ 8  
Write Interrupted by a Write............................................................................................ 8  
7.10 Write Interrupted by a Read............................................................................................ 8  
7.11 Burst Stop Command ..................................................................................................... 9  
7.12 Addressing Sequence of Sequential Mode .................................................................... 9  
7.13 Addressing Sequence of Interleave Mode...................................................................... 9  
7.14 Auto-precharge Command ........................................................................................... 10  
7.15 Precharge Command.................................................................................................... 10  
7.16 Self Refresh Command ................................................................................................ 10  
7.17 Power Down Mode ....................................................................................................... 11  
7.18 No Operation Command............................................................................................... 11  
7.19 Deselect Command ...................................................................................................... 11  
7.20 Clock Suspend Mode.................................................................................................... 11  
OPERATION MODE ................................................................................................................. 12  
8.  
9.  
8.1  
Simplified Stated Diagram ............................................................................................ 13  
ELECTRICAL CHARACTERISTICS......................................................................................... 14  
9.1  
9.2  
9.3  
9.4  
9.5  
Absolute Maximum Ratings.......................................................................................... 14  
Recommended DC Operating Conditions .................................................................... 14  
Capacitance.................................................................................................................. 15  
DC Characteristics........................................................................................................ 15  
AC Characteristics and Operating Condition................................................................ 16  
10.  
TIMING WAVEFORMS............................................................................................................. 18  
10.1 Command Input Timing ................................................................................................ 18  
10.2 Read Timing.................................................................................................................. 19  
Publication Release Date: Dec. 01, 2011  
- 1 -  
Revision A01  
W9864G2JH  
10.3 Control Timing of Input/Output Data............................................................................. 20  
10.4 Mode Register Set Cycle.............................................................................................. 21  
OPERATING TIMING EXAMPLE ............................................................................................. 22  
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)...................................... 22  
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)........... 23  
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)...................................... 24  
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)........... 25  
11.5 Interleaved Bank Write (Burst Length = 8) ................................................................... 26  
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge) ........................................ 27  
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3) .............................................. 28  
11.8 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)..................................... 29  
11.9 Auto-precharge Read (Burst Length = 4, CAS Latency = 3)........................................ 30  
11.10 Auto-precharge Write (Burst Length = 4) .................................................................... 31  
11.11 Auto Refresh Cycle ..................................................................................................... 32  
11.12 Self Refresh Cycle....................................................................................................... 33  
11.13 Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)............................. 34  
11.14 Power Down Mode...................................................................................................... 35  
11.15 Auto-precharge Timing (Write Cycle).......................................................................... 36  
11.16 Auto-precharge Timing (Read Cycle).......................................................................... 37  
11.17 Timing Chart of Read to Write Cycle........................................................................... 38  
