WM8581SEFV [WOLFSON]

Multichannel CODEC with S/PDIF Transceiver; 多通道编解码器S / PDIF收发器
WM8581SEFV
型号: WM8581SEFV
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

Multichannel CODEC with S/PDIF Transceiver
多通道编解码器S / PDIF收发器

解码器 编解码器 光电二极管
文件: 总94页 (文件大小:1024K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8581  
w
Multichannel CODEC with S/PDIF Transceiver  
DESCRIPTION  
FEATURES  
Mutli-channel CODEC with 4 Stereo DACs and 1 Stereo  
ADC  
The WM8581 is a multi-channel audio CODEC with S/PDIF  
transceiver. The WM8581 is ideal for DVD and surround  
sound processing applications for home hi-fi, automotive  
and other audiovisual equipment.  
Integrated S/PDIF / IEC-60958-3 transceiver  
Audio Performance  
103dB SNR (‘A’ weighted @ 48kHz) DAC  
-90dB THD (48kHz) DAC  
Integrated into the device is a stereo 24-bit multi-bit sigma  
delta ADC with support for digital audio output word lengths  
from 16-bit to 32-bit, and sampling rates from 8kHz to  
192kHz.  
100dB SNR (‘A’ weighted @ 48kHz) ADC  
-90dB THD (48kHz) ADC  
Also included are four stereo 24-bit multi-bit sigma delta  
DAC Sampling Frequency: 8kHz – 192kHz  
ADC Sampling Frequency: 8kHz – 192kHz  
Independent ADC and DAC Sample Rates  
DACs, each with  
a
dedicated oversampling digital  
interpolation filter. Digital audio input word lengths from 16-  
bits to 32-bits and sampling rates from 8kHz to 192kHz are  
supported. Each DAC channel has independent digital  
volume and mute control.  
2 and 3-Wire Serial Control Interface with readback, or  
Hardware Control Interface  
GPO pins allow visibility of user selected status flags  
Programmable Audio Data Interface Modes  
Two independent audio data interfaces support I2S, Left  
Justified, Right Justified and DSP digital audio formats.  
Each audio interface can operate in either Master Mode or  
Slave Mode.  
I2S, Left, Right Justified or DSP  
16/20/24/32 bit Word Lengths  
Four independent stereo DAC outputs with independent  
digital volume controls  
The S/PDIF transceiver is IEC-60958-3 compatible and  
supports frame rates from 32k/s to 192k/s. It has four  
multiplexed inputs and one output. Status and error  
monitoring is built-in and results can reported over the serial  
interface or via GPO pins. S/PDIF Channel Block  
configuration is also supported.  
Two Independent Master or Slave Audio Data Interfaces  
Flexible Digital Interface Routing with Clock Selection  
Control  
2.7V to 5.5V Analogue, 2.7V to 3.6V Digital Supply  
Operation  
The device has two PLLs that can be configured  
independently to generate two system clocks for internal or  
external use.  
48-lead TQFP Package  
Device control and setup is via a 2-wire or 3-wire (SPI  
compatible) serial interface. The serial interface provides  
access to all features including channel selection, volume  
controls, mutes, de-emphasis, S/PDIF control/status, and  
power management facilities. Alternatively, the device has a  
Hardware Control Mode where device features can be  
enabled/disabled using selected pins.  
APPLICATIONS  
Digital TV  
DVD Players and Receivers  
Surround Sound AV Processors and Hi-Fi systems  
Automotive Audio  
The device is available in a 48-lead TQFP package.  
WOLFSON MICROELECTRONICS plc  
Product Preview, March 2006, Rev 1.0  
To receive regular email updates, sign up at http://www.wolfsonmicro.com/enews/  
Copyright 2006 Wolfson Microelectronics plc  
WM8581  
Product Preview  
BLOCK DIAGRAM  
PP Rev 1.0 March 2006  
2
w
Product Preview  
WM8581  
TABLE OF CONTENTS  
DESCRIPTION ................................................................................................................................................................................. 1  
FEATURES ...................................................................................................................................................................................... 1  
APPLICATIONS ............................................................................................................................................................................... 1  
BLOCK DIAGRAM ........................................................................................................................................................................... 2  
TABLE OF CONTENTS.................................................................................................................................................................... 3  
PIN CONFIGURATION..................................................................................................................................................................... 4  
ORDERING INFORMATION............................................................................................................................................................. 4  
PIN DESCRIPTION .......................................................................................................................................................................... 5  
MULTI-FUNCTION PINS.............................................................................................................................................................. 6  
ABSOLUTE MAXIMUM RATINGS ................................................................................................................................................... 8  
RECOMMENDED OPERATING CONDITIONS................................................................................................................................ 9  
ELECTRICAL CHARACTERISTICS................................................................................................................................................. 9  
TERMINOLOGY......................................................................................................................................................................... 12  
MASTER CLOCK TIMING.......................................................................................................................................................... 12  
DIGITAL AUDIO INTERFACE – MASTER MODE...................................................................................................................... 13  
DIGITAL AUDIO INTERFACE – SLAVE MODE......................................................................................................................... 14  
CONTROL INTERFACE TIMING – 3-WIRE MODE ................................................................................................................... 15  
CONTROL INTERFACE TIMING – 2-WIRE MODE ................................................................................................................... 15  
DEVICE DESCRIPTION................................................................................................................................................................. 17  
INTRODUCTION........................................................................................................................................................................ 17  
CONTROL INTERFACE OPERATION....................................................................................................................................... 18  
DIGITAL AUDIO INTERFACES.................................................................................................................................................. 22  
AUDIO DATA FORMATS........................................................................................................................................................... 24  
AUDIO INTERFACE CONTROL................................................................................................................................................. 27  
DAC FEATURES........................................................................................................................................................................ 30  
ADC FEATURES........................................................................................................................................................................ 37  
DIGITAL ROUTING OPTIONS................................................................................................................................................... 38  
CLOCK SELECTION.................................................................................................................................................................. 40  
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (SOFTWARE MODE)............................................................................... 46  
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (HARDWARE MODE) .............................................................................. 53  
S/PDIF TRANSCEIVER ............................................................................................................................................................. 54  
S/PDIF TRANSMITTER ............................................................................................................................................................. 55  
S/PDIF RECEIVER .................................................................................................................................................................... 58  
POWERDOWN MODES ............................................................................................................................................................ 66  
INTERNAL POWER ON RESET CIRCUIT................................................................................................................................. 67  
HARDWARE CONTROL MODE ................................................................................................................................................ 70  
REGISTER MAP ........................................................................................................................................................................ 73  
DIGITAL FILTER CHARACTERISTICS.......................................................................................................................................... 88  
DAC FILTER RESPONSES ....................................................................................................................................................... 88  
DIGITAL DE-EMPHASIS CHARACTERISTICS ......................................................................................................................... 89  
ADC FILTER RESPONSES ....................................................................................................................................................... 90  
ADC HIGH PASS FILTER.......................................................................................................................................................... 90  
RECOMMENDED EXTERNAL COMPONENTS............................................................................................................................. 91  
PACKAGE DIMENSIONS............................................................................................................................................................... 93  
IMPORTANT NOTICE .................................................................................................................................................................... 94  
ADDRESS:................................................................................................................................................................................. 94  
PP Rev 1.0 March 2006  
w
3
WM8581  
Product Preview  
PIN CONFIGURATION  
ORDERING INFORMATION  
PEAK  
SOLDERING  
TEMPERATURE  
TEMPERATURE  
MOISTURE  
SENSITIVITY LEVEL  
DEVICE  
PACKAGE  
RANGE  
48-lead TQFP  
(Pb-free)  
WM8581SEFT/V  
WM8581SEFT/RV  
-25 to +85oC  
MSL1  
MSL1  
260°C  
260°C  
48-lead TQFP  
-25 to +85oC  
(Pb-free, tape and reel)  
PP Rev 1.0 March 2006  
4
w
Product Preview  
WM8581  
PIN DESCRIPTION  
PIN  
1
NAME  
VOUT4L  
VOUT4R  
PGND  
TYPE  
DESCRIPTION  
Analogue Output  
Analogue Output  
Supply  
DAC channel 4 left output  
DAC channel 4 right output  
PLL ground  
2
3
4
PVDD  
Supply  
PLL positive supply  
Crystal or CMOS clock input  
Crystal output  
5
XTI  
Digital Input  
6
XTO  
Digital Output  
Digital Input/Output  
Digital Input/Output  
Digital Output  
Digital Input/Output  
Digital Input/Output  
Digital Input/Output  
Digital Input  
7
MFP7  
Multi-Function Pin (MFP) 7. See Table 1 for details of all MFP pins.  
Multi-Function Pin (MFP) 6. See Table 1 for details of all MFP pins.  
S/PDIF transmitter output  
8
MFP6  
9
SPDIFOP  
MFP5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Multi-Function Pin (MFP) 5. See Table 1 for details of all MFP pins.  
Multi-Function Pin (MFP) 4. See Table 1 for details of all MFP pins.  
Multi-Function Pin (MFP) 3. See Table 1 for details of all MFP pins.  
S/PDIF Receiver Input 1  
MFP4  
MFP3  
SPDIFIN1  
CLKOUT  
DVDD  
Digital Output  
Supply  
PLL or crystal oscillator clock output  
Digital positive supply  
DGND  
Supply  
Digital ground  
MUTE  
Digital Input/Output  
Digital Input  
DAC mute-all input/ All-DAC Infinite Zero Detect (IZD) flag output  
Primary Audio Interface (PAIF) receiver data input 1  
Primary Audio Interface (PAIF) receiver data input 2  
Primary Audio Interface (PAIF) receiver data input 3  
Primary Audio Interface (PAIF) receiver data input 4  
Primary Audio Interface (PAIF) receiver left/right word clock  
Primary Audio Interface (PAIF) receiver bit clock  
System Master clock; 256, 384, 512, 768, 1024 or 1152 fs  
Primary Audio Interface (PAIF) transmitter data output  
Primary audio interface transmitter left/right word clock  
Multi-Function Pin (MFP) 1. See Table 1 for details of all MFP pins.  
Multi-Function Pin (MFP) 2. See Table 1 for details of all MFP pins.  
Configures control to be either Software Mode or Hardware Mode  
Configures software interface to be either 2-wire or 3-wire. See note 2.  
3-wire control interface data output. See note 3.  
Control interface data input (and output under 2-wire control)  
Control interface clock  
DIN1  
DIN2  
Digital Input  
DIN3  
Digital Input  
DIN4  
Digital Input  
PAIFRX_LRCLK  
PAIFRX_BCLK  
MCLK  
Digital Input/Output  
Digital Input/Output  
Digital Input/Output  
Digital Output  
Digital Input/Output  
Digital Input/Output  
Digital Input/Output  
Digital Input  
DOUT  
PAIFTX_LRCLK  
MFP1  
MFP2  
HWMODE  
SWMODE  
SDO  
Digital Input/Output  
Digital Output  
Digital Input/Output  
Digital Input  
SDIN  
SCLK  
CSB  
Digital Input  
3-wire control interface latch signal / device address selection  
ADC Right Channel Input  
AINR  
Analogue Input  
Analogue Input  
Analogue Output  
Analogue Output  
Supply  
AINL  
ADC Left Channel Input  
ADCREFP  
VMID  
ADC reference buffer decoupling pin; 10uF external decoupling  
Midrail divider decoupling pin; 10uF external decoupling  
Analogue ground  
AGND  
AVDD  
Supply  
Analogue positive supply  
VOUT1L  
VOUT1R  
VOUT2L  
VOUT2R  
VREFP  
VREFN  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Input  
Analogue Input  
DAC channel 1 left output  
DAC channel 1 right output  
DAC channel 2 left output  
DAC channel 2 right output  
DAC and ADC positive reference  
DAC and ADC ground reference  
PP Rev 1.0 March 2006  
5
w
WM8581  
Product Preview  
PIN  
47  
NAME  
VOUT3L  
VOUT3R  
TYPE  
DESCRIPTION  
Analogue Output  
Analogue Output  
DAC channel 3 left output  
DAC channel 3 right output  
48  
Notes :  
1. Digital input pins have Schmitt trigger input buffers. Pins 32, 33, 34 are 5V tolerant.  
2. In hardware control mode, pin 30 is used for UNLOCK flag output.  
3. In hardware control mode, pin 31 is used for NON_AUDIO flag output.  
MULTI-FUNCTION PINS  
The WM8581 has 7 Multi-Function Input/Output pins (MFP1 etc.). The function and direction (input/output) of these pins  
reconfigured using the HWMODE input pin and software register control as shown below. If HWMODE is set, the MFPs have the  
function shown in column 1 of Table 1. If HWMODE is not set, and the register SAIF_EN is set, the MFPs have the function shown  
in column 2. Otherwise, the GPOnOP registers determine the MFP function as shown in columns 3 and 4.  
N
Y
HWMODE = 1  
Y
N
SAIF_EN = 1  
GPIOnOP  
PIN NAME  
HARDWARE  
CONTROL MODE  
FUNCTION  
SECONDARY AUDIO  
INTERFACE FUNCTION  
S/PDIF INPUT &  
INDEPENDENT  
CLOCKING  
GENERAL PURPOSE  
OUTPUT FUNCTION  
2
4
1
PAIFTX_BCLK  
ADCMCLK  
DR1  
3
MFP1  
MFP2  
MFP3  
MFP4  
MFP5  
MFP6  
MFP7  
n/a1  
n/a1  
PAIFTX_BCLK2  
ADCMCLK3  
SPDIFIN2  
SPDIFIN3  
SPDIFIN4  
GPO6  
GPO1  
GPO2  
GPO3  
GPO4  
GPO5  
GPO6  
GPO7  
n/a1  
DR2  
SAIF_DIN  
SAIF_DOUT  
SAIF_BCLK  
SAIF_LRCLK  
DR3  
DR4  
ALLPD  
GPO7  
Table 1 Multi-Function Pin Configuration  
Notes:  
1. These pins are not used as part of the Secondary Audio Interface, so their function is that of either Column 3 or Column 4.  
2. MFP1 can by GPO1 only if ADC_CLKSEL and PAIFTXMST_CLKSEL (if in master mode) source MCLK.  
3. MFP2 can be GPO2 if neither ADC_CLKSEL, TX_CLKSEL or SAIFMST_CLKSEL (if in master mode) source ADCMCLK.  
PP Rev 1.0 March 2006  
w
6
Product Preview  
WM8581  
PIN FUNCTION  
PAIFTX_BCLK  
ADCMCLK  
SAIF_DIN  
TYPE  
DESCRIPTION  
Digital Input/Output  
Digital Input  
Primary Audio Interface Transmitter (PAIFTX) Bit Clock  
Master ADC clock; 256fs, 384fs, 512fs ,786fs, 1024fs or 1152fs  
Secondary Audio Interface (SAIF) Receiver data input  
Secondary Audio Interface (SAIF) Transmitter data output  
Secondary Audio Interface (SAIF) Bit Clock  
Digital Input  
SAIF_DOUT  
SAIF_BCLK  
SAIF_LRCLK  
SPDIFIN2/3/4  
GPO1 - GPO7  
DR1/2/3/4  
Digital Output  
Digital Input/Output  
Digital Input/Output  
Digital Input  
Secondary Audio Interface (SAIF) Left/Right Word Clock  
S/PDIF Receiver Input  
Digital Output  
Digital Input  
Digital Input  
Digital Output  
Digital Output  
General Purpose Output  
Internal Digital Routing Configuration in Hardware Mode  
Chip Powerdown in Hardware Mode  
Recovered channel-bit for current S/PDIF sub-frame  
Indicates current S/PDIF sub-frame:  
1 = Sub-frame A  
ALLPD  
C
SFRM_CLK  
0 = Sub-frame B  
Digital Output  
Indicates start of S/PDIF 192-frame block. High for duration of frame 0.  
192BCLK  
Table 2 Multi-Function Pin Description  
PP Rev 1.0 March 2006  
w
7
WM8581  
Product Preview  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
The WM8581 has been classified as MSL1, which has an unlimited floor life at <30oC / 85% Relative Humidity and therefore will  
not be supplied in moisture barrier bags.  
CONDITION  
MIN  
MAX  
Digital supply voltage  
-0.3V  
+3.63V  
Analogue supply voltage  
-0.3V  
-0.3V  
+7V  
+5V  
+7V  
PLL supply voltage  
Voltage range digital inputs (SCLK, CSB & SDIN only)  
DGND -0.3V  
Voltage range digital inputs  
DGND -0.3V  
DVDD + 0.3V  
Voltage range analogue inputs 1  
AGND -0.3V  
PGND -0.3V  
AVDD +0.3V  
PVDD +0.3V  
37MHz  
Master Clock Frequency  
Operating temperature range, TA  
-25°C  
+85°C  
Storage temperature prior to soldering  
Storage temperature after soldering  
30°C max / 85% RH max  
-65°C  
+150°C  
+260°C  
+183°C  
Pb Free Package body temperature (soldering 10 seconds)  
Package body temperature (soldering 2 minutes)  
Notes: 1. Analogue and digital grounds must always be within 0.3V of each other.  
Table 3 Absolute Maximum Ratings  
PP Rev 1.0 March 2006  
8
w
Product Preview  
WM8581  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
3.6  
UNIT  
Digital supply range  
Analogue supply range  
Ground  
V
V
V
AVDD, PVDD  
2.7  
5.5  
AGND, VREFN, DGND.  
PGND  
0
0
Difference DGND to  
AGND/PGND  
-0.3  
+0.3  
V
Note: Digital supply DVDD must never be more than 0.3V greater than AVDD.  
Table 4 Recommended Operating Conditions  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, TA = +25oC, 1kHz Signal, fs = 48kHz,  
24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, 1Vrms Input Signal Level unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vrms  
dB  
DAC Performance (Load = 10k, 50pF)  
0dBFs Full scale output voltage  
1.0 x  
VREFP/5  
103  
Signal to Noise Ratio (Note  
1,2,4)  
SNR  
A-weighted,  
@ fs = 48kHz  
Unweighted,  
@ fs = 48kHz  
A-weighted,  
100  
99  
dB  
dB  
@ fs = 48kHz, AVDD =  
3.3V  
A-weighted,  
@ fs = 96kHz  
Unweighted,  
@ fs = 96kHz  
A-weighted,  
101  
98  
dB  
dB  
dB  
99  
@ fs = 96kHz, AVDD =  
3.3V  
A-weighted,  
@ fs = 192kHz  
Unweighted,  
@ fs = 192kHz  
A-weighted,  
101  
98  
dB  
dB  
dB  
99  
@ fs = 192kHz, AVDD  
= 3.3V  
Dynamic Range (Note 2,4)  
Total Harmonic Distortion  
DNR  
THD  
A-weighted, -60dB full  
scale input  
103  
-90  
-87  
-84  
dB  
dB  
dB  
dB  
1kHz, 0dB Full Scale @  
fs = 48kHz  
1kHz, 0dB Full Scale @  
fs = 96kHz  
1kHz, 0dB Full Scale @  
fs = 192kHz  
DAC Channel separation  
Mute Attenuation  
100  
100  
2
dB  
dB  
1kHz Input, 0dB gain  
Output Offset Error  
mV  
PP Rev 1.0 March 2006  
9
w
WM8581  
Product Preview  
Test Conditions  
AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, TA = +25oC, 1kHz Signal, fs = 48kHz,  
24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, 1Vrms Input Signal Level unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
1kHz 100mVp-p  
20Hz to 20kHz  
100mVp-p  
MIN  
TYP  
50  
MAX  
UNIT  
dB  
Power Supply Rejection Ratio  
PSRR  
45  
dB  
ADC Performance  
Full Scale Input Signal Level (for  
ADC 0dB Input)  
1.0 x  
VREFP/5  
20  
Vrms  
Input resistance  
k  
pF  
dB  
Input capacitance  
10  
Signal to Noise Ratio (Note  
1,2,4)  
SNR  
A-weighted,  
@ fs = 48kHz  
Unweighted,  
@ fs = 48kHz  
A-weighted,  
100  
97  
97  
dB  
dB  
@ fs = 48kHz, AVDD =  
3.3V  
A-weighted,  
@ fs = 96kHz  
Unweighted,  
@ fs = 96kHz  
A-weighted,  
97  
94  
94  
dB  
dB  
dB  
@ fs = 96kHz, AVDD =  
3.3V  
A-weighted,  
@ fs = 192kHz  
Unweighted,  
@ fs = 192kHz  
A-weighted,  
97  
94  
94  
dB  
dB  
dB  
@ fs = 192kHz, AVDD  
= 3.3V  
Total Harmonic Distortion  
THD  
DNR  
1kHz, -1dB Full Scale  
@ fs = 48kHz  
-90  
-88  
-85  
dB  
dB  
dB  
1kHz, -1dB Full Scale  
@ fs = 96kHz  
1kHz, -1dB Full Scale  
@ fs = 192kHz  
Dynamic Range  
-60dB FS  
1kHz Input  
1KHz Signal  
100  
100  
0.1  
ADC Channel Separation  
dB  
dB  
Channel Level Matching (Note  
4)  
Channel Phase Deviation  
Offset Error  
1kHz Signal  
HPF On  
0.0001  
0
Degree  
LSB  
LSB  
dB  
HPF Off  
100  
50  
Power Supply Rejection Ratio  
PSRR  
1kHz 100mVpp  
20Hz to 20kHz  
100mVpp  
45  
dB  
Digital Logic Levels (CMOS Levels)  
Input LOW level  
VIL  
VIH  
0.3 x DVDD  
+1  
V
V
Input HIGH level  
0.7 x DVDD  
-1  
Input leakage current  
Input capacitance  
Output LOW  
0.2  
5
µA  
pF  
V
VOL  
VOH  
I
OL=1mA  
0.1 x DVDD  
Output HIGH  
I
OH= -1mA  
0.9 x DVDD  
V
PP Rev 1.0 March 2006  
10  
w
Product Preview  
WM8581  
Test Conditions  
AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, TA = +25oC, 1kHz Signal, fs = 48kHz,  
24-Bit Data, Slave Mode, MCLK, ADCMCLK = 256fs, 1Vrms Input Signal Level unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analogue Reference Levels  
Reference voltage  
VVMID  
RVMID  
VREFP/2 –  
50mV  
VREFP/2  
2050  
VREFP/2 +  
50mV  
V
Potential divider resistance  
VREFP to VMID and  
VMID to VREFN  
kΩ  
S/PDIF Transceiver Performance  
Jitter on recovered clock  
S/PDIF Input Levels CMOS MODE  
Input LOW level  
50  
ps  
VIL  
VIH  
0.3 X DVDD  
36  
V
V
Input HIGH level  
0.7 X DVDD  
Input capacitance  
1.25  
pF  
Input Frequency  
MHz  
S/PDIF Input Levels Comparator MODE  
Input capacitance  
Input resistance  
Input frequency  
Input Amplitude  
PLL  
1.31  
18  
pF  
25  
MHz  
mV  
200  
0.5 X DVDD  
Period Jitter  
XTAL  
80  
ps(rms)  
Input XTI LOW level  
Input XTI HIGH level  
Input XTI capacitance  
Input XTI leakage  
VXIL  
0
557  
mV  
mV  
pF  
VXIH  
CXJ  
853  
3.32  
28.92  
86  
4.491  
38.96  
278  
IXleak  
VXOL  
VXOH  
mA  
mV  
V
Output XTO LOW  
Output XTO HIGH  
Supply Current  
15pF load capacitors  
15pF load capacitors  
1.458  
1.942  
Analogue supply current  
Analogue supply current  
Digital supply current  
Power Down  
AVDD, VREFP = 5V  
AVDD, VREFP = 3.3V  
DVDD = 3.3V  
45  
30  
16  
10  
mA  
mA  
mA  
µA  
Table 5 Electrical Characteristics  
Notes:  
1. Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured ‘A’ weighted.  
2. All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use such a filter  
will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical Characteristics. The  
low pass filter removes out of band noise; although it is not audible it may affect dynamic specification values.  
3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).  
PP Rev 1.0 March 2006  
w
11  
WM8581  
Product Preview  
TERMINOLOGY  
1. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full scale output and the output with no  
signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
2. Dynamic range (dB) - DNR is a measure of the difference between the highest and lowest portions of a signal. Normally a  
THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N  
@ -60dB= -32dB, DR= 92dB).  
3. THD (dB) - THD is a ratio, of the rms values, of Distortion/Signal.  
4. Stop band attenuation (dB) - Is the degree to which the frequency spectrum is attenuated (outside audio band).  
5. Channel Separation (dB) - Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the  
other. Normally measured by sending a full scale signal down one channel and measuring the other.  
6. Pass-Band Ripple - Any variation of the frequency response in the pass-band region.  
MASTER CLOCK TIMING  
tMCLKL  
ADCMCLK/  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 Master Clock Timing Requirements  
Test Conditions  
AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN = 0V, PGND, DGND = 0V, TA = +25oC  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
ADCMCLK and MCLK System clock  
pulse width high  
tMCLKH  
tMCLKL  
tMCLKY  
11  
11  
ns  
ns  
ns  
ADCMCLK and MCLK System clock  
pulse width low  
ADCMCLK and MCLK System clock  
cycle time  
28  
ADCMCLK and MCLK Duty cycle  
40:60  
60:40  
Table 3 Master Clock Timing Requirements  
PP Rev 1.0 March 2006  
12  
w
Product Preview  
WM8581  
DIGITAL AUDIO INTERFACE – MASTER MODE  
PAIFRX_BCLK/  
PAIFTX_BCLK/  
SAIF_BCLK  
(Output)  
tDL  
PAIFRX_LRCLK/  
PAIFTX_LRCLK/  
SAIF_LRCLK  
(Outputs)  
tDDA  
DOUT/  
SAIF_DOUT  
DIN1/2/3/4  
SAIF_DIN  
tDST  
tDHT  
Figure 2 Digital Audio Data Timing – Master Mode  
Test Conditions  
AVDD, PVDD, VREFP = 5V, DVDD = 3.3V, AGND, VREFN, PGND, DGND = 0V, TA = +25oC, Master Mode, fs = 48kHz, MCLK  
and ADCMCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
PAIFTX_LRCLK/  
PAIFRX_LRCLK/  
tDL  
0
10  
ns  
SAIF_LRCLK propagation  
delay from PAIFTX_BCLK/  
PAIFRX_BCLK/  
SAIF_BCLK falling edge  
DOUT/SAIF_DOUT  
propagation delay from  
PAIFTX_BCLK/  
tDDA  
tDST  
tDHT  
0
10  
ns  
ns  
ns  
SAIF_BCLK falling edge  
DIN1/2/3/4/SAIF_DIN setup  
time to  
PAIFRX_BCLK/SAIF_BCLK  
rising edge  
10  
10  
DIN1/2/3/4/SAIF_DIN hold  
time from  
PAIFRX_BCLK/SAIF_BCLK  
rising edge  
Table 4 Digital Audio Data Timing – Master Mode  
PP Rev 1.0 March 2006  
13  
w
WM8581  
Product Preview  
DIGITAL AUDIO INTERFACE – SLAVE MODE  
Figure 3 Digital Audio Data Timing – Slave Mode  
Test Conditions  
AVDD, PVDD = 5V, DVDD = 3.3V, AGND = 0V, PGND,DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK and  
ADCMCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
PAIFTX_BCLK/  
tBCY  
50  
ns  
PAIFRX_BCLK/SAIF_BCLK cycle  
time  
PAIFTX_BCLK/  
tBCH  
20  
20  
10  
ns  
ns  
ns  
PAIFRX_BCLK/SAIF_BCLK pulse  
width high  
PAIFTX_BCLK/  
tBCL  
PAIFRX_BCLK/SAIF_BCLK pulse  
width low  
PAIFTX_LRCLK/  
tLRSU  
PAIFRX_LRCLK/SAIF_BCLK set-up  
time to PAIFTX_BCLK/  
PAIFRX_BCLK/SAIF_BCLK rising  
edge  
PAIFTX_LRCLK/  
PAIFRX_LRCLK/  
tLRH  
10  
ns  
SAIF_LRCLK hold time from  
PAIFTX_BCLK/  
PAIFRX_BCLK/SAIF_BCLK rising  
edge  
DIN1/2/3/4/SAIF_DIN set-up time to  
PAIFRX_BCLK/  
tDS  
10  
ns  
SAIF_BCLK rising edge  
DIN1/2/3/4/SAIF_DIN hold time  
from PAIFRX_BCLK/SAIF_BCLK  
rising edge  
tDH  
10  
0
ns  
ns  
DOUT/SAIF_DOUT propagation  
delay from  
tDD  
10  
PAIFTX_BCLK/SAIF_BCLK falling  
edge  
Table 5 Digital Audio Data Timing – Slave Mode  
PP Rev 1.0 March 2006  
14  
w
Product Preview  
WM8581  
CONTROL INTERFACE TIMING – 3-WIRE MODE  
t
t
CSS  
CSH  
CSB  
t
t
t
SCY  
SCS  
CSS  
SCLK  
SDIN  
LSB  
t
t
t
DSU  
DHO  
DL  
LSB  
SDO  
Figure 4 SPI Compatible Control Interface Input Timing  
Test Conditions  
AVDD, PVDD = 5V,DVDD = 3.3V, AGND, PGND,DGND = 0V, TA = +25oC, fs = 48kHz, MCLK and ADCMCLK = 256fs unless  
otherwise stated  
PARAMETER  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
SYMBOL  
tSCS  
MIN  
60  
TYP  
MAX  
60/40  
5
UNIT  
ns  
tSCY  
80  
ns  
SCLK duty cycle  
40/60  
20  
ns  
SDIN to SCLK set-up time  
SDIN hold time from SCLK rising edge  
tDSU  
tDHO  
tDL  
ns  
20  
ns  
SDO propagation delay from SCLK rising  
edge  
ns  
CSB pulse width high  
tCSH  
tCSS  
tps  
20  
20  
2
ns  
ns  
ns  
CSB rising/falling to SCLK rising  
Pulse width of spikes that will be suppressed  
8
Table 6 3-wire SPI Compatible Control Interface Input Timing Information  
CONTROL INTERFACE TIMING – 2-WIRE MODE  
t
3
t
3
t
5
SDIN  
SCLK  
t
t
t
t
6
2
4
8
t
t
t
7
9
1
Figure 5 Control Interface Timing – 2-Wire Serial Control Mode  
PP Rev 1.0 March 2006  
15  
w
WM8581  
Product Preview  
Test Conditions  
AVDD, PVDD = 5V,DVDD = 3.3V, AGND, PGND,DGND = 0V, TA = +25oC, fs = 48kHz, MCLK and ADCMCLK = 256fs unless  
otherwise stated  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
526  
kHz  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
1.3  
600  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
Table 7 2-Wire Control Interface Timing Information  
PP Rev 1.0 March 2006  
16  
w
Product Preview  
WM8581  
DEVICE DESCRIPTION  
INTRODUCTION  
WM8581 is a complete mutli-channel CODEC with integrated S/PDIF transceiver. The device  
comprises four separate stereo DACs and a stereo ADC, in a single package, and controlled by  
either software or hardware interfaces.  
The four stereo DAC outputs are ideal to implement a complete 7.1 channel surround system. Each  
DAC has its own digital volume control (adjustable in 0.5dB steps) with zero cross detection. With  
zero cross enabled, volume updates occur as a signal transitions through its zero point. This  
minimises audible clicks and ‘zipper’ noise as the gain values change.  
Each stereo DAC has its own data input (DIN1/2/3/4) and shared word clock (PAIFRX_LRCLK), bit  
clock (PAIFRX_BCLK) and master clock (MCLK). The stereo ADC has data output (DOUT), word  
clock (PAIFTX_LRCLK), and bit clock (PAIFTX_BCLK). This allows the ADC to operate at a different  
sample rate to the DACs. In addition, a separate ADC master clock (ADCMCLK) can be used instead  
of MCLK for further flexibility.  
There are two independent Digital Audio Interfaces, which may be configured to operate in either  
master or slave mode. In Slave mode, the LRCLKs and BCLKs are inputs. In Master mode, the  
LRCLKs and BCLKs are outputs.  
The Audio Interfaces support Right Justified, Left Justified, I2S and DSP formats. Word lengths of 16,  
20, 24 and 32 bits are available (with the exception of 32 bit Right Justified).  
Operation using system clocks of 128fs, 192fs, 256fs, 384fs, 512fs, 768fs or 1152fs is provided. In  
Slave mode, selection between clock rates is automatically controlled. In master mode, the master  
clock to sample rate ratio is set by register control. Sample rates (fs) from less than 8ks/s up to  
192ks/s are permitted providing the appropriate system clock is input.  
The S/PDIF Transceiver is IEC-60958-3 compatible with 32k frames/s to 192k frames/s support.  
S/PDIF data can be input on one of four pins, and routed internally to the Audio Interfaces, DAC1,  
and S/PDIF transmitter. Error flags and status information can be read back over the serial interface,  
or output on GPO pins. The S/PDIF Transmitter can source data from the ADC, S/PDIF Receiver or  
Audio Interfaces. The Transceiver supports Consumer Mode Channel information, and transmitted  
Channel bits can be configured via register control.  
The Digital Routing paths between all the interfaces can be configured by the user, as can the  
corresponding interface clocking schemes.  
There are two PLLs, which can be independently configured to generate two system clocks for  
internal or external use.  
The serial control interface is controlled by pins CSB, SCLK, and SDIN, which are 5V tolerant with  
TTL input thresholds, allowing the WM8581 to be used with DVDD = 3.3V and be controlled by a  
controller with 5V output.  
The WM8581 may also be controlled in hardware mode, selected by the HWMODE pin. In hardware  
mode, limited control of internal functionality is available via the Multi-Function Pins (MFPs) and CSB,  
SCLK, SDIN and MUTE pins.  
PP Rev 1.0 March 2006  
17  
w
WM8581  
Product Preview  
CONTROL INTERFACE OPERATION  
Control of the WM8581 is implemented either in Hardware Control Mode or Software Control Mode.  
The method of control is determined by the state of the HWMODE pin. If the HWMODE pin is low,  
Software Control Mode is selected. If the HWMODE pin is high, Hardware Control Mode is selected.  
The Software Control Interface is described below and Hardware Control Mode is described on page  
70.  
Software control is implemented with a 3-wire (3-wire write, 4-wire read, SPI compatible) or 2-wire (2-  
wire write, 2-wire read) serial interface.  
The interface configuration is determined by the state of the SWMODE pin. If the SWMODE pin is  
low, the 2-wire configuration is selected. If SWMODE is high the 3-wire SPI compatible configuration  
is selected.  
HWMODE  
SWMODE  
0
1
0
1
Software Control Hardware Control 2-wire control  
3-wire control  
Table 8 Hardware/Software Mode Setup  
The control interface is 5V tolerant, meaning that the control interface input signals CSB, SCLK and  
SDIN may have an input high level of 5V while DVDD is 3V. Input thresholds are determined by  
DVDD.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE WITH READ-BACK  
SDIN is used to program data, SCLK is used to clock in the program data and CSB is used to latch  
the program data. SDIN is sampled on the rising edge of SCLK. The 3-wire interface write protocol is  
shown in Figure 6.  
Figure 6 3-Wire SPI Compatible Interface.  
1. A[6:0] are Control Address Bits  
2. D[8:0] are Control Data Bits  
3. CSB is edge sensitive – the data is latched on the rising edge of CSB.  
REGISTER READ-BACK  
The read-only status registers can be read back via the SDO pin. To enable readback the READEN  
control register bit must be set. The status registers can then be read using one of two methods,  
selected by the CONTREAD register bit.  
With CONTREAD set, a single register can be read back simply by writing to any other register or a  
dummy register. The register to be readback is determined by the READMUX[2:0] bits. When a write  
to the device is done, the device will respond with the status byte set by the READMUX register bits  
in the last 8 bits of the write.  
PP Rev 1.0 March 2006  
18  
w
Product Preview  
WM8581  
REGISTER ADDRESS  
BIT  
LABEL  
READMUX  
[2:0]  
DEFAULT  
DESCRIPTION  
R52  
READBACK  
34h  
2:0  
000  
Determines which status register  
is to be read back:  
000 = Error Register  
001 = Channel Status Register 1  
010 = Channel Status Register 2  
011 = Channel Status Register 3  
100 = Channel Status Register 4  
101 = Channel Status Register 5  
110 = S/PDIF Status Register  
Continuous Read Enable.  
3
4
CONTREAD  
READEN  
0
0
0 = Continuous read-back mode  
disabled  
1 = Continuous read-back mode  
enabled  
Read-back mode enable.  
0 = read-back mode disabled  
1 = read-back mode enabled  
Table 9 Read-back Control Register  
The 3-wire interface readback protocol is shown below. Note that the SDO pin is tri-state unless CSB  
is held low; therefore CSB must be held low for the duration of the read.  
Figure 7 3-Wire SPI Compatible Interface Continuous Readback  
If CONTREAD is set to zero, the user can read back directly from the register by writing to the  
register address, to which the device will respond with data. The protocol for this system is shown in  
Figure 8 below.  
Figure 8 3-Wire SPI Compatible Control Interface Non-Continuous Readback  
PP Rev 1.0 March 2006  
19  
w
WM8581  
Product Preview  
2-WIRE SERIAL CONTROL MODE WITH READ-BACK  
The WM8581 supports software control via a 2-wire (2-wire write, 3-wire read) serial bus. Many  
devices can be controlled by the same bus, and each device has a unique 7-bit address (see Table  
10).  
The controller indicates the start of data transfer with a high to low transition on SDIN while SCLK  
remains high. This indicates that a device address and data will follow. All devices on the 2-wire bus  
respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit,  
MSB first). If the device address received matches the address of the WM8581, the WM8581  
responds by pulling SDIN low on the next clock pulse (ACK). If the address is not recognised, the  
WM8581 returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8581 has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8581 register address plus the first bit of register data). The WM8581  
then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then  
sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the  
WM8581 acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8581 returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at any point  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
START  
STOP  
SCLK  
SDIN  
address  
wr  
ack  
B15-B8  
ack  
B7-B0  
ack  
in  
out  
in  
out  
in  
out  
device address  
[wr=0]  
register  
address and  
1st data bit  
remaining data  
bits  
Figure 9 2-Wire Serial Control Interface  
The WM8581 has two possible device addresses, which can be selected using the CSB pin.  
CSB STATE  
DEVICE ADDRESS IN 2-  
WIRE MODE  
Low or Unconnected  
High  
0011010  
0011011  
Table 10 2-Wire MPU Interface Address Selection  
PP Rev 1.0 March 2006  
20  
w
Product Preview  
WM8581  
REGISTER READBACK  
The WM8581 allows readback of certain registers in 2-wire mode. As in 3-wire mode, there are two  
methods of reading back data: continuous and non-continuous readback. Continuous readback is set  
by writing to the Readback Control register (see Table 9) to set READEN and CONTREAD to 1, and  
to set the READMUX bits to select the register to be read back. The status of this register can then  
be readback using the protocol shown in Figure 10.  
Figure 10 2-Wire Continuous Readback  
If CONTREAD is set to zero, the user can read back directly from the register by writing to the  
register address, to which the device will respond with data. The protocol for this system is shown in  
Figure 11.  
Figure 11 2-Wire Non-Continuous Readback  
PP Rev 1.0 March 2006  
21  
w
WM8581  
Product Preview  
SOFTWARE REGISTER RESET  
Writing to register R53 will cause a register reset, resetting all register bits to their default values.  
Note that the WM8581 is powered down by default so writing to this register will power down the  
device.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R53  
RESET  
35h  
8:0  
RESET  
n/a  
Writing any data value to this register  
will apply a reset to the device  
registers.  
Table 11 Software Reset  
DIGITAL AUDIO INTERFACES  
Audio data is transferred to and from the WM8581 via the Digital Audio Interfaces. There are two Receive  
Audio Interfaces and two Transmit Audio Interfaces. The Digital Routing options for these interfaces are  
described on page 24. Control of the audio interfaces is described below.  
MASTER AND SLAVE MODES  
The Audio Interfaces require both a left-right-clock (LRCLK) and a bit-clock (BCLK). These can be supplied  
externally (slave mode) or they can be generated internally (master mode). When in master mode, the  
BCLKs and LRCLKs for an interface are output on the corresponding BCLK and LRCLK pins. By default, all  
interfaces operate in slave mode, but can operate in master mode by setting the PAIFTXMS, PAIFRXMS,  
SAIFMS register bits. In Hardware Control Mode, the PAIF Transmitter can operate in master mode by  
setting the SDI pin.  
Figure 12 Slave Mode  
Figure 13 Master Mode  
PP Rev 1.0 March 2006  
22  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R9  
5
PAIFRX  
MS  
0
PAIF Rx Master/Slave Mode Select:  
0 = Slave Mode  
1 = Master Mode  
5
5
PAIFTX  
MS  
0
0
PAIF Tx Master/Slave Mode Select:  
0 = Slave Mode  
R10  
R11  
1 = Master Mode  
SAIFMS  
SAIF Master/Slave Mode Select:  
0 = Slave Mode  
1 = Master Mode  
Table 26 Master Mode Registers  
The frequency of a master mode LRCLK is dependant on system clock and the RATE register control  
bits. Table 27 shows the settings for common sample rates and system clock frequencies.  
SAMPLING RATE  
MCLK CLOCK FREQUENCY (MHZ)  
(LRCLK)  
128fs  
RATE =000  
4.096  
192fs  
RATE =001  
6.144  
256fs  
RATE =010  
8.192  
384fs  
RATE =011  
12.288  
512fs  
RATE =100  
16.384  
768fs  
RATE =101  
24.576  
1152fs  
RATE =110  
36.864  
32kHz  
44.1kHz  
48kHz  
5.6448  
6.144  
8.467  
11.2896  
12.288  
16.9340  
18.432  
22.5792  
24.576  
33.8688  
36.864  
Unavailable  
Unavailable  
9.216  
96kHz  
12.288  
24.576  
18.432  
36.864  
24.576  
36.864  
Unavailable Unavailable Unavailable  
192kHz  
Unavailable Unavailable Unavailable Unavailable Unavailable  
Table 12 Master Mode MCLK / LRCLK Frequency Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R9  
PAIF 1  
09h  
2:0  
PAIFRX_RATE  
[2:0]  
010  
Master Mode MCLK/LRCLK  
Ratio:  
000 = 128fs  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
R10  
2:0  
2:0  
PAIFTX_RATE  
[2:0]  
010  
010  
PAIF 2  
0Ah  
R11  
SAIF_RATE  
[2:0]  
SAIF 1  
0Bh  
Table 13 Master Mode RATE Registers  
In master mode, the BCLKSEL register controls the number of BCLKs per LRCLK. If the  
MCLK:LRCLK ratio is 128fs or 192fs and BCLKSEL = 10, BCLKSEL is overwritten to be 128  
BCLKs/LRCLK. Also, if BCLKSEL = 00, and LRCLK is 192fs or 1152fs, the generated BCLK has a  
mark-space ratio of 1:2.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R9  
PAIF 1  
09h  
4:3  
PAIFRX_BCLKSEL  
[1:0]  
00  
Master Mode BCLK Rate:  
00 = 64 BCLKs/LRCLK  
01 = 128 BCLKs/LRCLK  
10 = 256 BCLKs/LRCLK  
11 = BCLK = System Clock.  
R10  
4:3  
4:3  
PAIFTX_BCLKSEL  
[1:0]  
00  
00  
PAIF 2  
0Ah  
R11  
SAIF_BCLKSEL  
[1:0]  
SAIF 1  
0Bh  
Table 14 Master Mode BCLK Control  
PP Rev 1.0 March 2006  
23  
w
WM8581  
Product Preview  
AUDIO DATA FORMATS  
Five popular interface formats are supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP Mode A  
DSP Mode B  
All five formats send the MSB first and support word lengths of 16, 20, 24 and 32 bits, with the  
exception of 32 bit right justified mode, which is not supported.  
Audio Data for each stereo channel is time multiplexed with the interface’s Left-Right-Clock (LRCLK),  
indicating whether the left or right channel is present. The LRCLK is also used as a timing reference  
to indicate the beginning or end of the data words.  
In Left Justified, Right Justified and I2S modes, the minimum number of BCLKs per LRCLK period is  
2 times the selected word length. LRCLK must be high for a minimum of BCLK periods equivalent to  
the audio word length, and low for minimum of the same number of BCLK periods. Any mark to  
space ratio on LRCLK is acceptable provided these requirements are met.  
In DSP modes A and B, left and right channels must be time multiplexed and input on the input data  
line on the Audio Interface. For the PAIF Receiver, all four left/right DAC channels are multiplexed on  
DIN1 (assuming DAC_SEL = 00). LRCLK is used as a frame synchronisation signal to identify the  
MSB of the first word. The minimum number of BCLKs per LRCLK period is eight times the selected  
word length. Any mark to space ratio is acceptable on LRCLK provided the rising edge is correctly  
positioned.  
LEFT JUSTIFIED MODE  
In Left Justified mode, the MSB of the input data is sampled by the WM8581 on the first rising edge  
of BCLK following a LRCLK transition. The MSB of the output data changes on the same falling edge  
of BCLK as LRCLK and may be sampled on the next rising edge of BCLK. LRCLK is high during the  
left samples and low during the right samples.  
Figure 14 Left Justified Mode Timing Diagram  
RIGHT JUSTIFIED MODE  
In Right Justified mode, the LSB of input data is sampled on the rising edge of BCLK preceding a  
LRCLK transition. The LSB of the output data changes on the falling edge of BCLK preceding a  
LRCLK transition, and may be sampled on the next rising edge of BCLK. LRCLKs are high during the  
left samples and low during the right samples.  
PP Rev 1.0 March 2006  
24  
w
Product Preview  
WM8581  
Figure 15 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB of DIN1/2/3/4 is sampled on the second rising edge of BCLK following a  
LRCLK transition. The MSB of the output data changes on the first falling edge of BCLK following an  
LRCLK transition, and may be sampled on the next rising edge of BCLK. LRCLKs are low during the  
left samples and high during the right samples.  
Figure 16 I2S Mode Timing Diagram  
DSP MODE A  
In DSP Mode A, the MSB of Channel 1 left data is sampled on the second rising edge of BCLK following a  
LRCLK rising edge. Channel 1 right data then follows. For the PAIF Receiver, Channels 2 , 3 and 4 follow as  
shown in Figure 17.  
Figure 17 DSP Mode A Timing Diagram – PAIF Receiver Input Data  
PP Rev 1.0 March 2006  
25  
w
WM8581  
Product Preview  
For the SAIF receiver, only stereo information is processed.  
Figure 18 DSP Mode A Timing Diagram - SAIF Receiver Input Data  
The MSB of the left channel of the output data changes on the first falling edge of BCLK following a  
low to high LRCLK transition and may be sampled on the rising edge of BCLK. The right channel data  
is contiguous with the left channel data.  
Figure 19 DSP Mode A Timing Diagram – PAIF/SAIF Transmitter Data  
DSP MODE B  
In DSP Mode B, the MSB of Channel 1 left data is sampled on the first BCLK rising edge following a  
LRCLK rising edge. Channel 1 right data then follows. For the PAIF Receiver, Channels 2, 3 and 4  
follow as shown in Figure 20.  
Figure 20 DSP Mode B Timing Diagram – PAIF Receiver Input Data  
PP Rev 1.0 March 2006  
26  
w
Product Preview  
WM8581  
Figure 21 DSP Mode B Timing Diagram - SAIF Receiver Input Data  
The MSB of the output data changes on the same falling edge of BCLK as the low to high LRCLK  
transition and may be sampled on the rising edge of BCLK. The right channel data is contiguous with  
the left channel data.  
Figure 22 DSP Mode B Timing Diagram – PAIF/SAIF Transmitter Data  
AUDIO INTERFACE CONTROL  
The register bits controlling the audio interfaces are summarized below. Dynamically changing the  
audio data format may cause erroneous operation, and is not recommended.  
Interface timing is such that the input data and LRCLK are sampled on the rising edge of the interface  
BCLK. Output data changes on the falling edge of the interface BCLK. By setting the appropriate bit  
clock polarity control register bits, e.g. PAIFRXBCP, the polarity of BCLK may be reversed, allowing  
input data and LRCLK to be sampled on the falling edge of BCLK. Setting the bit clock polarity  
register for a transmit interface results in output data changing on the rising edge of BCLK.  
Similarly, the polarity of left/right clocks can be reversed by setting the appropriate left right polarity  
bits, e.g. PAIFRXLRP.  
PP Rev 1.0 March 2006  
27  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R12  
PAIF 3  
0Ch  
1:0  
PAIFRXFMT  
[1:0]  
10  
PAIF Receiver Audio Data Format  
Select  
11: DSP Format  
10: I2S Format  
01: Left justified  
00: Right justified  
3:2  
PAIFRXWL  
[1:0]  
10  
PAIF Receiver Audio Data Word  
Length  
11: 32 bits (see Note 1/2)  
10: 24 bits  
01: 20 bits  
00: 16 bits  
4
PAIFRXLRP  
0
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
5
PAIFRXBCP  
0
PAIF Receiver BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
R13  
PAIF 4  
0Dh  
1:0  
PAIFTXFMT  
[1:0]  
10  
PAIF Transmitter Audio Data Format  
Select  
11: DSP Format  
10: I2S Format  
01: Left justified  
00: Right justified  
3:2  
PAIFTXWL  
[1:0]  
10  
PAIF Transmitter Audio Data Word  
Length  
11: 32 bits (see Note 1/2)  
10: 24 bits  
01: 20 bits  
00: 16 bits  
4
PAIFTXLRP  
0
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
PAIF Receiver BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
SAIF Audio Data Format Select  
11: DSP Format  
5
PAIFTXBCP  
0
R14  
SAIF 2  
0Eh  
1:0  
SAIFFMT  
[1:0]  
10  
10: I2S Format  
01: Left justified  
00: Right justified  
SAIF Audio Data Word Length  
11: 32 bits (see Note 1/2)  
10: 24 bits  
3:2  
SAIFWL  
[1:0]  
10  
01: 20 bits  
00: 16 bits  
PP Rev 1.0 March 2006  
28  
w
Product Preview  
WM8581  
4
SAIFLRP  
0
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
SAIF BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
SAIF Enable  
5
6
SAIFBCP  
SAIF_EN  
0
0
0 = SAIF disabled  
1 = SAIF enabled  
Table 15 Audio Interface Control  
Notes  
1. Right Justified mode does not support 32-bit data. If word length xAIFxxWL=11b in Right  
Justified mode, the word length is forced to 24 bits.  
In all modes, the data is signed 2's complement. The digital filters internal signal paths process  
24-bit data. If the device is programmed to receive 16 or 20 bit data, the device pads the unused  
LSBs with zeros. If the device is programmed into 32 bit mode, the 8 LSBs are ignored.  
2. In 24 bit I2S mode, any data width of 24 bits or less is supported provided that LRCLK is high for  
a minimum of 24 BCLK cycles and low for a minimum of 24 BCLK cycles. If exactly 32 bit clocks  
occur in one full left/right clock period the interface will auto detect and configure a 16 bit data  
word length.  
PP Rev 1.0 March 2006  
29  
w
WM8581  
Product Preview  
DAC FEATURES  
DAC INPUT CONTROL  
The Primary Audio Interface Receiver has a separate input pin for each stereo DAC. Any input pin  
can be routed to any DAC using the DACSEL register bits.  
REGISTER ADDRESS  
BIT  
LABEL  
DAC1SEL  
[1:0]  
DEFAULT  
DESCRIPTION  
R15  
DAC CONTROL 1  
0Fh  
1:0  
00  
DAC digital input select  
00 = DAC takes data from DIN1  
01 = DAC takes data from DIN2  
10 = DAC takes data from DIN3  
11 = DAC takes data from DIN4  
3:2  
5:4  
7:6  
DAC2SEL  
[1:0]  
01  
10  
11  
DAC3SEL  
[1:0]  
DAC4SEL  
[1:0]  
Table 16 DAC Input Select Register  
DAC OVERSAMPLING CONTROL  
For sampling clock ratios of 256fs to 1152fs the DACs should be programmed to operate at 128  
times oversampling rate. For sampling clock ratios of 128fs and 192fs, the DACs must be  
programmed to operate at 64 times oversampling rate. The DACOSR register bit selects between  
128x and 64x oversampling.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC Oversampling Rate Control  
0= 128x oversampling  
R12  
PAIF 3  
0Ch  
6
DACOSR  
0
1= 64x oversampling  
Table 17 DAC Oversampling Register  
PP Rev 1.0 March 2006  
30  
w
Product Preview  
WM8581  
DAC OUTPUT CONTROL  
The DAC output control word determines how the left and right inputs to the audio interface are  
applied to the left and right DACs:  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R16  
DAC CONTROL 2  
10h  
3:0  
PL[3:0]  
1001  
PL[3:0]  
0000  
Left O/P  
Right O/P  
Mute  
Mute  
Left  
0001  
Mute  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
Right  
(L+R)/2  
Mute  
Mute  
Mute  
Left  
Left  
Left  
Right  
(L+R)/2  
Mute  
Left  
Left  
Right  
Right  
Right  
Right  
Left  
Right  
(L+R)/2  
1100  
1101  
Mute  
Left  
(L+R)/2  
(L+R)/2  
1110  
1111  
Right  
(L+R)/2  
(L+R)/2  
(L+R)/2  
Table 18 DAC Attenuation Register (PL)  
ZERO FLAG OUTPUT  
Each DAC channel has a “zero detect circuit” which detects when 1024 consecutive zero samples  
have been input. Should both channels of a DAC indicate a zero-detect (or if either DACPD or  
DMUTE is set for that DAC), then the Zero Flag for that DAC is asserted. The DZFM register bits  
determine which Zero Flag is visible on the MUTE and GPO pins.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Selects the source for ZFLAG  
000 - All DACs Zero Flag  
001 - DAC1 Zero Flag  
010 - DAC2 Zero Flag  
011 - DAC3 Zero Flag  
100 - DAC4 Zero Flag  
101 - ZFLAG = 0  
R16  
DAC CONTROL 2  
10h  
6:4  
DZFM[2:0]  
000  
110 - ZFLAG = 0  
111 - ZFLAG = 0  
Table 19 DZFM Register  
PP Rev 1.0 March 2006  
31  
w
WM8581  
Product Preview  
INFINITE ZERO DETECT  
Setting the IZD register bit will enable the internal Infinite Zero Detect function:  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R16  
DAC CONTROL 2  
10h  
7
IZD  
0
Infinite zero detection circuit control  
and automute control  
0 = Infinite zero detect automute  
disabled  
1 = Infinite zero detect automute  
enabled  
Table 20 IZD Register  
With IZD enabled, applying 1024 consecutive zero input samples to a stereo input channel on any  
DAC will cause that stereo channel output to be muted. Mute will be removed as soon as either of  
those stereo channels receives a non-zero input.  
DAC DIGITAL VOLUME CONTROL  
The DAC volume may also be adjusted in the digital domain using independent digital attenuation  
control registers  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R20  
7:0  
LDA1[7:0]  
11111111  
(0dB)  
Digital Attenuation control for DAC1 Left Channel (DACL1) in 0.5dB  
steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 1  
8
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA1 in intermediate latch (no change to output)  
1 = Apply LDA1 and update attenuation on all channels  
14h  
R21  
7:0  
8
RDA1[6:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC1 Right Channel (DACR1) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 1  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA1 in intermediate latch (no change to output)  
1 = Apply RDA1 and update attenuation on all channels.  
15h  
R22  
7:0  
8
LDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC2 Left Channel (DACL2) in 0.5dB  
steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA2 in intermediate latch (no change to output)  
1 = Apply LDA2 and update attenuation on all channels.  
16h  
R23  
7:0  
8
RDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC2 Right Channel (DACR2) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA2 in intermediate latch (no change to output)  
1 = Apply RDA2 and update attenuation on all channels.  
17h  
R24  
7:0  
8
LDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC3 Left Channel (DACL3) in 0.5dB  
steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA3 in intermediate latch (no change to output)  
1 = Apply LDA3 and update attenuation on all channels.  
18h  
R25  
7:0  
8
RDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC3 Right Channel (DACR3) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA3 in intermediate latch (no change to output)  
1 = Apply RDA3 and update attenuation on all channels.  
19h  
PP Rev 1.0 March 2006  
32  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R26  
7:0  
RDA4[7:0]  
11111111  
(0dB)  
Digital Attenuation control for DAC4 Left Channel (DACL4) in 0.5dB  
steps. See Table 22.  
DIGITAL  
ATTENUATION  
DACL4  
8
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA4 in intermediate latch (no change to output)  
1 = Apply LDA4 and update attenuation on all channels.  
1Ah  
R27  
7:0 MASTDA[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC4 Right Channel (DACR4) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR4  
8
Not latched  
ontrols simultaneous update of all Attenuation Latches  
0 = Store RDA4 in intermediate latch (no change to output)  
1 = Apply RDA4 and update attenuation on all channels.  
1Bh  
R28  
7:0 MASTDA[7:0]  
11111111  
(0dB)  
Digital Attenuation control for all DAC channels in 0.5dB steps. See  
Table 22  
MASTER  
DIGITAL  
ATTENUATION  
8
UPDATE  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store gain in intermediate latch (no change to output)  
1 = Apply gain and update attenuation on all channels.  
1Ch  
Table 21 Digital Attenuation Registers  
Note: The volume update circuit of the WM8581 has two sets of registers; LDAx and RDAx. These  
can be accessed individually, or simultaneously by writing to MASTDA - Master Digital  
Attenuation. Writing to MASTDA will overwrite the contents of LDAx and RDAx.  
L/RDAx[7:0]  
ATTENUATION LEVEL  
00(hex)  
-dB (mute)  
01(hex)  
-127.5dB  
:
:
:
:
:
:
FE(hex)  
FF(hex)  
-0.5dB  
0dB  
Table 22 Digital Volume Control Gain Levels  
Setting the DACATC register bit causes the left channel attenuation settings to be applied to both left  
and right channel DACs from the next audio input sample. No update to the attenuation registers is  
required for DACATC to take effect.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Attenuator Control  
R19  
DAC CONTROL 5  
13h  
6
DACATC  
0
0 = All DACs use attenuations as  
programmed.  
1 = Right channel DACs use  
corresponding left DAC  
attenuations  
Table 23 DAC Attenuation Register  
The digital volume control also incorporates a zero cross detect circuit which detects a transition  
through the zero point before updating the digital volume control with the new volume. This  
mechanism helps prevents pops and clicks during volume transitions, and is enabled by control bit  
DZCEN.  
PP Rev 1.0 March 2006  
33  
w
WM8581  
Product Preview  
DESCRIPTION  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
R19  
DAC CONTROL 5  
13h  
5
DZCEN  
0
DAC Digital Volume Zero Cross  
Enable  
0 = Zero Cross detect disabled  
1 = Zero Cross detect enabled  
Table 24 Digital Zero Cross Register  
MUTE MODES  
The WM8581 has individual mutes for each of the four DAC channels. Setting DMUTE for a channel  
will apply a ‘soft-mute’ to the input of the digital filters for that channel. DMUTE[0] mutes DAC1  
channel, DMUTE[1] mutes DAC2 channel, DMUTE[2] mutes DAC3 channel and DMUTE[3] mutes  
DAC4 channel. Setting the MUTEALL register bit will apply a 'soft-mute’ to the input of all the DAC  
digital filters.  
The MUTE pin can also be used to apply soft-mute to the DAC selected by the DZFM register bits.  
However, if the MPDENB register bit is set, the MUTE pin will activate a soft-mute for all DACs.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R19  
DAC CONTROL 5  
13h  
3:0  
DMUTE[3:0]  
0000  
DAC channel soft mute  
enables:  
DMUTE[0] = 1, enable soft-  
mute on DAC1.  
DMUTE[1] = 1, enable soft-  
mute on DAC2.  
DMUTE[2] = 1, enable soft-  
mute on DAC3.  
DMUTE[3] = 1, enable soft-  
mute on DAC4.  
4
7
MUTEALL  
MPDENB  
0
0
DAC channel master soft mute.  
Mutes all DAC channels:  
0 = disable soft-mute on all  
DACs.  
1 = enable soft-mute on all  
DACs.  
MUTE pin decode enable:  
0 = MUTE activates soft-mute  
on DAC selected by DZFM  
1 = MUTE activates softmute  
on all DACs  
Table 25 Mute Registers  
PP Rev 1.0 March 2006  
34  
w
Product Preview  
WM8581  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
0
0.001  
0.002  
0.003  
0.004  
0.005  
0.006  
Time(s)  
Figure 23 Application and Release of Mute  
Figure 23 shows the application and release of MUTE whilst a full amplitude sinusoid is being played  
at 48kHz sampling rate. When MUTE (lower trace) is asserted, the output (upper trace) begins to  
decay exponentially from the DC level of the last input sample. The output will decay towards VMID  
with a time constant of approximately 64 input samples. If MUTE is applied to all channels for 1024  
or more input samples the DAC will be muted if IZD is set. When MUTE is de-asserted, the output  
will restart immediately from the current input sample.  
All other means of muting the DAC channels will cause a much more abrupt muting of the output.  
DE-EMPHASIS MODE  
A digital de-emphasis filter may be applied to each DAC channel. The de-emphasis filter for each  
stereo channel is enabled under the control of DEEMP[3:0]. DEEMP[0] enables the de-emphasis  
filter for DAC 1, DEEMP[1] enables the de-emphasis filter for DAC 2, DEEMP[2] enables the de-  
emphasis filter for DAC 3 and DEEMP[3] enables the de-emphasis filter for DAC 4.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R17  
DAC CONTROL 3  
11h  
3:0  
DEEMP[3:0]  
0000  
De-emphasis mode select:  
DEEMP[0] = 1, enable De-  
emphasis on DAC1.  
DEEMP[1] = 1, enable De-  
emphasis on DAC2.  
DEEMP[2] = 1, enable De-  
emphasis on DAC3.  
DEEMP[3] = 1, enable De-  
emphasis on DAC4.  
4
DEEMPALL  
0
0 = De-emphasis controlled by  
DEEMP[3:0]  
1 = De-emphasis enabled on all  
DACs  
Table 26 De-emphasis Register  
Refer to Figure 40, Figure 40, Figure 41, Figure 42, Figure 43, Figure 44 and Figure 45 for details of  
the De-Emphasis modes at different sample rates.  
PP Rev 1.0 March 2006  
35  
w
WM8581  
Product Preview  
DAC OUTPUT PHASE  
The DAC Phase control word determines whether the output of each DAC is non-inverted or inverted  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Controls phase of DAC outputs  
0 = non-inverted  
R18  
DAC CONTROL 4  
12h  
7:0  
PHASE  
[7:0]  
11111111  
1 = inverted  
PHASE[0] = 1 inverts phase of  
DAC1L output  
PHASE[1] = 1 inverts phase of  
DAC1R output  
PHASE[2] = 1 inverts phase of  
DAC2L output  
PHASE[3] = 1 inverts phase of  
DAC2R output  
PHASE[4] = 1 inverts phase of  
DAC3L output  
PHASE[5] = 1 inverts phase of  
DAC3R output  
PHASE[6] = 1 inverts phase of  
DAC4L output  
PHASE[7] = 1 inverts phase of  
DAC4R output  
Table 27 DAC Output Phase Register  
PP Rev 1.0 March 2006  
36  
w
Product Preview  
WM8581  
ADC FEATURES  
ADC HIGH-PASS FILTER DISABLE  
The ADC digital filters incorporate a digital high-pass filter. By default, this is enabled but can be  
disabled by setting the ADCHPD register bit to 1. This allows the input to the ADC to be DC coupled.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC high-pass filter disable  
0 = high-pass filter enabled  
1 = high-pass filter disabled  
R29  
ADC CONTROL 1  
1Dh  
4
ADCHPD  
0
Table 28 ADC Functions Register  
ADC OVERSAMPLING RATE SELECT  
The internal ADC signal processing operates at an oversampling rate of 128fs for all MCLK:LRCLK  
ratios. The exception to this is for operation with a 128fs or 192fs master clock, where the internal  
oversampling rate of the ADC is 64fs.  
For ADC operation at 96kHz in 256fs or 384fs mode it is recommended that the user set the  
ADCOSR bit. This changes the ADC signal processing oversampling rate from 128fs to 64fs.  
Similarly, for ADC operation at 192kHz in 128fs or 192fs mode it is recommended that the user set  
the ADCOSR bit to change the oversampling rate from 64fs to 32fs.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC oversample rate select  
0 = 128/64x oversampling  
1 = 64/32x oversampling  
R29  
ADC CONTROL 1  
1Dh  
3
ADCOSR  
0
Table 29 ADC Functions Register  
ADC MUTE  
As with the DAC, each ADC channel also has a mute control bit, which mutes the inputs to the ADC.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R29  
ADC CONTROL 1  
1Dh  
0
AMUTEL  
0
ADC Mute select  
0 : Normal Operation  
1: mute ADC left  
1
2
AMUTER  
0
0
ADC Mute select  
0 : Normal Operation  
1: mute ADC right  
AMUTEALL  
ADC Mute select  
0 : Normal Operation  
1: mute both ADC channels  
Table 30 ADC Mute Register  
PP Rev 1.0 March 2006  
37  
w
WM8581  
Product Preview  
DIGITAL ROUTING OPTIONS  
The WM8581 has extremely flexible digital interface routing options, which are illustrated in Figure 24.  
It has a S/PDIF Receiver, S/PDIF Transmitter, four Stereo DACs, a Stereo ADC, a Primary Audio  
Interface and a Secondary Audio Interface.  
Each DAC has its own digital input pin DIN1/2/3/4. Internal multiplexers in the Primary Audio Interface  
Receiver allow the data received on any DIN pin to be routed to any DAC. Any DIN pin routed to  
DAC1 can also be routed to the S/PDIF transmitter and Secondary Audio Interface Transmitter.  
DAC1 may also be used to convert received S/PDIF data, or data received from the Secondary Audio  
Interface. DACs 2-4 take data only from the Primary Audio Interface. The Audio Interfaces can also  
output ADC data or received S/PDIF data.  
The S/PDIF transmitter can output S/PDIF received data, ADC data, or data from either Audio  
Interface.  
Figure 24 Digital Routing  
PP Rev 1.0 March 2006  
38  
w
Product Preview  
WM8581  
The registers described below configure the digital routing options.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R12  
8:7  
DAC_SRC  
[1:0]  
11  
DAC1 Source:  
00 = S/PDIF received data.  
10 = SAIF Rx data  
11 = PAIF Rx data  
Note: When DAC_SRC = 00,  
DAC2/3/4 may be turned off,  
depending on RX2DAC_MODE.  
R13  
R14  
R30  
8:7  
8:7  
1:0  
PAIFTX_SRC  
[1:0]  
01  
00  
00  
Primary Audio Interface Tx Source:  
00 = S/PDIF received data.  
01 = ADC digital output data.  
10 = SAIF Rx data  
SAIFTX_SRC  
[1:0]  
Secondary Audio Interface Tx Source:  
00 = S/PDIF received data.  
01 = ADC digital output data.  
11 = PAIF Rx data  
TXSRC  
[1:0]  
S/PDIF Transmitter Data Source.  
00 = S/PDIF received data(‘thru-  
path’)  
01 = ADC digital output data.  
10 = SAIF Rx data  
11 = PAIF Rx data  
3
REAL_THRU  
0
S/PDIF Thru Mode Control  
0 = SPDIFOP pin sources output  
of S/PDIF Tx  
1 = SPDIFOP pins sources output  
of S/PDIF IN Mux  
Table 31 Interface Source Select Registers  
PP Rev 1.0 March 2006  
39  
w
WM8581  
Product Preview  
CLOCK SELECTION  
To accompany the flexible digital routing options, the WM8581 offers a clock configuration scheme  
for each interface. The user can choose the interface clock from MCLK, ADCMCLK, PLLACLK or  
PLLBCLK. For some interfaces, the rate can be controlled either by external LRCLK (slave mode),  
internal LRCLK (master mode) or by control register. The available options are described below.  
DAC INTERFACE  
The DAC_CLKSEL register selects the DAC clock source from MCLK, PLLACLK or PLLBCLK. If the  
digital routing has been set such that the DAC1 is sourcing the S/PDIF Receiver, then PLLACLK is  
automatically selected, and DACs 2/3/4 are powered down. The rate that the DACs operate at is  
determined by the DAC Rate module. It calculates the rate based on the digital routing setup. When  
sourcing from the PAIF Receiver, PAIFRX_LRCLK (internal or external) is used in the rate  
calculation. . When sourcing from the SAIF Receiver, SAIF_LRCLK (internal or external) is used in  
the rate calculation. The SFRM_CLK is used in the rate calculation when the DAC1 sources from the  
S/PDIF Receiver, however this can be changed by setting the RX2DAC_MODE register bit. With  
RX2DAC_MODE set, the PAIFRX_LRCLK determines the rate, and DACs 2/3/4 source the PAIF  
Receiver (and are no longer automatically powered down).  
Figure 25 DAC Clock Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DAC clock source  
R8  
1:0  
DAC_CLKSEL  
00  
00 = MCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
R15  
8
RX2DAC_MODE  
0
DAC Rate and Power down control  
(only valid when DAC_SRC = 00)  
0 = SFRM_CLK determines rate,  
DACs 2/3/4 powered down  
1 = PAIFRX_LRCLK determines  
rate, DACs 2/3/4 source PAIFRX  
Table 32 DAC Clock Control  
PP Rev 1.0 March 2006  
40  
w
Product Preview  
WM8581  
ADC INTERFACE  
The ADC_CLKSEL register selects the ADC clock source from ADCMCLK, PLLACLK, PLLBCLK, or  
ADCMCLK. However, if the S/PDIF receiver is powered up, the PLLACLK and PLLBCLK are invalid  
for ADC operation, so the choice is limited to ADCMCLK (default) or MCLK. The rate that the ADC  
operates at is determined by the ADC Rate module. It calculates the rate based on the digital routing  
setup. If the ADC is sourced by the PAIF Transmitter, PAIFTX_LRCLK is used in the rate calculation.  
If the ADC is sourced by the SAIF Transmitter (and PAIF Transmitter has another source),  
SAIF_LRCLK is used in the rate calculation. If the S/PDIF Transmitter (only) is sourcing the ADC,  
then the rate is set by the ADC_RATE register bits.  
Figure 26 ADC Clock Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADC clock source  
R8  
3:2  
ADC_CLKSEL  
00  
00 = ADCMLCK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
R29  
7:5  
ADCRATE[2:0]  
010  
ADC Rate Control (only used when  
the S/PDIF Tx is the only interface  
sourcing the ADC)  
000 = 128fs  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
Table 33 ADC Clock Control  
PP Rev 1.0 March 2006  
41  
w
WM8581  
Product Preview  
S/PDIF INTERFACES  
The TX_CLKSEL register selects the clock for the S/PDIF Transmitter from ADCMCLK, PLLACLK,  
PLLBCLK, or MCLK. The S/PDIF Receiver only uses PLLACLK. If the digital routing has been  
configured such that the S/PDIF Transmitter is sourcing the S/PDIF Receiver, then PLLACLK is  
automatically selected. The rate that the S/PDIF Transmitter operates at is determined by the S/PDIF  
Tx Rate module. It calculates the rate based on the digital routing setup. When sourcing from the  
S/PDIF Receiver, the SFRM_CLK is used in the rate calculation. When sourcing from the PAIF  
Receiver, PAIFRX_LRCLK is used in the rate calculation. When sourcing from the SAIF Receiver,  
SAIFRX_LRCLK is used in the rate calculation. When sourcing the ADC, the rate is determined by  
either the PAIFTX_LRCLK (if the PAIF Tx also sources the ADC) or the ADC_RATE register.  
Figure 27 S/PDIF Clock Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8  
5:4  
TX_CLKSEL  
01  
S/PDIF TX clock source  
00 = ADCMLCK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
Table 34 S/PDIF Transmitter Clock Control  
PP Rev 1.0 March 2006  
42  
w
Product Preview  
WM8581  
PRIMARY AUDIO INTERFACE RECEIVER (PAIF RX)  
The PAIF Receiver requires a left-right-clock (LRCLK) and a bit-clock (BCLK). These can be supplied  
externally (slave mode) or they can be generated internally by the WM8581 (master mode). The  
master mode LRCLK/BCLK are created by the Master Mode Clock Gen module. The control of this  
module is described on page 34. The clock supplied to this module is selected by the  
PAIFRXMS_CLKSEL register and can be MCLK, PLLACLK, or PLLBCLK.  
Figure 28 PAIF Receiver Clock Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R9  
7:6  
PAIFRXMS_  
CLKSEL  
00  
PAIFRX Master Mode clock source  
00 = MCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
Table 35 PAIF Receiver Master Mode Clock Control  
PP Rev 1.0 March 2006  
43  
w
WM8581  
Product Preview  
PRIMARY AUDIO INTERFACE TRANSMITTER (PAIF TX)  
The PAIF Transmitter requires a left-right-clock (LRCLK) and a bit-clock (BCLK). These can be  
supplied externally (slave mode) or they can be generated internally by the WM8581 (master mode).  
The master mode LRCLK/BCLK are created by the Master Mode Clock Gen module. The control of  
this module is described on page 34. The clock supplied to this module can be ADCMCLK,  
PLLACLK, PLLBCLK, or MCLK and is selected by the internal signal paiftxms_clksel’. If the PAIF  
Transmitter is sourcing the S/PDIF Receiver, it is recommended that the interface operate in master  
mode. For this path, paiftxms_clksel selects PLLACLK. For all other digital routing options,  
paiftxms_clksel selects whichever clock the adc_clk is using.  
If in slave mode, and adc_clk is set to be MCLK, then the PAIFRX_BCLK is used as the BCLK for  
the PAIF Transmitter.  
Figure 29 PAIF Transmitter Clock Selection  
PP Rev 1.0 March 2006  
44  
w
Product Preview  
WM8581  
SECONDARY AUDIO INTERFACES (SAIF RX & SAIF TX)  
The Transmit and Receive sides of the Secondary Audio Interface share a common LRCLK and a  
common BCLK. These can be supplied externally (slave mode) or they can be generated internally  
by the WM8581 (master mode). The master mode LRCLK/BCLK are created by the Master Mode  
Clock Gen module. The control of this module is described on page 34. The clock supplied to this  
module can be ADCMCLK, PLLACLK, PLLBCLK, or MCLK and is selected using the  
SAIFMS_CLKSEL register. If the digital routing has been configured such that the SAIF Transmitter  
is sourcing the S/PDIF Receiver, then PLLACLK is automatically selected, and it is recommended  
that the interface operate in master mode. However, if the SAIF Transmitter sources something other  
than the S/PDIF Receiver, and the S/PDIF Receiver is powered up, the PLLACLK and PLLBCLK are  
invalid for SAIF operation, so the choice is limited to ADCMCLK (default) or MCLK.  
Figure 30 SAIF Clock Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R11  
7:6  
SAIFMS_  
CLKSEL  
11  
SAIF Master Mode clock source  
00 = ADCMCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
Table 36 SAIF Master Mode Clock Control  
PP Rev 1.0 March 2006  
45  
w
WM8581  
Product Preview  
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (SOFTWARE MODE)  
The WM8581 is equipped with two independent phase-locked loop clock generators and a comprehensive  
clocking scheme which provides maximum flexibility and function and many configurable routing possibilities  
for the user in software mode. An overview of the software mode clocking scheme is shown in Figure 31.  
Figure 31 PLL and Clock Select Circuit  
OSCILLATOR  
The function of the oscillator is to generate the OSCCLK oscillator clock signal. This signal may be used as:  
The clock source for the PLLs.  
A selectable clock source for the MCLK pin, when the pin is configured as an output.  
A selectable clock source for the CLKOUT pin, when enabled.  
Whenever the PLLs or the S/PDIF receiver is enabled, the OSCCLK signal must be present to enable the  
PLLs to generate the necessary clock signals.  
The oscillator uses a Pierce type oscillator drive circuit. This circuit requires an external crystal and  
appropriate external loading capacitors. The oscillator circuit contains a bias generator within the WM8581  
and hence an external bias resistor is not required. Crystal frequencies between 10 and 14.4MHz or  
16.28MHz and 27MHz can be used in software mode. In this case the oscillator XOUT must be powered up  
using the OSCPD bit. The recommended circuit is shown in the recommended components diagram, please  
refer to Figure xx.  
Alternatively, an external CMOS compatible clock signal can be applied to the XIN pin in the absence of a  
crystal. This is not recommended when using the PLL as the PLL requires a jitter-free OSCCLK signal for  
optimum performance. In this case the oscillator XOUT can be powered down using the OSCPD bit.  
PP Rev 1.0 March 2006  
46  
w
Product Preview  
WM8581  
The oscillator XOUT pin has one control bit as shown in Table 37.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R51  
PWRDN 2  
33h  
0
OSCPD  
0
Oscillator XOUT Power Down  
0 = Power Up XOUT (crystal mode)  
1 = Power Down XOUT (CMOS  
clock input mode)  
Table 37 Oscillator Control  
PHASE-LOCKED LOOP (PLL)  
The WM8581 has two on-chip phase-locked loop (PLL) circuits which can be used to synthesise two  
independent clock signals (PLLACLK and PLLBCLK) from the external oscillator clock. The PLLs can be  
used to:  
Generate clocks necessary for the S/PDIF receiver to lock on to and recover S/PDIF data from an  
incoming S/PDIF data stream.  
Generate clocks which may be used to drive the MCLK and/or CLKOUT pins.  
Generate clocks which may be used by the S/PDIF transmitter to encode and transmit a S/PDIF  
data stream.  
Generate clocks which may be used as the master clock source for the the ADC and DACs.  
Generate clocks which may be used by the master mode clock generator to generate the BCLK  
and LRCLK signals for the digital audio interfaces.  
The PLLs can be enabled or disabled using the register bits shown in Table 38.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R51  
PWRDN 2  
33h  
1
2
PLLAPD  
PLLBPD  
1
1
PLL Power Down Control  
0 = Power Up PLL  
1 = Power Down PLL  
Table 38 PLL Power Down Control  
The PLLs have two modes of operation:  
PLL S/PDIF Receive Mode (Selected if S/PDIF Receiver Enabled)  
In S/PDIF receive mode, PLLA is automatically controlled by the S/PDIF receiver to allow the receiver to use  
PLLA to track and lock on to the incoming S/PDIF data stream. In this case, CLK1 is automatically  
maintained at a constant frequency of 256fs relative to the sample rate of the recovered S/PDIF stream.  
PLLB must be configured to produce CLK2, a specific reference clock for the S/PDIF receiver.  
PLLACLK may be used as a 256fs or 128fs (selectable – refer to Table 43) master clock source when in  
S/PDIF receiver mode. PLLBCLK is not available and must not be selected as the clock source for any  
internal function when the S/PDIF receiver is enabled.  
If the sample frequency of the incoming stream is changed and PLLA is forced to unlock in order to track to  
the new sample frequency, the PLLACLK signal will be stopped until the S/PDIF receiver has locked to the  
incoming stream at the new sample frequency. If the incoming S/PDIF stream stops, the PLLA_ N and  
PLLA_K values will be frozen and the PLLACLK will continue at the frequency set by the last recovered  
S/PDIF stream.  
Refer to Table 39 and Table 41 for details of the registers available for configuration in this mode. Refer to  
the S/PDIF Receive Mode Clocking section on page 52 for full details.  
PLL User Mode (Selected if S/PDIF Receiver Disabled)  
In user mode, the user has full control over the function and operation of both PLLA and PLLB. In this mode,  
the user can accurately specify the PLL N and K multiplier values and the pre and post-scale divider values  
and can hence fully control the generated clock frequencies.  
PP Rev 1.0 March 2006  
47  
w
WM8581  
Product Preview  
Refer to Table 39 and Table 41 for details of the registers available for configuration in this mode.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R0  
PLLA 1/  
DEVID1  
00h  
8:0  
PLLA_K[8:0]  
100100001  
Fractional (K) part of PLLA  
frequency ratio (R).  
Value K is one 22-digit binary  
number spread over registers R0,  
R1 and R2 as shown.  
R1  
7:0  
PLLA_K[17:9]  
101111101  
PLLA 2/  
DEVID2  
01h  
R2  
3:0  
7:4  
PLLA_K[21:18]  
PLLA_N[3:0]  
1101  
0111  
PLLA 3/  
DEVREV  
02h  
Integer (N) part of PLLA frequency  
ratio (R).  
Use values in the range 5 PLLA_N  
13 as close as possible to 8  
R4  
PLLB 1  
04h  
8:0  
8:0  
PLLB_K[8:0]  
PLLB_K[17:9]  
100100001  
101111110  
Fractional (K) part of PLLB  
frequency ratio (R).  
Value K is one 22-digit binary  
number spread over registers R4,  
R5 and R6 as shown.  
R5  
PLLB 2  
05h  
Note: PLLB_K must be set to  
specific values when the S/PDIF  
receiver is used. Refer to S/PDIF  
Receive Mode Clocking section  
for details.  
R6  
3:0  
7:4  
PLLB_K[21:18]  
PLL_N[3:0]  
1101  
0111  
PLLB 3  
06h  
Integer (N) part of PLLB frequency  
ratio (R).  
Use values in the range 5 PLLB_N  
13 as close as possible to 8  
Note: PLLB_N must be set to  
specific values when the S/PDIF  
receiver is used. Refer to S/PDIF  
Receive Mode Clocking section  
for details.  
Table 39 User Mode PLL_K and PLL_N Multiplier Control  
Parameter  
PRESCALE_A  
PRESCALE_B  
PLLA_N  
PLL User Mode  
Manual  
PLL S/PDIF Receiver Mode  
Write PRESCALE_B Value  
Configure Specified PLLB Frequency  
Automatically Controlled  
Automatically Controlled  
Configure Specified PLLB Frequency  
Configure Specified PLLB Frequency  
Automatically Controlled  
Not Used  
Manual  
Manual  
PLLA_K  
Manual  
PLLB_N  
Manual  
PLLB_K  
Manual  
FREQMODE_A  
FREQMODE_B  
POSTSCALE_A  
POSTSCALE_B  
Manual  
Manual  
Manual  
256fs/128fs PLLACLK Select  
Not Used  
Manual  
Table 40 PLL Control Register Function in PLL User and PLL S/PDIF Receiver Modes  
PLL CONFIGURATION  
The PLLs perform a configurable frequency multiplication of the input clock signal (f1). The multiplication  
factor of the PLL (denoted by R) is variable and is defined by the relationship: R = (f2 ÷ f1).  
The multiplication factor for each PLL is set using register bits PLLx_N and PLLx_K (refer to Table 39). The  
multiplication effect of both the N and K multipliers are additive (i.e. if N is configured to provide a  
multiplication factor of 8 and K is configured to provide a multiplication factor of 0.192, the overall  
multiplication factor is 8 + 0.192 = 8.192).  
PP Rev 1.0 March 2006  
48  
w
Product Preview  
WM8581  
In order to choose and configure the correct values for PLLx_N and PLLx_K, multiplication factor R must first  
be calculated. Once value R is calculated, the value of PLLx_N is the integer (whole number) value of R,  
ignoring all digits to the right of the decimal point. For example, if R is calculated to be 8.196523, PLL_N is  
simply 8.  
Once PLLx_N is calculated, the PLLx_K value is simply the integer value of (222 (R-PLLx_N)). For example, if  
R is 8.196523 and PLLx_N is 8, PLLx_K is therefore (222 (8.196523-8)), which is 824277 (ignoring all digits to  
the right of the decimal point).  
Note: the PLLs are designed to operate with best performance (shortest lock time and optimum stability)  
when f2 is between 90 and 100MHz and PLLx_N is 8. However, acceptable PLLx_N values lie in the range 5  
PLLx_N 13.  
Each PLL has an output divider to allow the f2 clock signal to be divided to a frequency suitable for use as the  
source for the MCLK and CLKOUT outputs, the S/PDIF transmitter and the internal ADC and DACs. The  
divider output is configurable and is set by the FREQMODE_A or FREQMODE_B bits in conjunction with the  
POSTSCALE_A and POSTSCALE_B bits. Each PLL is also equipped with a pre-scale divider which offers  
frequency divide by one or two before the OSCCLK signal is input into the PLL. Please refer to Table 41 for  
details.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R3  
PLLA 4  
03h  
0
PRESCALE_A  
0
PLL Pre-scale Divider Select  
0 = Divide by 1 (PLL input clock =  
oscillator clock)  
1 = Divide by 2 (PLL input clock =  
oscillator clock ÷ 2)  
R7  
0
PRESCALE_B  
0
PLLB 4  
07h  
Note: PRESCALE_A must be set to  
the same value as PRESCALE_B in  
PLL S/PDIF receiver mode.  
R3  
PLLA 4  
03h  
4:3  
4:3  
FREQMODE_A  
[1:0]  
10  
10  
PLL Output Divider Select  
PLL S/PDIF Receiver Mode  
FREQMODE_A is automatically  
controlled. FREQMODE_B is not  
used.  
R7  
FREQMODE_B  
[1:0]  
PLLB 4  
07h  
PLL User Mode  
Used in conjunction with the  
POSTSCALE_x bits. Refer to Table  
42.  
R3  
PLLA 4  
03h  
1
1
POSTSCALE_A  
POSTSCALE_B  
0
0
PLL Post-scale Divider Select  
PLL S/PDIF Receiver Mode  
POSTSCALE_A is used to configure  
a 256fs or 128fs PLLACLK,  
POSTSCALE_B is not used. Refer  
to Table 43.  
R7  
PLLB 4  
07h  
PLL User Mode  
Used in conjunction with the  
FREQMODE_x bits. Refer to Table  
42.  
Table 41 Pre and Post PLL Clock Divider Control  
FREQMODE_x[1:0]  
f2 TO PLLxCLK DIVISION FACTOR  
POSTSCALE_x  
0
÷2  
÷4  
÷8  
÷12  
1
00  
01  
10  
11  
÷4  
÷8  
÷16  
÷24  
Table 42 PLL User Mode Clock Divider Configuration  
PP Rev 1.0 March 2006  
49  
w
WM8581  
Product Preview  
POSTSCALE_A  
PLLACLK FREQUENCY  
0
1
256fs  
128fs  
Table 43 PLL S/PDIF Receiver Mode Clock Divider Configuration  
PLL CONFIGURATION EXAMPLE  
Consider the situation where the oscillator clock (OSCCLK) input frequency is fixed at 12MHz and the  
required PLLBCLK frequency is 12.288MHz.  
1. Calculate the f2, FREQMODE_B and POSTSCALE_B Values  
The PLL is designed to operate with best performance when the f2 clock is between 90 and 100MHz. The  
necessary PLLBCLK frequency is 12.288MHz. Choose POSTSCALE_B and FREQMODE_B values to set  
the f2 frequency in the range of 90 to 100MHz. In this case, the default values (POSTSCALE_B = 0 and  
FREQMODE_B[1:0] = 10) will configure the f2 to PLLBCLK divider as 8 and hence will set the f2 frequency at  
98.304MHz; this value is within the 90 to 100MHz range and is hence acceptable.  
POSTSCALE_B = 0  
FREQMODE_B [1:0] = 10b  
f2 = 98.304MHz  
2. Calculate R Value  
Using the relationship: R = (f2 ÷ f1), the value of R can be calculated.  
R = (f2 ÷ f1)  
R = (98.304 ÷ 12)  
R = 8.192  
3. Calculate PLLB_N Value  
The value of PLLB_N is the integer (whole number) value of R, ignoring all digits to the right of the decimal  
point. In this case, R is 8.192, hence PLLB_N is 8.  
4. Calculate PLL_K Value  
The PLLB_K value is simply the integer value of (222 (R-PLLB_N)).  
PLLB_K = integer part of (222 x (8.192 8))  
PLLB_K = integer part of 805306.368  
PLLB_K = 805306 (decimal) / C49BA (hex)  
A number of example configurations are shown in Table 44. Many other configurations are possible; Table 44  
shows only a small number of valid possibilities. As both PLLs are identical, the same configuration  
procedure applies for both.  
PP Rev 1.0 March 2006  
50  
w
Product Preview  
WM8581  
OSC  
PRE-  
SCALE  
_x  
F1  
F2  
R
PLLx_N  
PLLx_K  
FREQ  
MODE_x  
[1:0]  
POST-  
SCALE_x  
PLLxCLK  
CLK  
(MHz)  
(MHz)  
(Hex)  
(Hex)  
(MHz)  
(MHz)  
12  
12  
12  
12  
12  
12  
12  
24  
24  
24  
24  
24  
24  
24  
27  
27  
27  
27  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
12  
12  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8
8
8
8
8
8
8
7
7
7
7
7
7
7
7
7
6
6
C49BA  
C49BA  
C49BA  
C49BA  
C49BA  
C49BA  
C49BA  
21B089  
21B089  
21B089  
21B089  
21B089  
21B089  
21B089  
1208A5  
1208A5  
2C2B24  
2C2B24  
00  
01  
01  
10  
10  
11  
11  
00  
01  
01  
10  
10  
11  
11  
00  
01  
00  
01  
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
1
1
1
24.576  
24.576  
12.288  
12.288  
6.144  
12  
12  
12  
12  
8.192  
12  
4.096  
12  
90.3168 7.5264  
90.3168 7.5264  
90.3168 7.5264  
90.3168 7.5264  
90.3168 7.5264  
90.3168 7.5264  
90.3168 7.5264  
22.5792  
22.5792  
11.2896  
11.2896  
5.6448  
7.5264  
3.7632  
24.576  
12.288  
22.5792  
11.2896  
12  
12  
12  
12  
12  
12  
13.5  
13.5  
13.5  
13.5  
98.304  
98.304  
7.2818  
7.2818  
90.3168 6.6901  
90.3168  
6.6901  
Table 44 User Mode PLL Configuration Examples  
When considering settings not shown in this table, the key configuration parameters which must be selected  
for optimum operation are:  
90MHz f2 100MHz  
PLLx_N 13  
OSCCLOCK = 10 to 14.4MHz or 16.28 to 27MHz  
5
CLOCK OUTPUT (CLKOUT) AND MCLK OUTPUT (MCLK)  
The clock output (CLKOUT) pin can be used as a clock output. This pin is intended to be used as a clock  
source pin for providing the central clock reference for an audio system.  
The CLKOUT clock source can be selected from OSCCLK, PLLACLK or PLLBCLK. The control bits  
for the CLKOUT signal are shown in Table 45.  
The MCLK pin can be configured as an input or output the WM8581 should be powered down when  
switching MCLK between an input and an output. As an output, MCLK can be sourced from  
OSCCLK, PLLACLK or PLLBCLK.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R7  
PLLB 4  
07h  
6:5  
MCLKOUTSRC  
00  
MCLK pin output source  
00 = Input Source MCLK pin  
01 = Output Source PLLACLK  
10 = Output Source PLLBCLK  
11 = Output Source OSCCLK  
CLKOUT pin source  
8:7  
CLKOUTSRC  
11  
00 = No Output (tristate)  
01 = Output Source PLLACLK  
10 = Output Source PLLBCLK  
11 = Output Source OSCCLK  
Table 45 MCLK and CLKOUT Control  
PP Rev 1.0 March 2006  
51  
w
WM8581  
Product Preview  
S/PDIF RECEIVE MODE CLOCKING  
In S/PDIF receive mode, the PLLA_N and PLLA_K values are automatically controlled by the S/PDIF  
receiver to allow the receiver to use PLLA to lock on to and track the incoming S/PDIF data stream. PLLB  
must be configured to produce a specific reference clock frequency for the S/PDIF receiver.  
The S/PDIF receiver has four clocking modes based on the incoming S/PDIF stream sample rate. The  
modes are:  
Mode 1: Incoming S/PDIF Sample Rate = 192kHz +/- 1%  
Mode 2: Incoming S/PDIF Sample Rate = 88.2kHz -1% to 96kHz +1%  
Mode 3: Incoming S/PDIF Sample Rate = 44.1kHz -1% to 48kHz +1%  
Mode 4: Incoming S/PDIF Sample Rate = 32kHz +/- 1%  
Before the S/PDIF receiver is enabled, it is important that the PLLB_N and PLLB_K register values (and the  
PRESCALE_x values as appropriate) are manually configured in a specific default state. The PLLB_N and  
PLLB_K register values (and the PRESCALE_x values as appropriate) must also be manually re-configured  
when a change of the clocking mode is detected and the change is to mode 1 or from mode 1. Note that the  
PRESCALE_A value must always be set to the same value as PRESCALE_B.  
The specified PLLB f2 frequencies that must be configured using the PLLB_N and PLLB_K register values  
(and the PRESCALE_x values as appropriate) for reception of specific S/PDIF sample rates are as follows:  
Mode 1 (192kHz Sample Rate): PLLB f2 = 98.304MHz  
Modes 2/3/4 (32/44.1/48/88.2/96kHz Sample Rates): PLLB f2 = 94.3104MHz  
The FREQMODE_B[1:0] bits and POSTSCALE_B bit are not used in PLL S/PDIF recever mode.  
The PLL register settings are configured by default to allow 32/44.1/48/88.2/96kHz (modes 2/3/4) sample  
rate S/PDIF receiver operation using a 12MHz crystal clock. The appropriate PLLB register values must be  
updated if:  
Any crystal clock frequency other than 12MHz is used.  
OR  
A S/PDIF stream with 192kHz sample rate (mode 1) is detected.  
In either case, reprogramming of the PLLB_N and PLLB_K values (and the PRESCALE_x values as  
appropriate) is necessary.  
Refer to Table 46 for details of a number of recommended PLLB configurations. Many other configurations  
are possible; please refer to PLL Configuration section for details regarding how to calculate alternative  
settings.  
OSC  
CLK  
(MHz)  
11.2896  
11.2896  
12  
PRE-  
SCALE_X  
S/PDIF RECEIVER  
SAMPLE RATE(S) (kHz)  
F1  
F2  
R
PLLB_N PLLB_K  
COMMENT  
(MHz)  
(MHz)  
(Hex)  
(Hex)  
0
0
0
0
0
0
1
1
1
1
1
1
32 / 44.1 / 48 / 88.2 / 96 11.2896 94.3104 8.3537  
8
8
7
8
7
8
9
A
7
8
6
7
16A3B3  
2D4766  
36FD21  
C49BA  
2B3333  
0
Set N, K  
Set N, K  
192  
11.2896 98.304 8.7075  
32 / 44.1 / 48 / 88.2 / 96  
12  
12  
94.3104 7.8592  
98.304 8.192  
Default Setting  
Set N, K  
12  
192  
12.288  
12.288  
19.2  
19.2  
24  
32 / 44.1 / 48 / 88.2 / 96  
12.288 94.3104 7.675  
12.288 98.304  
Set K  
192  
8
Set N, K  
32 / 44.1 / 48 / 88.2 / 96  
9.6  
9.6  
12  
94.3104 9.824  
98.304 10.24  
94.3104 7.8592  
98.304 8.192  
94.3104 6.986  
98.304 7.2818  
346C6A Set Prescales, N, K  
F5C28 Set Prescales, N, K  
192  
32 / 44.1 / 48 / 88.2 / 96  
36FD21  
Set Prescales  
24  
192  
32 / 44.1 / 48 / 88.2 / 96  
192  
12  
C49BA Set Prescales, N, K  
3F19E5 Set Prescales, N, K  
27  
13.5  
13.5  
27  
1208A5  
Set Prescales, K  
Table 46 S/PDIF Receive Mode PLLB Initial Configuration Examples  
PP Rev 1.0 March 2006  
52  
w
Product Preview  
WM8581  
The recommended configuration sequences are as follows:  
TO INITIALLY CONFIGURE THE SYSTEM FOR S/PDIF RECEIVER STARTUP:  
1. Write appropriate calculated values (relative to oscillator frequency) to PRESCALE_A,  
PRESCALE_B, PLLB_N and PLLB_K for 32/44.1/48/88.2/96kHz (modes 2/3/4) S/PDIF  
receiver sample rate operation.  
2. Enable PLLA and PLLB by clearing the PLLAPD and PLLBPD bits.  
3. Enable S/PDIF receiver by clearing the SPDIFRXPD and SPDIFPD bits.  
4. Read S/PDIF Status Register REC_FREQ[1:0] bits to identify recovered S/PDIF sample  
frequency and clocking mode.  
5. If indicated sample rate is 192kHz, write appropriate calculated values (relative to oscillator  
frequency) to PRESCALE_A, PRESCALE_B, PLLB_N and PLLB_K (as appropriate) for  
192kHz (mode 1) S/PDIF receiver sample rate operation.  
TO CONFIGURE THE SYSTEM WHEN CLOCKING MODE (SAMPLE RATE) CHANGES TO OR FROM  
MODE 1 (192KHZ):  
Any sample rate change between clocking modes (for example, from 44.1kHz (mode 3) to 192kHz (mode 1))  
will be flagged to the application processor via the INT interrupt flag. The application processor must then  
read the Interrupt Status Register. If the UPD_REC_FREQ flag is set, indicating that the clocking mode has  
changed, proceed as follows:  
1. Read S/PDIF Status Register REC_FREQ[1:0] bits to identify recovered S/PDIF sample rate  
frequency and clocking mode.  
2. Write appropriate calculated values (relative to oscillator frequency) to PRESCALE_A,  
PRESCALE_B, PLLB_N and PLLB_K based on indicated recovered S/PDIF sample  
frequency and clocking mode.  
This procedure is only strictly necessary when switching to or from 192kHz (mode 1) because the  
PRESCALE_A, PRESCALE_B, PLLB_N and PLLB_K values are the same for  
32/44.1/48/88.2/96kHz (modes 2/3/4) sample rate operation. It is, however, good interrupt service  
routine practice to write the appropriate PRESCALE_A, PRESCALE_B, PLLB_N and PLLB_K values  
when every clocking mode change is detected.  
PHASE-LOCKED LOOPS AND S/PDIF CLOCKING (HARDWARE MODE)  
In hardware mode, the user has no access to the internal clocking control registers and hence a default  
configuration is loaded at reset to provide maximum functionality.  
The S/PDIF receiver is enabled and hence the PLLs operate in S/PDIF receiver mode and all PLL and  
S/PDIF receiver control is fully automatic. All supported S/PDIF receiver sample rates can be used.  
FREQMODE_x and POSTSCALE_x control is fully automatic to ensure that the MCLK output is maintained  
at 256fs relative to the S/PDIF received sample rate.  
In hardware mode, the OSCCLK must be 12MHz and hence the external crystal (or applied XIN clock) must  
be 12MHz. No other OSCCLK frequencies are supported in hardware mode.  
PP Rev 1.0 March 2006  
53  
w
WM8581  
Product Preview  
S/PDIF TRANSCEIVER  
FEATURES  
IEC-60958-3 compatible with 32k frames/s to 192k frames/s support  
Support for Reception and Transmission of S/PDIF data  
Clock synthesis PLL with reference clock input and ultra-low jitter output  
Input mux with support for up to four S/PDIF inputs  
Register controlled Channel Status recovery and transmission  
Register read-back of recovered Channel Status bits and error flags  
Detection of non-audio data, sample rate, and pre-emphasised data  
Programmable GPO for error flags, frame status flags and clocks  
An IEC-60958-3 compatible S/PDIF transceiver is integrated into the WM8581. Operation of the  
S/PDIF function may be synchronous or asynchronous to the rest of the digital audio circuits.  
The receiver performs data and clock recovery, and sends recovered data either to an external  
device such as a DSP (via the Digital Audio Interfaces), or if the data is audio PCM, it can route the  
stereo recovered data to DAC1. The recovered clock may be routed out of the WM8581 onto a pin  
for external use, and may be used to clock the internal DAC as required.  
The transmitter generates S/PDIF frames where audio data may be sourced from the ADC, S/PDIF  
Receiver, or the Digital Audio Interfaces.  
S/PDIF FORMAT  
S/PDIF is a serial, bi-phase-mark encoded data stream. An S/PDIF frame consists of two sub-  
frames. Each sub-frame is made up of:  
Preamble a synchronization pattern used to identify the start of a 192-frame block or sub-  
frame  
4-bit Auxiliary Data (AUX) ordered LSB to MSB  
20-bit Audio Data (24-bit when combined with AUX) ordered LSB to MSB  
Validity Bit a 1 indicates invalid data in that sub-frame  
User Bit over 192-frames, this forms a User Data Block,  
Channel Bit over 192-frames, this forms a Channel Status Block  
Parity Bit used to maintain even parity over the sub-frame (except the preamble)  
An S/PDIF Block consists of 192 frames. Channel and User blocks are incorporated within the 192-  
frame S/PDIF Block. For Consumer mode only the first 40-frames are used to make up the Channel  
and User blocks. Figure 32 illustrates the S/PDIF format.  
Frame  
192  
Frame  
1
. . . . . . . . .  
Subframe 1  
Subframe 2  
0
3 4  
7 8  
27 28  
31  
32 bit  
Word  
Sync  
preamble  
Aux  
Audio Sample Word  
V
U
C
P
Figure 32 S/PDIF Format  
PP Rev 1.0 March 2006  
54  
w
Product Preview  
WM8581  
S/PDIF TRANSMITTER  
The S/PDIF transmitter generates the S/PDIF frames, and outputs on the SPDIFOP pin. The audio  
data for the frame can be taken from one of four sources, selectable using the TXSRC register. The  
transmitter can be powered down using the SPDIFTXD register bit. The S/PDIF Transmitter can be  
bypassed by setting the REAL_THROUGH register control bit. When set, the SPDIFOP pin sources  
the output of the S/PDIF input mux.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R30  
SPDTXCHAN 0  
1Eh  
1:0  
TXSRC[1:0]  
00  
S/PDIF Transmitter Data Source  
00 = S/PDIF received data (see REAL_THROUGH)  
01 = ADC digital output data.  
10 = Secondary Audio Interface  
11 = Audio Interface received data  
Overwrite Channel Status  
2
OVWCHAN  
0
Only used if TXSRC=00. Overwrites the received  
channel status data using data read from S/PDIF  
transmitter channel status register  
0 = Channel data equal to recovered channel data.  
1 = Channel data taken from channel status registers.  
S/PDIF Through Mode Control  
3
4
REAL_  
0
1
THROUGH  
0 = SPDIFOP pin sources output of S/PDIF Transmitter  
1 = SPDIFOP pins sources output of S/PDIF IN Mux  
S/PDIF Transmitter powerdown  
R51  
PWRDN 2  
33h  
SPDIFTXD  
0 = S/PDIF Transmitter enabled  
1 = S/PDIF Transmitter disabled  
Table 47 S/PDIF Transmitter Control  
The WM8581 also transmits the preamble and VUCP bits (Validity, User Data, Channel Status and  
Parity bits).  
Validity Bit  
Set to 0 (to indicate valid data) unless TXSRC=00 (S/PDIF receiver), where Validity is the value  
recovered from the S/PDIF input stream by the S/PDIF receiver.  
User Data  
Set to 0 as User Data configuration is not supported in the WM8581 if TXSRC=00 (S/PDIF  
receiver) User Data is the value recovered from the S/PDIF input stream by the S/PDIF receiver.  
Channel Status  
The Channel Status bits form a 192-frame block - transmitted at 1 bit per sub-frame. Each sub-frame  
forms its own 192-frame block. The WM8581 is a consumer mode device and only the first 40 bits of  
the block are used. All data transmitted from the WM8581 is stereo, so the channel status data is  
duplicated for both channels. The only exception to this is the channel number bits (23:20) which can  
be changed to indicate whether the channel is left or right in the stereo image. Bits within this block  
can be configured by setting the Channel Status Bit Control registers (see Table 48 to Table 52). If  
TXSRC=00 (S/PDIF receiver), the Channel Status bits are transmitted with the same values  
recovered by the receiver unless OVWCHAN is set, in which case they are set by the S/PDIF  
transmitter channel status registers.  
Parity Bit  
This bit maintains even parity for data as a means of basic error detection. It is generated by the  
transmitter.  
For further details of all channel status bits, refer to IEC-60958-3.  
PP Rev 1.0 March 2006  
55  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R31  
SPDTXCHAN 1  
1Fh  
0
CON/PRO  
0
0
0 = Consumer Mode  
1 = Professional Mode (not supported by  
WM8581)  
1
2
AUDIO_N  
CPY_N  
1
0
0
0 = S/PDIF transmitted data is audio PCM.  
1 = S/PDIF transmitted data is not audio  
PCM.  
2
0 = Transmitted data has copyright asserted.  
1 = Transmitted data has no copyright  
assertion.  
5:3  
DEEMPH[2:0]  
5:3  
000  
000 = Data from Audio interface has no pre-  
emphasis.  
001 = Data from Audio interface has pre-  
emphasis.  
010 = Reserved (Audio interface has pre-  
emphasis).  
011 = Reserved (Audio interface has pre-  
emphasis).  
All other modes are reserved and should not  
be used.  
7:6  
CHSTMODE  
[1:0]  
7:6  
00  
00 = Only valid mode for consumer  
applications.  
Table 48 S/PDIF Transmitter Channel Bit Control 1  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R32  
SPDTXCHAN 2  
20h  
7:0  
CATCODE  
[7:0]  
15:8  
00000000  
Category Code. Refer to S/PDIF  
specification IEC60958-3 for details.  
00h indicates generalmode.  
Table 49 S/PDIF Transmitter Channel Bit Control 2  
PP Rev 1.0 March 2006  
56  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R33  
SPDTXCHAN 3  
21h  
3:0  
5:4  
SRCNUM  
[3:0]  
19:16  
0000  
00  
Source Number. No definitions are attached  
to data.  
CHNUM1[1:0]  
23:20  
Channel Number for Subframe 1  
CHNUM1  
Channel Status Bits[23:20]  
00  
0000 = Do not use channel  
number  
01  
10  
11  
0001 = Send to Left Channel  
0010 = Send to Right Channel  
0000 = Do not use channel  
number  
7:6  
CHNUM2[1:0]  
00  
Channel Number for Subframe 2  
CHNUM2  
Channel Status Bits[23:20]  
00  
0000 = Do not use channel  
number  
01  
10  
11  
0001 = Send to Left Channel  
0010 = Send to Right Channel  
0000 = Do not use channel  
number  
Table 50 S/PDIF Transmitter Channel Bit Control 3  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R34  
SPDTXCHAN 4  
22h  
3:0  
FREQ[3:0]  
27:24  
0001  
Sampling Frequency. See S/PDIF  
specification IEC60958-3 for details.  
0001 = Sampling Frequency not indicated.  
Clock Accuracy of Generated clock.  
00 = Level II  
5:4  
CLKACU[1:0]  
29:28  
11  
01 = Level I  
10 = Level III  
11 = Interface frame rate not matched to  
sampling frequency.  
Table 51 S/PDIF Transmitter Channel Bit Control 4  
PP Rev 1.0 March 2006  
57  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R35  
SPDTXCHAN 5  
23h  
0
MAXWL  
32  
1
Maximum Audio sample word length  
0 = 20 bits  
1 = 24 bits  
3:1  
TXWL[2:0]  
35:33  
101  
Audio Sample Word Length.  
000 = Word Length Not Indicated  
TXWL[2:0]  
001  
MAXWL==1  
20 bits  
MAXWL==0  
16 bits  
010  
22 bits  
18 bits  
100  
23 bits  
19 bits  
101  
24 bits  
20 bits  
110  
21 bits  
17 bits  
All other combinations reserved  
7:4  
ORGSAMP  
[3:0]  
39:36  
0000  
Original Sampling Frequency. See S/PDIF  
specification for details.  
0000 = original sampling frequency not  
indicated  
Table 52 S/PDIF Transmitter Channel Bit Control 5  
S/PDIF RECEIVER  
INPUT SELECTOR  
The S/PDIF receiver has one dedicated input, SPDIFIN1. This pin is a IEC-60958-3-compatible  
comparator input by default or, if SPDIFIN1MODE is set, the pin will be a CMOS-compatible input.  
There are three other pins which can be configured as either S/PDIF inputs or general purpose  
outputs (GPOs). The four S/PDIF inputs are multiplexed to allow one input to go to the S/PDIF  
receiver for decoding. The S/PDIF receiver can be powered down using the SPDIFRXD register bit.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R36  
SPDMODE  
24h  
0
SPDIFIN1MODE  
1
Selects the input circuit type for the SPDIFIN1 input  
0 = CMOS-compatible input  
1 = Comparator input. Compatible with 500mVpp AC  
coupled consumer S/PDIF input signals as defined in  
IEC60958-3.  
2:1  
RXINSEL[1:0]  
00  
S/PDIF Receiver input mux select.  
The general purpose inputs must be configured using  
GPOxOP to be either CMOS or comparator inputs if  
selected by RXINSEL.  
00 = Select SPDIFIN1  
01 = Select SPDIFIN2 (MFP3)  
10 = Select SPDIFIN3 (MFP4)  
11 = Select SPDIFIN4 (MFP5)  
GPO pin Configuration Select.  
R39  
GPO2  
26h  
3:0  
7:4  
GPO3OP[3:0]  
GPO4OP[3:0]  
0010  
0011  
1110 = Set GPO as S/PDIF input (CMOS-compatible  
input).  
1111 = Set GPO as S/PDIF input (compatible with  
500mVpp AC coupled consumer S/PDIF input signals  
as defined in IEC-60958-3).  
R40  
3:0  
GPO5OP[3:0]  
0100  
GPO3  
27h  
For GPO defaults, see Table 65.  
S/PDIF Receiver powerdown  
0 = S/PDIF Receiver enabled  
1 = S/PDIF Receiver disabled  
R51  
PWRDN 2  
33h  
5
SPDIFRXD  
1
PP Rev 1.0 March 2006  
58  
w
Product Preview  
Table 53 S/PDIF Receiver Input Selection Register  
WM8581  
AUDIO DATA HANDLING  
The S/PDIF receiver recovers the data and VUCP bits from each sub-frame. If the S/PDIF input data  
is in a non-compressed audio format the data can be internally routed to the stereo data input of  
DAC1. The WM8581 can detect when the data is in a non-compressed audio format and will  
automatically mute the DAC. See Non-Audio Detection for more detail.  
The received data can also be output over the digital audio interfaces in any of the data formats  
supported. This can be performed while simultaneously using DAC1 for playback. The received data  
may also be re-transmitted via the S/PDIF transmitter.  
USER DATA  
The WM8581 can output recovered user data received using GPO pins. See Table 65 for General  
Purpose Pin control information.  
CHANNEL STATUS DATA  
The channel status bits are recovered from the incoming data stream and are used to control various  
functions of the device. The recovered MAXWL and RXWL bits are used to truncate the recovered  
24-bit audio word to so that only the appropriate numbers of bits are used by the other interfaces  
(except the S/PDIF transmitter which always processes the full 24-bit recovered word).  
Should the recovered DEEMPH channel status be set, and the S/PDIF receiver is routed to DAC1,  
the de-emphasis filter is activated for DAC1.  
The S/PDIF receiver reads channel status data from channel 1 only. The channel status data is  
stored in five read-only registers which can be read via the serial interface (see Serial Interface  
Readback). When new channel status data has been recovered and stored in registers, the Channel  
Status Update (CSUD) bit is set to indicate that the status registers have updated and are ready for  
readback. After readback, CSUD will be cleared until the registers are next updated. The CSUD flag  
can be configured to be output on any of the GPO pins. The register descriptions for the channel  
status bits are given below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R44  
SPDRXCHAN 1  
2Ch  
0
CON/PRO  
0
-
0 = Consumer Mode  
1 = Professional Mode  
The WM8581 is a consumer mode device.  
Detection of professional mode may give  
erroneous behaviour.  
(read-only)  
1
AUDIO_N  
1
-
Recovered S/PDIF Channel status bit 1.  
0 = Data word represents audio PCM  
samples.  
1 = Data word does not represent audio  
PCM samples.  
2
3
CPY_N  
2
3
-
-
0 = Copyright is asserted for this data.  
1 = Copyright is not asserted for this data.  
DEEMPH  
0 = Recovered S/PDIF data has no pre-  
emphasis.  
1 = Recovered S/PDIF data has pre-  
emphasis.  
5:4  
7:6  
Reserved  
CHSTMODE  
[1:0]  
5:4  
7:6  
-
-
Reserved for additional de-emphasis modes.  
00 = Only valid mode for consumer  
applications.  
Table 54 S/PDIF Receiver Channel Status Register 1  
PP Rev 1.0 March 2006  
59  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R45  
SPDRXCHAN 2  
2Dh  
7:0  
CATCODE  
[7:0]  
15:8  
-
Category Code. Refer to S/PDIF  
specification IEC60958-3 for details.  
00h indicates generalmode.  
(read-only)  
Table 55 S/PDIF Receiver Channel Status Register 2  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R46  
SPDRXCHAN 3  
2Eh  
3:0  
7:4  
SRCNUM  
[3:0]  
19:16  
-
-
Indicates number of S/PDIF source. Refer to  
S/PDIF specification IEC60958-3 for details.  
CHNUM1[3:0]  
23:20  
Channel number for channel 1.  
(read-only)  
0000 = Take no account of channel number  
(channel 1 defaults to left DAC)  
0001 = channel 1 to left channel  
0010 = channel 1 to right channel  
Table 56 S/PDIF Receiver Channel Status Register 3  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R47  
SPDRXCHAN 4  
2Fh  
3:0  
FREQ[3:0]  
27:24  
-
Sampling Frequency. Refer to S/PDIF  
specification IEC60958-3 for details.  
0001 = Sampling Frequency not indicated.  
Clock Accuracy of received clock.  
00 = Level II  
5:4  
CLKACU[1:0]  
29:28  
-
(read-only)  
01 = Level I  
10 = Level III  
11 = Interface frame rate not matched to  
sampling frequency.  
Table 57 S/PDIF Receiver Channel Status Register 4  
PP Rev 1.0 March 2006  
60  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
CHANNEL  
STATUS  
BIT  
DEFAULT  
DESCRIPTION  
R48  
SPDRXCHAN 5  
30h  
0
MAXWL  
32  
-
Maximum Audio sample word length  
0 = 20 bits  
1 = 24 bits  
(read-only)  
3:1  
RXWL[2:0]  
35:33  
-
Audio Sample Word Length.  
000: Word Length Not Indicated  
RXWL[2:0]  
001  
MAXWL==1  
20 bits  
MAXWL==0  
16 bits  
010  
22 bits  
18 bits  
100  
23 bits  
19 bits  
101  
24 bits  
20 bits  
110  
21 bits  
17 bits  
All other combinations are reserved and may  
give erroneous operation. Data will be  
truncated internally when these bits are set.  
7:4  
ORGSAMP  
[3:0]  
39:36  
-
Original Sampling Frequency. Refer to  
S/PDIF specification IEC60958-3 for details.  
0000 = original sampling frequency not  
indicated  
Table 58 S/PDIF Receiver Channel Status Register 5  
PP Rev 1.0 March 2006  
61  
w
WM8581  
Product Preview  
STATUS FLAGS  
There are several status flags generated by the S/PDIF Receiver, described below.  
FLAG  
DESCRIPTION  
VISIBILITY  
S/PDIF Status  
Register, GPO  
pins, SWMODE pin  
(when in hardware  
mode)  
UNLOCK  
Indicates that the S/PDIF Clock Recovery circuit is unlocked, or the  
incoming S/PDIF signal is not present.  
0 = Locked onto incoming S/PDIF stream.  
1 = Not locked to the incoming S/PDIF stream, or incoming stream  
is not present.  
INVALID  
Indicates that recovered S/PDIF data is marked as invalid.  
0 = Data marked as valid  
Interrupt Status  
Register  
1 = Data marked as invalid  
TRANS_ERR  
Indicates that recovered S/PDIF frame has parity errors or bi-phase  
encoding errors, or that sub-frames were recovered out of  
sequence  
Interrupt Status  
Register  
0 = No data errors or bi-phase encoding errors detected and sub-  
frame sequence correct  
1 = Data errors or bi-phase encoding errors detected or subframe  
sequence incorrect (missing preamble)  
AUDIO_N  
PCM_N  
Recovered Channel Status bit-1.  
Channel Status  
Register, S/PDIF  
Status Register  
0 = Data word represents audio PCM samples.  
1 = Data word does not represent audio PCM samples.  
Indicates that non-audio code (defined in IEC-61937) has been  
detected.  
S/PDIF Status  
Register  
0 = Sync code not detected.  
1 = Sync code detected received data is not audio PCM.  
Recovered Channel Status bit-2 (active low)  
0 = Copyright is asserted for this data.  
CPY_N  
DEEMPH  
Channel Status  
Register, S/PDIF  
Status Register,  
GPO pins  
1 = Copyright is not asserted for this data.  
Recovered Channel Status bit-3  
Channel Status  
Register, S/PDIF  
Status Register,  
GPO pins  
0 = Recovered S/PDIF data has no pre-emphasis.  
1 = Recovered S/PDIF data has pre-emphasis  
REC_FREQ[1:0]  
Indicates recovered S/PDIF sample rate.  
00 = 192kHz  
S/PDIF Status  
Register  
01 = 96kHz / 88.2kHz  
10 = 48kHz / 44.1kHz  
11 = 32kHz  
INTB  
Interrupt signal (see section Interrupt Generation)  
Recovered validity-bit for current sub-frame  
Recovered user-bit for current sub-frame  
Recovered channel-bit for current sub-frame  
Recovered parity-bit for current sub-frame  
Indicates current sub-frame:  
GPO pins  
GPO pins  
GPO pins  
GPO pins  
GPO pins  
GPO pins  
V
U
C
P
SFRM_CLK  
1 = Sub-frame A  
0 = Sub-frame B  
192BLK  
CSUD  
Indicates start of 192 frame-block. High for duration of frame-0.  
GPO pins  
GPO pins  
Indicates that the 192 frame-block of channel status data has  
updated.  
REC_FREQ192  
ZFLAG  
Indicates that the recovered S/PDIF clock frequency is 192kHz  
GPO pins  
Indicates zero-detectionin DACs. See page 45 for more details  
MUTE pin, GPO  
pins  
NON_AUDIO  
Logical OR of PCM_N and AUDIO_N  
GPO pins, SDO pin  
(when in hardware  
mode)  
Table 59 Status Flag Description  
PP Rev 1.0 March 2006  
62  
w
Product Preview  
WM8581  
HARDWARE INTERRUPT GENERATION (INTB)  
The hardware interrupt INTB flag (active low) indicates that an event has occurred on UNLOCK,  
INVALID, TRANS_ERR, NON_AUDIO, CPY_N, DEEMPH, CSUD or REC_FREQ. To determine  
which flag caused the interrupt, the Interrupt Status Register should be read when INTB is asserted.  
INVALID, TRANS_ERR and CSUD generate an interrupt when the flag transitions from low to high.  
UNLOCK, NON_AUDIO, CPY_N, DEEMPH and REC_FREQ will generate an interrupt on any  
change in status. INTB will remain asserted until it is cleared by reading the interrupt status register.  
If INVALID, TRANS_ERR or CSUD are still active when the interrupt status register is read, INTB  
remains asserted.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R43  
INTSTAT  
2Bh  
0
UPD_UNLOCK  
-
UNLOCK flag update signal  
0 = INTB not caused by update to UNLOCK flag  
1 = INTB caused by update to UNLOCK flag  
INVALID flag interrupt signal  
(read-only)  
1
2
3
4
5
6
7
INT_INVALID  
INT_CSUD  
-
-
-
-
-
-
-
0 = INTB not caused by INVALID flag  
1 = INTB caused by INVALID flag  
CSUD flag interrupt signal  
0 = INTB not caused by CSUD flag  
1 = INTB caused by CSUD flag  
INT_TRANS  
_ERR  
TRANS_ERR flag interrupt signal  
0 = INTB not caused by TRANS_ERR flag  
1 = INTB caused by TRANS_ERR flag  
NON_AUDIO update signal  
UPD_NON_AUDIO  
UPD_CPY_N  
0 = INTB not caused by update to NON_AUDIO flag  
1 = INTB caused by update to NON_AUDIO flag  
CPY_N update signal  
0 = INTB not caused by update to CPY_N flag  
1 = INTB caused by update to CPY_N flag  
DEEMPH update signal  
UPD_DEEMPH  
UPD_REC_FREQ  
0 = INTB not caused by update to DEEMPH flag  
1 = INTB caused by update to DEEMPH flag  
REC_FREQ update signal  
0 = INTB not caused by update to REC_FREQ flag  
1 = INTB caused by update to REC_FREQ flag  
Table 60 Interrupt Status Register  
Where the INTB has been asserted by an update signal (UPD_UNLOCK, UPD_NON_AUDIO,  
UPD_CPY_N, UPD_DEEMPH, UPD_REC_FREQ) the S/PDIF Status Register can be read to reveal  
the status of the flag. See Table 61.  
PP Rev 1.0 March 2006  
63  
w
WM8581  
Product Preview  
REGISTER  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADDRESS  
R49  
0
AUDIO_N  
-
Recovered Channel Status bit-1.  
SPDSTAT  
31h  
0 = Data word represents audio PCM samples.  
1 = Data word does not represent audio PCM samples.  
(read-only)  
1
PCM_N  
-
Indicates that non-audio code (defined in IEC-61937)  
has been detected.  
0 = Sync code not detected.  
1 = Sync code detected received data is not audio  
PCM.  
2
3
CPY_N  
-
-
Recovered Channel Status bit-2 (active low).  
0 = Copyright is asserted for this data.  
1 = Copyright is not asserted for this data.  
Recovered Channel Status bit-3  
0 = Recovered S/PDIF data has no pre-emphasis.  
1 = Recovered S/PDIF data has pre-emphasis  
Indicates recovered S/PDIF clock frequency:  
00 = 192kHz  
DEEMPH  
5:4  
REC_FREQ  
[1:0]  
--  
01 = 96kHz / 88.2kHz  
10 = 48kHz / 44.1kHz  
11 = 32kHz  
6
UNLOCK  
-
Indicates that the S/PDIF Clock Recovery circuit is  
unlocked or that the input S/PDIF signal is not present.  
0 = Locked onto incoming S/PDIF stream.  
1 = Not locked to the incoming S/PDIF stream or the  
incoming S/PDIF stream is not present.  
Table 61 S/PDIF Status Register  
The interrupt and update signals used to generate INTB can be masked as necessary. The MASK  
register bit prevents flags from asserting INTB and from updating the Interrupt Status Register (R43).  
Masked flags update the S/PDIF Status Register (R49).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R37  
INTMASK  
25h  
8:0  
MASK[8:0]  
000000000  
When a flag is masked, it does not update the Interrupt  
Status Register or assert INTB.  
0 = unmask, 1 = mask.  
MASK[0] = mask control for UPD_UNLOCK  
MASK[1] = mask control for INT_INVALID  
MASK[2] = mask control for INT_CSUD  
MASK[3] = mask control for INT_TRANS_ERR  
MASK[4] = mask control for UPD_AUDIO_N  
MASK[5] = mask control for UPD_PCM_N  
MASK[6] = mask control for UPD_CPY_N  
MASK[7] = mask control for UPD_DEEMPH  
MASK[8] = mask control for UPD_REC_FREQ  
Table 62 Interrupt Mask Control Register  
ERROR HANDLING  
Should a TRANS_ERR or INVALID flag be asserted, it is assumed the recovered S/PDIF sub-frame  
is corrupted or invalid. If either flag is masked using the mask register, the WM8581 will overwrite the  
recovered frame (i.e. both sub-frames) with either all-zeros or the last valid data sample; depending  
on how FILLMODE has been set. If both flags are unmasked, data is not modified and the user must  
handle corrupted data appropriately.  
PP Rev 1.0 March 2006  
64  
w
Product Preview  
WM8581  
ALWAYSVALID must be set to 0, else the INVALID flag will be ignored. For the S/PDIF Receiver to  
S/PDIF transmitter path, only masked INVALID flags will cause data to be overwritten TRANS_ERR  
flags have no effect.  
REGISTER  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADDRESS  
R38  
8
FILLMODE  
0
Determines what S/PDIF Receiver should do with  
corrupted or invalid data:  
GPO1  
26h  
0 = Data from S/PDIF Receiver remains static at last  
valid sample.  
1 = Data from S/PDIF Receiver is output as all zeros.  
Used to ignore the INVALID flag. See Table 64.  
0 = Use INVALID flag.  
R39  
GPO2  
27h  
8
ALWAYSVALID  
0
1 = Ignore INVALID flag.  
Table 63 S/PDIF Receiver Error Handling Registers  
MASK ALWAYSVALID DATA OVERWRITE INTB ASSERT  
0
0
1
1
0
1
0
1
No  
No  
Yes  
No  
No  
No  
Yes  
No  
Table 64 Data Overwrite / INTB Assert Criteria  
NON-AUDIO DETECTION  
Non-Audio data is indicated by the AUDIO_N and PCM_N flags. AUDIO_N is recovered from the  
Channel Status block. PCM_N is set on detection of the 96-bit IEC-61937 non-audio data sync code,  
embedded in the data section of the S/PDIF frame. If DAC1 is sourcing the S/PDIF Receiver and  
either the AUDIO_N or PCM_N flags are asserted, DAC1 is automatically muted using the softmute  
feature. As described above, any change of AUDIO_N or PCM_N status will cause an INTB interrupt  
(UPD_NON_AUDIO) to be generated. If the MASK register bit for AUDIO_N or PCM_N is set, then  
the associated signal will not generate an interrupt (UPD_NON_AUDIO) but the DAC will be muted.  
S/PDIF INPUT/ GPO PIN CONFIGURATION  
The WM8581 has seven pins which can be configured as GPOs using the registers shown in Table 65. The  
GPO pins can be used to output status data decoded by the S/PDIF receiver. These same pins may be used  
as S/PDIF inputs as described in Table 53.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R38  
GPO1  
26h  
3:0  
7:4  
GPO1OP[3:0]  
GPO2OP[3:0]  
0000  
0001  
0000 = INTB  
0001 = V  
0010 = U  
0011 = C  
R39  
3:0  
7:4  
GPO3OP[3:0]  
GPO4OP[3:0]  
0010  
0011  
0100 = P  
GPO2  
27h  
0101 = SFRM_CLK  
0110 = 192BLK  
0111 = UNLOCK  
1000 = CSUD  
R40  
3:0  
7:4  
GPO5OP[3:0]  
GPO6OP[3:0]  
0100  
0101  
GPO3  
28h  
PP Rev 1.0 March 2006  
65  
w
WM8581  
Product Preview  
R41  
GPO4  
29h  
3:0  
GPO7OP[3:0]  
0110  
1001 = REC_FREQ192  
1010 = ZFLAG  
1011 = NON_AUDIO  
1100 = CPY_N  
1101 = DEEMP  
1110 = Set GPO as S/PDIF input (CMOS-compatible  
input). Only applicable for GPO3/4/5.  
1111 = Set GPO as S/PDIF input (comparatorinput for  
AC coupled consumer S/PDIF signals). Only applicable  
for GPO3/4/5  
Table 65 GPO Control Registers  
POWERDOWN MODES  
The WM8581 has powerdown control bits allowing specific parts of the chip to be turned off when not in use.  
The ADC is powered down by setting the ADCPD register bit. The three stereo DACs each have a separate  
powerdown control bit, DACPD[2:0], allowing individual stereo DACs to be powered down when not in use.  
DACPD can be overwritten by setting ALLDACPD to powerdown all DACs  
The S/PDIF transmitter is powered down by setting SPDIFTXD. Setting SPDIFRXD powers down the S/PDIF  
receiver.  
The PLL, Oscillator and S/PDIF clock recovery circuits are powered down by setting PLLPD, OSCPD and  
SPDIFPD respectively.  
Setting all of ADCPD, DACPD[2:0], SPDIFTXD, SPDIFRXD and OUTPD[3:0] will powerdown everything  
except the references VMIDADC, ADCREF and VMIDDAC. These may be powered down by setting PWDN.  
Setting PWDN will override all other powerdown control bits. It is recommended that the ADC and DAC are  
powered down before setting PWDN. The default is for all powerdown bits to be set except OSCPD and  
PWDN.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R50  
PWRDN 1  
32h  
0
PWDN  
0
Master powerdown (overrides all  
powerdown registers)  
0 = All digital circuits running,  
outputs are active  
1 = All digital circuits in power  
down mode, outputs muted  
1
ADCPD  
1
ADC powerdown  
0 = ADC enabled  
1 = ADC disabled  
DAC powerdowns  
0 = DAC enabled  
1 = DAC disabled  
DACPD[0] = DAC1  
DACPD[1] = DAC2  
DACPD[2] = DAC3  
Overrides DACPD[3:0]  
4:2  
DACPD[2:0]  
111  
6
0
ALLDACPD  
OSCPD  
1
0
0 = DACs under control of  
DACPD[3:0]  
1= All DACs are disabled.  
OSC output powerdown  
0 = OSC output enabled  
1 = OSC output disabled  
R51  
PWRDN 2  
33h  
A CMOS input can be applied to  
the OSC input when powered  
down.  
1
PLLAPD  
1
0 = PLLA enabled  
1 = PLLA disabled  
PP Rev 1.0 March 2006  
66  
w
Product Preview  
WM8581  
2
3
PLLBPD  
1
1
0 = PLLB enabled  
1 = PLLB disabled  
SPDIFPD  
S/PDIF Clock Recovery  
PowerDown  
0 = S/PDIF enabled  
1 = S/PDIF disabled  
4
5
SPDIFTXD  
SPDIFRXD  
1
1
S/PDIF Transmitter powerdown  
0 = S/PDIF Transmitter enabled  
1 = S/PDIF Transmitter disabled  
S/PDIF Receiver powerdown  
0 = S/PDIF Receiver enabled  
1 = S/PDIF Receiver disabled  
Table 66 Powerdown Registers  
INTERNAL POWER ON RESET CIRCUIT  
Figure 33 Internal Power On Reset Circuit Schematic  
The WM8581 includes an internal Power-On Reset Circuit, which is used to reset the digital logic into a  
default state after power up.  
Figure 33 shows a schematic of the internal POR circuit. The POR circuit is powered from AVDD. The circuit  
monitors DVDD and VMID and asserts PORB low if DVDD or VMID are below the minimum threshold  
Vpor_off.  
On power up, the POR circuit requires AVDD to be present to operate. PORB is asserted low until AVDD,  
DVDD and VMID voltages have risen above their reset thresholds. When these three conditions have been  
met, PORB is released high. When PORB is released high, all registers are in their default state and writes  
to the digital interface may take place.  
On power down, PORB is asserted low whenever DVDD or VMID drop below the minimum threshold  
Vpor_off.  
If AVDD is removed at any time, the internal Power On Reset circuit is powered down and the PORB output  
will follow the AVDD voltage.  
In most applications, the time required for the device to release PORB high will be determined by the charge  
time of the VMID node.  
PP Rev 1.0 March 2006  
67  
w
WM8581  
Product Preview  
Figure 34 Typical Power up sequence where DVDD is powered before AVDD  
Figure 35 Typical Power up sequence where AVDD is powered before DVDD  
SYMBOL  
Vpora  
MIN  
0.5  
0.5  
1.0  
0.6  
TYP  
0.7  
0.7  
1.4  
0.8  
MAX  
1.0  
UNIT  
V
V
V
V
Vporr  
1.1  
Vpora_off  
Vpord_off  
2.0  
1.0  
Table 67 Typical POR Operation  
In a real application, the designer is unlikely to have control of the relative power up sequence of  
AVDD and DVDD. Using the POR circuit to monitor VMID ensures a reasonable delay between  
applying power to the device and Device Ready.  
PP Rev 1.0 March 2006  
68  
w
Product Preview  
WM8581  
Figure 34 and Figure 35 show typical power up scenarios in a real system. Both AVDD and DVDD  
must be established, and VMID must have reached the threshold Vporr before the device is ready  
and can be written to. Any writes to the device before Device Ready will be ignored.  
Figure 34 shows DVDD powering up before AVDD. Figure 35 shows AVDD powering up before  
DVDD. In both cases, the time from applying power to Device Ready is dominated by the charge time  
of VMID.  
A 4.7µF capacitor (minimum) is recommended for decoupling on VMID. The charge time for VMID  
will dominate the time required for the device to become ready after power is applied. The time  
required for VMID to reach the threshold is a function of the VMID resistor string and the decoupling  
capacitor. To reduce transient audio effects during power on, the stereo DACs on the WM8581 have  
their outputs clamped to VMID at power-on. This increases the capacitive loading of the VMID  
resistor string, as the DAC output AC coupling capacitors must be charged to VMID, and hence the  
required charge time. To ensure minimum device startup time, the VMIDSEL bit is set by default,  
thus reducing the impedance of the resistor string. If required, the VMID string can be restored to a  
high impedance state to save power once the device is ready.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R29  
ADC CONTROL 1  
1Dh  
8
VMIDSEL  
1
VMID Impedance Selection  
0 = High impedance, power  
saving  
1 = Low impedance, fast power-  
on  
DEVICE ID READBACK  
Reading from registers R0, R1 and R2 returns the device ID and revision number. R0 returns 80h, R1  
returns 85h, R2 returns the device revision number. Device ID readback is not possible in continuous  
readback mode (CONTREAD=1).  
PP Rev 1.0 March 2006  
69  
w
WM8581  
Product Preview  
HARDWARE CONTROL MODE  
The WM8581 can be controlled in Hardware Control Mode or Software Control Mode. The method of  
control is determined by the state of the HWMODE pin. If the HWMODE pin is low, Software Control  
Mode is selected. If the HWMODE pin is high, Hardware Control Mode is selected.  
In Hardware Control Mode the user has limited control over the features of the WM8581. Most of the  
features will assume their default settings but some can be modified using external pins.  
HWMODE  
Software Control Hardware Control  
SWMODE  
0
1
0
1
2-wire control  
3-wire control  
Table 68 Hardware/Software Mode Setup  
DIGITAL ROUTING CONTROL  
See page 22 for a more detailed explanation of the Digital Routing Options within the WM8581. In  
Software Control Mode, the values of register bits DAC_SRC, PAIFTX_SRC and TXSRC configure  
the signal path routing between interfaces. In hardware mode, similar control can be achieved via  
pins DR1, DR2, DR3 and DR4 as detailed in Table 69 and Table 70.  
PIN  
DR1  
DR2  
0
1
DAC_SRC=S/PDIF receiver  
DAC_SRC=PAIF receiver  
PAIFTX_SRC=ADC output  
PAIFTX_SRC=S/PDIF  
receiver  
Table 69 DR1 / DR2 Operation  
DR4  
DR3  
S/PDIF TRANSMITTER  
DATA SOURCE  
0
0
1
1
0
1
0
1
S/PDIF received data  
ADC digital output data  
SAIF receiver data  
PAIF receiver data  
Table 70 DR3 / DR4 Operation  
The Secondary Audio Interface (SAIF) is not operational in Hardware Mode.  
PP Rev 1.0 March 2006  
70  
w
Product Preview  
WM8581  
STATUS PINS  
In Hardware control mode, SDO, SWMODE and MFP8/9/10 pins provide S/PDIF status flag information.  
FLAG  
DESCRIPTION  
PIN  
SWMODE  
UNLOCK  
Indicates that the S/PDIF Clock Recovery circuit is unlocked  
or that the input S/PDIF signal is not present.  
0 = Locked to incoming S/PDIF stream.  
1 = Not locked to the incoming S/PDIF stream, or incoming  
stream not present.  
SDO  
NON_AUDIO  
Logical OR of PCM_N and AUDIO_N:  
PCM_N indicates that non-audio code (defined in IEC-61937)  
has been detected. AUDIO_N is the recovered Channel  
Status bit-1.  
MFP8  
MFP9  
C
Recovered channel-bit for current sub-frame  
SFRM_CLK  
Indicates current sub-frame:  
1 = Sub-frame A  
0 = Sub-frame B  
MFP10  
192BLK  
Indicates start of 192-frame block. High for duration of frame  
0, low after frame 0.  
Table 71 Hardware Mode Status Pins  
DIGITAL AUDIO INTERFACE CONTROL  
In Hardware Control Mode, CSB and SCLK become controls to configure the Primary Audio Interface  
data format and word length. The configuration applies to both transmit and receive sides of the  
interface. Table 72 below shows the options available.  
CSB  
SCLK  
FORMAT & WORD LENGTH  
24-bit right justified  
20-bit right justified  
24-bit left justified  
24-bit I2S  
0
0
1
1
0
1
0
1
Table 72 Audio Interface Hardware Mode Control  
DAC MUTE CONTROL  
In Hardware Control mode, the MUTE pin activates the softmute function on all the DACs. In  
Software Control mode, MUTE activates softmute on the DAC selected by the DZFM register (when  
the MPDENB bit is low). See page 34 for a detailed description of the softmute function and the  
other methods of activating softmute.  
When floating, the MUTE pin becomes an output for the ZFLAG flag.  
DESCRIPTION  
MUTE  
0
1
Normal Operation  
Mute DAC channels  
Floating  
MUTE is an output to indicate when Zero Detection occurs on all DACs  
(ZFLAG).  
H = detected, L = not detected.  
Table 73 MUTE Pin Control Options  
PP Rev 1.0 March 2006  
71  
w
WM8581  
Product Preview  
PRIMARY AUDIO INTERFACE (TX) MASTER MODE CONTROL  
In Hardware Control Mode, the SDIN pin is used to enable the master mode function on the Primary  
Audio Interface transmitter. This has the same operation as the PAIFTX_MS register bit. The  
PAIFTX_RATE default settings of 256fs, and 64 BCLKs/LRCLK for BCLKSEL, are used in Hardware  
Control Mode. See page Error! Bookmark not defined. for more information on master mode  
operation.  
SDIN  
AUDIO INTERFACE (TX)  
0
1
Slave  
Master  
Table 74 Audio Interface (Transmitter) Master Mode Hardware Mode Control  
S/PDIF ERROR HANDLING  
Should the incoming S/PDIF sub-frame contain a parity error or a bi-phase encoding error, it is  
assumed the sub-frame has become corrupted. Similarly, if VALIDITY is detected as 1, it is assumed  
the data within the S/PDIF frame is invalid. Under these conditions, the S/PDIF Receiver repeats the  
last valid sample in place of the corrupted/invalid samples. (Note: For the S/PDIF receiver to S/PDIF  
transmitter path, only VALIDITY errors will cause data to be overwritten parity and bi-phase errors  
have will not cause data to be overwritten).  
POWERDOWN CONTROL  
In Software Control Mode, the device is powered-down by default. In Hardware Control Mode, the  
chip is powered-up by default but can be powered up by setting the ALLPD(MFP7) input high. (Note  
that in Software Control Mode, this pin takes the function of SAIF_LRCLK or GPO7).  
ALLPD (MFP7)  
0
1
Powerup  
Powerdown  
Table 75 Hardware Mode Powerdown Control  
PP Rev 1.0 March 2006  
72  
w
Product Preview  
WM8581  
REGISTER MAP  
The complete register map is shown below. The detailed description can be found in the relevant text of the device description. The  
WM8581 can be configured using the Control Interface. All unused bits should be set to 0.  
REGISTER NAME  
ADDRESS  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DEFAULT  
R0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
PLLA 1/DEVID1  
PLLA_K[8:0]  
PLLA_K[17:9]  
100100001  
101111110  
001111101  
000010100  
100100001  
101111110  
001111101  
110010100  
000010000  
R1  
R2  
PLLA 2/DEVID2  
PLLA 3/DEVREV  
PLLA 4  
0
0
PLLA_N[3:0]  
0
PLLA_K[21:18]  
R3  
FREQMODE_A[1:0]  
0
0
FRACEN_A  
POSTSCALE_A PRESCALE_A  
R4  
PLLB 1  
PLLB_K[8:0]  
PLLB_K[17:9]  
R5  
PLLB 2  
R6  
PLLB 3  
0
PLLB_N[3:0]  
PLLB_K[21:18]  
R7  
MCLKOUTSRC[1:0]  
FREQMODE_B[1:0]  
ADC_CLKSEL[1:0]  
PLLB 4  
CLKOUTSRC[1:0]  
FRACEN_B POSTSCALE_B PRESCALE_B  
R8  
0
0
0
0
TX_CLKSEL[1:0]  
DAC_CLKSEL[1:0]  
PAIFRX_RATE[2:0]  
CLKSEL  
R9  
PAIFRXMS_CLKSEL[1:0]  
PAIFRXMS  
PAIFRX_BCLKSEL[1:0]  
PAIF 1  
000000010  
000000010  
011000010  
110001010  
010001010  
000001010  
011100100  
000001001  
000000000  
011111111  
000000000  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
PAIFTX_BCLKSEL[1:0]  
PAIF 2  
0
0
0
PAIFTXMS  
SAIFMS  
PAIFRXBCP  
PAIFTXBCP  
PAIFTX_RATE[2:0]  
SAIF_RATE[2:0]  
SAIF_BCLKSEL[1:0]  
SAIF 1  
0
SAIFMS_CLKSEL[1:0]  
PAIFRXLRP  
PAIFTXLRP  
SAIFLRP  
PAIFRXWL[1:0]  
PAIFRXFMT[1:0]  
PAIF 3  
DAC_SRC[1:0]  
PAIFTX_SRC[1:0]  
SAIFTX_SRC[1:0]  
DACOSR  
0
PAIFTXWL[1:0]  
SAIFWL[1:0]  
PAIFTXFMT[1:0]  
SAIFFMT[1:0]  
DAC1SEL[1:0]  
PAIF 4  
SAIFBCP  
SAIF 2  
SAIF_EN  
DAC4SEL[1:0]  
DAC3SEL[1:0]  
DAC2SEL[1:0]  
DAC CONTROL 1  
DAC CONTROL 2  
DAC CONTROL 3  
DAC CONTROL 4  
DAC CONTROL 5  
RX2DAC_MODE  
0
0
0
0
IZD  
0
DZFM[2:0]  
0
PL[3:0]  
0
DEEMP[3:0]  
DEEMPALL  
PHASE[7:0]  
MUTEALL  
LDA1[7:0]  
MPDENB DACATC  
DZCEN  
DMUTE[3:0]  
DIGITAL ATTENUTATION  
DACL 1  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
14  
15  
16  
17  
18  
19  
1A  
1B  
011111111  
011111111  
011111111  
011111111  
011111111  
011111111  
011111111  
DIGITAL ATTENUTATION  
DACR 1  
RDA1[7:0]  
LDA2[7:0]  
RDA2[7:0]  
LDA3[7:0]  
RDA3[7:0]  
LDA4[7:0]  
RDA4[7:0]  
MASTDA[7:0]  
DIGITAL ATTENUTATION  
DACL 2  
DIGITAL ATTENUTATION  
DACR 2  
DIGITAL ATTENUTATION  
DACL 3  
DIGITAL ATTENUTATION  
DACR 3  
DIGITAL ATTENUTATION  
DACR 4  
DIGITAL ATTENUTATION  
DACR 4  
011111111  
011111111  
MASTER DIGITAL  
ATTENUTATION  
UPDATE  
VMIDSEL  
R28  
R29  
R30  
1C  
1D  
1E  
ADC CONTROL 1  
SPDTXCHAN 0  
ADCRATE[2:0]  
ADCHPD ADCOSR AMUTEALL AMUTER AMUTEL 001000000  
REAL_  
0
0
0
0
0
0
0
0
0
0
TXSRC[1:0]  
000000000  
OVWCHAN  
THROUGH  
CHSTMODE[1:0]  
DEEMPH[2:0]  
CPY_N AUDIO_N CON/PRO  
R31  
R32  
R33  
R34  
R35  
1F  
20  
21  
22  
23  
SPDTXCHAN 1  
SPDTXCHAN 2  
SPDTXCHAN 3  
SPDTXCHAN 4  
SPDTXCHAN 5  
000000000  
000000000  
CATCODE[7:0]  
CHNUM2[1:0]  
CHNUM1[1:0]  
CLKACU[1:0]  
SRCNUM[3:0]  
FREQ[3:0]  
000000000  
000110001  
000001011  
0
0
ORGSAMP[3:0]  
TXWL[2:0]  
MAXWL  
PP Rev 1.0 March 2006  
73  
w
WM8581  
Product Preview  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
SPDMODE  
INTMASK  
GPO1  
0
0
0
1
1
1
RXINSEL[1:0]  
000111001  
SPDIFIN1MODE  
MASK[8:0]  
000000000  
GPO2OP[3:0]  
GPO4OP[3:0]  
GPO6OP[3:0]  
GPO1OP[3:0]  
GPO30P[3:0]  
GPO5OP[3:0]  
GPO70P[3:0]  
000010000  
FILLMODE  
GPO2  
000110010  
ALWAYSVALID  
GPO3  
0
0
0
001010100  
GPO4  
0
1
1
0
1
0
1
1
001110110  
Reserved  
INTSTAT  
1
0
0
0
010011000  
Error Flag Interupt Status Register  
Channel Status Register 1  
Channel Status Register 2  
Channel Status Register 3  
Channel Status Register 4  
Channel Status Register 5  
S/PDIF Status Register  
DACPD[3:0]  
-
SPDRXCHAN 1  
SPDRXCHAN 2  
SPDRXCHAN 3  
SPDRXCHAN 4  
SPDRXCHAN 5  
SPDSTAT  
-
R45  
R46  
R47  
R48  
R49  
R50  
R51  
-
-
-
-
-
PWRDN 1  
0
0
ALLDACPD  
ADCPD  
PWDN  
001111110  
000111110  
PWRDN 2  
0
0
0
0
0
0
SPDIFRXD  
0
SPDIFPD PLLBPD PLLAPD  
OSCPD  
SPDIFTXD  
READEN  
CONTREAD  
READMUX[2:0]  
R52  
R53  
34  
35  
READBACK  
RESET  
000000000  
n/a  
RESET  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R0  
PLLA 1/  
DEVID1  
00h  
8:0  
PLLA_K[8:0]  
100100001  
Fractional (K) part of PLLA input/output frequency ratio (treat as  
one 22-digit binary number).  
Reading from these registers will return the device ID.  
R0 returns 10000101 = 81h  
R1  
8:0  
PLLA_K[17:9]  
101111110  
R1 returns 10000000 = 85h  
PLLA 2/  
DEVID2  
01h  
Device ID readback is not possible in continuous readback mode  
(CONTREAD=1).  
R2  
3:0  
7:4  
PLLA_K[21:18]  
PLLA_N[3:0]  
1101  
0111  
PLLA 3/  
DEVREV  
02h  
Integer (N) divisor part of PLLA input/output frequency ratio. Use  
values greater than 5, less than 13.  
Reading from this register will return the device revision number.  
0 = no pre-scale  
R3  
PLLA 4  
03h  
0
1
PRESCALE_A  
POSTSCALE_A  
FRACEN_A  
0
0
1 = divide MCLK by 2 prior to PLLA  
0 = no post scale  
1= divide MCLK by 2 after PLLA  
0 = Integer N PLLA  
2
1
1 = Fractional K PLLA  
4:3  
FREQMODE_A[  
1:0]  
10  
Range Selector for PLLACLK  
(not valid when TXSRC=00)  
00 = 192KHz  
01 = 88.2KHz to 96KHz  
10 = 44.1KHz to 48KHz  
11 = 32KHz  
R4  
PLLB 1  
04h  
8:0  
8:0  
PLLB_K[8:0]  
100100001  
101111110  
Fractional (K) part of PLLB input/output frequency ratio (treat as  
one 22-digit binary number).  
R5  
PLLB_K[17:9]  
PLLB 2  
05h  
PP Rev 1.0 March 2006  
74  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R6  
PLLB 3  
06h  
3:0  
7:4  
PLLB_K[21:18]  
PLLB_N[3:0]  
1101  
0111  
Integer (N) divisor part of PLLB input/output frequency ratio. Use  
values greater than 5, less than 13.  
R7  
0
1
PRESCALE_B  
POSTSCALE_B  
FRACEN_B  
0
0
0 = no pre-scale  
PLLB 4  
07h  
1 = divide MCLK by 2 prior to PLLB  
0 = no post scale  
1= divide MCLK by 2 after PLLB  
0 = Integer N PLLB  
2
1
1 = Fractional K PLLB  
Range Selector for PLLBCLK  
(not valid when TXSRC=00)  
00 = 192KHz  
4:3  
FREQMODE_B  
[1:0]  
10  
01 = 88.2KHz to 96KHz  
10 = 44.1KHz to 48KHz  
11 = 32KHz  
6:5  
MCLKOUTSRC  
00  
MCLK pin output source  
00 = MCLK pin configured as an input. The system should be  
powered down before changing from this register setting.  
01 = PLLACLK  
10 = PLLBCLK  
11 = OSCCLK  
8:7  
1:0  
3:2  
5:4  
2:0  
CLKOUTSRC  
DAC_CLKSEL  
ADC_CLKSEL  
TX_CLKSEL  
11  
00  
CLKOUT pin source  
00 = no output (tristate)  
01 = PLLACLK  
10 = PLLBCLK  
11 = OSCCLK  
R8  
CLKSEL  
08h  
DAC clock source  
00 = MCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
00  
ADC clock source  
00 = ADCMLCK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
01  
S/PDIF Transmitter clock source  
00 = ADCMLCK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
R9  
PAIF 1  
09h  
PAIFRX_RATE  
[2:0]  
010  
Master Mode LRCLK Rate  
000 = 128fs  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
PP Rev 1.0 March 2006  
75  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
4:3 PAIFRX_BCLKSEL  
[1:0]  
00  
Master Mode BCLK Rate  
00 = 64 BCLKs/LRCLK  
01 = 128 BCLKs/LRCLK  
10 = 256 BCLKs/LRCLK  
11 = BCLK = System Clock  
PAIF Receiver Master/Slave Mode Select  
0 = Slave Mode  
5
PAIFRXMS  
0
1 = Master Mode  
7:6  
PAIFRXMS_  
CLKSEL  
00  
PAIF Receiver Master Mode clock source  
00 = MCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
R10  
PAIF 2  
0Ah  
2:0  
PAIFTX_RATE  
[2:0]  
010  
Master Mode LRCLK Rate  
000 = 128fs  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
4:3 PAIFTX_BCLKSEL  
[1:0]  
00  
Master Mode BCLKRate  
00 = 64 BCLKs/LRCLK  
01 = 128 BCLKs/LRCLK  
10 = 256 BCLKs/LRCLK  
11 = BCLK = System Clock  
5
PAIFTXMS  
0
PAIF Transmitter Master/Slave Mode Select:  
0 = Slave Mode  
1 = Master Mode  
Master Mode LRCLK Rate  
000 = 128fs  
R11  
SAIF1  
0Bh  
2:0  
SAIF_RATE  
[2:0]  
010  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
4:3  
SAIF_BCLKSEL  
[1:0]  
00  
Master Mode BCLK Rate  
00 = 64 BCLKs/LRCLK  
01 = 128 BCLKs/LRCLK  
10 = 256 BCLKs/LRCLK  
11 = BCLK = System Clock  
5
SAIFMS  
0
SAIF Master/Slave Mode Select  
0 = Slave Mode  
1 = Master Mode  
7:6  
SAIFMS_  
CLKSEL  
[1:0]  
11  
SAIF Master Mode clock source  
00 = ADCMCLK pin  
01 = PLLACLK  
10 = PLLBCLK  
11 = MCLK pin  
PP Rev 1.0 March 2006  
76  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R12  
PAIF 3  
0Ch  
1:0  
3:2  
4
PAIFRXFMT  
[1:0]  
10  
PAIF Receiver Audio Data Format Select  
11: DSP Format  
10: I2S Format  
01: Left justified  
00: Right justified  
PAIFRXWL  
[1:0]  
10  
0
PAIF Receiver Audio Data Word Length  
11: 32 bits (see Note)  
10: 24 bits  
01: 20 bits  
00: 16 bits  
PAIFRXLRP  
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
5
6
PAIFRXBCP  
DACOSR  
0
0
PAIF Receiver BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
DAC Oversampling Rate Control  
0= 128x oversampling  
1= 64x oversampling  
8:7  
DAC_SRC  
[1:0]  
11  
DAC1 Source:  
00 = S/PDIF received data.  
10 = SAIF Receiver data  
11 = PAIF Receiver data  
Note: When DAC_SRC = 00, DAC2/3/4 may be turned off,  
depending on RX2DAC_MODE  
R13  
PAIF 4  
0Dh  
1:0  
3:2  
4
PAIFTXFMT  
[1:0]  
10  
10  
0
PAIF Transmitter Audio Data Format Select  
11: DSP Format  
10: I2S Format  
01: Left justified  
00: Right justified  
PAIFTXWL  
[1:0]  
PAIF Transmitter Audio Data Word Length  
11: 32 bits (see Note)  
10: 24 bits  
01: 20 bits  
00: 16 bits  
PAIFTXLRP  
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
5
PAIFTXBCP  
0
PAIF Receiver BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
8:7  
PAIFTX_SRC  
[1:0]  
01  
Primary Audio Interface Transmitter Source  
00 = S/PDIF received data.  
01 = ADC digital output data.  
10 = SAIF Receiver data  
PP Rev 1.0 March 2006  
77  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
SAIF Audio Data Format Select  
R14  
SAIF 2  
0Eh  
1:0  
SAIFFMT  
[1:0]  
10  
11: DSP Format  
10: I2S Format  
01: Left justified  
00: Right justified  
SAIF Audio Data Word Length  
11: 32 bits (see Note)  
10: 24 bits  
3:2  
SAIFWL  
[1:0]  
10  
0
01: 20 bits  
00: 16 bits  
4
SAIFLRP  
In LJ/RJ/I2S modes  
0 = LRCLK not inverted  
1 = LRCLK inverted  
In DSP Format:  
0 = DSP Mode A  
1 = DSP Mode B  
5
6
SAIFBCP  
SAIF_EN  
0
0
SAIF BCLK polarity  
0 = BCLK not inverted  
1 = BCLK inverted  
SAIF Enable  
0 = SAIF disabled  
1 = SAIF enabled  
8:7  
SAIFTX_SRC  
[1:0]  
00  
Secondary Audio Interface Transmitter Source  
00 = S/PDIF received data.  
01 = ADC digital output data.  
11 = PAIF Receiver data  
DAC digital input select  
R15  
1:0  
3:2  
5:4  
7:6  
8
DAC1SEL  
[1:0]  
00  
01  
10  
11  
0
DAC  
CONTROL  
1
00 = DAC takes data from DIN1  
01 = DAC takes data from DIN2  
10 = DAC takes data from DIN3  
11 = DAC takes data from DIN4  
DAC2SEL  
[1:0]  
0Fh  
DAC3SEL  
[1:0]  
DAC4SEL  
[1:0]  
RX2DAC_MODE  
DAC oversampling rate and power down control (only valid when  
DAC_SRC = 00, S/PDIF receiver)  
0 = SFRM_CLK determines oversampling rate, DACs 2/3  
powered down  
1 = PAIFRX_LRCLK determines oversampling rate, DACs 2/3  
source PAIF Receiver  
PP Rev 1.0 March 2006  
78  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
3:0  
LABEL  
DEFAULT  
DESCRIPTION  
Left O/P  
R16  
PL[3:0]  
1001  
PL[3:0]  
Right O/P  
Mute  
DAC  
CONTROL  
2
0000  
Mute  
Left  
0001  
Mute  
0010  
Right  
(L+R)/2  
Mute  
Left  
Mute  
10h  
0011  
Mute  
0100  
Left  
0101  
Left  
0110  
0111  
Right  
(L+R)/2  
Mute  
Left  
Left  
Left  
1000  
Right  
Right  
Right  
Right  
(L+R)/2  
(L+R)/2  
(L+R)/2  
(L+R)/2  
1001  
1010  
Right  
(L+R)/2  
Mute  
Left  
1011  
1100  
1101  
1110  
Right  
(L+R)/2  
1111  
6:4  
DZFM[2:0]  
000  
Selects the source for ZFLAG  
000 - All DACs Zero Flag  
001 - DAC1 Zero Flag  
010 - DAC2 Zero Flag  
011 - DAC3 Zero Flag  
100 - DAC4 Zero Flag  
101 - ZFLAG = 0  
110 - ZFLAG = 0  
111 - ZFLAG = 0  
7
IZD  
0
Infinite zero detection circuit control and automute control  
0 = Infinite zero detect automute disabled  
1 = Infinite zero detect automute enabled  
De-emphasis mode select  
R17  
3:0  
DEEMP[3:0]  
0000  
DAC  
CONTROL  
3
DEEMP[0] = 1, enable De-emphasis on DAC1  
DEEMP[1] = 1, enable De-emphasis on DAC2  
DEEMP[2] = 1, enable De-emphasis on DAC3  
DEEMP[3] = 1, enable De-emphasis on DAC 4  
11h  
4
DEEMPALL  
PHASE [7:0]  
0
0 = De-emphasis controlled by DEEMP[3:0]  
1 = De-emphasis enabled on all DACs  
R18  
5:0  
11111111  
Controls phase of DAC outputs  
DAC  
CONTROL  
4
PHASE[0] = 1 inverts phase of DAC1L output  
PHASE[1] = 1 inverts phase of DAC1R output  
PHASE[2] = 1 inverts phase of DAC2L output  
PHASE[3] = 1 inverts phase of DAC2R output  
PHASE[4] = 1 inverts phase of DAC3L output  
PHASE[5] = 1 inverts phase of DAC3R output  
PHASE[6] = 1 inverts phase of DAC4L output  
PHASE[7] = 1 inverts phase of DAC4R output  
DAC channel soft mute enables  
12h  
R19  
2:0  
DMUTE[3:0]  
0000  
DAC  
CONTROL  
5
DMUTE[0] = 1, enable soft-mute on DAC1  
DMUTE[1] = 1, enable soft-mute on DAC2  
DMUTE[2] = 1, enable soft-mute on DAC3  
DMUTE[3] = 1, enable soft-mute on DAC4  
13h  
PP Rev 1.0 March 2006  
79  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
4
MUTEALL  
0
DAC channel master soft mute. Mutes all DAC channels  
0 = disable soft-mute on all DACs  
1 = enable soft-mute on all DACs  
5
6
7
DZCEN  
DACATC  
MPDENB  
0
0
0
DAC Digital Volume Zero Cross Enable  
0 = Zero Cross detect disabled  
1 = Zero Cross detect enabled  
Attenuator Control  
0 = All DACs use attenuations as programmed.  
1 = Right channel DACs use corresponding left DAC attenuations  
MUTE pin decode enable  
0 = MUTE activates soft-mute on DAC selected by DZFM  
1 = MUTE activates softmute on all DACs  
R20  
7:0  
8
LDA1[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC1 Left Channel (DACL1) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 1  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA1 in intermediate latch (no change to output)  
1 = Apply LDA1 and update attenuation on all channels  
14h  
R21  
7:0  
8
RDA1[6:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC1 Right Channel (DACR1) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 1  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA1 in intermediate latch (no change to output)  
1 = Apply RDA1 and update attenuation on all channels  
15h  
R22  
7:0  
8
LDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC2 Left Channel (DACL2) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA2 in intermediate latch (no change to output)  
1 = Apply LDA2 and update attenuation on all channels  
16h  
R23  
7:0  
8
RDA2[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC2 Right Channel (DACR2) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 2  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA2 in intermediate latch (no change to output)  
1 = Apply RDA2 and update attenuation on all channels  
17h  
R24  
7:0  
8
LDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC3 Left Channel (DACL3) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA3 in intermediate latch (no change to output)  
1 = Apply LDA3 and update attenuation on all channels  
18h  
R25  
7:0  
8
RDA3[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC3 Right Channel (DACR3) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 3  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA3 in intermediate latch (no change to output)  
1 = Apply RDA3 and update attenuation on all channels  
19h  
R26  
7:0  
8
LDA4[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC4 Left Channel (DACL4) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACL 4  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store LDA4 in intermediate latch (no change to output)  
1 = Apply LDA4 and update attenuation on all channels  
1Ah  
R27  
7:0  
8
RDA4[7:0]  
UPDATE  
11111111  
(0dB)  
Digital Attenuation control for DAC4 Right Channel (DACR4) in  
0.5dB steps. See Table 22  
DIGITAL  
ATTENUATION  
DACR 4  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store RDA4 in intermediate latch (no change to output)  
1 = Apply RDA4 and update attenuation on all channels  
1Bh  
PP Rev 1.0 March 2006  
80  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R28  
7:0  
8
MASTDA[7:0]  
11111111  
(0dB)  
Digital Attenuation control for all DAC channels in 0.5dB steps.  
See Table 22  
MASTER  
DIGITAL  
UPDATE  
AMUTEL  
Not latched  
Controls simultaneous update of all Attenuation Latches  
0 = Store gain in intermediate latch (no change to output)  
1 = Apply gain and update attenuation on all channels  
ADC Mute select  
ATTENUATION  
1Ch  
R29  
0
1
0
0
ADC  
CONTROL  
1
0 : Normal Operation  
1: mute ADC left  
AMUTER  
ADC Mute select  
1Dh  
0 : Normal Operation  
1: mute ADC right  
2
AMUTEALL  
ADCOSR  
0
ADC Mute select  
0 : Normal Operation  
1: mute both ADC channels  
ADC oversample rate select  
0 = 128/64 x oversampling  
1 = 64/32 x oversampling  
ADC high-pass filter disable:  
0 = high-pass filter enabled  
1 = high-pass filter disabled  
3
0
4
ADCHPD  
0
7:5  
ADCRATE[2:0]  
010  
ADC Rate Control (only used when the S/PDIF Transmitter is the  
only interface sourcing the ADC)  
000 = 128fs  
001 = 192fs  
010 = 256fs  
011 = 384fs  
100 = 512fs  
101 = 768fs  
110 = 1152fs  
8
VMIDSEL  
1
VMID Impedance Selection  
0 = High impedance, power saving  
1 = Low impedance, fast power-on  
S/PDIF Transmitter Data Source  
00 = S/PDIF received data (see REAL_THROUGH)  
01 = ADC digital output data.  
R30  
SPDTXCHAN 0  
1Eh  
1:0  
TXSRC[1:0]  
10  
10 = Secondary Audio Interface  
11 = Audio Interface received data  
2
3
OVWCHAN  
0
0
Only used if TXSRC==00. Overwrites the through-pathChannel  
Bit with values determined by the channel-bit control registers.  
0 = Channel data equal to recovered channel data.  
1 = Channel data taken from channel status registers.  
S/PDIF Through Mode Control  
REAL_  
THROUGH  
0 = SPDIFOP pin sources output of S/PDIF Transmitter  
1 = SPDIFOP pins sources output of S/PDIF IN Mux  
0 = Consumer Mode  
R31  
SPDTXCHAN 1  
1Fh  
0
1
2
CON/PRO  
AUDIO_N  
CPY_N  
0
0
0
1 = Professional Mode (not supported by WM8581)  
0 = S/PDIF transmitted data is audio PCM.  
1 = S/PDIF transmitted data is not audio PCM.  
0 = Transmitted data has copyright asserted.  
1 = Transmitted data has no copyright assertion.  
PP Rev 1.0 March 2006  
81  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5:3  
DEEMPH[2:0]  
000  
000 = Data from Audio interface has no pre-emphasis.  
001 = Data from Audio interface has pre-emphasis.  
010 = Reserved (Audio interface has pre-emphasis).  
011 = Reserved (Audio interface has pre-emphasis).  
All other modes are reserved and should not be used.  
00 = Only valid mode for consumer applications.  
7:6  
7:0  
CHSTMODE  
[1:0]  
00  
R32  
SPDTXCHAN 2  
20h  
CATCODE  
[7:0]  
00000000  
Category Code. Refer to S/PDIF specification for details.  
00h indicates generalmode  
R33  
3:0  
5:4  
SRCNUM  
[3:0]  
0000  
00  
Source Number. No definitions are attached to data.  
SPDTXCHAN 3  
21h  
CHNUM1[1:0]  
Channel Number for Subframe 1  
CHNUM1  
Channel Status Bits[23:20]  
00  
01  
10  
11  
0000 = Do not use channel number  
0001 = Send to Left Channel  
0010 = Send to Right Channel  
0000 = Do not use channel number  
7:6  
CHNUM2[1:0]  
00  
Channel Number for Subframe 2  
CHNUM2  
Channel Status Bits[23:20]  
00  
01  
10  
11  
0000 = Do not use channel number  
0001 = Send to Left Channel  
0010 = Send to Right Channel  
0000 = Do not use channel number  
R34  
SPDTXCHAN 4  
22h  
3:0  
5:4  
FREQ[3:0]  
0001  
11  
Sampling Frequency. See S/PDIF specification for details.  
0001 = Sampling Frequency not indicated.  
Clock Accuracy of Generated clock.  
00 = Level II  
CLKACU[1:0]  
01 = Level I  
10 = Level III  
11 = Interface frame rate not matched to sampling frequency.  
Maximum Audio sample word length  
0 = 20 bits  
R35  
SPDTXCHAN 5  
23h  
0
MAXWL  
1
1 = 24 bits  
3:1  
TXWL[2:0]  
101  
Audio Sample Word Length.  
000 = Word Length Not Indicated  
TXWL[2:0]  
MAXWL==1  
MAXWL==  
0
001  
010  
100  
101  
110  
20 bits  
22 bits  
23 bits  
24 bits  
21 bits  
16 bits  
18 bits  
19 bits  
20 bits  
17 bits  
All other combinations reserved  
7:4  
0
ORGSAMP  
[3:0]  
0000  
1
Original Sampling Frequency. See S/PDIF specification for details.  
0000 = original sampling frequency not indicated  
Selects the input circuit type for the SPDIFIN1 input  
0 = CMOS-compatible input  
R36  
SPDMODE  
24h  
SPDIFIN1MODE  
1 = Comparator input. Compatible with 500mVpp AC coupled  
consumer S/PDIF input signals as defined in IEC-60958-3.  
PP Rev 1.0 March 2006  
82  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2:1  
RXINSEL[1:0]  
00  
S/PDIF Receiver input mux select. Note that the general purpose  
inputs must be configured using GPOxOP to be either CMOS or  
comparator inputs if selected by RXINSEL.  
00 = SPDIFIN1  
01 = SPDIFIN2 (MFP3)  
10 = SPDIFIN3 (MFP4)  
11 = SPDIFIN4 (MFP5)  
R37  
INTMASK  
25h  
8:0  
MASK[8:0]  
000000000  
When a flag is masked, it does not update the Error Register or  
contribute to the interrupt pulse.  
0 = unmask, 1 = mask.  
MASK[0] = mask control for UPD_UNLOCK  
MASK[1] = mask control for INT_INVALID  
MASK[2] = mask control for INT_CSUD  
MASK[3] = mask control for INT_TRANS_ERR  
MASK[4] = mask control for UPD_AUDIO_N  
MASK[5] = mask control for UPD_PCM_N  
MASK[6] = mask control for UPD_CPY_N  
MASK[7] = mask control for UPD_DEEMPH  
MASK[8] = mask control for UPD_REC_FREQ  
0000 = INTB  
R38  
GPO1  
26h  
3:0  
7:4  
GPO1OP[3:0]  
GPO2OP[3:0]  
0000  
0001  
0001 = V  
0010 = U  
0011 = C  
0100 = P  
0101 = SFRM_CLK  
0110 = 192BLK  
0111 = UNLOCK  
1000 = CSUD  
1001 = REC_FREQ192  
1010 = ZFLAG  
1011 = NON_AUDIO  
1100 = CPY_N  
1101 = DEEMP  
1110 = Set GPO as S/PDIF input (standard CMOS input buffer).  
Only applicable for GPO3/4/5.  
1111 = Set GPO as S/PDIF input (comparatorinput for AC  
coupled consumer S/PDIF signals). Only applicable for GPO3/4/5  
8
FILLMODE  
0
Determines what S/PDIF Receiver should do with corrupted or  
invalid data:  
0 = Data from S/PDIF Receiver remains static at last valid sample.  
1 = Data from S/PDIF Receiver is output as all zeros.  
PP Rev 1.0 March 2006  
83  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R39  
GPO2  
27h  
3:0  
7:4  
GPO3OP[3:0]  
GPO4OP[3:0]  
0010  
0011  
0000 = INTB  
0001 = V  
0010 = U  
0011 = C  
0100 = P  
0101 = SFRM_CLK  
0110 = 192BLK  
0111 = UNLOCK  
1000 = CSUD  
1001 = REC_FREQ192  
1010 = ZFLAG  
1011 = NON_AUDIO  
1100 = CPY_N  
1101 = DEEMP  
1110 = Set GPO as S/PDIF input (standard CMOS input buffer).  
Only applicable for GPO3/4/5.  
1111 = Set GPO as S/PDIF input (comparatorinput for AC  
coupled consumer S/PDIF signals). Only applicable for GPO3/4/5  
8
ALWAYSVALID  
0
Used to ignore the INVALID flag.  
0 = Use INVALID flag.  
1 = Ignore INVALID flag.  
0000 = INTB  
R40  
GPO3  
28h  
3:0  
7:4  
GPO5OP[3:0]  
GPO6OP[3:0]  
0100  
0101  
0001 = V  
0010 = U  
0011 = C  
R41  
3:0  
GPO7OP[3:0]  
0110  
0100 = P  
GPO4  
29h  
0101 = SFRM_CLK  
0110 = 192BLK  
0111 = UNLOCK  
1000 = CSUD  
1001 = REC_FREQ192  
1010 = ZFLAG  
1011 = NON_AUDIO  
1100 = CPY_N  
1101 = DEEMP  
1110 = Set GPO as S/PDIF input (standard CMOS input buffer).  
Only applicable for GPO3/4/5.  
1111 = Set GPO as S/PDIF input (comparatorinput for AC  
coupled consumer S/PDIF signals). Only applicable for GPO3/4/5  
R43  
INTSTAT  
2Bh  
0
1
2
3
UPD_UNLOCK  
INT_INVALID  
INT_CSUD  
-
-
-
-
UNLOCK flag update signal  
0 = INTB not caused by update to UNLOCK flag  
1 = INTB caused by update to UNLOCK flag  
INVALID flag interrupt signal  
0 = INTB not caused by INVALID flag  
1 = INTB caused by INVALID flag  
CSUD flag interrupt signal  
0 = INTB not caused by CSUD flag  
1 = INTB caused by CSUD flag  
INT_TRANS_ERR  
TRANS_ERR flag interrupt signal  
0 = INTB not caused by TRANS_ERR flag  
1 = INTB caused by TRANS_ERR flag  
PP Rev 1.0 March 2006  
84  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
NON_AUDIO update signal  
4
5
6
7
0
UPD_NON_AUDIO  
-
0 = INTB not caused by update to NON_AUDIO flag  
1 = INTB caused by update to NON_AUDIO flag  
CPY_N update signal  
UPD_CPY_N  
UPD_DEEMPH  
UPD_REC_FREQ  
CON/PRO  
-
-
-
-
0 = INTB not caused by update to CPY_N flag  
1 = INTB caused by update to CPY_N flag  
DEEMPH update signal  
0 = INTB not caused by update to DEEMPH flag  
1 = INTB caused by update to DEEMPH flag  
REC_FREQ update signal  
0 = INTB not caused by update to REC_FREQ flag  
1 = INTB caused by update to REC_FREQ flag  
0 = Consumer Mode  
R44  
SPDRXCHAN 1  
2C  
1 = Professional Mode  
The WM8581 is a consumer mode device. Detection of  
professional mode may give erroneous behaviour.  
1
AUDIO_N  
-
Recovered S/PDIF Channel status bit 1.  
0 = Data word represents audio PCM samples.  
1 = Data word does not represent audio PCM samples.  
0 = Copyright is asserted for this data.  
2
3
CPY_N  
-
-
1 = Copyright is not asserted for this data.  
0 = Recovered S/PDIF data has no pre-emphasis.  
1 = Recovered S/PDIF data has pre-emphasis.  
Reserved for additional de-emphasis modes.  
00 = Only valid mode for consumer applications.  
DEEMPH  
5:4  
7:6  
Reserved  
CHSTMODE  
[1:0]  
-
-
R45  
SPDRXCHAN 2  
2Dh  
7:0  
CATCODE  
[7:0]  
-
Category Code. Refer to S/PDIF specification for details.  
00h indicates generalmode.  
R46  
3:0  
7:4  
SRCNUM  
[3:0]  
-
-
Indicates number of S/PDIF source.  
SPDRXCHAN 3  
2Eh  
CHNUM1[3:0]  
Channel number for channel 1.  
0000 = Take no account of channel number (channel 1 defaults to  
left DAC)  
0001 = channel 1 to left channel  
0010 = channel 1 to right channel  
Sampling Frequency. See S/PDIF specification for details.  
0001 = Sampling Frequency not indicated.  
Clock Accuracy of received clock.  
00 = Level II  
R47  
SPDRXCHAN 4  
2Fh  
3:0  
5:4  
FREQ[3:0]  
-
-
CLKACU[1:0]  
01 = Level I  
10 = Level III  
11 = Interface frame rate not matched to sampling frequency.  
Maximum Audio sample word length  
0 = 20 bits  
R48  
SPDRXCHAN 5  
30h  
0
MAXWL  
-
-
1 = 24 bits  
3:1  
RXWL[2:0]  
Audio Sample Word Length.  
000: Word Length Not Indicated  
RXWL[2:0]  
MAXWL==1  
MAXWL==  
0
001  
010  
100  
20 bits  
22 bits  
23 bits  
16 bits  
18 bits  
19 bits  
PP Rev 1.0 March 2006  
85  
w
WM8581  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
101  
110  
24 bits  
21 bits  
20 bits  
17 bits  
All other combinations are reserved and may give erroneous  
operation. Data will be truncated internally when these bits are set  
7:4  
0
ORGSAMP  
[3:0]  
-
-
-
Original Sampling Frequency. See S/PDIF specification for details.  
0000 = original sampling frequency not indicated  
R49  
SPDSTAT  
31h  
AUDIO_N  
PCM_N  
Recovered Channel Status bit-1.  
0 = Data word represents audio PCM samples.  
1 = Data word does not represent audio PCM samples.  
1
Indicates that non-audio code (defined in IEC-61937) has been  
detected.  
0 = Sync code not detected.  
1 = Sync code detected received data is not audio PCM.  
Recovered Channel Status bit-2.  
2
CPY_N  
-
0 = Copyright is asserted for this data.  
1 = Copyright is not asserted for this data.  
Note this signal is inverted and will cause an interrupt on logic 0.  
Recovered Channel Status bit-3  
3
DEEMPH  
-
0 = Recovered S/PDIF data has no pre-emphasis.  
1 = Recovered S/PDIF data has pre-emphasis  
Indicates recovered S/PDIF clock frequency:  
00 = 192kHz  
5:4  
REC_FREQ  
[1:0]  
--  
01 = 96kHz / 88.2kHz  
10 = 48kHz / 44.1kHz  
11 = 32kHz  
6
0
UNLOCK  
PWDN  
-
Indicates that the S/PDIF Clock Recovery circuit is unlocked or  
that the input S/PDIF signal is not present.  
0 = Locked onto incoming S/PDIF stream.  
1 = Not locked to the incoming S/PDIF stream or the incoming  
S/PDIF stream is not present.  
R50  
PWRDN 1  
32h  
0
Chip Powerdown Control (works in tandem with the other  
powerdown registers):  
0 = All digital circuits running, outputs are active  
1 = All digital circuits in power save mode, outputs muted  
ADC powerdown:  
1
ADCPD  
1
0 = ADC enabled  
1 = ADC disabled  
4:2  
DACPD[3:0]  
1111  
DAC powerdowns (0 = DAC enabled, 1 = DAC disabled)  
DACPD[0] = DAC1  
DACPD[1] = DAC2  
DACPD[2] = DAC3  
DACPD[3] = DAC4  
6
0
ALLDACPD  
OSCPD  
1
0
Overrides DACPD[3:0]  
0 = DACs under control of DACPD[3:0]  
1= All DACs are disabled.  
OSC power down  
R51  
PWRDN 2  
33h  
0 = OSC enabled  
1 = OSC disabled  
1
2
PLLAPD  
PLLBPD  
1
1
0 = PLLA enabled  
1 = PLLA disabled  
0 = PLLB enable  
1 = PLLB disable  
PP Rev 1.0 March 2006  
86  
w
Product Preview  
WM8581  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
S/PDIF Clock Recovery PowerDown  
3
SPDIFPD  
1
0 = S/PDIF enabled  
1 = S/PDIF disabled  
4
SPDIFTXD  
SPDIFRXD  
1
1
S/PDIF Transmitter powerdown  
0 = S/PDIF Transmitter enabled  
1 = S/PDIF Transmitter disabled  
S/PDIF Receiver powerdown  
0 = S/PDIF Receiver enabled  
1 = S/PDIF Receiver disabled  
Determines which status register is to be read back:  
000 = Error Register  
5
R52  
READBACK  
34h  
2:0  
READMUX  
[2:0]  
000  
001 = Channel Status Register 1  
010 = Channel Status Register 2  
011 = Channel Status Register 3  
100 = Channel Status Register 4  
101 = Channel Status Register 5  
110 = S/PDIF Status Register  
3
CONTREAD  
READEN  
RESET  
0
0
Continuous Read Enable.  
0 = Continuous read-back mode disabled  
1 = Continuous read-back mode enabled  
Read-back mode enable.  
4
0 = read-back mode disabled  
1 = read-back mode enabled  
R53  
RESET  
35h  
8:0  
n/a  
Writing to this register will apply a reset to the device registers.  
PP Rev 1.0 March 2006  
87  
w
WM8581  
Product Preview  
DIGITAL FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
ADC Filter  
MIN  
TYP  
MAX  
0.4535fs  
±0.01  
UNIT  
Passband  
±0.01 dB  
0
-6dB  
0.5fs  
Passband ripple  
Stopband  
dB  
dB  
0.5465fs  
-65  
Stopband Attenuation  
f > 0.5465fs  
DAC Filter  
Passband  
±0.05 dB  
0.444fs  
-3dB  
0.487fs  
Passband ripple  
Stopband  
±0.05  
dB  
dB  
0.555fs  
-60  
Stopband Attenuation  
f > 0.555fs  
Table 76 Digital Filter Characteristics  
DAC FILTER RESPONSES  
0.2  
0
0.15  
0.1  
-20  
-40  
0.05  
0
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-80  
-100  
-120  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 36 DAC Digital Filter Frequency Response  
– 44.1, 48 and 96KHz  
Figure 37 DAC Digital Filter Ripple –44.1, 48 and 96kHz  
0.2  
0
0
-20  
-40  
-60  
-80  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 38 DAC Digital Filter Frequency Response  
– 192KHz  
Figure 39 DAC Digital Filter Ripple – 192kHz  
PP Rev 1.0 March 2006  
88  
w
Product Preview  
WM8581  
DIGITAL DE-EMPHASIS CHARACTERISTICS  
0
1
0.5  
0
-2  
-4  
-0.5  
-1  
-6  
-1.5  
-2  
-8  
-2.5  
-3  
-10  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Frequency (kHz)  
Frequency (kHz)  
Figure 40 De-Emphasis Frequency Response (32kHz)  
Figure 41 De-Emphasis Error (32KHz)  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 42 De-Emphasis Frequency Response (44.1KHz)  
Figure 43 De-Emphasis Error (44.1KHz)  
0
1
0.8  
0.6  
0.4  
0.2  
0
-2  
-4  
-6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-8  
-10  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (kHz)  
Frequency (kHz)  
Figure 44 De-Emphasis Frequency Response (48kHz)  
Figure 45 De-Emphasis Error (48kHz)  
PP Rev 1.0 March 2006  
89  
w
WM8581  
Product Preview  
ADC FILTER RESPONSES  
0.02  
0.015  
0.01  
0
-20  
-40  
-60  
-80  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 46 ADC Digital Filter Frequency Response  
Figure 47 ADC Digital Filter Ripple  
ADC HIGH PASS FILTER  
The WM8581 has a selectable digital high pass filter to remove DC offsets. The filter response is characterised by the following  
polynomial.  
1 - z-1  
H(z) =  
1 - 0.9995z-1  
0
-5  
-10  
-15  
0
0.0005  
0.001  
Frequency (Fs)  
0.0015  
0.002  
Figure 48 ADC Highpass Filter Response  
PP Rev 1.0 March 2006  
90  
w
Product Preview  
WM8581  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 49 Recommended External Components - Hardware  
PP Rev 1.0 March 2006  
91  
w
WM8581  
Product Preview  
Figure 50 Recommended External Components - Software  
PP Rev 1.0 March 2006  
92  
w
Product Preview  
WM8581  
PACKAGE DIMENSIONS  
FT: 48 PIN TQFP (7 x 7 x 1.0 mm)  
DM004.C  
b
e
36  
25  
37  
24  
E1  
E
48  
13  
1
12  
Θ
D1  
D
c
L
A1  
A
A2  
-C-  
SEATING PLANE  
ccc  
C
Dimensions  
(mm)  
Symbols  
MIN  
-----  
0.05  
0.95  
0.17  
0.09  
NOM  
-----  
-----  
1.00  
0.22  
-----  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
c
D
D1  
E
E1  
e
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.50 BSC  
0.60  
L
Θ
0.45  
0o  
0.75  
7o  
3.5o  
Tolerances of Form and Position  
0.08  
ccc  
REF:  
JEDEC.95, MS-026  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MS-026, VARIATION = ABC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
PP Rev 1.0 March 2006  
93  
w
WM8581  
Product Preview  
IMPORTANT NOTICE  
Wolfson Microelectronics Ltd (WM) reserve the right to make changes to their products or to discontinue any product or service  
without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that  
information being relied on is current. All products are sold subject to the WM terms and conditions of sale supplied at the time of  
order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WMs standard  
warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support this warranty.  
Specific testing of all parameters of each device is not necessarily performed, except those mandated by government  
requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used by the  
customer to minimise inherent or procedural hazards.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that any  
license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of  
WM covering or relating to any combination, machine, or process in which such products or services might be or are used. WMs  
publication of information regarding any third partys products or services does not constitute WMs approval, license, warranty or  
endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information  
with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive business practice,  
and WM is not responsible nor liable for any such use.  
Resale of WMs products or services with statements different from or beyond the parameters stated by WM for that product or  
service voids all express and any implied warranties for the associated WM product or service, is an unfair and deceptive business  
practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
Westfield House  
26 Westfield Road  
Edinburgh  
EH11 2QB  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 1.0 March 2006  
w
94  

相关型号:

WM8581SERV

Multichannel CODEC with S/PDIF Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8581_07

Multichannel CODEC with S/PDIF Transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8590

24-bit, 192kHz Stereo CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8590GEDS/RV

24-bit, 192kHz Stereo CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8590GEDS/V

24-bit, 192kHz Stereo CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8590_06

24-bit, 192kHz Stereo CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591GEDRV

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591GEDS

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591GEDS/RV

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591GEDS/V

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8591GEDV

24 BIT, 192 KHZ STEREO CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON