W9864G6DB-7 [WINBOND]

1M x 4 BANKS x 16 BITS SDRAM; 1M ×4银行×16位的SDRAM
W9864G6DB-7
型号: W9864G6DB-7
厂家: WINBOND    WINBOND
描述:

1M x 4 BANKS x 16 BITS SDRAM
1M ×4银行×16位的SDRAM

动态存储器
文件: 总48页 (文件大小:1383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W9864G6DB  
1M × 4 BANKS × 16 BITS SDRAM  
Table of Contents-  
1. GENERAL DESCRIPTION.................................................................................................................. 3  
2. FEATURES ......................................................................................................................................... 3  
3. AVAILABLE PART NUMBER.............................................................................................................. 3  
4. PIN CONFIGURATION ....................................................................................................................... 4  
5. PIN DESCRIPTION............................................................................................................................. 5  
6. BLOCK DIAGRAM .............................................................................................................................. 6  
7. FUNCTIONAL DESCRIPTION............................................................................................................ 7  
Power Up and Initialization................................................................................................................ 7  
Programming Mode Register ............................................................................................................ 7  
Bank Activate Command................................................................................................................... 7  
Read and Write Access Modes......................................................................................................... 7  
Burst Read Command....................................................................................................................... 8  
Burst Command ................................................................................................................................ 8  
Read Interrupted by a Read.............................................................................................................. 8  
Read Interrupted by a Write.............................................................................................................. 8  
Write Interrupted by a Write .............................................................................................................. 8  
Write Interrupted by a Read.............................................................................................................. 8  
Burst Stop Command........................................................................................................................ 8  
Addressing Sequence of Sequential Mode....................................................................................... 9  
Addressing Sequence of Interleave Mode........................................................................................ 9  
Auto Precharge Command.............................................................................................................. 10  
Precharge Command...................................................................................................................... 10  
Self Refresh Command................................................................................................................... 10  
Power Down Mode.......................................................................................................................... 10  
No Operation Command ................................................................................................................. 11  
Deselect Command......................................................................................................................... 11  
Clock Suspend Mode...................................................................................................................... 11  
Table of Operating Modes............................................................................................................... 12  
Simplified State Diagram................................................................................................................. 13  
8. DC CHARACTERISTICS .................................................................................................................. 14  
Absolute Maximum Rating .............................................................................................................. 14  
Recommended DC Operating Conditions....................................................................................... 14  
Capacitance .................................................................................................................................... 14  
Publication Release Date: January 27, 2003  
- 1 -  
Revision A1  
W9864G6DB  
DC Characteristics .......................................................................................................................... 15  
9. AC CHARACTERISTICS .................................................................................................................. 16  
10. TIMING WAVEFORMS ................................................................................................................... 19  
Command Input Timing................................................................................................................... 19  
Read Timing.................................................................................................................................... 20  
Control Timing of Input Data ........................................................................................................... 21  
Control Timing of Output Data ........................................................................................................ 22  
Mode Register Set Cycle ................................................................................................................ 23  
11. OPERATING TIMING EXAMPLE.................................................................................................... 24  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3) ........................................................ 24  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)............................. 25  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3) ........................................................ 26  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)............................. 27  
Interleaved Bank Write (Burst Length = 8)...................................................................................... 28  
Interleaved Bank Write (Burst Length = 8, Auto Precharge) .......................................................... 29  
Page Mode Read (Burst Length = 4, CAS Latency = 3)................................................................. 30  
Page Mode Read/Write (Burst Length = 8, CAS Latency = 3) ....................................................... 31  
Auto Precharge Read (Burst Length = 4, CAS Latency = 3) .......................................................... 32  
Auto Precharge Write (Burst Length = 4)........................................................................................ 33  
Auto Refresh Cycle ......................................................................................................................... 34  
Self Refresh Cycle........................................................................................................................... 35  
Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)................................................. 36  
Power Down Mode.......................................................................................................................... 37  
Auto Precharge Timing (Write Cycle) ............................................................................................. 38  
Auto Precharge Timing (Read Cycle) ............................................................................................. 39  
Timing Chart of Read to Write Cycle............................................................................................... 40  
Timing Chart of Write to Read Cycle............................................................................................... 41  
Timing Chart of Burst Stop Cycle (Burst Stop Command).............................................................. 42  
Timing Chart of Burst Stop Cycle (Precharge Command).............................................................. 43  
CKE/DQM Input Timing (Write Cycle)............................................................................................. 44  
CKE/DQM Input Timing (Read Cycle) ............................................................................................ 45  
Self Refresh/Power Down Mode Exit Timing.................................................................................. 46  
12. PACKAGE DIMENSIONS ............................................................................................................... 47  
BGA 60 Balls Pitch = 0.65 mm........................................................................................................ 47  
13. VERSION HISTORY ....................................................................................................................... 48  
- 2 -  
W9864G6DB  
1. GENERAL DESCRIPTION  
W9864G6DB is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
1M words × 4 banks × 16 bits. Using pipelined architecture and 0.175 µm process technology,  
W9864G6DB delivers a data bandwidth of up to 286M bytes per second (-7).  
W9864G6DB -7.  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle. The  
multiple bank nature enables interleaving among internal banks to hide the precharging time.  
By having a programmable Mode Register, the system can change burst length, latency cycle,  
interleave or sequential burst to maximize its performance. W9864G6DB is ideal for main memory in  
high performance applications.  
2. FEATURES  
2.7V 3.6V power supply  
1048576 words × 4 banks × 16 bits organization  
Self refresh current: Standard and low power  
CAS latency: 2 and 3  
Burst Length: 1, 2, 4, 8, and full page  
Sequential and Interleave burst  
Burst read, single write operation  
Byte data controlled by DQM  
Power-down Mode  
Auto-precharge and controlled precharge  
4K refresh cycles/ 64 mS  
Interface: LVTTL  
Packaged in BGA 60 balls pitch = 0.65 mm, using PB free materials  
3. AVAILABLE PART NUMBER  
PART NUMBER  
SPEED (CL = 3)  
SELF REFRESH CURRENT (MAX.)  
W9864G6DB-7  
143 MHz  
1 mA  
Publication Release Date: January 27, 2003  
Revision A1  
- 3 -  
W9864G6DB  
4. PIN CONFIGURATION  
Top View  
Bottom View  
7 6  
2 1  
1 2  
6 7  
VDD  
VDD  
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
NC  
VSS  
DQ15  
DQ0  
DQ0  
DQ15  
VSS  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
NC  
DQ14  
DQ13  
DQ12  
DQ10  
DQ9  
DQ8  
NC  
VSSQ  
VDDQ  
DQ11  
VSSQ  
VDDQ  
NC  
VDDQ  
VSSQ  
DQ4  
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
DQ4  
VDDQ  
VSSQ  
NC  
VSSQ  
VDDQ  
DQ11  
VSSQ  
VDDQ  
NC  
DQ14  
DQ13  
DQ12  
DQ10  
DQ9  
DQ8  
NC  
VSS  
UDQM  
CLK  
NC  
VDD  
LDQM  
RAS#  
NC  
VDD  
LDQM  
RAS#  
NC  
VSS  
UDQM  
CLK  
NC  
WE#  
CAS#  
CS#  
BS0  
A10  
WE#  
NC  
NC  
CAS#  
CS#  
BS0  
A10  
A1  
NC  
NC  
CKE  
A11  
A8  
CKE  
A11  
A8  
A9  
BS1  
BS1  
A9  
A7  
A0  
A0  
A7  
A1  
A6  
A5  
A2  
A2  
A5  
A6  
VDD  
VDD  
VSS  
A4  
A3  
A3  
A4  
VSS  
- 4 -  
W9864G6DB  
5. PIN DESCRIPTION  
BALL LOCATION PIN NAME FUNCTION  
DESCRIPTION  
Multiplexed pins for row and column address. Row  
address: A0 A11. Column address: A0 A7.  
A10 is sampled during a precharge command to  
determine if all banks are to be precharged or bank  
selected by BS0, BS1.  
M1, M2, N1, N2,  
N6, N7, P1, P2,  
P6, P7, R6,  
Address  
A0 A11  
Select bank to activate during row address latch time,  
or bank to read/write during address latch time.  
M6, M7  
BS0, BS1 Bank Select  
A2, A6, B1, B7,  
C1, C7, D1, D2,  
D6, D7, E1, E7,  
F1, F7, G1, G7  
Data Input/  
Output  
DQ0 −  
Multiplexed pins for data output and input.  
DQ15  
Disable or enable the command decoder. When  
L7  
K6  
Chip Select command decoder is disabled, new command is  
ignored and previous operation continues.  
CS  
Command input. When sampled at the rising edge of  
Row Address  
RAS  
the clock RAS, CAS and WE define the  
Strobe  
operation to be executed.  
Column  
K7  
J7  
Address  
Strobe  
CAS  
WE  
Referred to RAS  
Write Enable  
Referred to RAS  
The output buffer is placed at Hi-Z (with latency of 2)  
UDQM  
LDQM  
Input/Output when DQM is sampled high in read cycle. In write  
J6, J5  
Mask  
cycle, sampling DQM high will block the write  
operation with zero latency.  
System clock used to sample inputs on the rising  
edge of clock.  
K2  
L1  
CLK  
CKE  
Clock Inputs  
CKE controls the clock activation and deactivation.  
Clock Enable When CKE is low, Power Down mode, Suspend  
mode, or Self Refresh mode is entered.  
A7, H6, R7  
A1, H2, R1  
VDD  
VSS  
Power (+3.3V) Power for input buffers and logic circuit inside DRAM.  
Ground for input buffers and logic circuit inside  
Ground  
DRAM.  
Power (+3.3V) Separated power from VDD, to improve DQ noise  
for I/O Buffer immunity.  
B6, C2, E6, F2  
B2, C6, E2, F6  
VDDQ  
VSSQ  
NC  
Ground for I/O Separated ground from VSS, to improve DQ noise  
Buffer  
immunity.  
G2, G6, H1, H7,  
J1, K1, L2, L6  
No Connection No connection  
Publication Release Date: January 27, 2003  
Revision A1  
- 5 -  
W9864G6DB  
6. BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CONTROL  
CS  
SIGNAL  
GENERATOR  
RAS  
CAS  
COMMAND  
DECODER  
COLUMN DECODER  
COLUMN DECODER  
WE  
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
A10  
A0  
MODE  
REGISTER  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
BUFFER  
DQ15  
COLUMN  
COUNTER  
REFRESH  
COUNTER  
UDQM  
LDQM  
COLUMN DECODER  
COLUMN DECODER  
CELL ARRAY  
BANK #2  
CELL ARRAY  
BANK #3  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
NOTE:  
The cell array configuration is 2048 * 256 * 32  
- 6 -  
W9864G6DB  
7. FUNCTIONAL DESCRIPTION  
Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all VDD and VDDQ pins must be ramp up simultaneously to the specified voltage  
when the input signals are held in the "NOP" state. The power up voltage must not exceed VDD +0.3V  
on any of the input pins or VDD supplies. After power up, an initial pause of 200 µS is required  
followed by a precharge of all banks using the precharge command. To prevent data contention on  
the DQ bus during power up, it is required that the DQM and CKE pins be held high during the initial  
pause period. Once all banks have been precharged, the Mode Register Set Command must be  
issued to initialize the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required  
before or after programming the Mode Register to ensure proper subsequent operation.  
Programming Mode Register  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS, CAS , CS and WE at the positive edge of the clock. The address input data  
during this cycle defines the parameters to be set as shown in the Mode Register Operation table. A  
new command may be issued following the mode register set command once a delay equal to tRSC has  
elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as TRAS (max.).  
Read and Write Access Modes  
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting  
RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage level  
defines whether the access cycle is a read operation ( WE high), or a write operation ( WE low). The  
address inputs determine the starting column address. Reading or writing to a different row within an  
activated bank requires the bank be precharged and a new Bank Activate command be issued. When  
more than one bank is activated, interleaved bank Read or Write operations are possible. By using the  
programmed burst length and alternating the access and precharge operations between multiple  
banks, seamless data access operation among many different pages can be realized. Read or Write  
Commands can also be issued to the same bank or between active banks on every clock cycle.  
Publication Release Date: January 27, 2003  
- 7 -  
Revision A1  
W9864G6DB  
Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding  
RAS and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequence mode.  
Burst Command  
The Burst Write command is initiated by applying logic low level to CS , CAS and WE while  
holding RAS high at the rising edge of the clock. The address inputs determine the starting column  
address. Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle  
that the Write Command is issued. The remaining data inputs must be supplied on each subsequent  
rising clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes  
will be ignored.  
Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS latency from the  
interrupting Read Command the is satisfied.  
Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank  
open for future Read or Write Commands to the same page of the active bank, if the burst length is full  
page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
- 8 -  
W9864G6DB  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of  
the clock. The data DQs go to a high impedance state after a delay, which is equal to the CAS  
Latency in a burst read cycle, interrupted by Burst Stop. If a Burst Stop Command is issued during a  
full page burst write operation, then any residual data from the burst write cycle will be ignored.  
Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
ACCESS ADDRESS  
BURST LENGTH  
n
BL = 2 (disturb address is A0)  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
Data 0  
Data 1  
ACCESS ADDRESS  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BUST LENGTH  
BL = 2  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
BL = 4  
BL = 8  
Publication Release Date: January 27, 2003  
Revision A1  
- 9 -  
W9864G6DB  
Auto Precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the auto-precharge function is  
entered. During auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS latency.  
A Read or Write Command with auto-precharge cannot be interrupted before the entire burst  
operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command is  
prohibited during a read or write cycle with auto-precharge. Once the precharge operation has started,  
the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-  
Precharge command is illegal if the burst is set to full page length. If A10 is high when a Write  
Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically  
enters the precharge operation one clock delay from the last burst write cycle. This delay is referred to  
as write tDPL. The bank undergoing auto-precharge cannot be reactivated until tDPL and tRP are satisfied.  
This is referred to as tDAL, Data-in to Active delay (tDAL = tDPL + tRP). When using the Auto-precharge  
Command, the interval between the Bank Activate Command and the beginning of the internal  
precharge operation must satisfy tRAS (min).  
Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS, RAS and WE are low and CAS is high at the rising  
edge of the clock. The Precharge Command can be used to precharge each bank separately or all  
banks simultaneously. Three address bits, A10, BS0, and BS1 are used to define which bank(s) is to  
be precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
Self Refresh Command  
The Self Refresh Command is defined by having CS, RAS, CAS and CKE held low with WE  
high at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command.  
Once the command is registered, CKE must be held low to keep the device in Self Refresh mode.  
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are  
disabled. The clock is internally disabled during Self Refresh Operation to save power. The device will  
exit Self Refresh operation after CKE is returned high. A minimum delay time is required when the  
device exits Self Refresh Operation and before the next command can be issued. This delay is equal  
to the tAC cycle time plus the Self Refresh exit time.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
- 10 -  
W9864G6DB  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCES (min.) + tCK (min.).  
No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS, CAS , and WE held high at the rising edge of  
the clock. A No Operation Command will not terminate a previous operation that is still executing,  
such as a burst read or write cycle.  
Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS , CAS , and WE signals become don't  
cares.  
Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
Publication Release Date: January 27, 2003  
- 11 -  
Revision A1  
W9864G6DB  
Table of Operating Modes  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
TABLE 1 TRUTH TABLE (Note (1), (2))  
DEVICE  
COMMAND  
Bank Active  
CKEn-1 CKEn DQM BS0, 1 A10  
A0A9  
CS  
RAS CAS  
WE  
STATE  
Idle  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
v
v
x
v
v
v
v
v
x
x
x
x
x
x
x
v
L
H
L
H
L
H
v
V
x
x
v
v
v
v
v
x
x
x
x
x
x
x
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
L
L
H
H
H
L
H
L
L
L
L
H
H
L
H
L
x
Bank Precharge  
Precharge All  
Any  
Any  
x
L
Write  
Active (3)  
Active (3)  
Active (3)  
Active (3)  
Idle  
x
H
H
H
H
L
Write with Auto Precharge  
Read  
x
L
x
L
Read with Auto Precharge  
Mode Register Set  
No-Operation  
x
L
x
L
Any  
x
x
H
H
x
H
H
x
Burst Stop  
Active (4)  
Any  
x
x
Device Deselect  
Auto Refresh  
x
x
Idle  
H
L
H
H
x
L
L
H
H
x
Self Refresh Entry  
Idle  
x
L
L
idle  
x
x
x
Self Refresh Exit  
(S.R)  
L
x
H
H
x
Clock Suspend Mode  
Entry  
Active  
H
L
x
x
x
x
x
x
x
x
Idle  
Active (5)  
Active  
Any  
H
H
L
L
L
x
x
x
x
x
x
x
x
x
x
x
x
H
L
x
x
H
x
x
H
x
X
H
X
Power Down Mode Entry  
Clock Suspend Mode Exit  
H
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
x
X
H
Power Down Mode Exit  
(power  
down)  
H
H
Data Write/Output Enable  
Data Write/Output Disable  
Notes:  
Active  
Active  
H
x
x
L
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
H
(1) v = valid, x = Don't care, L = Low Level, H = High Level  
(2) CKEn signal is input leve l when commands are provided.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
- 12 -  
W9864G6DB  
Simplified State Diagram  
Self  
Refresh  
Mode  
Register  
Set  
MRS  
REF  
CBR  
IDLE  
Refresh  
C
K
E
C
K
E
Power  
Down  
CKE  
CKE  
Active  
Power  
Down  
ROW  
ACTIVE  
Write  
Read  
CKE  
CKE  
CKE  
Read  
WRITE  
READ  
WRITE  
READ  
SUSPEND  
SUSPEND  
CKE  
Write  
CKE  
CKE  
CKE  
WRITEA  
READA  
READA  
WRITEA  
SUSPEND  
SUSPEND  
CKE  
POWER  
ON  
Precharge  
Precharge  
Automatic sequence  
Manual input  
MRS = Mode Register Set  
REF = Refresh  
ACT = Active  
PRE = Precharge  
WRITEA = Write with Auto precharge  
READA = Read with Auto precharge  
Publication Release Date: January 27, 2003  
Revision A1  
- 13 -  
W9864G6DB  
8. DC CHARACTERISTICS  
Absolute Maximum Rating  
PARAMETER  
Input, Column Output Voltage  
Power Supply Voltage  
Operating Temperature  
Storage Temperature  
SYM.  
VIN, VOUT  
VDD, VDDQ  
TOPR  
RATING  
-0.3 VDD +0.3  
-0.3 4.6  
0 70  
UNIT  
V
NOTES  
1
1
1
1
1
1
1
V
°C  
°C  
°C  
W
TSTG  
-55 150  
260  
Soldering Temperature (10s)  
Power Dissipation  
Short Circuit Output Current  
TSOLDER  
PD  
IOUT  
1
50  
mA  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
Recommended DC Operating Conditions  
(TA = 0 to 70°C)  
PARAMETER  
Power Supply Voltage  
Power Supply Voltage (for I/O Buffer)  
Input High Voltage  
SYM.  
VDD  
VDDQ  
VIH  
MIN.  
2.7  
2.7  
2.0  
-0.3  
TYP.  
3.3  
3.3  
-
MAX.  
3.6  
3.6  
VDD +0.3  
0.8  
UNIT  
V
V
V
V
NOTES  
2
2
2
2
Input Low Voltage  
VIL  
-
Note: VIH (max.) = VDD/VDDQ +1.2V for pulse width < 5 nS  
VIL (min.) = VSS/VSSQ -1.2V for pulse width < 5 nS  
Capacitance  
(VDD = 3.3V, TA = 25 °C, f = 1 MHz)  
PARAMETER  
SYM.  
MIN.  
MAX.  
UNIT  
Input Capacitance  
Ci  
2.5  
4
pF  
(A0 to A11, BS0, BS1, CS , RAS , CAS , WE , DQM, CKE)  
Input Capacitance (CLK)  
CCLK  
Co  
2.5  
4
4
6.5  
pF  
pF  
Input/Output capacitance (DQ0 DQ15)  
Note: These parameters are periodically sampled and not 100% tested  
- 14 -  
W9864G6DB  
DC Characteristics  
(VDD = 3.6V ~2.7V, TA = 0°~70°C)  
-7  
PARAMETER  
SYM.  
UNIT  
NOTES  
MAX.  
Operating Current  
tCK = min., tRC = min.  
1 bank operation  
CKE = VIH  
ICC1  
80  
3
Active precharge command cycling without  
burst operation  
Standby Current  
tCK = min., CS = VIH  
VIH/L = VIH (min.)/ VIL (max.)  
ICC2  
30  
1
3
3
CKE = VIL (Power  
Down mode)  
Bank: Inactive State  
Standby Current  
ICC2P  
CKE = VIH  
ICC2S  
8
CLK = VIL, CS = VIH  
VIH/L=VIH (min.)/VIL (max.)  
mA  
CKE = VIL (Power  
Down mode)  
BANK: Inactive State  
ICC2PS  
1
55  
5
No Operating Current  
tCK = min., CS = VIH (min.)  
CKE = VIH  
ICC3  
CKE = VIL (Power  
Down mode)  
BANK: active state (4 banks)  
ICC3P  
ICC4  
Burst Operating Current  
Read/Write command cycling  
Auto Refresh Current  
(tCK = min.)  
145  
3, 4  
3
(tCK = min.)  
ICC5  
110  
Auto refresh command cycling  
Self Refresh Current  
ICC6  
1
mA  
(CKE = 0.2V)  
Self refresh mode  
ICC6L  
400  
µA  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
NOTES  
Input Leakage Current  
II(L)  
-5  
5
µA  
(0V VIN VDD, all other pins not under test = 0V)  
Output Leakage Current  
VO(L)  
VOH  
-5  
2.4  
-
5
-
µA  
V
(Output disable, 0V VOUT VDDQ)  
LVTTL Output H Level Voltage  
(IOUT = -2 mA)  
"
LVTTL Output L Level Voltage  
(IOUT = 2 mA)  
VOL  
0.4  
V
Publication Release Date: January 27, 2003  
Revision A1  
- 15 -  
W9864G6DB  
9. AC CHARACTERISTICS  
(VDD = 3.6V 2.7V, VSS = 0V, TA = 0 to 70 °C) (Notes: 5, 6.)  
-7  
PARAMETER  
SYMBOL  
UNIT  
MAX.  
MIN.  
65  
45  
20  
1
Ref/Active to Ref/Active Command Period  
Active to Precharge Command Period  
tRC  
tRAS  
tRCD  
tCCD  
tRP  
nS  
100000  
Active to Read/Write Command Delay Time  
Read/Write(a) to Read/Write(b)Command Period  
Precharge to Active(b) Command Period  
Active(a) to Active(b) Command Period  
Cycle  
20  
14  
8
tRRD  
Write Recovery Time  
CL* = 2  
CL* = 3  
CL* = 2  
CL* = 3  
tWR  
tCK  
7
CLK Cycle Time  
8
1000  
1000  
7
CLK High Level  
tCH  
tCL  
2
CLK Low Level  
2
Access Time from CLK  
CL* = 2  
CL* = 3  
6
tAC  
5.5  
Output Data Hold Time  
Output Data High Impedance Time  
Output Data Low Impedance Time  
Power Down Mode Entry Time  
Transition Time of CLK (Rise and Fall)  
Data-in-Set-up Time  
tOH  
tHZ  
3
3
nS  
7
tLZ  
0
tSB  
0
7
tT  
0.5  
1.5  
1
10  
tDS  
Data-in Hold Time  
tDH  
Address Set-up Time  
tAS  
1.5  
1
Address Hold Time  
tAH  
CKE Set-up Time  
tCKS  
tCKH  
tCMS  
tCMH  
tREF  
tRSC  
1.5  
1
CKE Hold Time  
Command Set-up Time  
Command Hold Time  
1.5  
1
Refresh Time  
64  
mS  
nS  
Mode Register Set Cycle Time  
14  
- 16 -  
W9864G6DB  
Notes:  
1. Operation exceeds "ABSOLUTE MAXIMUM RATING" may cause permanent damage to the  
devices.  
2. All voltages are referenced to VSS  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the  
minimum values of tCK and tRC.  
4. These parameters depend on the output loading conditions. Specified values are obtained with  
output open.  
5. Power up Sequence  
(1) Power up must be performed in the following sequence.  
(2) Power must be applied to VDD and VDDQ (simultaneously) while all input signals are held in the “NOP” state. The CLK  
signals must be started at the same time.  
(3) After power-up a pause of at least 200 µseconds is required. It is required that DQM and CKE signals then be held ‘  
high‘ (VDD levels) to ensure that the DQ output is impedance.  
(4) All banks must be precharged.  
(5) The Mode Register Set command must be asserted to initialize the Mode Register.  
(6) A minimum of eight Auto Refresh dummy cycles is required to stabilize the internal circuitry of the device.  
6. AC Testing Conditions  
PARAMETER  
Output Reference Level  
CONDITIONS  
1.4V  
Output Load  
See diagram below  
2.4V/0.4V  
1 nS  
Input Signal Levels (VIH/VIL)  
Transition Time (Rise and Fall) of Input Signal  
Input Reference Level  
1.4V  
1.4 V  
50 ohms  
50pF  
output  
Z = 50 ohms  
AC TEST LOAD  
1. Transition times are measured between VIH and VIL.  
2. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to output level.  
3. These parameters account for the number of clock cycles and depend on the operating frequency of the clock, as  
follows the number of clock cycles = specified value of timing/ clock period  
(count fractions as whole number)  
(1) tCH is the pulse width of CLK measured from the positive edge to the negative edge referenced to VIH (min.).  
tCL is the pulse width of CLK measured from the negative edge to the positive edge referenced to VIL (max.).  
Publication Release Date: January 27, 2003  
- 17 -  
Revision A1  
W9864G6DB  
(2) A.C Latency Characteristics  
CKE to Clock Disable (CKE Latency)  
1
Cycle  
DQM to Output to HI-Z (Read DQM Latency)  
DQM to Output to HI-Z (Write DQM Latency)  
Write Command to Input Data (Write Data Latency)  
2
0
0
0
CS to Command Input ( CS Latency)  
Precharge to DQ Hi-Z Lead Time  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
CL = 2  
CL = 3  
2
3
1
Precharge to Last Valid Data Out  
2
2
3
Bust Stop Command to DQ Hi-Z Lead Time  
Bust Stop Command to Last Valid Data Out  
1
2
BL + tRP  
BL + tRP  
BL + tRP  
BL + tRP  
Cycle + nS  
Read with Auto Precharge Command to Active/Ref  
Command  
Write with Auto Precharge Command to Active/Ref  
Command  
- 18 -  
W9864G6DB  
10. TIMING WAVEFORMS  
Command Input Timing  
t
CL  
tCH  
t
CK  
V
V
IH  
IL  
CLK  
CS  
t
T
tT  
t
t
CMS  
CMS  
tCMH  
t
CMH  
tCMS  
t
CMH  
RAS  
CAS  
WE  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
t
AS  
tAH  
A0-A10  
BS0, 1  
t
CKS  
t
CKH  
tCKH  
t
CKS  
t
CKS  
t
CKH  
CKE  
Publication Release Date: January 27, 2003  
Revision A1  
- 19 -  
W9864G6DB  
Timing Waveforms, continued  
Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A10  
BS0, 1  
t
AC  
t
AC  
t
HZ  
t
OH  
t
OH  
t
LZ  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
- 20 -  
W9864G6DB  
Timing Waveforms, continued  
Control Timing of Input Data  
(Word Mask)  
CLK  
t
CMS  
t
CMH  
t
CMH  
tCMS  
DQM0  
DQM1  
t
CMH  
t
CMS  
tCMH  
tCMS  
t
DS  
t
DH  
t
DS  
DS  
t
DH  
t
DS  
t
DH  
t
t
t
DS  
tDH  
Valid  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
DQ0 -DQ7  
DQ8-DQ15  
Data-in  
t
t
t
DS  
DS  
DS  
t
DH  
t
t
t
DS  
DS  
DS  
t
DH  
t
t
DH  
DS  
DS  
tDH  
Valid  
Data-in  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
t
DH  
t
DH  
t
DS  
t
DH  
t
t
DS  
tDH  
t
DH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Valid  
Valid  
DQ16 -DQ23  
DQ24-DQ31  
Data-in  
Data-in  
Data-in  
t
DH  
t
DH  
tDS  
tDH  
DS  
t
DH  
tDS  
t
DH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
*DQM2,3="L"  
(Clock Mask)  
CLK  
t
CKH  
tCKS  
t
CKH  
tCKS  
CKE  
t
DS  
DS  
t
DH  
t
DS  
t
DH  
t
t
DS  
DS  
t
DH  
t
t
DS  
DS  
tDH  
Valid  
Valid  
Data-in  
Valid  
Valid  
DQ0 -DQ7  
DQ8 -DQ15  
DQ16 -DQ23  
DQ24 -DQ31  
Data-in  
Data-in  
Data-in  
t
t
DH  
t
t
t
DS  
t
DH  
tDH  
t
DH  
Valid  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
Data-in  
t
DS  
DS  
t
DH  
DS  
DS  
t
DH  
t
t
DS  
DS  
tDH  
t
t
DS  
DS  
t
DH  
Valid  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
Data-in  
t
t
DH  
t
DH  
tDH  
t
DH  
Valid  
Valid  
Valid  
Valid  
Data-in  
Data-in  
Data-in  
Data-in  
Publication Release Date: January 27, 2003  
Revision A1  
- 21 -  
W9864G6DB  
Timing Waveforms, continued  
Control Timing of Output Data  
(Output Enable)  
CLK  
t
CMH  
t
CMS  
t
CMH  
t
t
CMS  
CMS  
DQM0  
DQM1  
t
CMS  
t
CMH  
tCMH  
t
AC  
t
AC  
t
HZ  
t
AC  
t
t
AC  
AC  
t
t
OH  
OH  
t
OH  
t
OH  
t
LZ  
tOH  
OPEN  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
DQ0 -DQ7  
DQ8 -DQ15  
DQ16 -DQ23  
DQ24 -DQ31  
Data-Out  
t
AC  
t
AC  
AC  
AC  
t
AC  
tHZ  
t
OH  
t
OH  
t
OH  
tLZ  
Valid  
OPEN  
Valid  
Valid  
Data-Out  
Data-Out  
Data-Out  
t
AC  
t
AC  
AC  
t
t
t
HZ  
t
t
AC  
AC  
t
OH  
t
OH  
t
OH  
t
LZ  
tOH  
Valid  
Valid  
Valid  
Data-Out  
Valid  
Data-Out  
Data-Out  
Data-Out  
t
t
HZ  
tAC  
t
OH  
t
OH  
t
OH  
t
OH  
t
OH  
Valid  
Valid  
Valid  
Data-Out  
Valid  
Data-Out  
Data-Out  
Data-Out  
*DQM2,3="L"  
(Clock Mask)  
CLK  
t
CKH  
t
CKS  
t
CKH  
tCKS  
CKE  
t
AC  
t
t
AC  
AC  
t
t
AC  
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
Valid  
Valid  
Valid  
DQ0 -DQ7  
Data-Out  
Data-Out  
Data-Out  
t
AC  
t
AC  
t
OH  
OH  
tOH  
t
OH  
tOH  
Valid  
Valid  
Valid  
DQ8 -DQ15  
Data-Out  
Data-Out  
Data-Out  
t
AC  
t
t
AC  
AC  
t
AC  
t
AC  
t
t
OH  
t
t
t
OH  
tOH  
Valid  
Valid  
Valid  
Data-Out  
DQ16 -DQ23  
Data-Out  
Data-Out  
t
AC  
t
AC  
t
AC  
OH  
OH  
t
OH  
tOH  
Valid  
Data-Out  
Valid  
Valid  
Data-Out  
DQ24 -DQ31  
Data-Out  
- 22 -  
W9864G6DB  
Timing Waveforms, continued  
Mode Register Set Cycle  
t
RSC  
CLK  
t
CMS  
tCMH  
CS  
t
CMS  
tCMH  
RAS  
CAS  
WE  
t
CMS  
tCMH  
t
CMS  
tCMH  
t
AS  
tAH  
A0-A10  
BS0,1  
Register  
set data  
next  
command  
BurstLength  
A0  
A1  
A2  
A2 A1 A0  
Sequential  
Interleave  
Burst Length  
0
0
0
0
1
1
1
1
0
00  
1
1
0
0
1
0
1
0
1
0
1
1
1
A20  
4
A80  
A2
4
A80  
A3 Addressing Mode  
A4  
0
Reserved  
Reserved  
1
A10  
A5  
A6  
CAS Latency  
FullAP0age  
A3  
0
A10  
Addressing Mode  
Sequential  
InteArle0ave  
A7 "0" (Test Mode)  
A8 "0"  
A9  
Reserved  
A6 A5 A4  
CAS Latency  
Reserved  
Reserved  
2
0
0
0
0
1
0
A00  
1
1
A00  
0
1
0
1
0
WriteMode  
"0"  
"0"  
A10  
A11  
3
Reserved  
Reserved  
BS0 "0"  
BS1 "0"  
A9
0
A10  
Single Write Mode  
Burst read and Burst write  
Burst read aAn0d single write  
Publication Release Date: January 27, 2003  
Revision A1  
- 23 -  
W9864G6DB  
11. OPERATING TIMING EXAMPLE  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
t
RC  
tRC  
t
RC  
tRC  
RAS  
CAS  
WE  
t
RAS  
t
RP  
t
RAS  
RP  
tRP  
t
RAS  
t
tRAS  
BS0  
BS1  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAa  
RAa  
RBb  
RAc  
RAc  
RBd  
RBd  
A10  
RAe  
RAe  
CAw  
CBx  
RBb  
CAy  
CBz  
A0-A9  
DQM  
CKE  
DQ  
t
AC  
t
AC  
t
AC  
t
AC  
cy2  
bx1  
bx3  
aw0  
aw2 aw3  
bx0  
bx2  
cy1  
cy3  
aw1  
cy0  
t
RRD  
t
RRD  
tRRD  
t
RRD  
Precharge  
Read  
Active  
Read  
Precharge  
Active  
Bank #0  
Bank #1  
Bank #2  
Read  
Active  
Precharge  
Read  
Active  
Active  
Idle  
Bank #3  
- 24 -  
W9864G6DB  
Operating Timing Example, continued  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto Precharge)  
(CLK = 100 MHz)  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
6
7
8
9
10  
0
CLK  
CS  
t
RC  
tRC  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
RP  
t
RP  
RAS  
t
RAS  
t
t
WE  
BS0  
BS1  
t
RCD  
t
RCD  
t
RCD  
t
RCD  
RAe  
RBd  
RAa  
RBb  
RAc  
A10  
A0-A9  
DQM  
CKE  
CBz  
RAa  
CAw  
CAy  
RAe  
CBx  
RBb  
RAc  
RBd  
t
AC  
t
AC  
t
AC  
t
AC  
cy3  
aw0 aw1 aw2  
aw3  
bx0 bx1  
bx2 bx3  
cy0  
cy1 cy2  
dz0  
DQ  
t
RRD  
t
RRD  
t
RRD  
tRRD  
Read  
Active  
AP*  
Read  
Active  
Active  
Active  
AP*  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Read  
Read  
Active  
AP*  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: January 27, 2003  
Revision A1  
- 25 -  
W9864G6DB  
Operating Timing Example, continued  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
8
9
10 11 12 13 14 15 16 17 18  
1
2
3
4
5
6
7
19 20 21 22 23  
0
CLK  
CS  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
tRAS  
t
RP  
t
RAS  
WE  
BS0  
BS1  
A10  
t
RCD  
t
RCD  
tRCD  
RAa  
RAa  
RAc  
RAc  
RBb  
RBb  
CAx  
CBy  
CAz  
A0-A9  
DQM  
CKE  
DQ  
t
AC  
t
AC  
t
AC  
ax0 ax1  
ax2  
ax3  
ax4  
ax5 ax6  
by0  
by1  
by4 by5  
by6  
by7  
CZ0  
t
RRD  
t
RRD  
Read  
Active  
Idle  
Precharge  
Active  
Read  
Precharge  
Bank #0  
Bank #1  
Active  
Precharge  
Read  
Bank #2  
Bank #3  
- 26 -  
W9864G6DB  
Operating Timing Example, continued  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto Precharge)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
1
2
3
4
5
21 22 23  
0
CLK  
CS  
t
RC  
RAS  
t
RAS  
t
RP  
t
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
t
RCD  
A10  
RBb  
RBb  
RAc  
RAa  
RAa  
A0-A9  
DQM  
CAz  
CAx  
RAc  
CBy  
CKE  
DQ  
t
CAC  
t
CAC  
t
CAC  
ax3  
ax4  
ax0  
ax2  
ax5 ax6  
ax7  
by0  
by1  
by4  
by5  
by6  
ax1  
CZ0  
t
RRD  
t
RRD  
AP*  
Read  
Active  
Bank #0 Active  
Bank #1  
Read  
Active  
Read  
AP*  
Bank #2  
Idle  
* AP is the internal precharge start timing  
Bank #3  
Publication Release Date: January 27, 2003  
Revision A1  
- 27 -  
W9864G6DB  
Operating Timing Example, continued  
Interleaved Bank Write (Burst Length = 8)  
(CLK = 100 MHz)  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
6
7
8
1
2
3
4
5
0
CLK  
CS  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
t
RCD  
t
RCD  
tRCD  
WE  
BS0  
BS1  
RBb  
RAc  
RAc  
RAa  
RAa  
A10  
CAx  
RBb  
CBy  
CAz  
A0-A9  
DQM  
CKE  
DQ  
ax0 ax1  
RRD  
ax4  
ax5  
ax6  
ax7  
by0  
by1  
RRD  
by2  
by3  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
CZ2  
t
t
Active  
Write  
Precharge  
Active  
Write  
Bank #0  
Bank #1  
Active  
Write  
Precharge  
Bank #2  
Bank #3  
Idle  
- 28 -  
W9864G6DB  
Operating Timing Example, continued  
Interleaved Bank Write (Burst Length = 8, Auto Precharge)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
RC  
RAS  
CAS  
t
RP  
t
RAS  
t
RAS  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAb  
RAc  
A10  
CAx  
CBy  
CAz  
A0-A9  
DQM  
CKE  
DQ  
ax4  
by2  
by5  
ax0 ax1  
ax5  
ax6  
ax7  
by0 by1  
by3  
by4  
by6  
by7 CZ0  
CZ1  
CZ2  
t
RRD  
t
RRD  
AP*  
Write  
AP*  
Active  
Active  
Write  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Write  
Idle  
* AP is the internal precharge start timing  
Publication Release Date: January 27, 2003  
Revision A1  
- 29 -  
W9864G6DB  
Operating Timing Example, continued  
Page Mode Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
t
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
CLK  
CS  
t
CCD  
t
CCD  
tCCD  
RAS  
t
RAS  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
A10  
A0-A9  
DQM  
CKE  
CBx  
CAy  
CAm  
CBz  
CAI  
t
AC  
t
AC  
t
AC  
t
AC  
tAC  
am1  
am2 bz0  
bz1  
bz2  
bz3  
a0  
a1  
a3  
bx0  
Ay0  
Ay1 Ay2  
am0  
a2  
bx1  
DQ  
t
RRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
AP*  
Active  
Read  
Read  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
- 30 -  
W9864G6DB  
Operating Timing Example, continued  
Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
t
RAS  
RAS  
CAS  
WE  
BS0  
BS1  
t
RCD  
RAa  
RAa  
A10  
CAx  
A0-A9  
CAy  
DQM  
CKE  
tAC  
t
WR  
ax5  
ay1  
ax0  
ax1  
ax3  
ay0  
ay2  
ay4  
ax2  
ax4  
ay3  
DQ  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Idle  
Read  
Write  
Precharge  
Publication Release Date: January 27, 2003  
Revision A1  
- 31 -  
W9864G6DB  
Operating Timing Example, continued  
Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
t
RC  
RAS  
t
RAS  
t
RP  
tRAS  
CAS  
WE  
BS0  
BS1  
A10  
t
RCD  
t
RCD  
RAa  
RAb  
CAx  
RAa  
CAw  
RAb  
A0-A9  
DQM  
CKE  
t
AC  
t
AC  
aw0 aw1 aw2 aw3  
bx1  
bx2  
bx3  
bx0  
DQ  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
AP*  
Active  
Idle  
Read  
Active  
Read  
AP*  
* AP is the internal precharge start timing  
- 32 -  
W9864G6DB  
Operating Timing Example, continued  
Auto Precharge Write (Burst Length = 4)  
(CLK = 100 MHz)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
t
RC  
t
RC  
RAS  
CAS  
t
RAS  
t
RP  
t
RAS  
tRP  
WE  
BS0  
BS1  
t
RCD  
t
RCD  
RAc  
RAa  
RAa  
RAb  
A10  
A0-A9  
DQM  
CKE  
CAw  
RAb  
CAx  
RAc  
aw0 aw1 aw2 aw3  
bx0  
bx1  
bx3  
bx2  
DQ  
Active  
Idle  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Write  
Active  
Write  
Active  
AP*  
AP*  
* AP is the internal precharge start timing  
Publication Release Date: January 27, 2003  
Revision A1  
- 33 -  
W9864G6DB  
Operating Timing Example, continued  
Auto Refresh Cycle  
(CLK = 100 MHz)  
11 12 13  
6
7
8
16 17 18  
1
2
3
5
9
10  
14 15  
19  
21  
0
4
20  
22 23  
CLK  
CS  
t
RP  
t
RC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Auto Refresh (Arbitrary Cycle)  
Refresh  
- 34 -  
W9864G6DB  
Operating Timing Example, continued  
Self Refresh Cycle  
(CLK = 100 MHz)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
tRP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9  
DQM  
t
CKS  
t
CKS  
t
SB  
CKE  
DQ  
t
CKS  
t
RC  
Self Refresh Cycle  
No Operation Cycle  
All Banks  
Self Refresh  
Entry  
Arbitrary Cycle  
Precharge  
Publication Release Date: January 27, 2003  
Revision A1  
- 35 -  
W9864G6DB  
Operating Timing Example, continued  
Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
11 12 13  
16 17 18  
1
2
3
5
9
10  
14 15  
19  
21  
0
4
20  
22 23  
CLK  
CS  
RAS  
CAS  
t
RCD  
WE  
BS0  
BS1  
A10  
RBa  
CBz  
A0-A9  
RBa  
CBv  
CBw  
CBx CBy  
DQM  
CKE  
t
AC  
Q
t
AC  
Q
DQ  
av0  
av1  
av3  
aw0  
ax0  
ay0  
az1  
az2  
az3  
az0  
av2  
Q
Q
Q
D
D
D
Q
Q
Q
Read  
Active  
Idle  
Single Write  
Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
- 36 -  
W9864G6DB  
Operating Timing Example, continued  
Power Down Mode  
(CLK = 100 MHz)  
6
7
8
11  
12  
13  
16  
17  
18  
1
2
3
5
9
10  
14  
15  
19  
21  
0
4
20  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
RAa  
A10  
A0-A9  
DQM  
CAa  
CAx  
t
SB  
tSB  
CKE  
DQ  
t
CKS  
tCKS  
t
CKS  
t
CKS  
ax0  
ax2  
ax3  
ax1  
Active  
NOP  
Precharge  
NOPActive  
Read  
Precharge Standby  
Power Down mode  
Active Standby  
Power Down mode  
Note: The PowerDown Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the PowerDown mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
Publication Release Date: January 27, 2003  
Revision A1  
- 37 -  
W9864G6DB  
Operating Timing Example, continued  
Auto Precharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS  
Latency=2  
( a ) burst length = 1  
Command  
Write  
D0  
AP  
Act  
t
WR  
t
RP  
DQ  
( b ) burst length = 2  
Command  
Write  
D0  
AP  
Act  
AP  
tWR  
tRP  
DQ  
( c ) burst length = 4  
Command  
D1  
D1  
Write  
D0  
Act  
D6  
tWR  
t
RP  
DQ  
D2  
D2  
D3  
D3  
( d ) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D1  
AP  
D4  
D5  
D7  
(2) CAS  
Latency=3  
( a ) burst length = 1  
Command  
Write  
D0  
Act  
t
WR  
tRP  
DQ  
( b ) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
( c ) burst length = 4  
Command  
D1  
D1  
D1  
Write  
D0  
AP  
Act  
D7  
tWR  
tRP  
DQ  
D2  
D2  
D3  
D3  
( d ) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D5  
D6  
D4  
Note:  
Write  
represents the Write with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate  
command to the start of internal precgarging must be at least tRAS (min.)  
- 38 -  
W9864G6DB  
Operating Timing Example, continued  
Auto Precharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS  
Latency=2  
( a ) burst length = 1  
Command  
Read  
AP  
Act  
t
RP  
DQ  
Q0  
( b ) burst length = 2  
Command  
Read  
Read  
Read  
AP  
Q0  
Act  
t
RP  
DQ  
Q1  
( c ) burst length = 4  
Command  
AP  
Q2  
Act  
Q4  
t
RP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
AP  
Q6  
Act  
tRP  
DQ  
Q2  
Act  
Q3  
Q5  
Q7  
(2) CAS  
Latency=3  
( a ) burst length = 1  
Command  
Read  
Read  
Read  
Read  
AP  
t
RP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
Command  
AP  
Act  
t
RP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Act  
Q4  
tRP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
AP  
Q5  
Act  
t
RP  
DQ  
Q1  
Q6  
Q7  
Note:  
Read  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at leastRt AS (min).  
Publication Release Date: January 27, 2003  
Revision A1  
- 39 -  
W9864G6DB  
Operating Timing Example, continued  
Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
( a ) Command  
Read  
Write  
DQM  
DQ  
D0  
D1  
D2  
D3  
( b ) Command  
Read  
Write  
DQM  
D0  
D1  
D2  
D2  
D3  
D3  
D3  
DQ  
(2) CAS Latency=3  
( a ) Command  
Read  
Read  
Write  
D0  
DQM  
D1  
DQ  
( b ) Command  
Write  
DQM  
DQ  
D0  
D1  
D2  
Note: The Output data must be masked by DQM to avoid I/O conflict.  
- 40 -  
W9864G6DB  
Operating Timing Example, continued  
Timing Chart of Write to Read Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency = 2  
( a ) Command  
DQM  
Write  
Read  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
Q3  
(2) CAS Latency = 3  
( a ) Command  
Read  
Write  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Write  
Read  
D0  
D1  
Q3  
DQ  
Publication Release Date: January 27, 2003  
Revision A1  
- 41 -  
W9864G6DB  
Operating Timing Example, continued  
Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(3) Read cycle  
( a ) CAS latency =2  
Read  
BST  
Command  
DQ  
Q4  
Q3  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
BST  
Q2  
( b ) CAS latency = 3  
Command  
Read  
DQ  
Q4  
(2) Write cycle  
BST  
Write  
D0  
Command  
DQ  
D1  
D2  
D3  
D4  
Note:  
BST  
represents the Burst stop command  
- 42 -  
W9864G6DB  
Operating Timing Example, continued  
Timing Chart of Burst Stop Cycle (Precharge Command)  
In the case of Burst Lenght = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a )CAS latency =2  
Commad  
Read  
PRCG  
DQ  
Q4  
Q3  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
( b )CAS latency = 3  
Commad  
PRCG  
Read  
Q4  
DQ  
Q2  
(2) Write cycle  
( a ) CAS latency =2  
PRCG  
Commad  
Write  
t
t
WR  
DQM  
DQ  
D4  
D4  
D0  
D1  
D2  
D3  
D3  
( b ) CAS latency = 3  
PRCG  
Commad  
Write  
WR  
DQM  
DQ  
D0  
D1  
D2  
PRCG  
Note:  
represents the Precharge command  
Publication Release Date: January 27, 2003  
Revision A1  
- 43 -  
W9864G6DB  
Operating Timing Example, continued  
CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
2
D3  
3
D5  
5
D6  
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
External  
4
7
6
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
1
D2  
2
D3  
D6  
7
D5  
DQM MASK  
( 2 )  
CKE MASK  
3
4
5
6
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
- 44 -  
W9864G6DB  
Operating Timing Example, continued  
CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
6
2
3
4
5
7
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
7
Q1  
1
Q2  
2
Q3  
3
Q4  
Open  
Open  
( 1 )  
4
5
CLK cycle No.  
6
External  
Internal  
CLK  
CKE  
DQM  
DQ  
Q6  
7
Q3  
Q1  
1
Q2  
2
Q4  
Open  
( 2 )  
CLK cycle No.  
3
4
5
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q1  
Q4  
Q5  
Q3  
Q2  
( 3 )  
Publication Release Date: January 27, 2003  
Revision A1  
- 45 -  
W9864G6DB  
Operating Timing Example, continued  
Self Refresh/Power Down Mode Exit Timing  
Asynchronous Control  
Input Buffer turn on time (Power down mode exit time) is specified by Ct KS (min.) + tCK (min.)  
A ) tCK < tCKS (min.) + tCK (min.)  
t
CK  
CLK  
CKE  
tCKS(min)+tCK(min)  
Command  
Command  
NOP  
Input Buffer Enable  
B) tCK >= tCKS (min.) + tCK (min.)  
t
CK  
CLK  
CKE  
t
CKS(min)+tCK(min)  
Command  
Input Buffer Enable  
Command  
Note:  
All Input Buffer (Include CLK Buffer) are turned off in the Power Down mode  
and Self Refresh mode  
NOP  
Represents the No-Operation command  
Represents one command  
Command  
- 46 -  
W9864G6DB  
12. PACKAGE DIMENSIONS  
BGA 60 Balls Pitch = 0.65 mm  
Publication Release Date: January 27, 2003  
Revision A1  
- 47 -  
W9864G6DB  
13. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A1  
January 27, 2003  
-
Formal Version  
Headquarters  
Winbond Electronics Corporation America Winbond Electronics (Shanghai) Ltd.  
27F, 2299 Yan An W. Rd. Shanghai,  
200336 China  
2727 North First Street, San Jose,  
CA 95134, U.S.A.  
No. 4, Creation Rd. III,  
Science-Based Industrial Park,  
Hsinchu, Taiwan  
TEL: 1-408-9436666  
TEL: 86-21-62365999  
FAX: 86-21-62365998  
TEL: 886-3-5770066  
FAX: 1-408-5441798  
FAX: 886-3-5665577  
http://www.winbond.com.tw/  
Taipei Office  
Winbond Electronics Corporation Japan  
7F Daini-ueno BLDG, 3-7-18  
Shinyokohama Kohoku-ku,  
Yokohama, 222-0033  
Winbond Electronics (H.K.) Ltd.  
Unit 9-15, 22F, Millennium City,  
No. 378 Kwun Tong Rd.,  
Kowloon, Hong Kong  
9F, No.480, Rueiguang Rd.,  
Neihu District, Taipei, 114,  
Taiwan, R.O.C.  
TEL: 886-2-8177-7168  
FAX: 886-2-8751-3579  
TEL: 81-45-4781881  
TEL: 852-27513100  
FAX: 81-45-4781800  
FAX: 852-27552064  
Please note that all data and specifications are subject to change without notice.  
All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.  
- 48 -  

相关型号:

W9864G6GH

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6GH-5

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6GH-6

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6GH-6I

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6GH-7

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6GH-7S

1M 】 4 BANKS 】 16 BITS SDRAM
WINBOND

W9864G6IH

1M 】 4BANKS 】 16BITS SDRAM
WINBOND

W9864G6IH-5

1M 】 4BANKS 】 16BITS SDRAM
WINBOND

W9864G6IH-6

1M 】 4BANKS 】 16BITS SDRAM
WINBOND

W9864G6IH-6A

暂无描述
WINBOND

W9864G6IH-6I

Synchronous DRAM, 4MX16, 5ns, CMOS, PDSO54, 0.400 INCH, ROHS COMPLIANT, TSOP2-54
WINBOND

W9864G6IH-7

1M 】 4BANKS 】 16BITS SDRAM
WINBOND