11.18 Timing Chart of Write to Read Cycle........................................................................... 38  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command).......................................... 39  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command).......................................... 39  
11.21 CKE/DQM Input Timing (Write Cycle)......................................................................... 40  
11.22 CKE/DQM Input Timing (Read Cycle)......................................................................... 41  
PACKAGE SPECIFICATION.................................................................................................... 42  
12.1 86L TSOP (II)-400 mil................................................................................................... 42  
REVISION HISTORY................................................................................................................ 43  
11.  
12.  
13.  
Publication Release Date: Dec. 01, 2011  
- 2 -  
Revision A01  
W9864G2JH  
1. GENERAL DESCRIPTION  
W9864G2JH is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
512K words 4 banks  32 bits. W9864G2JH delivers a data bandwidth of up to 200M words per  
second. For different application, W9864G2JH is sorted into the following speed grades: -5/-6/-6I/-6A  
and -7. The -5 parts can run up to 200MHz/CL3. The -6/-6I/-6A parts can run up to 166 MHz/CL3. (the  
-6I industrial grade, -6A automotive grade which is guaranteed to support -40°C ~ 85°C.) The -7 parts  
can run up to 143 MHz/CL3.  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle. The  
multiple bank nature enables interleaving among internal banks to hide the precharging time.  
By having a programmable Mode Register, the system can change burst length, latency cycle,  
interleave or sequential burst to maximize its performance. W9864G2JH is ideal for main memory in  
high performance applications.  
2. FEATURES  
3.3V± 0.3V for -5/-6/-6I/-6A grades power supply  
2.7V~3.6V for -7 grade power supply  
Up to 200 MHz Clock Frequency  
524,288 words 4 banks 32 bits organization  
Self Refresh Current: Standard and Low Power  
CAS Latency: 2 & 3  
Burst Length: 1, 2, 4, 8 and full page  
Sequential and Interleave Burst  
Byte data controlled by DQM0-3  
Auto-precharge and controlled precharge  
Burst read, single write operation  
4K refresh cycles/64 mS  
Interface: LVTTL  
Packaged in TSOP II 86-pin, using Lead free materials with RoHS compliant  
3. AVAILABLE PART NUMBER  
MAXIMUM SELF  
REFRESH CURRENT  
OPERATING  
TEMPERATURE  
PART NUMBER  
SPEED  
W9864G2JH-5  
W9864G2JH-6  
W9864G2JH-6I  
W9864G2JH-6A  
W9864G2JH-7  
200MHz/CL3  
166MHz/CL3  
166MHz/CL3  
166MHz/CL3  
143MHz/CL3  
2mA  
2mA  
2mA  
2mA  
2mA  
0°C ~ 70°C  
0°C ~ 70°C  
-40°C ~ 85°C  
-40°C ~ 85°C  
0°C ~ 70°C  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 3 -  
W9864G2JH  
4. PIN CONFIGURATION  
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
1
2
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
DQ15  
VSSQ  
DQ14  
DQ13  
3
4
5
6
VDDQ  
DQ12  
7
8
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
VDD  
VSS  
DQM0  
WE  
DQM1  
NC  
CAS  
RAS  
NC  
CLK  
CKE  
A9  
CS  
NC  
BS0  
A8  
BS1  
A7  
A10/AP  
A0  
A6  
A5  
A1  
A4  
A2  
A3  
DQM2  
VDD  
DQM3  
VSS  
NC  
NC  
DQ16  
VSSQ  
DQ17  
DQ18  
VDDQ  
DQ19  
DQ20  
VSSQ  
DQ21  
DQ22  
VDDQ  
DQ23  
VDD  
DQ31  
VDDQ  
DQ30  
DQ29  
VSSQ  
DQ28  
DQ27  
VDDQ  
DQ26  
DQ25  
VSSQ  
DQ24  
VSS  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 4 -  
W9864G2JH  
5. PIN DESCRIPTION  
PIN NUMBER  
PIN NAME  
FUNCTION  
DESCRIPTION  
Multiplexed pins for row and column address.  
Row address: A0A10. Column address: A0A7.  
A10 is sampled during a precharge command to  
determine if all banks are to be precharged or  
bank selected by BS0, BS1.  
24, 25, 26, 27, 60, 61, 62,  
63, 64, 65, 66  
Address  
A0A10  
Select bank to activate during row address latch  
22, 23  
BS0, BS1  
Bank Select time, or bank to read/write during address latch  
time.  
2, 4, 5, 7, 8, 10, 11, 13, 31,  
33, 34, 36, 37, 39, 40, 42,  
45, 47, 48, 50, 51, 53, 54,  
56, 74, 76, 77, 79, 80, 82,  
83, 85  
Data  
Multiplexed pins for data output and input.  
Input/ Output  
DQ0DQ31  
Disable or enable the command decoder. When  
20  
19  
Chip Select  
command decoder is disabled, new command is  
ignored and previous operation continues.  
CS  
Command input. When sampled at the rising  
Row Address  
Strobe  
RAS  
edge of the clock  
,
and  
RAS CAS  
WE  
define  
the operation to be executed.  
Column Address  
Strobe  
18  
17  
CAS  
WE  
Referred to RAS  
Write Enable  
Referred to RAS  
The output buffer is placed at Hi-Z (with latency  
Input/Output of 2) when DQM is sampled high in read cycle.  
16, 28, 59, 71  
DQM0DQM3  
CLK  
Mask  
In write cycle, sampling DQM high will block the  
write operation with zero latency.  
System clock used to sample inputs on the rising  
edge of clock.  
68  
67  
Clock Inputs  
CKE controls the clock activation and  
deactivation. When CKE is low, Power Down  
mode, Suspend mode, or Self Refresh mode is  
entered.  
CKE  
Clock Enable  
Power for input buffers and logic circuit inside  
DRAM.  
1, 15, 29, 43  
44, 58, 72, 86  
VDD  
VSS  
Power  
Ground for input buffers and logic circuit inside  
DRAM.  
Ground  
Power for I/O Separated power from VDD, to improve DQ  
Buffer noise immunity.  
3, 9, 35, 41, 49, 55, 75, 81  
VDDQ  
Ground for I/O Separated ground from VSS, to improve DQ  
Buffer noise immunity.  
6, 12, 32, 38, 46, 52, 78, 84  
14, 21, 30, 57, 69, 70, 73  
VSSQ  
NC  
No Connection No connection.  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 5 -  
W9864G2JH  
6. BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS  
SIGNAL  
GENERATOR  
RAS  
COMMAND  
CAS  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
WE  
A10  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
MODE  
REGISTER  
A0  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
BUFFER  
DQ31  
COLUMN  
REFRESH  
COUNTER  
COUNTER  
DQM0~3  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE:  
The cell array configuration is 2048 * 256 * 32  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 6 -  
W9864G2JH  
7. FUNCTIONAL DESCRIPTION  
7.1 Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all VDD and VDDQ pins must be ramp up simultaneously to the specified voltage  
when the input signals are held in the “NOP” state. The power up voltage must not exceed VDD + 0.3V  
on any of the input pins or VDD supplies. After power up, an initial pause of 200 µS is required  
followed by a precharge of all banks using the precharge command. To prevent data contention on the  
DQ bus during power up, it is required that the DQM and CKE pins be held high during the initial  
pause period. Once all banks have been precharged, the Mode Register Set Command must be  
issued to initialize the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required  
before or after programming the Mode Register to ensure proper subsequent operation.  
7.2 Programming Mode Register  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS  
CAS CS and WE at the positive edge of the clock. The address input data during  
, ,  
this cycle defines the parameters to be set as shown in the Mode Register Operation table. A new  
command may be issued following the mode register set command once a delay equal to tRSC has  
elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
7.3 Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as tRAS (max.).  
7.4 Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting  
RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage level  
defines whether the access cycle is a read operation ( WE high), or a write operation ( WE low). The  
address inputs determine the starting column address. Reading or writing to a different row within an  
activated bank requires the bank be precharged and a new Bank Activate command be issued. When  
more than one bank is activated, interleaved bank Read or Write operations are possible. By using the  
programmed burst length and alternating the access and precharge operations between multiple  
banks, seamless data access operation among many different pages can be realized. Read or Write  
Commands can also be issued to the same bank or between active banks on every clock cycle.  
Publication Release Date: Dec. 01, 2011  
- 7 -  
Revision A01  
W9864G2JH  
7.5 Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding RAS  
and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8 and full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequence mode.  
7.6 Burst Command  
The Burst Write command is initiated by applying logic low level to CS  
,
CAS and WE while holding  
RAS high at the rising edge of the clock. The address inputs determine the starting column address.  
Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle that the  
Write Command is issued. The remaining data inputs must be supplied on each subsequent rising  
clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes will be  
ignored.  
7.7 Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS Latency from the  
interrupting Read Command the is satisfied.  
7.8 Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
7.9 Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
7.10 Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
Publication Release Date: Dec. 01, 2011  
- 8 -  
Revision A01  
W9864G2JH  
7.11 Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open  
for future Read or Write Commands to the same page of the active bank, if the burst length is full  
page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of the  
clock. The data DQs go to a high impedance state after a delay, which is equal to the CAS Latency in  
a burst read cycle, interrupted by Burst Stop.  
7.12 Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
ACCESS ADDRESS  
BURST LENGTH  
n
BL = 2 (disturb address is A0)  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
7.13 Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 2  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 4  
BL = 8  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 9 -  
W9864G2JH  
7.14 Auto-precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the Auto-precharge function is  
entered. During Auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS Latency.  
A Read or Write Command with Auto-precharge cannot be interrupted before the entire burst  
operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command is  
prohibited during a read or write cycle with Auto-precharge. Once the precharge operation has started,  
the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-  
precharge command is illegal if the burst is set to full page length. If A10 is high when a Write  
Command is issued, the Write with Auto-precharge function is initiated. The SDRAM automatically  
enters the precharge operation two clocks delay from the last burst write cycle. This delay is referred  
to as write tWR. The bank undergoing Auto-precharge cannot be reactivated until tWR and tRP are  
satisfied. This is referred to as tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-  
precharge Command, the interval between the Bank Activate Command and the beginning of the  
internal precharge operation must satisfy tRAS (min).  
7.15 Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS  
,
RAS and WE are low and CAS is high at the rising  
edge of the clock. The Precharge Command can be used to precharge each bank separately or all  
banks simultaneously. Three address bits, A10, BS0 and BS1 are used to define which bank(s) is to  
be precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
7.16 Self Refresh Command  
The Self Refresh Command is defined by having CS  
RAS CAS and CKE held low with WE high  
, ,  
at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command.  
Once the command is registered, CKE must be held low to keep the device in Self Refresh mode.  
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are  
disabled. The clock is internally disabled during Self Refresh Operation to save power. The device will  
exit Self Refresh operation after CKE is returned high. Any subsequent commands can be issued after  
tXSR from the end of Self Refresh Command.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
Publication Release Date: Dec. 01, 2011  
- 10 -  
Revision A01  
W9864G2JH  
7.17 Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCKS (min.) + tCK (min.).  
7.18 No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS  
,
CAS and WE held high at the rising edge of  
the clock. A No Operation Command will not terminate a previous operation that is still executing, such  
as a burst read or write cycle.  
7.19 Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS  
,
CAS and WE signals become don’t cares.  
7.20 Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
Publication Release Date: Dec. 01, 2011  
- 11 -  
Revision A01  
W9864G2JH  
8. OPERATION MODE  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
TABLE 1 TRUTH TABLE (NOTE (1), (2))  
Device State CKEn-1 CKEn DQM BS0, 1 A10 A0-A9  
COMMAND  
RAS CAS WE  
CS  
L
Bank Active  
Idle  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
x
x
x
x
x
x
x
x
x
x
x
H
L
x
x
x
x
x
x
x
x
x
x
x
x
x
v
v
x
v
v
v
v
v
x
x
x
x
x
v
L
H
L
H
L
H
v
V
x
x
v
v
v
v
v
x
x
x
x
x
L
L
H
H
H
L
H
L
Bank Precharge  
Precharge All  
L
Any  
L
L
L
Write  
Active (3)  
Active (3)  
Active (3)  
Active (3)  
Idle  
L
H
H
H
H
L
L
Write with Auto-precharge  
Read  
L
L
L
L
L
H
H
L
Read with Auto-precharge  
Mode Register Set  
No-Operation  
L
L
L
L
Any  
x
L
H
H
x
H
H
x
H
L
Burst Stop  
Active (4)  
x
L
Device Deselect  
Auto-Refresh  
Any  
x
H
L
x
Idle  
x
L
L
H
H
Self-Refresh Entry  
Idle  
x
L
L
L
idle  
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
x
x
Self Refresh Exit  
(S.R)  
H
H
Clock suspend Mode  
Entry  
Active  
H
L
x
x
x
x
x
x
x
x
Idle  
H
H
L
L
x
x
x
x
x
x
x
x
H
L
x
x
X
H
Power Down Mode Entry  
Clock Suspend Mode Exit  
Active (5)  
H
H
Active  
L
H
x
x
x
x
x
x
x
X
Any  
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
X
H
Power Down Mode Exit  
(power  
down)  
H
H
Data write/Output Enable  
Data Write/Output Disable  
Active  
Active  
H
x
x
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
H
Notes:  
(1) v = valid, x = Don’t care, L = Low Level, H = High Level  
(2) CKEn signal is input leve l when commands are provided.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 12 -  
W9864G2JH  
8.1 Simplified Stated Diagram  
Self  
Refresh  
F
L
E
S
it  
ex  
F
L
E
S
Mode  
Register  
Set  
MRS  
REF  
CBR  
Refresh  
IDLE  
C
K
E
C
K
E
Power  
Down  
CKE  
Active  
Power  
Down  
ROW  
ACTIVE  
CKE  
BST  
A
e
R
u
e
BST  
e
ad  
rg  
t
it  
o
r
a
R
h
t
h
pr  
W
e
i
c
a
e
w
e
Write  
d
c
Read  
CKE  
CKE  
e
pr  
h
w
it  
a
r
o
it  
t
rg  
h
u
W
e
A
CKE  
CKE  
Read  
WRITE  
READ  
WRITE  
READ  
SUSPEND  
SUSPEND  
Write  
)
P
n
R
CKE  
CKE  
CKE  
CKE  
io  
E
t
WRITEA  
SUSPEND  
READA  
SUSPEND  
a
(
READA  
WRITEA  
p
in  
re  
c
rm  
h
e
t
a
rg  
e
e
rg  
a
t
e
h
rm  
c
re  
in  
a
p
(
t
E
io  
R
n
)
P
POWER  
ON  
Precharge  
Precharge  
Automatic sequence  
Manual input  
MRS = Mode Register Set  
REF = Refresh  
ACT = Active  
PRE = Precharge  
WRITEA = Write with Auto-precharge  
READA = Read with Auto-precharge  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 13 -  
W9864G2JH  
9. ELECTRICAL CHARACTERISTICS  
9.1 Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
RATING  
UNIT NOTES  
Voltage on any pin relative to VSS  
VIN, VOUT  
-0.5 ~ VDD + 0.5 (< 4.6V max.)  
V
V
1
1
1
1
1
1
1
1
Voltage on VDD/VDDQ supply relative to VSS VDD, VDDQ  
-0.5 ~ 4.6  
0 ~ 70  
-40 ~ 85  
-55 ~ 150  
260  
Operating Temperature (-5/-6/-7)  
Operating Temperature (-6I/-6A)  
Storage Temperature  
TOPR  
TOPR  
TSTG  
TSOLDER  
PD  
°C  
°C  
°C  
°C  
W
Soldering Temperature (10s)  
Power Dissipation  
1
Short Circuit Output Current  
IOUT  
50  
mA  
Note:  
1. Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of  
the device.  
9.2 Recommended DC Operating Conditions  
(TA = 0 to 70°C for -5/-6/-7, TA = -40 to 85°C for -6I/-6A)  
PARAMETER  
SYM. MIN.  
TYP.  
MAX.  
UNIT  
NOTES  
Power Supply Voltage for -6/-6I/-6A  
VDD  
3.0  
3.0  
3.3  
3.6  
V
Power Supply Voltage (I/O Buffer) for -6/-6I/-6A  
VDDQ  
3.3  
3.6  
V
Power Supply Voltage for -7  
Power Supply Voltage (I/O Buffer) for -7  
Input High Voltage  
VDD  
VDDQ  
VIH  
2.7  
2.7  
2
3.3  
3.6  
V
V
3.3  
3.6  
-
-
-
-
-
-
VDD + 0.3  
V
1
Input Low Voltage  
VIL  
-0.3  
2.4  
-
+0.8  
-
V
2
IOH= -2mA  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
VOH  
VOL  
II(L)  
V
IOL= 2mA  
0.4  
10  
10  
V
-10  
-10  
µA  
µA  
3
4
Output leakage current  
Io(L)  
Note:  
1. VIH (max.) = VDD/VDDQ+1.5V for pulse width < 5 nS.  
2. VIL (min.) = VSS/VSSQ-1.5V for pulse width < 5 nS.  
3. Any input 0V<VIN<VDDQ.  
Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.  
4. Output disabled, 0V ≤ VOUT ≤ VDDQ  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 14 -  
W9864G2JH  
9.3 Capacitance  
(VDD = 3.3V±0.3V for -5/-6/-6I/-6A, VDD = 2.7V-3.6V for -7, TA = 25°C, f = 1 MHz)  
PARAMETER  
SYM.  
MIN.  
MAX.  
UNIT  
Input Capacitance  
Ci  
2.5  
4
pf  
(A0 to A10, BS0, BS1, CS  
Input Capacitance (CLK)  
RAS CAS  
, , ,  
WE , DQM, CKE)  
CCLK  
Co  
2.5  
4
4
pf  
pf  
6.5  
Input/Output capacitance (DQ0DQ31)  
Note: These parameters are periodically sampled and not 100% tested  
9.4 DC Characteristics  
(VDD = 3.3V±0.3V for -6, VDD = 2.7V-3.6V for -7 on TA = 0 to 70°C, VDD = 3.3V±0.3V for -6I/-6A on TA = -40 to 85°C)  
MAX.  
-6/-6I/-6A  
PARAMETER  
SYM.  
UNIT NOTES  
-5  
-7  
Operating Current  
tCK = min., tRC = min.  
Active precharge command  
cycling without burst operation  
1 Bank Operation  
CKE = VIH  
IDD1  
90  
80  
75  
3
Standby Current  
IDD2  
IDD2P  
IDD2S  
25  
2
25  
2
25  
2
3
3
tCK = min., CS = VIH  
VIH/L = VIH (min.)/VIL (max.)  
CKE = VIL  
(Power Down mode)  
Bank: Inactive State  
Standby Current  
CKE = VIH  
15  
15  
15  
CLK = VIL, CS = VIH  
VIH/L=VIH (min.)/VIL (max.)  
CKE = VIL  
(Power Down mode)  
Bank: Inactive State  
IDD2PS  
IDD3  
2
2
2
mA  
No Operating Current  
CKE = VIH  
60  
10  
55  
10  
50  
10  
tCK = min., CS = VIH (min.)  
CKE = VIL  
(Power Down mode)  
Bank: Active State (4 Banks)  
IDD3P  
Burst Operating Current  
(tCK = min.)  
Read/Write command cycling  
IDD4  
IDD5  
145  
155  
130  
140  
120  
130  
3, 4  
3
Auto Refresh Current  
(tCK = min.)  
Auto refresh command cycling  
Self Refresh Current  
Self refresh mode  
(CKE = 0.2V)  
IDD6  
2
2
2
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 15 -  
W9864G2JH  
9.5 AC Characteristics and Operating Condition  
(VDD = 3.3V±0.3V for -5/-6, VDD = 2.7V~3.6V for -7 on TA = 0 to 70°C, VDD = 3.3V±0.3V for -6I/-6A on TA = -40 to 85°C)  
(Notes: 5, 6)  
-5  
-6/-6I/-6A  
MIN. MAX.  
-7  
PARAMETER  
SYM.  
UNIT NOTES  
MIN.  
MAX.  
MIN. MAX.  
Ref/Active to Ref/Active Command  
Period  
55  
60  
65  
tRC  
tRAS  
tRCD  
Active to precharge Command Period  
40 100000 42 100000 45 100000 nS  
Active to Read/Write Command Delay  
Time  
15  
18  
20  
Read/Write(a) to Read/Write(b)  
Command Period  
1
1
1
tCCD  
tRP  
tCK  
nS  
Precharge to Active Command Period  
15  
10  
18  
12  
20  
14  
Active(a) to Active(b) Command  
Period  
tRRD  
CL* = 2  
Write Recovery Time  
CL* = 3  
2
2
2
2
2
2
tWR  
tCK  
CL* = 2  
CLK Cycle Time  
10  
5
1000  
1000  
7.5  
6
1000  
1000  
10  
7
1000  
1000  
tCK  
tCH  
tCL  
CL* = 3  
2
2
2
8
8
CLK High Level width  
CLK Low Level width  
2
2
2
CL* = 2  
Access Time from CLK  
CL* = 3  
6
5.5  
5
6
9
9
7
9
tAC  
tOH  
tHZ  
4.5  
5.5  
3
3
3
Output Data Hold Time  
CL* = 2  
CL* = 3  
6
6
5
6
Output Data High  
Impedance Time  
4.5  
5.5  
Output Data Low Impedance Time  
Power Down Mode Entry Time  
Transition Time of CLK (Rise and Fall)  
Data-in Set-up Time  
0
0
0
0
0
0
tLZ  
tSB  
nS  
5
1
6
1
7
1
tT  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
1.5  
1.0  
8
8
8
8
8
8
8
8
tDS  
Data-in Hold Time  
tDH  
Address Set-up Time  
tAS  
Address Hold Time  
tAH  
CKE Set-up Time  
tCKS  
tCKH  
tCMS  
tCMH  
tREF  
tRSC  
tXSR  
CKE Hold Time  
Command Set-up Time  
Command Hold Time  
Refresh Time  
64  
64  
64  
mS  
tCK  
nS  
Mode register Set Cycle Time  
Exit self refresh to ACTIVE command  
*CL = CAS Latency  
2
2
2
70  
72  
75  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 16 -  
W9864G2JH  
Notes:  
1. Operation exceeds “Absolute Maximum Ratings” may cause permanent damage to the devices.  
2. All voltages are referenced to VSS  
.
2.7V~3.6V power supply for -7 speed grades.  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the minimum  
values of tCK and tRC  
.
4. These parameters depend on the output loading conditions. Specified values are obtained with output open.  
5. Power up sequence please refer to Functional Descriptionsection described before.  
6. AC test load diagram.  
1.4 V  
50 ohms  
output  
Z = 50 ohms  
30pF  
ACTEST LOAD  
7. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to output  
level.  
8. Assumed input rise and fall time (tT) = 1nS.  
If tr & tf is longer than 1nS, transient time compensation should be considered,  
i.e., [(tr + tf)/2-1]nS should be added to the parameter.  
9. If clock rising time (tT) is longer than 1nS, (tT/2-0.5)nS should be added to the parameter.  
Publication Release Date: Dec. 01, 2011  
- 17 -  
Revision A01  
W9864G2JH  
10. TIMING WAVEFORMS  
10.1 Command Input Timing  
tCK  
tCL  
tCH  
VIH  
CLK  
VIL  
tT  
tT  
tCMS  
tCMH  
tCMS  
tCMH  
tCMH  
CS  
tCMS  
RAS  
tCMS  
tCMS  
tCMH  
tCMH  
tAH  
CAS  
WE  
tAS  
A0-A10  
BS0,1  
tCKS  
tCKH  
tCKS  
tCKH  
tCKS  
tCKH  
CKE  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 18 -  
W9864G2JH  
10.2 Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A10  
BS0,1  
tHZ  
tAC  
tAC  
tOH  
tLZ  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 19 -  
W9864G2JH  
10.3 Control Timing of Input/Output Data  
Control Timing of Input Data  
(Word Mask)  
CLK  
tCMH  
tCMS  
tCMH  
tCMS  
tDS  
DQM  
tDS  
tDH  
tDH  
tDS  
tDH  
tDS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0~31  
(Clock Mask)  
CLK  
tCKH  
tCKS  
tDS  
tCKH  
tDH  
tCKS  
CKE  
tDH  
tDS  
tDH  
tDS  
tDH  
tDS  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0~31  
Control Timing of Output Data  
(Output Enable)  
CLK  
tCMS  
tCMH  
tCMS  
tCMH  
DQM  
tAC  
tOH  
tAC  
tAC  
tHZ  
tOH  
tAC  
tLZ  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0~31  
OPEN  
(Clock Mask)  
CLK  
tCKS  
tCKH  
tCKS  
tCKH  
CKE  
tAC  
tAC  
tAC  
tAC  
tOH  
tOH  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0~31  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 20 -  
W9864G2JH  
10.4 Mode Register Set Cycle  
tRSC  
CLK  
tCMS  
tCMS  
tCMS  
tCMH  
tCMH  
tCMH  
CS  
RAS  
CAS  
WE  
tCMS  
tAS  
tCMH  
tAH  
A0-A10  
BS0,1  
Register  
set data  
next  
command  
Burst Length  
A0  
A1  
Sequential  
A2 A1A0  
Interleave  
Burst Length  
Addressing Mode  
CAS Latency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
A2  
A3  
Reserved  
Full Page  
0
A4  
Reserved  
1
1
A5  
Addressing Mode  
A6  
A3  
0
1
Sequential  
Interleave  
A7  
0
0
(Test Mode)  
Reserved  
A8  
CAS Latency  
Reserved  
Reserved  
2
A6 A5A4  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
A9  
Write Mode  
Reserved  
0
0
0
A10  
BS0  
3
Reserved  
Mode  
Register Set  
Single Write Mode  
Burst read and Burst write  
Burst read and single write  
BS1  
A9
0
1
* "Reserved" should stay "0" during MRS cycle.  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 21 -  
W9864G2JH  
11. OPERATING TIMING EXAMPLE  
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
tRC  
tRC  
tRC  
tRC  
RAS  
CAS  
tRP  
tRAS  
tRP  
tRAS  
tRAS  
tRP  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
tRCD  
RBb  
RAa  
RAa  
RAe  
RAe  
RAc  
RBd  
RBd  
CAw  
CBx  
RBb  
RAc  
CAy  
CBz  
A0-A9  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
bx3  
cy0 cy1  
cy2 cy3  
aw0 aw1 aw2 aw3  
bx1 bx2  
bx0  
DQ  
tRRD  
tRRD  
tRRD  
tRRD  
Precharge  
Read  
Active  
Active  
Read  
Bank #0  
Active  
Read  
Precharge  
Precharge  
Bank #1  
Bank #2  
Bank #3  
Active  
Read  
Active  
Idle  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 22 -  
W9864G2JH  
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
6
7
8
9
10  
0
CLK  
CS  
tRC  
tRC  
tRC  
tRC  
RAS  
CAS  
WE  
tRAS  
tRP  
tRAS  
tRP  
tRP  
tRAS  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
tRCD  
RAa  
RBb  
RBd  
RAc  
RAe  
A10  
RAa  
CAw RBb  
CBx  
RAc  
CAy  
RBd  
CBz  
RAe  
A0-A9  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
aw2 aw3  
aw0 aw1  
bx0  
bx1  
bx2 bx3  
cy0 cy1  
cy2 cy3  
dz0  
DQ  
tRRD  
tRRD  
tRRD  
tRRD  
Read  
Active  
AP*  
Read  
Active  
Active  
AP*  
Bank #0  
Read  
Active  
Read  
Active  
AP*  
Bank #1  
Bank #2  
Bank #3  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 23 -  
W9864G2JH  
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
8
9
10 11 12 13 14 15 16 17 18  
1
2
3
4
5
6
7
19 20 21 22 23  
0
CLK  
CS  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRP  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAc  
CAx  
CBy  
RAc  
CAz  
A0-A9  
DQM  
CKE  
tAC  
tAC  
ax6  
tAC  
by4  
by5  
by6  
by7  
CZ0  
ax0  
ax1  
ax2  
ax3  
ax4  
ax5  
by0  
by1  
DQ  
tRRD  
tRRD  
Read  
Active  
Idle  
Precharge  
Active  
Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Precharge  
Precharge  
Read  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 24 -  
W9864G2JH  
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
1
2
3
4
5
21 22 23  
0
CLK  
CS  
tRC  
RAS  
tRAS  
tRP  
tRAS  
tRAS  
tRP  
CAS  
WE  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
RAc  
RAa  
RAa  
RBb  
RBb  
A10  
CAx  
CBy  
RAc  
CAz  
A0-A9  
DQM  
CKE  
tAC  
tAC  
tAC  
by0  
ax3  
ax4  
ax5 ax6  
ax7  
by1  
by4  
by5  
by6  
CZ0  
ax0  
ax1  
ax2  
DQ  
tRRD  
tRRD  
AP*  
Read  
Active  
Bank #0 Active  
Bank #1  
Read  
Active  
Read  
AP*  
Bank #2  
Idle  
* AP is the internal precharge start timing  
Bank #3  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 25 -  
W9864G2JH  
11.5 Interleaved Bank Write (Burst Length = 8)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRAS  
tRCD  
tRCD  
tRCD  
WE  
BS0  
BS1  
RBb  
RAc  
RAa  
RAa  
A10  
CAx  
RBb  
CBy  
RAc  
CAz  
A0-A9  
DQM  
CKE  
ax0  
ax1  
ax4  
ax5  
ax6  
ax7  
by0  
by1  
by2  
by3  
CZ2  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
DQ  
tRRD  
tRRD  
Active  
Write  
Precharge  
Write  
Active  
Write  
Active  
Precharge  
Bank #0  
Bank #1  
Idle  
Bank #2  
Bank #3  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 26 -  
W9864G2JH  
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
tRC  
RAS  
CAS  
tRP  
tRAS  
tRAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAb  
CAx  
CBy  
RAc  
CAz  
A0-A9  
DQM  
CKE  
ax0  
ax1  
ax4  
ax5  
ax6  
ax7  
by0  
by1 by2 by3  
by4  
by5  
by6  
by7 CZ0  
CZ1  
CZ2  
DQ  
tRRD  
tRRD  
AP*  
Write  
Write  
AP*  
Active  
Active  
Write  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 27 -  
W9864G2JH  
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
tCCD  
tCCD  
tCCD  
tRAS  
tRAS  
RAS  
CAS  
WE  
BS0  
BS1  
tRCD  
tRCD  
RAa  
RAa  
RBb  
A10  
CAI RBb  
CBx  
CAy  
CAm  
CBz  
A0-A9  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
tAC  
a0  
a1  
a2  
a3  
bx0  
bx1  
Ay0  
Ay1 Ay2 am0 am1 am2  
bz0  
bz1  
bz2  
bz3  
DQ  
tRRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
AP*  
Active  
Read  
Read  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 28 -  
W9864G2JH  
11.8 Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRAS  
RAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
RAa  
RAa  
CAx  
CAy  
A0-A9  
DQM  
CKE  
tAC  
tWR  
ay1  
ay0  
ay2  
ay3  
ay4  
ax0  
ax1  
ax2  
ax3  
ax4  
ax5  
DQ  
Q Q  
Q
Q
Q
Q
D
D
D
D
D
Bank #0 Active  
Bank #1  
Read  
Write  
Precharge  
Bank #2  
Idle  
Bank #3  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 29 -  
W9864G2JH  
11.9 Auto-precharge Read (Burst Length = 4, CAS Latency = 3)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRC  
RAS  
tRAS  
tRP  
tRAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
RAa  
RAb  
CAx  
RAa  
CAw  
RAb  
A0-A9  
DQM  
CKE  
tAC  
tAC  
aw0  
aw1 aw2 aw3  
bx0  
bx1  
bx2  
bx3  
DQ  
AP*  
Active  
Idle  
Read  
Active  
Read  
AP*  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 30 -  
W9864G2JH  
11.10 Auto-precharge Write (Burst Length = 4)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRC  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRAS  
tRP  
WE  
BS0  
BS1  
tRCD  
tRCD  
RAb  
RAc  
RAa  
RAa  
A10  
CAw  
RAb  
CAx  
RAc  
A0-A9  
DQM  
CKE  
aw0 aw1 aw2 aw3  
bx0  
bx1 bx2  
bx3  
DQ  
Active  
Idle  
Bank #0  
Write  
Active  
Write  
Active  
AP*  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 31 -  
W9864G2JH  
11.11 Auto Refresh Cycle  
6
7
8
11 12 13  
16 17 18  
1
2
3
5
9
10  
14 15  
19  
21  
0
4
20  
22 23  
CLK  
CS  
tRP  
tRC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Refresh  
Auto Refresh (Arbitrary Cycle)  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 32 -  
W9864G2JH  
11.12 Self Refresh Cycle  
CLK  
CS  
tRP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9  
DQM  
tCKS  
tSB  
CKE  
tCKS  
DQ  
tXSR  
Self Refresh Cycle  
No Operation / Command Inhibit  
All Banks  
Precharge  
Self Refresh  
Entry  
Self Refresh  
Exit  
Arbitrary Cycle  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 33 -  
W9864G2JH  
11.13 Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
RAS  
CAS  
WE  
tRCD  
BS0  
BS1  
A10  
RBa  
RBa  
CBv  
CBw  
CBx CBy CBz  
A0-A9  
DQM  
CKE  
tAC  
tAC  
av0  
av1  
av2  
av3  
aw0  
ax0  
ay0  
az0  
az1  
az2  
az3  
DQ  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Active  
Read  
Single Write Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 34 -  
W9864G2JH  
11.14 Power Down Mode  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
RAa  
A10  
CAa  
CAx  
A0-A9  
DQM  
CKE  
tSB  
tSB  
tCKS  
tCKS  
tCKS  
tCKS  
ax0  
ax1  
ax2  
ax3  
DQ  
Active  
NOP Read  
Precharge  
NOP Active  
Precharge Standby  
Power Down mode  
Active Standby  
Power Down mode  
Note: The Power Down Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the Power Down mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
Violating refresh requirements during power-down may result in a loss of data.  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 35 -  
W9864G2JH  
11.15 Auto-precharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
(1) CAS Latency = 2  
(a) burst length = 1  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
AP  
tWR  
tRP  
DQ  
D1  
D1  
(c) burst length = 4  
Command  
Act  
D7  
Write  
D0  
tRP  
tWR  
DQ  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D2  
AP  
D4  
D5  
D6  
(2) CAS Latency = 3  
(a) burst length = 1  
Command  
Write  
D0  
Act  
tWR  
tRP  
DQ  
(b) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
D1  
D1  
(c) burst length = 4  
Command  
Write  
D0  
AP  
D5  
Act  
tWR  
tRP  
DQ  
D2  
D2  
D3  
D3  
(d) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D4  
D6  
D7  
Note )  
represents the Write with Auto precharge command.  
represents the start of internal precharing.  
represents the Bank Active command.  
Write  
AP  
Act  
When the /auto precharge command is asserted,the period f rom Bank Activate  
command to the start of intermal precgarging must be at least tRAS (min).  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 36 -  
W9864G2JH  
11.16 Auto-precharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Read  
AP  
Act  
tRP  
DQ  
Q0  
( b ) burst length = 2  
Command  
Read  
Read  
Read  
AP  
Q0  
Act  
tRP  
DQ  
Q1  
( c ) burst length = 4  
Command  
AP  
Q2  
Act  
Q4  
tRP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
AP  
Q6  
Act  
tRP  
DQ  
Q2  
Act  
Q3  
Act  
Q5  
Q7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Read  
Read  
Read  
Read  
AP  
tRP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
Command  
AP  
tRP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Act  
Q4  
tRP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
AP  
Q5  
Act  
tRP  
DQ  
Q1  
Q6  
Q7  
Note:  
Read  
AP  
Act  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at least tRAS (min).  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 37 -  
W9864G2JH  
11.17 Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
( a ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
D2  
D2  
D3  
D3  
(2) CAS Latency=3  
( a ) Command  
Read  
Read  
Write  
D0  
DQM  
DQ  
D1  
( b ) Command  
Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
Note: The Output data must be masked by DQMto avoid I/O conflict.  
11.18 Timing Chart of Write to Read Cycle  
In the case of Burst Length=4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
Write Read  
( a ) Command  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
Q3  
(2) CAS Latency=3  
( a ) Command  
DQM  
Write Read  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Write  
Read  
DQ  
D0  
D1  
Q3  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 38 -  
W9864G2JH  
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a ) CAS latency =2  
Command Read  
BST  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
( b )CAS latency = 3  
Command  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write cycle  
Command  
Write  
Q0  
BST  
DQ  
Q1  
Q2  
Q3  
Q4  
Note: BST  
represents the Burst stop command  
11.20 Timing Chart of Burst Stop Cycle (Precharge Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
(a) CAS latency =2  
Command  
Read  
Read  
PRCG  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
(b) CAS latency =3  
Command  
PRCG  
Q2  
DQ  
Q4  
(2) Write cycle  
Write  
Q0  
PRCG  
Command  
tWR  
DQM  
DQ  
Q1  
Q2  
Q3  
Q4  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 39 -  
W9864G2JH  
11.21 CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
External  
2
3
4
5
7
1
6
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D6  
D5  
DQM MASK  
( 2 )  
CKE MASK  
1
2
3
4
5
6
7
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 40 -  
W9864G2JH  
11.22 CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
6
2
3
4
5
7
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
Q1  
Q2  
Q3  
Q4  
Open  
Open  
( 1 )  
1
2
3
4
5
7
CLK cycle No.  
6
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
Q3  
Q1  
Q2  
Q4  
Open  
( 2 )  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q1  
Q4  
Q5  
Q3  
Q2  
( 3 )  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 41 -  
W9864G2JH  
12. PACKAGE SPECIFICATION  
12.1 86L TSOP (II)-400 mil  
86  
44  
HE  
E
1
43  
e
b
C
D
q
L
A2  
A1  
A
L1  
ZD  
Y
SEATING PLANE  
Controlling Dimension: Millimeters  
DIMENSION  
(MM)  
DIMENSION  
(INCH)  
SYM.  
MIN.  
NOM.  
MAX. MIN.  
MAX.  
NOM.  
1.20  
0.047  
0.006  
A
A1  
0.15  
0.05  
0.002  
1.00  
0.039  
A2  
b
0.17  
0.12  
0.27  
0.21  
0.007  
0.005  
0.011  
0.008  
0.905  
0.404  
0.471  
c
22.12  
10.06  
11.56  
22.22  
10.16  
11.76  
0.50  
22.62  
10.26  
11.96  
0.871  
0.396  
0.455  
0.875  
0.400  
0.463  
0.020  
0.020  
0.032  
D
E
HE  
e
0.40  
0.50  
0.60  
0.10  
0.016  
0.024  
0.004  
L
0.80  
L1  
Y
ZD  
0.61  
0.024  
Publication Release Date: Dec. 01, 2011  
Revision A01  
- 42 -  
W9864G2JH  
13. REVISION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A01  
Dec. 01, 2011  
All  
Initial formal data sheet  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
Publication Release Date: Dec. 01, 2011  
- 43 -  
Revision A01  

相关型号:

W9864G2JH-5

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G2JH-6

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G2JH-6A

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G2JH-6ATR

Synchronous DRAM, 2MX32, 5ns, CMOS, PDSO86, TSOP2-86
WINBOND

W9864G2JH-6I

Synchronous DRAM, 4MX32, 5ns, CMOS, PDSO86, TSOPII-86
WINBOND

W9864G2JH-6K

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G2JH-7

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G2JH_13

512K x 4 BANKS x 32BITS SDRAM
WINBOND

W9864G6

1M x 4 BANKS x 16 BITS SDRAM
WINBOND

W9864G6DB

1M x 4 BANKS x 16 BITS SDRAM
WINBOND

W9864G6DB-7

1M x 4 BANKS x 16 BITS SDRAM
WINBOND

W9864G6GH

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND