WM8750L [WOLFSON]

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS; 立体声编解码器用于便携式音频应用
WM8750L
型号: WM8750L
厂家: WOLFSON MICROELECTRONICS PLC    WOLFSON MICROELECTRONICS PLC
描述:

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS
立体声编解码器用于便携式音频应用

解码器 编解码器 便携式
文件: 总56页 (文件大小:658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8750L  
Stereo CODEC for Portable Audio Applications  
DESCRIPTION  
FEATURES  
DAC SNR 98dB (‘A’ weighted), THD -95B at 48kHz, 3.3V  
ADC SNR 95dB (‘A’ weighted), THD -90dB at 48kHz, 3.3V  
Complete Stereo / Mono Microphone Interface  
The WM8750L is a low power, high quality stereo codec  
designed for portable digital audio applications.  
The device integrates complete interfaces to stereo or mono  
microphones and a stereo headphone. External component  
requirements are drastically reduced as no separate  
microphone or headphone amplifiers are required.  
Advanced on-chip digital signal processing performs  
graphic equaliser, 3-D sound enhancement and automatic  
level control for the microphone or line input.  
-
Programmable ALC / Noise Gate  
On-chip 400mW BTL Speaker Driver (mono)  
On-chip Headphone Driver  
-
-
-
>40mW output power on 16/ 3.3V  
THD –80dB at 20mW, SNR 90dB with 16load  
No DC blocking capacitors required (capless mode)  
Separately mixed mono output  
Digital Graphic Equaliser  
Low Power  
The WM8750L can operate as a master or a slave, with  
various master clock frequencies including 12 or 24MHz for  
USB devices, or standard 256fs rates like 12.288MHz and  
24.576MHz. Different audio sample rates such as 96kHz,  
48kHz, 44.1kHz are generated directly from the master  
clock without the need for an external PLL.  
-
-
7mW stereo playback (1.8V / 1.5V supplies)  
14mW record & playback (1.8V / 1.5V supplies)  
Low Supply Voltages  
-
-
-
Analogue 1.8V to 3.6V  
Digital core: 1.42V to 3.6V  
Digital I/O: 1.8V to 3.6V  
256fs / 384fs or USB master clock rates: 12MHz, 24MHz  
Audio sample rates: 8, 11.025, 16, 22.05, 24, 32, 44.1, 48,  
88.2, 96kHz generated internally from master clock  
5x5x0.9mm QFN package  
The WM8750L operates at supply voltages down to 1.8V,  
although the digital core can operate at voltages down to  
1.42V to save power, and the maximum for all supplies is  
3.6 Volts. Different sections of the chip can also be powered  
down under software control.  
APPLICATIONS  
The WM8750L is supplied in a very small and thin 5x5mm  
QFN package, ideal for use in hand-held and portable  
systems.  
MP3 Player / Recorder  
AAC/WMA/Multi-Format Player / Recorder  
Minidisc Player / Recorder  
Portable Digital Music Systems  
BLOCK DIAGRAM  
DGND  
DCVDD  
DBVDD  
HPGND  
HPVDD  
OUT3SW  
LMIXSEL  
M
U
X
VREF  
ROUT1  
M
U
X
-1  
OUT3  
MONOOUT  
LEFT  
MIXER  
LI2LO  
DC MEASUREMENT  
WM8750L  
LD2LO  
RD2LO  
LD2MO  
RD2MO  
LD2RO  
RD2RO  
LINPUT1  
LINPUT2  
LINPUT3  
LOUT1  
M
U
X
PGA  
+ MIC  
BOOST  
LOUT1VOL  
MONOVOL  
ROUT1VOL  
RI2LO  
LI2MO  
DIGITAL  
ADC  
ADC  
DAC  
DAC  
FILTERS  
DIGITAL  
FILTERS  
MONO  
MIXER  
LINSEL  
DIFF.  
INPUT  
L1-R1 OR  
L2-R2  
VOLUME  
MONOOUT  
(phone TX)  
ANALOGUE  
MONO MIX  
GRAPHIC  
DIGITAL  
EQUALISER  
MONO MIX  
BASS  
RINSEL  
RI2MO  
LI2RO  
3D  
BOOST  
RINPUT3/  
HPDETECT  
RIGHT  
MIXER  
ENHANCE  
M
U
X
PGA  
+ MIC  
BOOST  
RINPUT2  
RINPUT1  
ROUT1  
DC MEASUREMENT  
RI2RO  
M
U
X
LOUT2  
ROUT2  
RMIXSEL  
L - (-R)  
= L+R  
LOUT2VOL  
ROUT2VOL  
ROUT2  
INV  
-1  
MICBIAS  
AUDIO  
INTERFACE  
CLOCK  
CIRCUITRY  
CONTROL  
INTERFACE  
50K  
50K  
Product Preview, May 2003, Rev 1.77  
WOLFSON MICROELECTRONICS plc  
www.wolfsonmicro.com  
Copyright 2003 Wolfson Microelectronics plc  
WM8750L  
Product Preview  
TABLE OF CONTENTS  
DESCRIPTION......................................................................................................1  
FEATURES ...........................................................................................................1  
APPLICATIONS....................................................................................................1  
BLOCK DIAGRAM................................................................................................1  
PIN CONFIGURATION .........................................................................................4  
ORDERING INFORMATION.................................................................................4  
PIN DESCRIPTION...............................................................................................4  
ABSOLUTE MAXIMUM RATINGS........................................................................5  
RECOMMENDED OPERATION CONDITIONS....................................................5  
ELECTRICAL CHARACTERISTICS.....................................................................6  
HEADPHONE / SPEAKER OUTPUT THD VERSUS POWER......................................8  
POWER CONSUMPTION...................................................................................11  
SIGNAL TIMING REQUIREMENTS....................................................................12  
SYSTEM CLOCK TIMING ..........................................................................................12  
AUDIO INTERFACE TIMING – MASTER MODE........................................................12  
AUDIO INTERFACE TIMING SLAVE MODE...........................................................13  
DEVICE DESCRIPTION......................................................................................16  
INTRODUCTION ........................................................................................................16  
INPUT SIGNAL PATH ................................................................................................16  
AUTOMATIC LEVEL CONTROL (ALC) ......................................................................22  
3D STEREO ENHANCEMENT ...................................................................................25  
OUTPUT SIGNAL PATH.............................................................................................26  
ANALOGUE OUTPUTS..............................................................................................31  
ENABLING THE OUTPUTS........................................................................................33  
HEADPHONE SWITCH..............................................................................................33  
THERMAL SHUTDOWN.............................................................................................35  
HEADPHONE OUTPUT..............................................................................................35  
DIGITAL AUDIO INTERFACE ....................................................................................36  
PP Rev 1.77 May 2003  
ꢀꢁ  
2
Product Preview  
WM8750L  
AUDIO INTERFACE CONTROL.................................................................................39  
MASTER CLOCK AND AUDIO SAMPLE RATES.......................................................40  
CONTROL INTERFACE .............................................................................................42  
POWER SUPPLIES....................................................................................................43  
POWER MANAGEMENT............................................................................................44  
REGISTER MAP .................................................................................................46  
DIGITAL FILTER CHARACTERISTICS..............................................................47  
TERMINOLOGY .........................................................................................................47  
DAC FILTER RESPONSES................................................................................48  
ADC FILTER RESPONSES................................................................................49  
DE-EMPHASIS FILTER RESPONSES...............................................................50  
HIGHPASS FILTER ............................................................................................51  
APPLICATIONS INFORMATION........................................................................52  
RECOMMENDED EXTERNAL COMPONENTS .........................................................52  
LINE INPUT CONFIGURATION .................................................................................53  
MICROPHONE INPUT CONFIGURATION.................................................................53  
MINIMISING POP NOISE AT THE ANALOGUE OUTPUTS.......................................54  
POWER MANAGEMENT EXAMPLES........................................................................54  
PACKAGE DIMENSIONS...................................................................................55  
IMPORTANT NOTICE........................................................................................ 54  
ADDRESS: .................................................................................................................56  
PP Rev 1.77 May 2003  
3
WM8750L  
Product Preview  
PIN CONFIGURATION  
ORDERING INFORMATION  
ORDER CODE  
TEMPERATURE  
RANGE  
PACKAGE  
WM8750LEFL  
-25°C to +85°C  
32-pin QFN  
(5x5x0.9mm)  
24 23 22 21 20 19 18 17  
25  
16  
15  
14  
LOUT2  
ROUT2  
HPGND  
RINPUT2  
WM8750LSEFL  
WM8750LEFL/R  
WM8750LSEFL/R  
-25°C to +85°C  
32-pin QFN  
(5x5x0.9mm)  
(lead free)  
26  
LINPUT2  
27  
RINPUT1  
28  
29  
30  
31  
13 LOUT1  
LINPUT1  
MODE  
ROUT1  
12  
11  
10  
9
-25°C to +85°C  
-25°C to +85°C  
32-pin QFN  
(5x5x0.9mm)  
(tape and reel)  
CSB  
OUT3  
MONOOUT  
SDIN  
SCLK 32  
ADCLRC  
32-pin QFN  
(5x5x0.9mm)  
(lead free, tape and  
reel)  
1
2
3
4
5
6
7
8
Note:  
Reel quantity = 3500  
PIN DESCRIPTION  
PIN #  
NAME  
TYPE  
DESCRIPTION  
1
MCLK  
Digital Input  
Master Clock  
2
DCVDD  
DBVDD  
DGND  
Supply  
Digital Core Supply  
3
Supply  
Digital Buffer (I/O) Supply  
4
Supply  
Digital Ground (return path for both DCVDD and DBVDD)  
Audio Interface Bit Clock  
5
BCLK  
Digital Input / Output  
Digital Input  
6
DACDAT  
DACLRC  
ADCDAT  
ADCLRC  
MONOOUT  
OUT3  
DAC Digital Audio Data  
7
Digital Input / Output  
Digital Output  
Digital Input / Output  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
Audio Interface Left / Right Clock/Clock Out  
ADC Digital Audio Data  
8
9
Audio Interface Left / Right Clock  
10  
11  
12  
13  
14  
15  
16  
17  
Mono Output  
Analogue Output 3 (can be used as Headphone Pseudo Ground)  
Right Output 1 (Line or Headphone)  
Left Output 1 (Line or Headphone)  
ROUT1  
LOUT1  
HPGND  
ROUT2  
LOUT2  
Supply for Analogue Output Drivers (LOUT1/2, ROUT1/2)  
Right Output 1 (Line or Headphone or Speaker)  
Left Output 1 (Line or Headphone or Speaker)  
Analogue Output  
Analogue Output  
Supply  
HPVDD  
Supply for Analogue Output Drivers (LOUT1/2, ROUT1/2,  
MONOUT)  
18  
19  
20  
21  
22  
23  
AVDD  
AGND  
VREF  
Supply  
Analogue Supply  
Supply  
Analogue Ground (return path for both AVDD and MVDD)  
Reference Voltage Decoupling Capacitor  
Midrail Voltage Decoupling Capacitor  
Microphone Bias  
Analogue Output  
Analogue Output  
Analogue Output  
Analogue Input  
VMID  
MICBIAS  
RINPUT3 /  
Right Channel Input 3 or Headphone Plug-in Detection  
HPDETECT  
24  
25  
26  
27  
28  
29  
30  
31  
32  
LINPUT3  
RINPUT2  
LINPUT2  
RINPUT1  
LINPUT1  
MODE  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Digital Input  
Left Channel Input 3  
Right Channel Input 2  
Left Channel Input 2  
Right Channel Input 1  
Left Channel Input 1  
Control Interface Selection  
Chip Select / Device Address Selection  
Control Interface Data Input / 2-wire Acknowledge output  
Control Interface Clock Input  
CSB  
Digital Input  
SDIN  
Digital Input/Output  
Digital Input  
SCLK  
PP Rev 1.77 May 2003  
4
ꢀꢁ  
Product Preview  
WM8750L  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously  
operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given  
under Electrical Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
The WM8750L has been classified as MSL1, which has an unlimited floor life at <30oC / 85% Relative Humidity and therefore will  
not be supplied in moisture barrier bags.  
CONDITION  
MIN  
-0.3V  
MAX  
+3.63V  
Supply voltages  
Voltage range digital inputs  
Voltage range analogue inputs  
DGND -0.3V  
AGND -0.3V  
-25°C  
DBVDD +0.3V  
AVDD +0.3V  
+85°C  
Operating temperature range, TA  
Storage temperature prior to soldering  
Storage temperature after soldering  
Package body temperature (soldering 10 seconds)  
Package body temperature (soldering 2 minutes)  
Notes  
30°C max / 85% RH max  
-65°C  
+150°C  
+260°C  
+183°C  
1. Analogue and digital grounds must always be within 0.3V of each other.  
2. All digital and analogue supplies are completely independent from each other.  
3. DCVDD must be less than or equal to AVDD & DBVDD.  
RECOMMENDED OPERATION CONDITIONS  
PARAMETER  
SYMBOL  
DCVDD  
MIN  
1.42  
1.8  
TYP  
MAX  
3.6  
UNIT  
Digital supply range (Core)  
Digital supply range (Buffer)  
Analogue supplies range  
Ground  
2.0  
2.0  
2.0  
0
V
V
V
V
DBVDD  
3.6  
AVDD, HPVDD  
DGND,AGND, HPGND  
1.8  
3.6  
PP Rev 1.77 May 2003  
5
WM8750L  
Product Preview  
ELECTRICAL CHARACTERISTICS  
Test Conditions  
DCVDD = 1.5V, DBVDD = 3.3V, AVDD = HPVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio  
data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V rms  
kΩ  
Analogue Inputs (LINPUT1, RINPUT1, LINPUT2, RINPUT2, LINPUT3, RINPUT3) to ADC out  
Full Scale Input Signal Level  
(for ADC 0dB Input at 0dB Gain)  
Input Resistance  
VINFS  
AVDD = 3.3V  
AVDD = 1.8V  
1.0  
0.545  
20  
Selected for ADC,  
PGA gain = 0dB  
Selected for ADC,  
PGA gain = +30dB  
Selected for mixer  
Input unused  
12  
1
1.5  
TBD  
TBD  
10  
Input Capacitance  
Signal to Noise Ratio  
(A-weighted)  
pF  
dB  
SNR  
THD  
AVDD = 3.3V  
AVDD = 1.8V  
-60dBFs  
90  
90  
95  
90  
Dynamic Range  
95  
dB  
dB  
%
Total Harmonic Distortion  
-0.5dBFs input,  
AVDD = 3.3V  
-0.5dBFs input,  
AVDD = 1.8V  
1kHz signal  
-90  
-84  
0.006  
-74  
0.003  
-84  
0.006  
85  
0.02  
ADC Channel Separation  
Channel Matching  
dB  
dB  
1kHz signal  
0.2  
Programmable Gain Amplifier (PGA)  
Programmable Gain  
-17.25  
0.5  
30  
dB  
dB  
dB  
Programmable Gain Step Size  
Channel Matching  
Monotonic  
0.75  
0.2  
1.0  
1kHz signal, 0dB Fs input  
Automatic Level Control (ALC)  
Target Record Level  
-28.5  
-6  
dBFS  
ms  
Gain Hold Time  
tHLD  
tDCY  
tATK  
0, 2.67, 5.33, 10.67, , 43691  
(time doubles with each step)  
24, 48, 96, , 2458  
MCLK = 12.288MHz  
Gain Ramp-Up (Decay) Time  
Gain Ramp-Down (Attack) Time  
ms  
ms  
(time doubles with each step)  
6, 12, 24, , 6140  
(time doubles with each step)  
DAC to Line-Out (L/ROUT2 with 10k / 50pF load)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
AVDD=3.3V  
AVDD=1.8V  
AVDD=3.3V  
AVDD=1.8V  
1kHz signal  
TBD  
98  
95  
dB  
dB  
dB  
Total Harmonic Distortion  
THD  
-95  
-90  
90  
Channel Separation  
Analogue Outputs (LOUT1/2, ROUT1/2, MONOOUT)  
0dB Full scale output voltage  
AVDD/3.3  
Vrms  
dB  
Programmable Gain  
1kHz signal  
Monotonic  
-67  
80  
+6  
Programmable Gain Steps  
80  
85  
90  
steps  
dB  
Mute attenuation  
1kHz, full scale signal  
Channel Separation  
dB  
PP Rev 1.77 May 2003  
6
ꢀꢁ  
Product Preview  
WM8750L  
Test Conditions  
DCVDD = 1.5V, DBVDD = 3.3V, AVDD = HPVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, PGA gain = 0dB, 24-bit audio  
data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Headphone Output (LOUT1/ROUT1, using capacitors)  
Output Power per channel  
Total Harmonic Distortion  
PO  
Output power is very closely correlated with THD; see below.  
THD  
HPVDD=1.8V, RL=32Ω  
0.013  
-78  
%
dB  
PO=5mW  
HPVDD=1.8V, RL=16Ω  
PO=5mW  
0.013  
-78  
HPVDD=3.3V, RL=32,  
0.01  
-80  
0.01  
-80  
90  
PO=20mW  
HPVDD=3.3V, RL=16,  
PO=20mW  
Signal to Noise Ratio  
(A-weighted)  
SNR  
HPVDD = 3.3V  
HPVDD = 1.8V  
dB  
90  
Speaker Output (LOUT2/ROUT2 with 8 bridge tied load, ROUT2INV=1)  
Output Power  
PO  
Output power is very closely correlated with THD; see below.  
Total Harmonic Distortion  
THD  
Po=180mW, RL=8,  
-50  
0.3  
-40  
1
dB  
%
HPVDD=3.3V  
Po=400mW, RL=8Ω  
HPVDD=3.3V  
Signal to Noise Ratio  
(A-weighted)  
SNR  
90  
90  
dB  
HPVDD=3.3V, RL=8Ω  
HPVDD=2.5V, RL=8Ω  
Analogue Reference Levels  
Midrail Reference Voltage  
Potential Divider Resistance  
Buffered Reference Voltage  
Microphone Bias  
VMID  
RVMID  
VREF  
3%  
3%  
3%  
AVDD/2  
50  
+3%  
+3%  
V
kΩ  
V
AVDD/2  
Bias Voltage  
VMICBIAS  
IMICBIAS  
Vn  
0.9×AVDD  
+ 3%  
3
V
Bias Current Source  
Output Noise Voltage  
Digital Input / Output  
Input HIGH Level  
mA  
1K to 20kHz  
15  
nV/Hz  
VIH  
VIL  
0.7×DBVDD  
0.9×DBVDD  
V
V
V
V
Input LOW Level  
0.3×DBVDD  
0.1×DBVDD  
Output HIGH Level  
Output LOW Level  
VOH  
VOL  
IOL=1mA  
IOH-1mA  
HPDETECT (pin 23)  
Input HIGH Level  
VIH  
VIL  
0.7×AVDD  
V
V
Input LOW Level  
0.3×AVDD  
PP Rev 1.77 May 2003  
7
WM8750L  
Product Preview  
OUTPUT PGA’S LINEARITY  
10.000  
0.000  
Output PGA Gains  
-10.000  
-20.000  
-30.000  
-40.000  
-50.000  
-60.000  
-70.000  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
2.000  
1.750  
1.500  
1.250  
1.000  
0.750  
0.500  
0.250  
0.000  
Output PGA Gain Step Size  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONOOUT  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
XXXVOL Register Setting (binary)  
PP Rev 1.77 May 2003  
8
ꢀꢁ  
Product Preview  
WM8750L  
HEADPHONE OUTPUT THD VERSUS POWER  
0
Headphone Power vs THD+N (32Ohm load)  
-20  
-40  
AVDD=1.8V  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
5
10  
15  
20  
25  
30  
Power (mW)  
0
-20  
Headphone Power vs THD+N (16Ohm load)  
AVDD=1.8V  
-40  
AVDD=1.8V, capless  
AVDD=3.3V  
-60  
AVDD=3.3V, capless  
-80  
-100  
0
10  
20  
30  
40  
50  
60  
Power (mW)  
PP Rev 1.77 May 2003  
9
WM8750L  
Product Preview  
SPEAKER OUTPUT THD VERSUS POWER  
-10  
-20  
-30  
-40  
-50  
AVDD=1.8V  
AVDD=2.5V  
AVDD=3.3V  
Speaker Power vs THD+N (8Ohm BTL load)  
-60  
-70  
0
100  
200  
300  
400  
500  
Power (mW)  
10  
Speaker Power vs THD+N (8 Ohm BTL load)  
8
6
4
2
0
AVDD=1.8V  
AVDD=2.5V  
AVDD=3.3V  
0
100  
200  
300  
400  
500  
Power (mW)  
PP Rev 1.77 May 2003  
10  
ꢀꢁ  
Product Preview  
WM8750L  
POWER CONSUMPTION  
The power consumption of the WM8750L depends on the following factors.  
Supply voltages: Reducing the supply voltages also reduces supply currents, and therefore results in significant power  
savings, especially in the digital sections of the WM8750L.  
Operating mode: Significant power savings can be achieved by always disabling parts of the WM8750L that are not  
used (e.g. mic pre-amps, unused outputs, DAC, ADC, etc.)  
Control Register  
R25 (19h)  
R26 (1Ah)  
R24 R23  
Other settings  
AVDD  
DCVDD  
DBVDD  
HPVDD  
Tot. Power  
Bit  
V
I (mA)  
V
I (mA)  
V
I (mA)  
V
I (mA)  
mW  
OFF  
00  
10  
01  
01  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
Clocks stopped  
3.3 0.0016 3.3 0.0190 3.3 0.0080 3.3 0.0002  
2.5 0.0008 2.5 0.0170 2.5 0.0050 2.5 0.0000  
1.8 0.0005 1.5 0.0120 1.5 0.0029 1.8 0.0000  
3.3 0.3900 3.3 0.0390 3.3 0.0080 3.3 0.0000  
2.5 0.2880 2.5 0.0170 2.5 0.0050 2.5 0.0000  
1.8 0.1970 1.5 0.0120 1.5 0.0030 1.8 0.0000  
3.3 3.7310 3.3 5.6600 3.3 0.3000 3.3 0.2370  
2.5 2.6940 2.5 3.8600 2.5 0.2200 2.5 0.2100  
1.8 1.8820 1.5 2.1400 1.5 0.1240 1.8 0.1500  
3.3 3.5170 3.3 4.6470 3.3 0.3000 3.3 0.9500  
2.5 2.5760 2.5 3.2030 2.5 0.2200 2.5 0.6480  
1.8 1.7760 1.5 1.7590 1.5 0.1240 1.8 0.4130  
3.3 3.7260 3.3 5.6700 3.3 0.3000 3.3 0.9530  
2.5 2.7530 2.5 3.9250 2.5 0.2200 2.5 0.6570  
1.8 1.8900 1.5 2.1410 1.5 0.1240 1.8 0.4150  
0.0950  
0.0570  
0.0233  
1.4421  
0.7750  
0.3771  
32.7624  
17.4600  
7.0536  
31.0662  
16.6175  
6.7647  
35.1417  
18.8875  
7.5465  
36.4650  
19.4825  
7.8993  
33.3696  
18.1175  
7.2663  
9.3126  
4.9850  
2.4360  
7.7121  
4.2425  
2.1156  
9.9330  
5.4900  
2.7492  
51.3579  
30.5550  
15.7575  
37.3593  
20.5925  
9.5295  
38.9796  
21.9675  
10.2333  
39.9696  
22.6750  
10.5570  
77.2563  
44.7800  
19.8597  
59.5782  
33.2325  
13.9962  
Standby  
(500 KOhm VMID string)  
Interface Stopped  
Playback to Line-out  
Playback to Line-out  
(64x oversampling mode)  
Playback to 16 Ohm Headphone 01  
Playback to 16 Ohm Headphone 01  
(capless mode using OUT3)  
11 R24, OUT3SW=00 3.3 3.7060 3.3 5.6400 3.3 0.3000 3.3 1.4040  
01  
00  
2.5 2.7130 2.5 3.9000 2.5 0.2200 2.5 0.9600  
1.8 1.8870 1.5 2.1410 1.5 0.1240 1.8 0.6140  
Playback to 8 Ohm BTL Speaker 01  
11 R24, ROUT2INV=1 3.3 3.8820 3.3 5.6470 3.3 0.3000 3.3 0.2830  
01  
00  
11  
01  
00  
11  
2.5 2.8780 2.5 3.9390 2.5 0.2200 2.5 0.2100  
1.8 1.9800 1.5 2.1630 1.5 0.1240 1.8 0.1510  
3.3 1.8400 3.3 0.0200 3.3 0.0080 3.3 0.9540  
2.5 1.3300 2.5 0.0190 2.5 0.0050 2.5 0.6400  
1.8 0.9300 1.5 0.0130 1.5 0.0030 1.8 0.4100  
3.3 1.9780 3.3 0.0200 3.3 0.0080 3.3 0.3310  
Headphone Amp  
(line-in to 16 Ohm headphone)  
01  
01  
01  
01  
01  
Clocks Stopped  
Speaker Amp  
(line-in to 8 Ohm speaker)  
Clocks Stopped  
01 R24, ROUT2INV=1 2.5 1.4300 2.5 0.0190 2.5 0.0050 2.5 0.2430  
00  
11  
01  
00  
11  
01  
00  
11  
01  
00  
1.8 0.9860 1.5 0.0130 1.5 0.0030 1.8 0.1760  
3.3 2.5230 3.3 0.0370 3.3 0.0080 3.3 0.4420  
2.5 1.8520 2.5 0.0190 2.5 0.0050 2.5 0.3200  
1.8 1.2900 1.5 0.0130 1.5 0.0030 1.8 0.2240  
3.3 8.6600 3.3 6.5700 3.3 0.3330 3.3 0.0000  
2.5 7.7100 2.5 4.2800 2.5 0.2320 2.5 0.0000  
1.8 6.8000 1.5 2.2100 1.5 0.1350 1.8 0.0000  
3.3 5.0720 3.3 5.9100 3.3 0.3390 3.3 0.0000  
2.5 4.2550 2.5 3.7500 2.5 0.2320 2.5 0.0000  
1.8 3.5900 1.5 1.9100 1.5 0.1350 1.8 0.0000  
Phone Call  
Clocks Stopped  
(mono line-in to headphone,  
mic to MONOOUT)  
Record from Line-in  
Record from Line-in  
(64x oversampling mode)  
Record from mono microphone 01  
11 R32, LMICBOOST=11; 3.3 4.9330 3.3 6.5400 3.3 0.3390 3.3 0.0000  
01  
00  
R23, DATSEL=01  
2.5 4.2970 2.5 4.2500 2.5 0.2400 2.5 0.0000  
1.8 3.7210 1.5 2.2200 1.5 0.1370 1.8 0.0000  
Record from mono microphone 01  
(differential)  
11 R32, LMICBOOST=11; 3.3 5.2900 3.3 6.5000 3.3 0.3220 3.3 0.0000  
01  
00  
11  
01  
00  
11  
01  
00  
R23, DATSEL=01; 2.5 4.5600 2.5 4.2700 2.5 0.2400 2.5 0.0000  
R32, LINSEL=11  
1.8 3.9000 1.5 2.2200 1.5 0.1380 1.8 0.0000  
3.3 11.927 3.3 10.870 3.3 0.3320 3.3 0.2820  
2.5 10.112 2.5 7.3600 2.5 0.2340 2.5 0.2060  
1.8 7.3910 1.5 4.0610 1.5 0.1320 1.8 0.1480  
3.3 8.1090 3.3 9.3300 3.3 0.3330 3.3 0.2820  
2.5 6.5500 2.5 6.3020 2.5 0.2340 2.5 0.2070  
1.8 4.7000 1.5 3.3800 1.5 0.1320 1.8 0.1490  
Stereo Record & Playback  
01  
01  
Stereo Record & Playback  
(64x oversampling mode)  
Table 1 Supply Current Consumption  
Notes:  
1. All figures are at TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 12.288 MHz (256fs), with zero signal (quiescent)  
2. The power dissipated in the headphone or speaker is not included in the above table.  
PP Rev 1.77 May 2003  
11  
WM8750L  
Product Preview  
SIGNAL TIMING REQUIREMENTS  
SYSTEM CLOCK TIMING  
tMCLKL  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 System Clock Timing Requirements  
Test Conditions  
CLKDIV2=0, DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, MCLK = 384fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
MCLK duty cycle  
TMCLKL  
TMCLKH  
TMCLKY  
TMCLKDS  
21  
21  
ns  
ns  
ns  
54  
60:40  
40:60  
Test Conditions  
CLKDIV2=1, DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode fs = 48kHz, MCLK = 384fs, 24-bit data,  
unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
System Clock Timing Information  
MCLK System clock pulse width high  
MCLK System clock pulse width low  
MCLK System clock cycle time  
TMCLKL  
TMCLKH  
TMCLKY  
10  
10  
27  
ns  
ns  
ns  
AUDIO INTERFACE TIMING – MASTER MODE  
BCLK  
(Output)  
tDL  
ADCLRC/  
DACLRC  
(Outputs)  
tDDA  
ADCDAT  
DACDAT  
tDST  
tDHT  
Figure 2 Digital Audio Data Timing Master Mode (see Control Interface)  
PP Rev 1.77 May 2003  
12  
ꢀꢁ  
Product Preview  
WM8750L  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless  
otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
ADCLRC/DACLRC propagation delay from BCLK falling edge  
ADCDAT propagation delay from BCLK falling edge  
DACDAT setup time to BCLK rising edge  
DACDAT hold time from BCLK rising edge  
tDL  
tDDA  
tDST  
10  
10  
ns  
ns  
ns  
ns  
10  
10  
tDHT  
AUDIO INTERFACE TIMING SLAVE MODE  
tBCH  
tBCL  
BCLK  
tBCY  
DACLRC/  
ADCLRC  
tLRSU  
tDS  
tLRH  
DACDAT  
tDD  
tDH  
ADCDAT  
Figure 3 Digital Audio Data Timing Slave Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless  
otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
tLRSU  
tLRH  
tDH  
50  
20  
20  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
ADCLRC/DACLRC set-up time to BCLK rising edge  
ADCLRC/DACLRC hold time from BCLK rising edge  
DACDAT hold time from BCLK rising edge  
ADCDAT propagation delay from BCLK falling edge  
tDD  
10  
Note:  
BCLK period should always be greater than or equal to MCLK period.  
PP Rev 1.77 May 2003  
13  
WM8750L  
Product Preview  
CONTROL INTERFACE TIMING 3-WIRE MODE  
tCSL  
tCSH  
CSB  
tCSS  
tSCY  
tSCS  
tSCH  
tSCL  
SCLK  
SDIN  
LSB  
tDSU  
tDHO  
Figure 4 Control Interface Timing 3-Wire Serial Control Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless  
otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK rising edge to CSB rising edge  
SCLK pulse cycle time  
tSCS  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
tps  
80  
200  
80  
80  
40  
40  
40  
40  
40  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width low  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
CSB pulse width low  
CSB pulse width high  
CSB rising to SCLK rising  
Pulse width of spikes that will be suppressed  
PP Rev 1.77 May 2003  
14  
ꢀꢁ  
Product Preview  
WM8750L  
CONTROL INTERFACE TIMING 2-WIRE MODE  
t3  
t3  
t5  
SDIN  
t4  
t6  
t2  
t8  
SCLK  
t7  
t1  
t9  
Figure 5 Control Interface Timing 2-Wire Serial Control Mode  
Test Conditions  
DCVDD = 1.42V, DBVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs, 24-bit data, unless  
otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Program Register Input Information  
SCLK Frequency  
0
400  
kHz  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
tps  
600  
1.3  
600  
600  
100  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
300  
300  
Setup Time (Stop Condition)  
Data Hold Time  
600  
0
900  
5
Pulse width of spikes that will be suppressed  
PP Rev 1.77 May 2003  
15  
WM8750L  
Product Preview  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8750L is a low power audio codec offering a combination of high quality audio, advanced  
features, low power and small size. These characteristics make it ideal for portable digital audio  
applications such as MP3 and minidisk player / recorders.  
The device includes three stereo analogue inputs that can be switched internally. Each can be used  
as either a line level input, as a microphone input or be selected as a mono differential input. A  
programmable gain amplifier with automatic level control (ALC) keeps the recording volume constant.  
The on-chip stereo ADC and DAC are of a high quality using a multi-bit, low-order oversampling  
architecture to deliver optimum performance with low power consumption.  
The DAC output signal first enters an analogue mixer where an analogue input and/or the post-ALC  
signal can be added to it. This mix is available on line and headphone outputs.  
The WM8750L has a configurable digital audio interface where ADC data can be read and digital  
audio playback data fed to the DAC. It supports a number of audio data formats including I2S, DSP  
Mode (a burst mode in which frame sync plus 2 data packed words are transmitted), MSB-First, left  
justified and MSB-First, right justified, and can operate in master or slave modes.  
The WM8750L uses a unique clocking scheme that can generate many commonly used audio  
sample rates from either a 12.00MHz USB clock or an industry standard 256/384 fs clock. This  
feature eliminates the common requirement for an external phase-locked loop (PLL) in applications  
where the master clock is not an integer multiple of the sample rate. Sample rates of 8kHz,  
11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz and 96kHz can be  
generated. The digital filters used for recording and playback are optimised for each sampling rate  
used.  
To allow full software control over all its features, the WM8750L offers a choice of 2 or 3 wire MPU  
control interface. It is fully compatible and an ideal partner for a wide range of industry standard  
microprocessors, controllers and DSPs.  
The design of the WM8750L has given much attention to power consumption without compromising  
performance. It operates at very low voltages, and includes the ability to power off parts of the  
circuitry under software control, including standby and power off modes.  
INPUT SIGNAL PATH  
The input signal path for each channel consists of a switch to select between three analogue inputs,  
followed by a PGA (programmable gain amplifier) and an optional microphone gain boost. A  
differential input of either (LINPUT1 RINPUT1) or (LINPUT2 RINPUT2) may also be selected.  
The gain of the PGA can be controlled either by the user or by the on-chip ALC function (see  
Automatic Level Control).  
The signal then enters an ADC where it is digitised. Alternatively, the two channels can also be  
mixed in the analogue domain and digitised in one ADC while the other ADC is switched off. The  
mono-mix signal appears on both digital output channels.  
SIGNAL INPUTS  
The WM8750L has three sets of high impedance, low capacitance AC coupled analogue inputs,  
LINPUT1/RINPUT1, LINPUT2/RINPUT2 and LINPUT3/RINPUT3. The LINSEL and RINSEL control  
bits select between them. These inputs can be configured as microphone or line inputs by enabling  
or disabling the microphone gain boost. A differential input, either LINPUT1-RINPUT1 or LINPUT2-  
RINPUT may also be selected using L/RINSEL and DS (refer to Table 4).  
The signal inputs are biased internally to the reference voltage VREF. Whenever the line inputs are  
muted or the device placed into standby mode, the inputs are kept biased to VREF using special  
anti-thump circuitry. This reduces any audible clicks that may otherwise be heard when changing  
inputs.  
PP Rev 1.77 May 2003  
16  
ꢀꢁ  
Product Preview  
WM8750L  
DC MEASUREMENT  
For DC measurements (for example, battery voltage monitoring), the input signal at the LINPUT1  
and/or RINPUT1 pins can be taken directly into the respective ADC, bypassing both PGA and  
microphone boost. The ADC output then becomes unsigned relative to AVDD, instead of being a  
signed (twos complement) number relative to VREF. Setting L/RDCM will override L/RINSEL. The  
input range for dc measurement is AGND to AVDD.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LINSEL  
DEFAULT  
DESCRIPTION  
R32 (20h)  
7:6  
00  
Left Channel Input Select  
00 = LINPUT1  
ADC Signal  
Path Control  
(Left)  
01 = LINPUT2  
10 = LINPUT3  
11 = Differential  
5:4  
7:6  
5:4  
LMICBOOST  
RINSEL  
00  
00  
00  
Left Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 13dB boost  
10 = 20dB boost  
11 = 29dB boost  
R33 (21h)  
Right Channel Input Select  
00 = RINPUT1  
ADC Signal  
Path Control  
(Right)  
01 = RINPUT2  
10 = RINPUT3  
11 = Differential  
RMICBOOST  
Right Channel Microphone Gain Boost  
00 = Boost off (bypassed)  
01 = 13dB boost  
10 = 20dB boost  
11 = 29dB boost  
Table 2 Input Software Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
RDCM  
DEFAULT  
DESCRIPTION  
R31 (1Fh)  
ADC input Mode  
5
0
Right Channel DC Measurement  
0 = Normal Operation, PGA Enabled  
1 = Measure DC level on RINPUT1  
Left Channel DC Measurement  
4
LDCM  
0
0 = Normal Operation, PGA Enabled  
1 = Measure DC level on LINPUT1  
Table 3 DC Measurement Select  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R31 (1Fh)  
ADC Input Mode  
8
DS  
0
Differential input select  
0: LINPUT1 - RINPUT1  
1: LINPUT2 RINPUT2  
Table 4 Differential Input Select  
PP Rev 1.77 May 2003  
17  
WM8750L  
Product Preview  
MONO MIXING  
The stereo ADC can operate as a stereo or mono device, or the two channels can be mixed to mono,  
either in the analogue domain (i.e. before the ADC) or in the digital domain (after the ADC).  
MONOMIX selects the mode of operation. For analogue mono mix either the left or right channel  
ADC can be used, allowing the unused ADC to be powered off or used for a dc measurement  
conversion. The user also has the flexibility to select the data output from the audio interface using  
DATSEL. The default is for left and right channel ADC data to be output, but the interface may also  
be configured so that e.g. left channel ADC data is output as both left and right data for when an  
analogue mono mix is selected.  
Note:  
If DC measurement is selected this overrides the MONOMIX selection.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R31 (1Fh)  
7:6  
MONOMIX  
[1:0]  
00  
00: Stereo  
ADC input  
Mode  
01: Analogue Mono Mix (using left ADC)  
10: Analogue Mono Mix (using right ADC)  
11: Digital Mono Mix  
Table 5 Mono Mixing  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
3:2  
DATSEL  
[1:0]  
00  
00: left data=left ADC; right data =right ADC  
01: left data =left ADC; right data = left ADC  
Additional  
Control (1)  
10: left data = right ADC; right data =right  
ADC  
11: left data = right ADC; right data = left  
ADC  
Table 6 ADC Data Output Configuration  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to the Applications  
Information section for recommended external components. The output can be enabled or disables  
using the MICB control bit (see also the Power Managementsection).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
MICB  
DESCRIPTION  
R25 (19h)  
1
0
Microphone Bias Enable  
Power  
Management (1)  
0 = OFF (high impedance output)  
1 = ON  
Table 7 Microphone Bias Control  
The internal MICBIAS circuitry is shown below. Note that the is a maximum source current capability  
for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the  
MICBIAS current to 3mA.  
VMID  
MICB  
MICBIAS  
= 1.8 x VMID  
= 0.9 X AVDD  
internal  
resistor  
internal  
resistor  
AGND  
Figure 6 Microphone Bias Schematic  
PGA CONTROL  
PP Rev 1.77 May 2003  
18  
ꢀꢁ  
Product Preview  
WM8750L  
The PGA matches the input signal level to the ADC input range. The PGA gain is logarithmically  
adjustable from +30dB to 17.25dB in 0.75dB steps. Each PGA can be controlled either by the user  
or by the ALC function (see Automatic Level Control). When ALC is enabled for one or both  
channels, then writing to the corresponding PGA control register has no effect.  
The gain is independently adjustable on both Right and Left Line Inputs. Additionally, by controlling  
the register bits LIVU and RIVU, the left and right gain settings can be simultaneously updated.  
Setting the LZCEN and RZCEN bits enables a zero-cross detector which ensures that PGA gain  
changes only occur when the signal is at zero, eliminating any zipper noise. If zero cross is enabled  
a timeout is also available to update the gain if a zero cross does not occur. This function may be  
enabled by setting TOEN in register R23 (17h).  
The inputs can also be muted in the analogue domain under software control. The software control  
registers are shown in Table 8  
REGISTER  
ADDRESS  
BIT  
LABEL  
LIVU  
DEFAULT  
DESCRIPTION  
R0 (00h)  
Left Channel  
PGA  
8
0
Left Volume Update  
0 = Store LINVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LINVOL, right =  
intermediate latch)  
7
6
LINMUTE  
LZCEN  
1
0
Left Channel Input Analogue Mute  
1 = Enable Mute  
0 = Disable Mute  
Note: LIVU must be set to un-mute.  
Left Channel Zero Cross Detector  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Left Channel Input Volume Control  
111111 = +30dB  
5:0  
LINVOL  
[5:0]  
010111  
( 0dB )  
111110 = +29.25dB  
. . 0.75dB steps down to  
000000 = -17.25dB  
R1 (01h)  
Right Channel  
PGA  
8
RIVU  
0
Right Volume Update  
0 = Store RINVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (right = RINVOL, left =  
intermediate latch)  
7
RINMUTE  
RZCEN  
1
0
Right Channel Input Analogue Mute  
1 = Enable Mute  
0 = Disable Mute  
Note: RIVU must be set to un-mute.  
Right Channel Zero Cross Detector  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Right Channel Input Volume Control  
111111 = +30dB  
6
5:0  
RINVOL  
[5:0]  
010111  
( 0dB )  
111110 = +29.25dB  
. . 0.75dB steps down to  
000000 = -17.25dB  
R23 (17h)  
0
TOEN  
0
Timeout Enable  
Additional  
Control (1)  
0 : Timeout Disabled  
1 : Timeout Enabled  
Table 8 Input PGA Software Control  
PP Rev 1.77 May 2003  
19  
WM8750L  
Product Preview  
ANALOGUE TO DIGITAL CONVERTER (ADC)  
The WM8750L uses a multi-bit, oversampled sigma-delta ADC for each channel. The use of multi-bit  
feedback and high oversampling rates reduces the effects of jitter and high frequency noise. The  
ADC Full Scale input level is proportional to AVDD. With a 3.3V supply voltage, the full scale level is  
1.0 Volts r.m.s. Any voltage greater than full scale may overload the ADC and cause distortion.  
ADC DIGITAL FILTER  
The ADC filters perform true 24 bit signal processing to convert the raw multi-bit oversampled data  
from the ADC to the correct sampling frequency to be output on the digital audio interface. The digital  
filter path is illustrated in Figure 7.  
TO DIGITAL  
AUDIO  
INTERFACE  
DIGITAL  
HPF  
DIGITAL  
DECIMATOR  
DIGITAL  
FILTER  
FROM ADC  
ADCHPD  
Figure 7 ADC Digital Filter  
The ADC digital filters contain a digital high pass filter, selectable via software control. The high-pass  
filter response is detailed in the Digital Filter Characteristics section. When the high-pass filter is  
enabled the dc offset is continuously calculated and subtracted from the input signal. By setting  
HPOR, the last calculated dc offset value is stored when the high-pass filter is disabled and will  
continue to be subtracted from the input signal. If the DC offset is changed, the stored and  
subtracted value will not change unless the high-pass filter is enabled. This feature can be used for  
calibration purposes.  
The output data format can be programmed by the user to accommodate stereo or monophonic  
recording on both inputs. The polarity of the output signal can also be changed under software  
control. The software control is shown in Table 9.  
REGISTER  
ADDRESS  
BIT  
6:5  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R5 (05h)  
ADCPOL  
00 = Polarity not inverted  
01 = L polarity invert  
ADC and DAC  
Control  
[1:0]  
10 = R polarity invert  
11 = L and R polarity invert  
4
0
HPOR  
0
0
Store dc offset when High Pass  
Filter disabled  
1 = store offset  
0 = clear offset  
ADCHPD  
ADC High Pass Filter Enable  
(Digital)  
1 = Disable High Pass Filter  
0 = Enable High Pass Filter  
Table 9 ADC Signal Path Control  
PP Rev 1.77 May 2003  
20  
ꢀꢁ  
Product Preview  
WM8750L  
DIGITAL ADC VOLUME CONTROL  
The output of the ADCs can be digitally amplified or attenuated over a range from 97dB to +30dB in  
0.5dB steps. The volume of each channel can be controlled separately. The gain for a given eight-bit  
code X is given by:  
0.5 × (X-195) dB for 1 X 255;  
MUTE for X = 0  
The LAVU and RAVU control bits control the loading of digital volume control data. When LAVU or  
RAVU are set to 0, the LADCVOL or RADCVOL control data will be loaded into the respective control  
register, but will not actually change the digital gain setting. Both left and right gain settings are  
updated when either LAVU or RAVU are set to 1. This makes it possible to update the gain of both  
channels simultaneously.  
REGISTER  
ADDRESS  
BIT  
7:0  
LABEL  
DEFAULT  
DESCRIPTION  
R21 (15h)  
LADCVOL  
11000011  
( 0dB )  
Left ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -97dB  
Left ADC  
Digital Volume  
[7:0]  
0000 0010 = -96.5dB  
... 0.5dB steps up to  
1111 1111 = +30dB  
8
LAVU  
0
Left ADC Volume Update  
0 = Store LADCVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LADCVOL, right =  
intermediate latch)  
R22 (16h)  
7:0  
RADCVOL  
[7:0]  
11000011  
( 0dB )  
Right ADC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -97dB  
Right ADC  
Digital Volume  
0000 0010 = -96.5dB  
... 0.5dB steps up to  
1111 1111 = +30dB  
8
RAVU  
0
Right ADC Volume Update  
0 = Store RADCVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = intermediate latch, right  
= RADCVOL)  
Table 10 ADC Digital Volume Control  
PP Rev 1.77 May 2003  
21  
WM8750L  
Product Preview  
AUTOMATIC LEVEL CONTROL (ALC)  
The WM8750L has an automatic level control that aims to keep a constant recording volume  
irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that  
the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output  
and changes the PGA gain if necessary. Note that when the ALC function is enabled, the settings of  
registers 0 and 1 (LINVOL, LIVU, LIZC, RINVOL, RIVU and RIZC, but not LINMUTE and RINMUTE)  
are ignored.  
input  
signal  
PGA  
gain  
signal  
after  
ALC  
ALC  
target  
level  
hold decay  
time time  
attack  
time  
Figure 8 ALC Operation  
The ALC function is enabled using the ALCSEL control bits. When enabled, the recording volume  
can be programmed between 6dB and 28.5dB (relative to ADC full scale) using the ALCL register  
bits. An upper limit for the PGA gain can be imposed by setting the MAXGAIN control bits.  
HLD, DCY and ATK control the hold, decay and attack times, respectively:  
Hold time is the time delay between the peak level detected being below target and the PGA gain  
beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g. 2.67ms, 5.33ms,  
10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time only  
applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is  
above target.  
Decay (Gain Ramp-Up) Time is the time that it takes for the PGA gain to ramp up across 90% of its  
range (e.g. from 15B up to 27.75dB). The time it takes for the recording level to return to its target  
value therefore depends on both the decay time and on the gain adjustment required. If the gain  
adjustment is small, it will be shorter than the decay time. The decay time can be programmed in  
power-of-two (2n) steps, from 24ms, 48ms, 96ms, etc. to 24.58s.  
Attack (Gain Ramp-Down) Time is the time that it takes for the PGA gain to ramp down across 90%  
of its range (e.g. from 27.75dB down to -15B gain). The time it takes for the recording level to return  
to its target value therefore depends on both the attack time and on the gain adjustment required. If  
the gain adjustment is small, it will be shorter than the attack time. The attack time can be  
programmed in power-of-two (2n) steps, from 6ms, 12ms, 24ms, etc. to 6.14s.  
When operating in stereo, the peak detector takes the maximum of left and right channel peak  
values, and any new gain setting is applied to both left and right PGAs, so that the stereo image is  
preserved. However, the ALC function can also be enabled on one channel only. In this case, only  
one PGA is controlled by the ALC mechanism, while the other channel runs independently with its  
PGA gain set through the control register.  
When one ADC channel is unused or used for DC measurement, the peak detector disregards that  
channel. The ALC function can also operate when the two ADC outputs are mixed to mono in the  
digital domain, but not if they are mixed to mono in the analogue domain, before entering the ADCs.  
PP Rev 1.77 May 2003  
22  
ꢀꢁ  
Product Preview  
WM8750L  
REGISTER  
ADDRESS  
BIT  
8:7  
LABEL  
ALCSEL  
DEFAULT  
DESCRIPTION  
ALC function select  
R17 (11h)  
00  
ALC Control 1  
[1:0]  
(OFF)  
00 = ALC off (PGA gain set by register)  
01 = Right channel only  
10 = Left channel only  
11 = Stereo (PGA registers unused)  
Note: ensure that LINVOL and  
RINVOL settings (reg. 0 and 1) are  
the same before entering this mode.  
6:4  
3:0  
MAXGAIN  
[2:0]  
111  
(+30dB)  
Set Maximum Gain of PGA  
111 : +30dB  
110 : +24dB  
.(-6dB steps)  
001 : -6dB  
000 : -12dB  
ALCL  
[3:0]  
1011  
ALC target sets signal level at ADC  
input  
(-12dB)  
0000 = -28.5dB FS  
0001 = -27.0dB FS  
(1.5dB steps)  
1110 = -7.5dB FS  
1111 = -6dB FS  
R18 (12h)  
7
ALCZC  
0 (zero  
cross  
off)  
ALC uses zero cross detection circuit.  
ALC Control 2  
3:0  
HLD  
[3:0]  
0000  
ALC hold time before gain is increased.  
0000 = 0ms  
(0ms)  
0001 = 2.67ms  
0010 = 5.33ms  
(time doubles with every step)  
1111 = 43.691s  
R19 (13h)  
7:4  
3:0  
DCY  
[3:0]  
0011  
ALC decay (gain ramp-up) time  
0000 = 24ms  
ALC Control 3  
(192ms)  
0001 = 48ms  
0010 = 96ms  
(time doubles with every step)  
1010 or higher = 24.58s  
ALC attack (gain ramp-down) time  
0000 = 6ms  
ATK  
[3:0]  
0010  
(24ms)  
0001 = 12ms  
0010 = 24ms  
(time doubles with every step)  
1010 or higher = 6.14s  
Table 11 ALC Control  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (1.16dB), the PGA gain is  
ramped down at the maximum attack rate (as when ATK = 0000), until the signal level falls below  
87.5% of full scale. This function is automatically enabled whenever the ALC is enabled.  
Note:  
If ATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed to  
prevent clipping when long attack times are used.  
PP Rev 1.77 May 2003  
23  
WM8750L  
Product Preview  
NOISE GATE  
When the signal is very quiet and consists mainly of noise, the ALC function may cause noise  
pumping, i.e. loud hissing noise during silence periods. The WM8750L has a noise gate function  
that prevents noise pumping by comparing the signal level at the LINPUT1/2/3 and/or RINPUT1/2/3  
pins against a noise gate threshold, NGTH. The noise gate cuts in when:  
Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dB] < NGTH [dB]  
The ADC output can then either be muted or digitally attenuated by 18dB. Alternatively, the PGA gain  
can be held constant (preventing it from ramping up as it normally would when the signal is quiet).  
The table below summarises the noise gate control register. The NGTH control bits set the noise  
gate threshold with respect to the ADC full-scale range. The threshold is adjusted in 1.5dB steps.  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken with  
setup of the function. Note that the noise gate only works in conjunction with the ALC function, and  
always operates on the same channel(s) as the ALC (left, right, both, or none).  
REGISTER  
ADDRESS  
BIT  
LABEL  
NGTH  
DEFAULT  
DESCRIPTION  
Noise gate threshold  
R20 (14h)  
7:3  
00000  
Noise Gate  
Control  
[4:0]  
00000 -76.5dBfs  
00001 -75dBfs  
1.5 dB steps  
11110 -31.5dBfs  
11111 -30dBfs  
2:1  
0
NGG  
[1:0]  
00  
0
Noise gate type  
X0 = PGA gain held constant  
01 = mute ADC output  
11 = reserved (do not use this setting)  
Noise gate function enable  
1 = enable  
NGAT  
0 = disable  
Table 12 Noise Gate Control  
PP Rev 1.77 May 2003  
24  
ꢀꢁ  
Product Preview  
WM8750L  
3D STEREO ENHANCEMENT  
The WM8750L has a digital 3D enhancement option to artificially increase the separation between  
the left and right channels. This effect can be used for recording or playback, but not for both  
simultaneously. Selection of 3D for record or playback is controlled by register bit MODE3D.  
Important:  
Switching the 3D filter from record to playback or from playback to record may only be done  
when ADC and DAC are disabled. The WM8750L control interface will only allow MODE3D to  
be changed when ADC and DAC are disabled (i.e. bits ADCL, ADCR, DACL and DACR in reg.  
26 / 1Ah are all zero).  
The 3D enhancement function is activated by the 3DEN bit, and has two programmable parameters.  
The 3DWIDTH setting controls the degree of stereo expansion. Additionally, one of four filter  
characteristics can be selected for the 3D processing, using the 3DFILT control bits.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MODE3D  
DEFAULT  
DESCRIPTION  
R16 (10h)  
7
6
0
Playback/Record 3D select  
0 = 3D selected for Record  
1 = 3D selected for Playback  
Upper Cut-off frequency  
3D enhance  
3DUC  
3DLC  
0
0 = High (2.2kHz at 48kHz  
sampling)  
1 = Low (1.5kHz at 48kHz sampling)  
Lower Cut-off frequency  
0 = Low (200Hz at 48kHz sampling)  
1 = High (500Hz at 48kHz sampling)  
Stereo depth  
5
0
4:1  
3DDEPTH  
[3:0]  
0000  
0000: 0% (minimum 3D effect)  
0001: 6.67%  
....  
1110: 93.3%  
1111: 100% (maximum 3D effect)  
3D function enable  
0
3DEN  
0
1: enabled  
0: disabled  
Table 13 3D Stereo Enhancement Function  
When 3D enhancement is enabled (and/or the graphic equaliser for playback) it may be necessary to  
attenuate the signal by 6dB to avoid limiting. This is a user selectable function, enabled by setting  
ADCDIV2 for the record path and DACDIV2 for the playback path.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5 (05h)  
8
7
ADCDIV2  
0
ADC 6dB attenuate enable  
0 = disabled (0dB)  
ADC and DAC  
control  
1 = -6dB enabled  
DACDIV2  
0
DAC 6dB attenuate enable  
0 = disabled (0dB)  
1 = -6dB enabled  
Table 14 ADC and DAC 6dB Attenuation Select  
PP Rev 1.77 May 2003  
25  
WM8750L  
Product Preview  
OUTPUT SIGNAL PATH  
The WM8750L output signal paths consist of digital filters, DACs, analogue mixers and output  
drivers. The digital filters and DACs are enabled when the WM8750L is in playback onlyor record  
and playbackmode. The mixers and output drivers can be separately enabled by individual control  
bits (see Analogue Outputs). Thus it is possible to utilise the analogue mixing and amplification  
provided by the WM8750L, irrespective of whether the DACs are running or not.  
The WM8750L receives digital input data on the DACDAT pin. The digital filter block processes the  
data to provide the following functions:  
Digital volume control  
Graphic equaliser and Dynamic Bass Boost  
Sigma-Delta Modulation  
Two high performance sigma-delta audio DACs convert the digital data into two analogue signals (left  
and right). These can then be mixed with analogue signals from the LINPUT1/2/3 and RINPUT1/2/3  
pins, and the mix is fed to the output drivers, LOUT1/ROUT1, LOUT2/ROUT2, OUT3 and  
MONOOUT.  
LOUT1/ROUT1/OUT3: can drive a 16or 32stereo headphone or stereo line output.  
LOUT2/ROUT2: can drive a 16or 32stereo headphone or stereo line output, or an  
8mono speaker.  
MONOOUT: can drive a mono line output or other load down to 10kΩ  
DIGITAL DAC VOLUME CONTROL  
The signal volume from each DAC can be controlled digitally, in the same way as the ADC volume  
(see Digital ADC Volume Control). The gain and attenuation range is 127dB to 0dB in 0.5dB steps.  
The level of attenuation for an eight-bit code X is given by:  
0.5 × (X-255) dB for 1 X 255;  
MUTE for X = 0  
The LDVU and RDVU control bits control the loading of digital volume control data. When LDVU or  
RDVU are set to 0, the LDACVOL or RDACVOL control data is loaded into an intermediate register,  
but the actual gain does not change. Both left and right gain settings are updated simultaneously  
when either LDVU or RDVU are set to 1.  
REGISTER  
ADDRESS  
BIT  
LABEL  
LDVU  
DEFAULT  
DESCRIPTION  
R10 (0Ah)  
8
0
Left DAC Volume Update  
Left Channel  
Digital Volume  
0 = Store LDACVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = LDACVOL, right =  
intermediate latch)  
7:0  
LDACVOL  
[7:0]  
11111111  
( 0dB )  
Left DAC Digital Volume Control  
0000 0000 = Digital Mute  
0000 0001 = -127dB  
0000 0010 = -126.5dB  
... 0.5dB steps up to  
1111 1111 = 0dB  
R11 (0Bh)  
8
RDVU  
0
Right DAC Volume Update  
Right Channel  
Digital Volume  
0 = Store RDACVOL in intermediate  
latch (no gain change)  
1 = Update left and right channel  
gains (left = intermediate latch, right  
= RDACVOL)  
7:0  
RDACVOL  
[7:0]  
11111111  
( 0dB )  
Right DAC Digital Volume Control  
similar to LDACVOL  
Table 15 Digital Volume Control  
PP Rev 1.77 May 2003  
26  
ꢀꢁ  
Product Preview  
WM8750L  
GRAPHIC EQUALISER  
The WM8750L has a digital graphic equaliser and adaptive bass boost function. This function  
operates on digital audio data before it is passed to the audio DACs. Bass enhancement can take  
two different forms:  
Linear bass control: bass signals are amplified or attenuated by a user programmable  
gain. This is independent of signal volume, and very high bass gains on loud signals  
may lead to signal clipping.  
Adaptive bass boost: The bass volume is amplified by a variable gain. When the bass  
volume is low, it is boosted more than when the bass volume is high. This method is  
recommended because it prevents clipping, and usually sounds more pleasant to the  
human ear.  
Treble control applies a user programmable gain, without any adaptive boost function. Bass and  
treble control are completely independent with separately programmable gains and filter  
characteristics.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BB  
DEFAULT  
DESCRIPTION  
R12 (0Ch)  
7
0
0
Bass Boost  
Bass Control  
0 = Linear bass control  
1 = Adaptive bass boost  
6
BC  
Bass Filter Characteristic  
0 = Low Cutoff (130Hz at 48kHz sampling)  
1 = High Cutoff (200Hz at 48kHz sampling)  
Bass Intensity  
3:0  
BASS  
[3:0]  
1111  
(Disabled)  
Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
BB=0  
+9dB  
BB=1  
15 (max)  
+9dB  
14  
13  
12  
11  
10  
9
+7.5dB  
+6dB  
+4.5dB  
+3dB  
+1.5dB  
0dB  
8
-1.5dB  
-3dB  
7
6
-4.5dB  
-6dB  
5
4
-6dB  
3
-6dB  
2
-6dB  
1
Bypass (OFF)  
R13 (0Dh)  
6
TC  
0
Treble Filter Characteristic  
Treble Control  
0 = High Cutoff (8kHz at 48kHz sampling)  
1 = Low Cutoff (4kHz at 48kHz sampling)  
Treble Intensity  
3:0  
TRBL  
[3:0]  
1111  
(Disabled)  
0000 or 0001 = +9dB  
0010 = +7.5dB  
(1.5dB steps)  
1011 to 1110 = -6dB  
1111 = Disable  
Table 16 Graphic equaliser  
PP Rev 1.77 May 2003  
27  
WM8750L  
Product Preview  
DIGITAL TO ANALOGUE CONVERTER (DAC)  
After passing through the graphic equaliser filters, digital de-emphasiscan be applied to the audio  
data if necessary (e.g. when the data comes from a CD with pre-emphasis used in the recording).  
De-emphasis filtering is available for sample rates of 48kHz, 44.1kHz and 32kHz.  
The WM8750L also has a Soft Mute function, which gradually attenuates the volume of the digital  
signal to zero. When removed, the gain will ramp back up to the digital gain setting. This function is  
enabled by default. To play back an audio signal, it must first be disabled by setting the DACMU bit  
to zero.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R5 (05h)  
2:1  
DEEMP  
De-emphasis Control  
ADC and DAC  
Control  
[1:0]  
11 = 48kHz sample rate  
10 = 44.1kHz sample rate  
01 = 32kHz sample rate  
00 = No De-emphasis  
Digital Soft Mute  
3
DACMU  
1
1 = mute  
0 = no mute (signal active)  
Table 17 DAC Control  
The digital audio data is converted to oversampled bit streams in the on-chip, true 24-bit digital  
interpolation filters. The bitstream data enters two multi-bit, sigma-delta DACs, which convert them to  
high quality analogue audio signals. The multi-bit DAC architecture reduces high frequency noise and  
sensitivity to clock jitter. It also uses a Dynamic Element Matching technique for high linearity and  
low distortion.  
In normal operation, the left and right channel digital audio data is converted to analogue in two  
separate DACs. However, it is also possible to disable one channel, so that the same signal (left or  
right) appears on both analogue output channels. Additionally, there is a mono-mix mode where the  
two audio channels are mixed together digitally and then converted to analogue using only one DAC,  
while the other DAC is switched off. The mono-mix signal can be selected to appear on both  
analogue output channels.  
The DAC output defaults to non-inverted. Setting DACINV will invert the DAC output phase on both  
left and right channels.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R23 (17h)  
5:4  
DMONOMIX  
[1:0]  
00  
DAC mono mix  
Additional  
Control (1)  
00: stereo  
01: mono ((L+R)/2) into DACL, 0into  
DACR  
10: mono ((L+R)/2) into DACR, 0into  
DACL  
11: mono ((L+R)/2) into DACL &  
DACR  
1
DACINV  
0
DAC phase invert  
0 : non-inverted  
1 : inverted  
Table 18 DAC Mono Mix and Phase Invert Select  
PP Rev 1.77 May 2003  
28  
ꢀꢁ  
Product Preview  
WM8750L  
OUTPUT MIXERS  
The WM8750L provides the option to mix the DAC output signal with analogue line-in signals from  
the LINPUT1/2/3, RINPUT1/2/3 pins or a mono differential input (LINPUT1 RINPUT1) or (LINPUT2  
RINPUT2), selected by DS (see Table 4) . The level of the mixed-in signals can be controlled with  
PGAs (Programmable Gain Amplifiers).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
000  
DESCRIPTION  
R34 (22h)  
2:0  
LMIXSEL  
Left Input Selection for Output Mix  
000 = LINPUT1  
Left Mixer (1)  
001 = LINPUT2  
010 = LINPUT3  
011 = Left ADC Input (after PGA /  
MICBOOST)  
100 = Differential input  
Right Input Selection for Output Mix  
000 = RINPUT1  
R36 (24h)  
2:0  
RMIXSEL  
000  
Right Mixer  
(1)  
001 = RINPUT2  
010 = RINPUT3  
011 = Right ADC Input (after PGA /  
MICBOOST)  
100 = Differential input  
Table 19 Output Mixer Signal Selection  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2LO  
DEFAULT  
DESCRIPTION  
R34 (22h)  
8
0
Left DAC to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Left Mixer  
Control (1)  
7
LI2LO  
0
LMIXSEL Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
LI2LOVOL  
[2:0]  
101  
LMIXSEL Signal to Left Mixer Volume  
000 = +6dB  
(-9dB)  
(3dB steps)  
111 = -15dB  
R35 (23h)  
8
RD2LO  
RI2LO  
0
0
Right DAC to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Left Mixer  
Control (2)  
7
RMIXSEL Signal to Left Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
RI2LOVOL  
[2:0]  
101  
RMIXSEL Signal to Left Mixer Volume  
000 = +6dB  
(-9dB)  
(3dB steps)  
111 = -15dB  
Table 20 Left Output Mixer Control  
PP Rev 1.77 May 2003  
29  
WM8750L  
Product Preview  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2RO  
DEFAULT  
DESCRIPTION  
Left DAC to Right Mixer  
R36 (24h)  
8
0
Right Mixer  
Control (1)  
0 = Disable (Mute)  
1 = Enable Path  
7
LI2RO  
0
LMIXSEL Signal to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
LI2ROVOL  
[2:0]  
101  
LMIXSEL Signal to Right Mixer Volume  
000 = +6dB  
(-9dB)  
(3dB steps)  
111 = -15dB  
R37 (25h)  
8
RD2RO  
RI2RO  
0
0
Right DAC to Right Mixer  
0 = Disable (Mute)  
Right Mixer  
Control (2)  
1 = Enable Path  
7
RMIXSEL Signal to Right Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
RI2ROVOL  
[2:0]  
101  
RMIXSEL Signal to Right Mixer Volume  
000 = +6dB  
(-9dB)  
(3dB steps)  
111 = -15dB  
Table 21 Right Output Mixer Control  
REGISTER  
ADDRESS  
BIT  
LABEL  
LD2MO  
DEFAULT  
DESCRIPTION  
R38 (26h)  
8
0
Left DAC to Mono Mixer  
0 = Disable (Mute)  
Mono Mixer  
Control (1)  
1 = Enable Path  
7
LI2MO  
0
LMIXSEL Signal to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
LI2MOVOL  
[2:0]  
101  
LMIXSEL Signal to Mono Mixer  
Volume  
(-9dB)  
000 = +6dB  
(3dB steps)  
111 = -15dB  
R39 (27h)  
8
RD2MO  
RI2MO  
0
0
Right DAC to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
Mono Mixer  
Control (2)  
7
RMIXSEL Signal to Mono Mixer  
0 = Disable (Mute)  
1 = Enable Path  
6:4  
RI2MOVOL  
[2:0]  
101  
RMIXSEL Signal to Mono Mixer  
Volume  
(-9dB)  
000 = +6dB  
(3dB steps)  
111 = -15dB  
Table 22 Mono Output Mixer Control  
PP Rev 1.77 May 2003  
30  
ꢀꢁ  
Product Preview  
WM8750L  
ANALOGUE OUTPUTS  
LOUT1/ROUT1 OUTPUTS  
The LOUT1 and ROUT1 pins can drive a 16or 32headphone or a line output (see Headphone  
Output and Line Output sections, respectively). The signal volume on LOUT1 and ROUT1 can be  
independently adjusted under software control by writing to LOUT1VOL and ROUT1VOL,  
respectively. Note that gains over 0dB may cause clipping if the signal is large. Any gain setting  
below 0101111 (minimum) mutes the output driver. The corresponding output pin remains at the  
same DC level (the reference voltage on the VREF pin), so that no click noise is produced when  
muting or un-muting.  
A zero cross detect on the analogue output may also be enabled when changing the gain setting to  
minimize audible clicks and zipper noise as the gain updates. If zero cross is enabled a timeout is  
also available to update the gain if a zero cross does not occur. This function may be enabled by  
setting TOEN in register R23 (17h).  
REGISTER  
ADDRESS  
BIT  
LABEL  
LO1VU  
DEFAULT  
DESCRIPTION  
R2 (02h)  
LOUT1  
Volume  
8
0
Left Volume Update  
0 = Store LOUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = LOUT1VOL, right =  
intermediate latch)  
7
LO1ZC  
0
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
LOUT1 Volume  
6:0  
LOUT1VOL  
[6:0]  
1111001  
(0dB)  
1111111 = +6dB  
(80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue  
MUTE  
R3 (03h)  
ROUT1  
Volume  
8
RO1VU  
RO1ZC  
0
Right Volume Update  
0 = Store ROUT1VOL in intermediate  
latch (no gain change)  
1 = Update left and right channel gains  
(left = intermediate latch, right =  
ROUT1VOL)  
7
0
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
ROUT1 Volume  
6:0  
ROUT1VOL  
[6:0]  
1111001  
Similar to LOUT1VOL  
Table 23 LOUT1/ROUT1 Volume Control  
PP Rev 1.77 May 2003  
31  
WM8750L  
Product Preview  
LOUT2/ROUT2 OUTPUTS  
The LOUT2 and ROUT2 output pins are essentially similar to LOUT1 and ROUT1, but they are  
independently controlled and can also drive an 8mono speaker (see Speaker Output section). For  
speaker drive, the ROUT2 signal must be inverted (ROUT2INV = 1), so that the left and right channel  
are mixed to mono in the speaker [L(-R) = L+R].  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Similar to LOUT1VOL  
R40 (28h)  
LOUT2  
6:0  
LOUT2VOL  
[6:0]  
1111001  
(0dB)  
0
Volume  
7
LO2ZC  
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Same as LO1VU  
8
LO2VU  
ROUT2VOL  
[6:0]  
0
R41 (29h)  
ROUT2  
6:0  
1111001  
(0dB)  
0
Similar ROUT1VOL  
Volume  
7
RO2ZC  
Left zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
Same as RO1VU  
8
4
RO2VU  
0
0
R24 (18h)  
ROUT2INV  
ROUT2 Invert  
Additional  
Control (2)  
0 = No Inversion (0° phase shift)  
1 = Signal inverted (180° phase shift)  
Table 24 LOUT2/ROUT2 Volume Control  
MONO OUTPUT  
The MONOOUT pin can drive a mono line output. The signal volume on MONOOUT can be adjusted  
under software control by writing to MONOOUTVOL.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R42 (2Ah)  
MONOOUT  
Volume  
6:0  
MONOOUT  
VOL [6:0]  
1111001  
(0dB)  
MONOOUT Volume  
1111111 = +6dB  
(80 steps)  
0110000 = -67dB  
0101111 to 0000000 = Analogue MUTE  
MONOOUT zero cross enable  
1 = Change gain on zero cross only  
0 = Change gain immediately  
7
MOZC  
0
Table 25 MONOOUT Volume Control  
OUT3 OUTPUT  
The OUT3 pin can drive a 16or 32headphone or a line output or be used as a DC reference for a  
headphone output (see Headphone Output section). It can be selected to either drive out an inverted  
ROUT1 or inverted MONOOUT for e.g. an earpiece drive between OUT3 and LOUT1 or differential  
output between OUT3 and MONOOUT.  
OUT3SW selects the mode of operation required.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R24 (18h)  
8:7  
OUT3SW  
[1:0]  
OUT3 select  
00 : VREF  
Additional  
Control (2)  
01 : ROUT1 signal (volume controlled by  
ROUT1VOL)  
10 : MONOOUT  
11 : right mixer output (no volume  
control through ROUT1VOL)  
Table 26 OUT3 Select  
PP Rev 1.77 May 2003  
32  
ꢀꢁ  
Product Preview  
WM8750L  
ENABLING THE OUTPUTS  
Each analogue output of the WM8750L can be separately enabled or disabled. The analogue mixer  
associated with each output is powered on or off along with the output pin. All outputs are disabled by  
default. To save power, unused outputs should remain disabled.  
Outputs can be enabled at any time, except when VREF is disabled (VR=0), as this may cause pop  
noise (see Power Managementand Applications Informationsections)  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R26 (1Ah)  
6
LOUT1  
0
0
0
0
0
0
LOUT1 Enable  
Power  
Management  
(2)  
5
4
3
2
1
ROUT1  
LOUT2  
ROUT2  
MONO  
OUT3  
ROUT1 Enable  
LOUT2 Enable  
ROUT2 Enable  
MONOOUT Enable  
OUT3 Enable  
Note: All Enablebits are 1 = ON, 0 = OFF  
Table 27 Analogue Output Control  
Whenever an analogue output is disabled, it remains connected to VREF (pin 20) through a resistor.  
This helps to prevent pop noise when the output is re-enabled. The resistance between VREF and  
each output can be controlled using the VROI bit in register 27. The default is low (1.5k), so that  
any capacitors on the outputs can charge up quickly at start-up. If a high impedance is desired for  
disabled outputs, VROI can then be set to 1, increasing the resistance to about 40k.  
REGISTER  
ADDRESS  
BIT  
LABEL  
VROI  
DEFAULT  
DESCRIPTION  
R27 (1Bh)  
6
0
VREF to analogue output resistance  
Additional (1)  
0: 1.5 kΩ  
1: 40 kΩ  
Table 28 Disabled outputs to VREF resistance  
HEADPHONE SWITCH  
The RINPUT3/HPDETECT pin can be used as a headphone switch control input to automatically  
disable the speaker output and enable the headphone output e.g. when a headphone is plugged into  
a jack socket. In this mode, enabled by setting HPSWEN, HPDETECT switches between headphone  
and speaker outputs (e.g. when the pin is connected to a mechanical switch in the headphone socket  
to detect plug-in). The HPSWPOL bit reverses the pins polarity. Note that the LOUT1, ROUT1,  
LOUT2 and ROUT2 bits in register 26 must also be set for headphone and speaker output (see  
Table 29 and Table 30).  
Note:  
When RINPUT3/HPDETECT is used as the HPDETECT input, the thresholds become CMOS levels  
(0.3 AVDD / 0.7 AVDD).  
HPSWEN HPSWPOL HPDETECT L/ROUT1 L/ROUT2 Headphone  
Speaker  
enabled  
no  
(PIN23)  
(reg. 26)  
(reg. 26)  
enabled  
no  
0
0
0
0
1
1
1
1
1
1
1
1
X
X
X
X
0
0
0
0
1
1
1
1
X
X
X
X
0
0
1
1
0
0
1
1
0
0
1
1
X
X
0
1
X
X
0
1
0
1
0
1
0
1
X
X
0
1
X
X
no  
yes  
no  
yes  
yes  
no  
yes  
no  
no  
yes  
no  
no  
yes  
no  
no  
no  
yes  
no  
no  
no  
no  
yes  
Table 29 Headphone Switch Operation  
PP Rev 1.77 May 2003  
33  
WM8750L  
Product Preview  
DESCRIPTION  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
R24 (18h)  
6
HPSWEN  
0
0
Headphone Switch Enable  
Additional  
Control (2)  
0 : Headphone switch disabled  
1 : Headphone switch enabled  
Headphone Switch Polarity  
5
HPSWPOL  
0 : HPDETECT high = headphone  
1 : HPDETECT high = speaker  
Table 30 Headphone Switch  
AVDD  
/
HPSWEN = 1  
HPSWPOL = 1  
L/ROUT1 = L/ROUT2 = 1  
-
-
ROUT1  
LOUT1  
L
R
47k  
100k  
headphone /  
speaker  
switching  
HPDETECT  
switch closes  
on insertion  
Figure TBD Example Headset Detection circuit using normally-open switch  
AVDD  
HPSWEN = 1  
HPSWPOL = 0  
L/ROUT1 = L/ROUT2 = 1  
-
-
ROUT1  
LOUT1  
L
R
47k  
100k  
/  
headphone /  
speaker  
switching  
switch opens  
on insertion  
HPDETECT  
Figure TBD Example Headset Detection circuit using normally-closed switch  
PP Rev 1.77 May 2003  
34  
ꢀꢁ  
Product Preview  
WM8750L  
THERMAL SHUTDOWN  
The speaker and headphone outputs can drive very large currents. To protect the WM8750L from  
overheating a thermal shutdown circuit is included. If the device temperature reaches approximately  
1500C and the thermal shutdown circuit is enabled (TSDEN = 1 ) then the speaker and headphone  
amplifiers (outputs OUT1L/R, OUT2L/R & OUT3) will be disabled.  
REGISTER  
ADDRESS  
BIT  
LABEL  
TSDEN  
DEFAULT  
DESCRIPTION  
R23 (17h)  
8
0
Thermal Shutdown Enable  
0 : thermal shutdown disabled  
1 : thermal shutdown enabled  
Additional  
Control (1)  
Table 31 Thermal Shutdown  
HEADPHONE OUTPUT  
Analogue outputs LOUT1/ROUT1, LOUT2/ROUT2, and OUT3, can drive a 16or 32headphone  
load, either through DC blocking capacitors, or DC coupled without any capacitor.  
DC Coupled Headphone Output  
(OUT3SW = 00)  
Headphone Output using DC blocking  
capacitors  
C1 220uF  
LOUT1/2  
LOUT1/2  
ROUT1/2  
WM8750L  
WM8750L  
C2 220uF  
ROUT1/2  
HPGND = 0V  
OUT3 = VREF  
Figure 9 Recommended Headphone Output Configurations  
When DC blocking capacitors are used, then their capacitance and the load resistance together  
determine the lower cut-off frequency, fc. Increasing the capacitance lowers fc, improving the bass  
response. Smaller capacitance values will diminish the bass response. Assuming a 16 Ohm load and  
C1, C2 = 220µF:  
fc = 1 / 2π RLC1 = 1 / (2π x 16x 220µF) = 45 Hz  
In the DC coupled configuration, the headphone groundis connected to the OUT3 pin, which must  
be enabled by setting OUT3 = 1 and OUT3SW = 00. As the OUT3 pin produces a DC voltage of  
AVDD/2 (=VREF), there is no DC offset between LOUT1/ROUT1 and OUT3, and therefore no DC  
blocking capacitors are required. This saves space and material cost in portable applications.  
It is recommended to connect the DC coupled headphone outputs only to headphones, and not to  
the line input of another device. Although the built-in short circuit protection will prevent any damage  
to the headphone outputs, such a connection may be noisy, and may not function properly if the  
other device is grounded.  
SPEAKER OUTPUT  
LOUT2 and ROUT2 can differentially drive a mono 8speaker as shown below.  
LEFT  
MIXER  
LOUT2  
LOUT2VOL  
WM8750L  
ROUT2INV = 1  
VSPKR = L-(-R) = L+R  
-1  
ROUT2  
RIGHT  
MIXER  
ROUT2VOL  
Figure 10 Speaker Output Connection  
The right channel is inverted by setting the ROUT2INV bit, so that the signal across the loudspeaker  
is the sum of left and right channels.  
PP Rev 1.77 May 2003  
35  
WM8750L  
Product Preview  
LINE OUTPUT  
The analogue outputs, LOUT1/ROUT1 and LOUT2/ROUT2, can be used as line outputs.  
Additionally, OUT3 and MONOOUT can be used as a stereo line-out by setting OUT3SW=11 (reg.  
24) and ensuring the contents of registers 38 and 39 (mono-out mix) are the same as reg. 34 and 35  
(left out mix). Recommended external components are shown below.  
C1  
R1  
1uF  
100 Ohm  
LOUT1/2  
or OUT3 (OUT3SW=11)  
LINE-OUT  
SOCKET  
(LEFT)  
AGND  
AGND  
WM8750L  
ROUT1/2  
or MONOOUT  
LINE-OUT  
SOCKET  
(RIGHT)  
C2  
1uF  
R2  
100 Ohm  
Figure 11 Recommended Circuit for Line Output  
The DC blocking capacitors and the load resistance together determine the lower cut-off frequency,  
fc. Assuming a 10 kOhm load and C1, C2 = 1µF:  
fc = 1 / 2π (RL+R1) C1 = 1 / (2π x 10.1kx 1µF) = 16 Hz  
Increasing the capacitance lowers fc, improving the bass response. Smaller values of C1 and C2 will  
diminish the bass response. The function of R1 and R2 is to protect the line outputs from damage  
when used improperly.  
DIGITAL AUDIO INTERFACE  
The digital audio interface is used for inputting DAC data into the WM8750L and outputting ADC data  
from it. It uses five pins:  
ADCDAT: ADC data output  
ADCLRC: ADC data alignment clock  
DACDAT: DAC data input  
ADCLRC: DAC data alignment clock  
BCLK: Bit clock, for synchronisation  
The clock signals BCLK, ADCLRC and DACLRC can be outputs when the WM8750L operates as a  
master, or inputs when it is a slave (see Master and Slave Mode Operation, below).  
Four different audio data formats are supported:  
Left justified  
Right justified  
I2S  
DSP mode  
All four of these modes are MSB first. They are described in Audio Data Formats, below. Refer to the  
Electrical Characteristic section for timing information.  
MASTER AND SLAVE MODE OPERATION  
The WM8750L can be configured as either a master or slave mode device. As a master device the  
WM8750L generates BCLK, ADCLRC and DACLRC and thus controls sequencing of the data  
transfer on ADCDAT and DACDAT. In slave mode, the WM8750L responds with data to clocks it  
receives over the digital audio interface. The mode can be selected by writing to the MS bit (see  
Table 23). Master and slave modes are illustrated below.  
BCLK  
ADCLRC  
DACLRC  
ADCDAT  
DACDAT  
BCLK  
ADCLRC  
DACLRC  
ADCDAT  
DACDAT  
DSP  
ENCODER/  
DECODER  
DSP  
ENCODER/  
DECODER  
WM8750  
CODEC  
WM8750  
CODEC  
Note: The ADC and DAC can run at different sample rates  
Note: The ADC and DAC can run at different sample rates  
Figure 12 Master Mode  
Figure 13 Slave Mode  
PP Rev 1.77 May 2003  
36  
ꢀꢁ  
Product Preview  
WM8750L  
AUDIO DATA FORMATS  
In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Input Word Length (WL)  
Note: Input word length is defined by the WL register.  
Timing is shown with LRP = 1  
Figure 14 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK  
transition. All other bits are transmitted before (MSB first). Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles after each LRCLK transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Input Word Length (WL)  
Note: Input word length is defined by the WL register.  
Timing is shown with LRP = 1  
Figure 15 Right Justified Audio Interface (assuming n-bit word length)  
In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition.  
The other bits up to the LSB are then transmitted in order. Depending on word length, BCLK  
frequency and sample rate, there may be unused BCLK cycles between the LSB of one sample and  
the MSB of the next.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
DACLRC/  
ADCLRC  
BCLK  
1 BCLK  
1 BCLK  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Input Word Length (WL)  
Note: Input word length is defined by the WL register.  
Timing is shown with LRP = 1  
Figure 16 I2S Justified Audio Interface (assuming n-bit word length)  
In DSP mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising  
edge of BCLK (selectable by LRP) following a rising edge of LRCLK. Right channel data immediately  
PP Rev 1.77 May 2003  
37  
WM8750L  
Product Preview  
follows left channel data. Depending on word length, BCLK frequency and sample rate, there may be  
unused BCLK cycles between the LSB of the right channel data and the next sample.  
1/fs  
1 BCLK  
DACLRC/  
ADCLRC  
BCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n-2 n-1  
n
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 17 DSP Mode Audio Interface (mode A, LRP=0)  
1/fs  
1 BCLK  
DACLRC/  
ADCLRC  
BCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DACDAT/  
ADCDAT  
1
2
3
n
1
2
3
n-2 n-1  
n
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 18 DSP Mode Audio Interface (mode B, LRP=1)  
PP Rev 1.77 May 2003  
38  
ꢀꢁ  
Product Preview  
WM8750L  
AUDIO INTERFACE CONTROL  
The register bits controlling audio format, word length and master / slave mode are summarised in  
Table 32. MS selects audio interface operation in master or slave mode. In Master mode BCLK,  
ADCLRC and DACLRC are outputs. The frequency of ADCLRC and DACLRC is set by the sample  
rate control bits SR[4:0] and USB. In Slave mode BCLK, ADCLRC and DACLRC are inputs.  
REGISTER  
ADDRESS  
BIT  
LABEL  
BCLKINV  
DEFAULT  
DESCRIPTION  
R7 (07h)  
7
0
BCLK invert bit (for master & slave  
modes)  
Digital Audio  
Interface  
Format  
0 = BCLK not inverted  
1 = BCLK inverted  
6
5
MS  
0
0
Master / Slave Mode Control  
1 = Enable Master Mode  
0 = Enable Slave Mode  
Left/Right channel swap  
LRSWAP  
1 = swap left & right DAC data in audio  
interface  
0 = output left and right data as normal  
right, left & i2s modes LRCLK polarity  
1 = invert LRCLK polarity  
4
LRP  
0
0 = normal LRCLK polarity  
DSP Mode mode A/B select  
1 = MSB is available on 1st BCLK rising  
edge after LRC rising edge (mode B)  
0 = MSB is available on 2nd BCLK rising  
edge after LRC rising edge (mode A)  
3:2  
1:0  
WL[1:0]  
10  
10  
Audio Data Word Length  
11 = 32 bits (see Note)  
10 = 24 bits  
01 = 20 bits  
00 = 16 bits  
FORMAT[1:0]  
Audio Data Format Select  
11 = DSP Mode  
10 = I2S Format  
01 = Left justified  
00 = Right justified  
Table 32 Audio Data Format Control  
Note: Right Justified mode does not support 32-bit data.  
AUDIO INTERFACE OUTPUT TRISTATE  
Register bit TRI, register 24(18h) bit[3] can be used to tristate the ADCDAT pin and switch ADCLRC,  
DACLRC and BCLK to inputs. In Slave mode (MASTER=0) ADCLRC, DACLRC and BCLK are by  
default configured as inputs and only ADCDAT will be tri-stated, (see Table 33).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
TRI  
DESCRIPTION  
R24(18h)  
Additional  
Control (2)  
3
0
Tristates ADCDAT and switches ADCLRC,  
DACLRC and BCLK to inputs.  
0 = ADCDAT is an output, ADCLRC, DACLRC  
and BCLK are inputs (slave mode) or outputs  
(master mode)  
1 = ADCDATE is tristated, ADCLRC, DACLRC  
and BCLK are inputs  
Table 33 Tri-stating the Audio Interface  
PP Rev 1.77 May 2003  
39  
WM8750L  
Product Preview  
MASTER MODE ADCLRC AND DACLRC ENABLE  
In Master mode, by default ADCLRC is disabled when the ADC is disabled and DACLRC is disabled  
when the DAC is disabled. Register bit LRCM, register 24(18h) bit[2] changes the control so that the  
ADCLRC and DACLRC are disabled only when ADC and DAC are disabled. This enables the user to  
use e.g. ADCLRC for both ADC and DAC LRCLK and disable the ADC when DAC only operation is  
required, (see Table 34).  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
LRCM  
DESCRIPTION  
R24(18h)  
Additional  
Control (2)  
2
0
Selects disable mode for ADCLRC and  
DACLRC  
0 = ADCLRC disabled when ADC disabled,  
DACLRC disabled when DAC disabled  
1 = ADCLRC and DACLRC disabled only when  
ADC and DAC are disabled  
Table 34 ADCLRC/DACLRC Enable  
CLOCK OUTPUT  
By default ADCLRC (pin 9) is the ADC word clock input/output. Under the control of ADCLRM[1:0],  
register 27(1Bh) bits [8:7] the ADCLRC pin may be configured as a clock output. If ADCLRM is 01,  
10 or 11 then ADCLRC pin is always an output even in slave mode or when TRI = 1, (see Table 35).  
REGISTER  
ADDRESS  
BIT LABEL DEFAULT  
DESCRIPTION  
R27(18h)  
Additional  
Control (3)  
[8:7] ADCLRM  
[1:0]  
00  
Configures ADCLRC pin  
00 = ADCLRC is ADC word clock input (slave  
mode) or ADCLRC output (master mode)  
01 = ADCLRC pin is MCLK output  
10 = ADCLRC pin is MCLK / 5.5 output  
11 = ADCLRC pin is MCLK / 6 output  
Table 35 ADCLRC Clock Output  
CLOCKING AND SAMPLE RATES  
The WM8750L supports a wide range of master clock frequencies on the MCLK pin, and can  
generate many commonly used audio sample rates directly from the master clock. The ADC and  
DAC do not need to run at the same sample rate; several different combinations are possible.  
There are two clocking modes:  
Normalmode supports master clocks of 128fs, 192fs, 256fs, 384fs, and their multiples  
(Note: fs refers to the ADC or DAC sample rate, whichever is faster)  
USB mode supports 12MHz or 24MHz master clocks. This mode is intended for use in  
systems with a USB interface, and eliminates the need for an external PLL to generate  
another clock frequency for the audio codec.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8 (08h)  
6
CLKDIV2  
0
Master Clock Divide by 2  
1 = MCLK is divided by 2  
0 = MCLK is not divided  
Sample Rate Control  
Clocking Mode Select  
1 = USB Mode  
Clocking and  
Sample Rate  
Control  
5:1  
0
SR [4:0]  
USB  
0000  
0
0 = NormalMode  
Table 36 Clocking and Sample Rate Control  
The clocking of the WM8750L is controlled using the CLKDIV2, USB, and SR control bits. Setting the  
CLKDIV2 bit divides MCLK by two internally. The USB bit selects between Normaland USB mode.  
Each value of SR[4:0] selects one combination of MCLK division ratios and hence one combination  
of sample rates (see next page). Since all sample rates are generated by dividing MCLK, their  
accuracy depends on the accuracy of MCLK. If MCLK changes, the sample rates change  
proportionately.  
Note that some sample rates (e.g. 44.1kHz in USB mode) are approximated, i.e. they differ from their  
target value by a very small amount. This is not audible, as the maximum deviation is only 0.27%  
PP Rev 1.77 May 2003  
40  
ꢀꢁ  
Product Preview  
WM8750L  
(8.0214kHz instead of 8kHz in USB mode). By comparison, a half-tone step corresponds to a 5.9%  
change in pitch.  
MCLK  
MCLK  
ADC SAMPLE RATE  
DAC SAMPLE RATE  
USB  
SR [4:0]  
FILTER  
TYPE  
BCLK  
CLKDIV2=0 CLKDIV2=1  
(ADCLRC)  
(DACLRC)  
(MS=1)  
NormalClock Mode (*indicates backward compatibility with WM8731)  
8 kHz (MCLK/1536)  
8 kHz (MCLK/1536)  
12 kHz (MCLK/1024)  
16 kHz (MCLK/768)  
24 kHz (MCLK/512)  
32 kHz (MCLK/384)  
48 kHz (MCLK/256)  
48 kHz (MCLK/256)  
96 kHz (MCLK/128)  
8.0182 kHz (MCLK/1408)  
8.0182 kHz (MCLK/1408)  
11.025 kHz (MCLK/1024)  
22.05 kHz (MCLK/512)  
44.1 kHz (MCLK/256)  
44.1 kHz (MCLK/256)  
88.2 kHz (MCLK/128)  
8 kHz (MCLK/2304)  
8 kHz (MCLK/2304)  
12 kHz (MCLK/1536)  
16kHz (MCLK/1152)  
24kHz (MCLK/768)  
32 kHz (MCLK/576)  
48 kHz (MCLK/384)  
48 kHz (MCLK/384)  
96 kHz (MCLK/192)  
8.0182 kHz (MCLK/2112)  
8.0182 kHz (MCLK/2112)  
11.025 kHz (MCLK/1536)  
22.05 kHz (MCLK/768)  
44.1 kHz (MCLK/384)  
44.1 kHz (MCLK/384)  
88.2 kHz (MCLK/192)  
8 kHz (MCLK/1536)  
48 kHz (MCLK/256)  
12 kHz (MCLK/1024)  
16 kHz (MCLK/768)  
24 kHz (MCLK/512)  
32 kHz (MCLK/384)  
8 kHz (MCLK/1536)  
48 kHz (MCLK/256)  
96 kHz (MCLK/128)  
8.0182 kHz (MCLK/1408)  
44.1 kHz (MCLK/256)  
11.025 kHz (MCLK/1024)  
22.05 kHz (MCLK/512)  
8.0182 kHz (MCLK/1408)  
44.1 kHz (MCLK/256)  
88.2 kHz (MCLK/128)  
8 kHz (MCLK/2304)  
48 kHz (MCLK/384)  
12 kHz (MCLK/1536)  
16 kHz (MCLK/1152)  
24 kHz (MCLK/768)  
32 kHz (MCLK/576)  
48 kHz (MCLK/384)  
8 kHz (MCLK/2304)  
96 kHz (MCLK/192)  
8.0182 kHz (MCLK/2112)  
44.1 kHz (MCLK/384)  
11.025 kHz (MCLK/1536)  
22.05 kHz (MCLK/768)  
8.0182 kHz (MCLK/2112)  
44.1 kHz (MCLK/384)  
88.2 kHz (MCLK/192)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00110 *  
00100 *  
01000  
01010  
11100  
01100 *  
00010 *  
00000 *  
01110 *  
10110 *  
10100 *  
11000  
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
3
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/4  
MCLK/2  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/6  
MCLK/3  
12.288 MHz 24.576 MHz  
11.2896MHz 22.5792MHz  
11010  
10010 *  
10000 *  
11110 *  
00111 *  
00101 *  
01001  
18.432MHz 36.864MHz  
01011  
11101  
01101 *  
00001 *  
00011 *  
01111 *  
10111 *  
10101 *  
11001  
16.9344MHz 33.8688MHz  
11011  
10011 *  
10001 *  
11111 *  
USB Mode (*indicates backward compatibility with WM8731)  
8 kHz (MCLK/1500)  
8 kHz (MCLK/1500)  
8 kHz (MCLK/1500)  
48 kHz (MCLK/250)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00110 *  
00100 *  
10111 *  
10101 *  
11001  
01000  
01010  
11011  
11100  
01100 *  
10011 *  
10001 *  
00010 *  
00000 *  
11111 *  
01110 *  
0
0
1
1
1
0
0
1
0
0
1
1
0
0
3
2
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
12.000MHz 24.000MHz  
8.0214 kHz (MCLK/1496)  
8.0214 kHz (MCLK/1496)  
11.0259 kHz (MCLK/1088)  
12 kHz (MCLK/1000)  
16kHz (MCLK/750)  
22.0588kHz (MCLK/544)  
24kHz (MCLK/500)  
32 kHz (MCLK/375)  
44.118 kHz (MCLK/272)  
44.118 kHz (MCLK/272)  
48 kHz (MCLK/250)  
48 kHz (MCLK/250)  
88.235kHz (MCLK/136)  
96 kHz (MCLK/125)  
8.0214kHz (MCLK/1496)  
44.118 kHz (MCLK/272)  
11.0259kHz (MCLK/1088)  
12 kHz (MCLK/1000)  
16kHz (MCLK/750)  
22.0588kHz (MCLK/544)  
24kHz (MCLK/500)  
32 kHz (MCLK/375)  
8.0214kHz (MCLK/1496)  
44.118 kHz (MCLK/272)  
8 kHz (MCLK/1500)  
48 kHz (MCLK/250)  
88.235kHz (MCLK/136)  
96 kHz (MCLK/125)  
Table 37 Master Clock and Sample Rates  
PP Rev 1.77 May 2003  
41  
WM8750L  
Product Preview  
CONTROL INTERFACE  
SELECTION OF CONTROL MODE  
The WM8750L is controlled by writing to registers through a serial control interface. A control word  
consists of 16 bits. The first 7 bits (B15 to B9) are address bits that select which control register is  
accessed. The remaining 9 bits (B8 to B0) are data bits, corresponding to the 9 bits in each control  
register. The control interface can operate as either a 3-wire or 2-wire MPU interface. The MODE pin  
selects the interface format.  
MODE  
Low  
INTERFACE FORMAT  
2 wire  
3 wire  
High  
Table 38 Control Interface Mode Selection  
3-WIRE SERIAL CONTROL MODE  
In 3-wire mode, every rising edge of SCLK clocks in one data bit from the SDIN pin. A rising edge on  
CSB latches in a complete control word consisting of the last 16 bits.  
latch  
CSB  
SCLK  
SDIN  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
control register address  
control register data bits  
Figure 19 3-Wire Serial Control Interface  
2-WIRE SERIAL CONTROL MODE  
The WM8750L supports software control via a 2-wire serial bus. Many devices can be controlled by  
the same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address  
of each register in the WM8750L).  
The WM8750L operates as a slave device only. The controller indicates the start of data transfer with  
a high to low transition on SDIN while SCLK remains high. This indicates that a device address and  
data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight  
bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the  
address of the WM8750L and the R/W bit is 0, indicating a write, then the WM8750L responds by  
pulling SDIN low on the next clock pulse (ACK). If the address is not recognised or the R/W bit is 1,  
the WM8750L returns to the idle condition and wait for a new start condition and valid address.  
Once the WM8750L has acknowledged a correct address, the controller sends the first byte of  
control data (B15 to B8, i.e. the WM8750L register address plus the first bit of register data). The  
WM8750L then acknowledges the first data byte by pulling SDIN low for one clock pulse. The  
controller then sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register  
data), and the WM8750L acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8750L returns to the idle state and  
waits for another start condition. If a start or stop condition is detected out of sequence at any point  
during data transfer (i.e. SDIN changes while SCLK is high), the device jumps to the idle condition.  
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
CONTROL BYTE 2  
(BITS 7 TO 0)  
ACK  
(LOW)  
SDIN  
SCLK  
START  
STOP  
register address and  
1st register data bit  
remaining 8 bits of  
register data  
Figure 20 2-Wire Serial Control Interface  
PP Rev 1.77 May 2003  
42  
ꢀꢁ  
Product Preview  
WM8750L  
The WM8750L has two possible device addresses, which can be selected using the CSB pin.  
CSB STATE  
Low  
DEVICE ADDRESS  
0011010 (0 x 34h)  
0011011 (0 x 36h)  
High  
Table 39 2-Wire MPU Interface Address Selection  
POWER SUPPLIES  
The WM8750L can use up to four separate power supplies:  
AVDD / AGND: Analogue supply, powers all analogue functions except the headphone drivers.  
AVDD can range from 1.8V to 3.6V and has the most significant impact on overall power  
consumption (except for power consumed in the headphone). A large AVDD slightly improves  
audio quality.  
HPVDD / HPGND: Headphone supply, powers the headphone drivers. HPVDD can range from  
1.8V to 3.6V. HPVDD is normally tied to AVDD, but it requires separate layout and decoupling  
capacitors to curb harmonic distortion. With a larger HPVDD, louder headphone and speaker  
outputs can be achieved with lower distortion. If HPVDD is lower than AVDD, the output signal  
may be clipped.  
DCVDD: Digital core supply, powers all digital functions except the audio and control  
interfaces. DCVDD can range from 1.42V to 3.6V, and has no effect on audio quality. The  
return path for DCVDD is DGND, which is shared with DBVDD.  
DBVDD: Digital buffer supply, powers the audio and control interface buffers. This makes it  
possible to run the digital core at very low voltages, saving power, while interfacing to other  
digital devices using a higher voltage. DBVDD draws much less power than DCVDD, and has  
no effect on audio quality. DBVDD can range from 1.8V to 3.6V. The return path for DBVDD is  
DGND, which is shared with DCVDD.  
It is possible to use the same supply voltage on all four. However, digital and analogue supplies  
should be routed and decoupled separately to keep digital switching noise out of the analogue signal  
paths.  
PP Rev 1.77 May 2003  
43  
WM8750L  
Product Preview  
POWER MANAGEMENT  
The WM8750L has two control registers that allow users to select which functions are active. For  
minimum power consumption, unused functions should be disabled. To avoid any pop or click noise,  
it is important to enable or disable functions in the correct order (see Applications Information).  
VMIDSEL is the enable for the Vmid reference, which defaults to disabled and can be enabled as a  
50kOhm potential divider or, for low power maintenance of Vref when all other blocks are disabled,  
as a 500kOhm potential divider.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
R25 (19h)  
8:7  
VMIDSEL  
Vmid divider enable and select  
Power  
00 Vmid disabled (for OFF mode)  
Manageme  
nt (1)  
01 50kOhm divider enabled (for  
playback/record)  
10 500kOhm divider enabled (for low-power  
standby)  
11 5kOhm divider enabled (for fast start-up)  
VREF (necessary for all other functions)  
Analogue in PGA Left  
Analogue in PGA Right  
ADC Left  
6
5
4
3
2
1
8
7
6
5
4
3
2
1
VREF  
AINL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AINR  
ADCL  
ADCR  
MICB  
ADC Right  
MICBIAS  
R26 (1Ah)  
DACL  
DACR  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
MONO  
OUT3  
DAC Left  
Power  
Manageme  
nt (2)  
DAC Right  
LOUT1 Output Buffer*  
ROUT1 Output Buffer*  
LOUT2 Output Buffer*  
ROUT2 Output Buffer*  
MONOOUT Output Buffer and Mono Mixer  
OUT3 Output Buffer  
Note: All control bits are 0=OFF, 1=ON  
* The left mixer is enabled when LOUT1=1 or LOUT2=1. The right mixer is enabled when  
ROUT1=1 or ROUT2=1.  
Table 40 Power Management  
STOPPING THE MASTER CLOCK  
In order to minimise power consumed in the digital core of the WM8750L, the master clock should be  
stopped in Standby and OFF modes. If this is cannot be done externally at the clock source, the  
DIGENB bit (R25, bit 0) can be set to stop the MCLK signal from propagating into the device core. In  
Standby mode with all supplies at 3.3V, setting DIGENB saves approximately 0.27mA on DCVDD  
and 0.2mA on DBVDD. However, since setting DIGENB has no effect on the power consumption of  
other system components external to the WM8750L, it is preferable to disable the master clock at its  
source wherever possible.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R25 (19h)  
1
DIGENB  
0
Master clock disable  
Additional Control  
(1)  
0: master clock enabled  
1: master clock disabled  
Table 41 ADC and DAC Oversampling Rate Selection  
NOTE: Before DIGENB can be set, the control bits ADCL, ADCR, DACL and DACR must be set  
to zero and a waiting time of 1ms must be observed. Any failure to follow this procedure may  
prevent DACs and ADCs from re-starting correctly.  
PP Rev 1.77 May 2003  
44  
ꢀꢁ  
Product Preview  
WM8750L  
SAVING POWER BY REDUCING OVERSAMPLING RATE  
The default mode of operation of the ADC and DAC digital filters is in 128x oversampling mode.  
Under the control of ADCOSR and DACOSR the oversampling rate may be halved. This will result in  
a slight decrease in noise performance but will also reduce the power consumption of the device.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R24 (18h)  
1
0
ADCOSR  
0
0
ADC oversample rate select  
1 = 64x (lowest power)  
0 = 128x (best SNR)  
Additional Control  
(2)  
DACOSR  
DAC oversample rate select  
1 = 64x (lowest power)  
0 = 128x (best SNR)  
Table 42 ADC and DAC Oversampling Rate Selection  
SAVING POWER AT LOW SUPPLY VOLTAGES  
The analogue supplies to the WM8750L can run from 1.8V to 3.6V. By default, all analogue circuitry  
on the device is optimized to run at 3.3V. This set-up is also good for all other supply voltages down  
to 1.8V. However, at lower voltages, it is possible to save power by reducing the internal bias  
currents used in the analogue circuitry. This is controlled as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL DEFAULT  
DESCRIPTION  
R23 (17h)  
7:6  
VSEL  
[1:0]  
11  
Analogue Bias optimization  
Additional  
Control(1)  
00: Lowest bias current, optimized for AVDD=1.8V  
01: Low bias current, optimized for AVDD=2.5V  
1X: Default bias current, optimized for AVDD=3.3V  
PP Rev 1.77 May 2003  
45  
WM8750L  
Product Preview  
REGISTER MAP  
ADDRESS  
REGISTER  
remarks  
Bit[8]  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
default  
page ref  
(Bit 15 9)  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
19  
R0 (00h)  
R1 (01h)  
R2 (02h)  
R3 (03h)  
R4 (04h)  
R5 (05h)  
R6 (06h)  
R7 (07h)  
R8 (08h)  
R9 (09h)  
R10 (0Ah)  
R11 (0Bh)  
Left Input volume  
Right Input volume  
LOUT1 volume  
ROUT1 volume  
Reserved  
LIVU LINMUTE LIZC  
RIVU RINMUTE RIZC  
LO1VU LO1ZC  
LINVOL  
010010111  
010010111  
001111001  
001111001  
000000000  
000001000  
000000000  
000001010  
000000000  
000000000  
011111111  
011111111  
000001111  
000001111  
not reset  
19  
RINVOL  
LOUT1VOL[6:0]  
ROUT1VOL[6:0]  
31  
31  
RO1VU RO1ZC  
-
0
0
0
0
0
0
0
0
0
ADCHPD  
0
19,25,28  
ADC & DAC Control ADCDIV2 DACDIV2  
ADCPOL[1:0]  
HPOR DACMU  
DEEMPH[1:0]  
-
Reserved  
Audio Interface  
Sample rate  
Reserved  
0
0
0
MS  
0
0
0
0
0
0
39  
0
BCLKINV  
LRSWAP  
LRP  
WL[1:0]  
FORMAT[1:0]  
40  
0
0
0
CLKDIV2  
0
SR[4:0]  
0
USB  
0
-
0
LDVU  
RDVU  
0
0
0
0
26  
Left DAC volume  
Right DAC volume  
Bass control  
Treble control  
Reset  
LDACVOL[7:0]  
26  
RDACVOL[7:0]  
27  
R12 (0Ch) 0001100  
R13 (0Dh) 0001101  
BB  
0
BC  
TC  
0
0
0
0
BASS[3:0]  
TRBL[3:0]  
27  
0
-
R15 (0Fh)  
R16 (10h)  
R17 (11h)  
R18 (12h)  
R19 (13h)  
R20 (14h)  
R21 (15h)  
R22 (16h)  
R23 (17h)  
R24 (18h)  
R25 (19h)  
R26 (1Ah)  
R27 (1Bh)  
R31 (1Fh)  
R32 (20h)  
R33 (21h)  
R34 (22h)  
R35 (23h)  
R36 (24h)  
R37 (25h)  
R38 (26h)  
R39 (27h)  
R40 (28h)  
R41 (29h)  
R42 (2Ah)  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
writing to this register resets all registers to their default state  
25  
3D control  
0
MODE3D 3DUC  
3DLC  
MAXGAIN[2:0]  
0
3DDEPTH[3:0]  
3DEN  
000000000  
001111011  
000000000  
000110010  
000000000  
011000011  
011000011  
011000000  
000000000  
000000000  
000000000  
000000000  
000000000  
000000000  
000000000  
001010000  
001010000  
001010000  
001010000  
001010000  
001010000  
001111001  
001111001  
001111001  
23  
ALC1  
ALCSEL[1:0]  
ALCL[3:0]  
HLD[3:0]  
ATK[3:0]  
23  
ALC2  
0
0
ALCZC  
0
0
23  
ALC3  
DCY[3:0]  
NGTH[4:0]  
24  
Noise Gate  
Left ADC volume  
Right ADC volume  
0
NGG[1:0]  
NGAT  
TOEN  
21  
LAVU  
RAVU  
LADCVOL[7:0]  
RADCVOL[7:0]  
21  
18,19,28,35  
Additional control(1) TSDEN  
VSEL[1:0]  
OUT3SW[1:0] HPSWEN HPSWPOL ROUT2INV  
VMIDSEL[1:0] VREF AINL AINR  
DACL DACR  
ADCLRM[1:0]  
DMONOMIX[1:0]  
DATSEL[1:0]  
DACINV  
32, 34,45  
44  
Additional control(2)  
Pwr Mgmt (1)  
TRI  
LRCM ADCOSR DACOSR  
ADCL  
ADCR  
MICB  
DIGENB  
44  
Pwr Mgmt (2)  
LOUT1 ROUT1 LOUT2 ROUT2 MONO  
OUT3  
0
0
0
0
0
35  
Additional Control (3)  
ADC input mode  
ADCL signal path  
ADCR signal path  
Left out Mix (1)  
Left out Mix (2)  
VROI  
0
0
0
0
0
0
0
0
17  
DS  
0
MONOMIX[1:0]  
LINSEL[1:0]  
RINSEL[1:0]  
LI2LO  
RDCM  
LDCM  
0
0
17  
LMICBOOST[1:0]  
RMICBOOST[1:0]  
0
0
17  
0
0
0
29  
LD2LO  
RD2LO  
LD2RO  
LI2LOVOL[2:0]  
0
LMIXSEL[2:0]  
29  
RI2LO  
RI2LOVOL[2:0]  
LI2ROVOL[2:0]  
RI2ROVOL[2:0]  
LI2MOVOL[2:0]  
RI2MOVOL[2:0]  
0
0
0
0
30  
Right out Mix (1)  
Right out Mix (2)  
Mono out Mix (1)  
Mono out Mix (2)  
LOUT2 volume  
LI2RO  
0
RMIXSEL[2:0]  
30  
RD2RO RI2RO  
LD2MO LI2MO  
0
0
0
0
0
0
0
0
0
0
30  
0
30  
RD2MO RI2MO  
LO2VU LO2ZC  
RO2VU RO2ZC  
0
32  
LOUT2VOL[6:0]  
ROUT2VOL[6:0]  
MOUTVOL[6:0]  
32  
ROUT2 volume  
MONOOUT volume  
32  
0
MOZC  
PP Rev 1.77 May 2003  
46  
ꢀꢁ  
Product Preview  
WM8750L  
DIGITAL FILTER CHARACTERISTICS  
The ADC and DAC employ different digital filters. There are 4 types of digital filter, called Type 0, 1, 2  
and 3. The performance of Types 0 and 1 is listed in the table below, the responses of all filters is  
shown in the proceeding pages.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.416fs  
+/- 0.05  
UNIT  
ADC Filter Type 0 (USB Mode, 250fs operation)  
Passband  
+/- 0.05dB  
-6dB  
0
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.584fs  
-60  
Stopband Attenuation  
f > 0.584fs  
ADC Filter Type 1 (USB mode, 272fs or Normal mode operation)  
Passband  
+/- 0.05dB  
-6dB  
0
0.4535fs  
+/- 0.05  
0.5fs  
Passband Ripple  
Stopband  
dB  
0.5465fs  
-60  
Stopband Attenuation  
f > 0.5465fs  
-3dB  
dB  
Hz  
High Pass Filter Corner  
Frequency  
3.7  
-0.5dB  
10.4  
-0.1dB  
21.6  
DAC Filter Type 0 (USB mode, 250fs operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.416fs  
+/-0.03  
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.584fs  
-50  
Stopband Attenuation  
f > 0.584fs  
DAC Filter Type 1 (USB mode, 272fs or Normal mode operation)  
Passband  
+/- 0.03dB  
-6dB  
0
0.4535fs  
+/- 0.03  
0.5fs  
Passband Ripple  
Stopband  
dB  
dB  
0.5465fs  
-50  
Stopband Attenuation  
f > 0.5465fs  
Table 44 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple any variation of the frequency response in the pass-band region  
PP Rev 1.77 May 2003  
47  
WM8750L  
Product Preview  
DAC FILTER RESPONSES  
0.02  
0.01  
0
0
-20  
-40  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Figure 21 DAC Digital Filter Frequency Response Type 0 Figure 22 DAC Digital Filter Ripple Type 0  
0.02  
0
0.01  
-20  
-40  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 23 DAC Digital Filter Frequency Response Type 1 Figure 24 DAC Digital Filter Ripple Type 1  
0.02  
0
0.01  
-20  
-40  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 25 DAC Digital Filter Frequency Response Type 2 Figure 26 DAC Digital Filter Ripple Type 2  
PP Rev 1.77 May 2003  
48  
ꢀꢁ  
Product Preview  
WM8750L  
0.25  
0.2  
0
0.15  
0.1  
-20  
-40  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-60  
-80  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency (Fs)  
Frequency (Fs)  
Figure 27 DAC Digital Filter Frequency Response Type 3 Figure 28 DAC Digital Filter Ripple Type 3  
ADC FILTER RESPONSES  
0.04  
0
0.03  
-20  
0.02  
0.01  
-40  
0
-60  
-80  
-0.01  
-0.02  
-0.03  
-0.04  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency (Fs)  
Frequency (Fs)  
Figure 29 ADC Digital Filter Frequency Response Type 0 Figure 30 ADC Digital Filter Ripple Type 0  
0.02  
0
0.01  
-20  
-40  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-60  
-80  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 31 ADC Digital Filter Frequency Response Type 1 Figure 32 ADC Digital Filter Ripple Type 1  
PP Rev 1.77 May 2003  
49  
WM8750L  
Product Preview  
0.25  
0.2  
0
0.15  
0.1  
-20  
-40  
-60  
-80  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-100  
0
0.5  
1
1.5  
2
2.5  
3
0
0.05  
0.1  
0.15  
0.2  
0.25  
Frequency (Fs)  
Frequency (Fs)  
Figure 33 ADC Digital Filter Frequency Response Type 2 Figure 34 ADC Digital Filter Ripple Type 2  
0.25  
0
0.2  
0.15  
-20  
0.1  
0.05  
-40  
0
-0.05  
-60  
-0.1  
-0.15  
-80  
-0.2  
-0.25  
-100  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0
0.5  
1
1.5  
2
2.5  
3
Frequency (Fs)  
Frequency (Fs)  
Figure 35 ADC Digital Filter Frequency Response Type 2 Figure 36 ADC Digital Filter Ripple Type 3  
DE-EMPHASIS FILTER RESPONSES  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
2000  
4000  
6000  
8000  
10000 12000 14000 16000  
0
2000  
4000  
6000  
8000  
10000 12000 14000 16000  
Frequency (Fs)  
Frequency (Fs)  
Figure 37 De-emphasis Frequency Response (32kHz)  
Figure 38 De-emphasis Error (32kHz)  
PP Rev 1.77 May 2003  
50  
ꢀꢁ  
Product Preview  
WM8750L  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-10  
0
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
5000  
10000  
Frequency (Fs)  
15000  
20000  
Figure 39 De-emphasis Frequency Response (44.1kHz)  
Figure 40 De-emphasis Error (44.1kHz)  
0
0.4  
0.3  
0.2  
0.1  
0
-2  
-4  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-8  
-10  
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
0
5000  
10000  
Frequency (Fs)  
15000  
20000  
Figure 41 De-emphasis Frequency Response (48kHz)  
Figure 42 De-emphasis Error (48kHz)  
HIGHPASS FILTER  
The WM8750L has a selectable digital highpass filter in the ADC filter path to remove DC offsets. The filter response is  
characterised by the following polynomial:  
1 - z-1  
H(z) =  
1 - 0.9995z-1  
0
-5  
-10  
-15  
Figure 43 ADC Highpass Filter Response  
0
0.0005  
0.001  
Frequency (Fs)  
0.0015  
0.002  
PP Rev 1.77 May 2003  
51  
WM8750L  
Product Preview  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
DVDD  
AVDD  
4
DGND  
3
2
DBVDD  
DCVDD  
DGND  
14  
19  
HPGND  
AGND  
18  
17  
AVDD  
HPVDD  
AGND  
C1 C2  
C4  
C3  
16  
15  
10  
11  
+
LOUT2  
ROUT2  
DGND  
AGND  
8 OHM  
LOUDSPEAKER  
1
MCLK  
-
C13  
+
5
9
7
6
8
BCLK  
MONOOUT  
OUT3  
AUDIO  
INTERFACE  
(I2S/LJ/RJ/DSP)  
ADCLRC  
DACLRC  
DACDAT  
ADCDAT  
32 OHM EAR  
SPEAKER  
13  
12  
+
C14  
LOUT1  
ROUT1  
HIGH for 3-wire  
LOW for 2-wire  
29  
MODE  
C15  
+
16 OR 32 OHM  
HEADPHONES  
30  
31  
32  
CONTROL  
INTERFACE  
(2 OR 3-WIRE)  
CSB  
SDIN  
SCLK  
WM8750L  
C7  
C8  
28  
27  
26  
25  
24  
22  
20  
LINPUT1  
RINPUT1  
LINPUT2  
RINPUT2  
LINPUT3  
MICBIAS  
VREF  
DVDD  
AVDD  
C20 C21  
C18  
C19  
+
+
C9  
21  
C16  
VMID  
C5  
C6  
C17  
+
+
+
C10  
C11  
C12  
AGND  
AGND  
AGND  
DGND  
23 RINPUT3 /  
HPDETECT  
See External Components  
Descriptions for details  
Layout Notes:  
1. C1 to C4, C16, C18 and C20 should be as close to the relative WM8750L connecting pin as possible.  
2. AGND and DGND should be joined as close to the WM8750L as possible.  
Recommended External Components Diagram  
PP Rev 1.77 May 2003  
52  
ꢀꢁ  
Product Preview  
WM8750L  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1 C4  
C5 C6  
100nF  
10uF  
De-coupling for DBVDD, DCVDD, AVDD, HPVDD  
Reservoir capacitor for DVDD, AVDD. Should the supplies use separate sources then  
additional capacitors will be required of each additional source.  
C7 C12  
C13  
1uF  
AC input coupling capacitors  
2.2uF  
220uF  
Output AC coupling capacitors to remove DC level from MONOOUT  
C14 & C15  
Output AC coupling capacitors to remove DC level from headphone output (If used as  
a line-out only, use 2.2uF caps. In capless mode using OUT3 , no caps are needed)  
C16  
C17  
C18  
C19  
C20  
C21  
100nF  
10uF  
De-coupling for VMID.  
Reservoir capacitor for VMID  
100nF  
10uF  
De-coupling for VREF  
Reservoir capacitor for VREF  
100nF  
10uF  
De-coupling for MICBIAS Not required if MICBIAS output is not used  
Reservoir capacitor for MICBIAS Not required if MICBIAS output is not used  
External Components Descriptions  
Note:  
2
For Capacitors C5, C6, C17, C19 and C21 it is recommended that very low ESR components are used.  
LINE INPUT CONFIGURATION  
When LINPUT1/RINPUT1 or LINPUT2/RINPUT2 are used as line inputs, the microphone boost and  
ALC functions should normally be disabled.  
In order to avoid clipping, the user must ensure that the input signal does not exceed AVDD. This  
may require a potential divider circuit in some applications. It is also recommended to remove RF  
interference picked up on any cables using a simple first-order RC filter, as high-frequency  
components in the input signal may otherwise cause aliasing distortion in the audio band. AC signals  
with no DC bias should be fed to the WM8750L through a DC blocking capacitor, e.g. 1µF.  
MICROPHONE INPUT CONFIGURATION  
MICBIAS  
R1  
680 Ohm to 2.2kOhm  
check microphone's specification  
FROM  
MICROPHONE  
LINPUT1/2/3  
RINPUT1/2/3  
C2  
1uF  
AGND  
R2  
C1  
47kOhm  
220pF  
AGND  
AGND  
Figure 44 Recommended Circuit for Line Input  
For interfacing to a microphone, the ALC function should be enabled and the microphone boost  
switched on. Microphones held close to a speakers mouth would normally use the 13dB gain setting,  
while tabletop or room microphones would need a 29dB boost.  
The recommended application circuit is shown above. R1 and R2 form part of the biasing network  
(refer to Microphone Bias section). R1 connected to MICBIAS is necessary only for electret type  
microphones that require a voltage bias. R2 should always be present to prevent the microphone  
input from charging to a high voltage which may damage the microphone on connection. R1 and R2  
PP Rev 1.77 May 2003  
53  
WM8750L  
Product Preview  
should be large so as not to attenuate the signal from the microphone, which can have source  
impedance greater than 2kOhm. C1 together with the source impedance of the microphone and the  
WM8750L input impedance forms an RF filter. C2 is a DC blocking capacitor to allow the microphone  
to be biased at a different DC voltage to the MICIN signal.  
MINIMISING POP NOISE AT THE ANALOGUE OUTPUTS  
To minimise any pop or click noise when the system is powered up or down, the following procedures  
are recommended.  
POWER UP  
Switch on power supplies. By default the WM8750L is in Standby Mode, the DAC is  
digitally muted and the Audio Interface, Line outputs and Headphone outputs are all OFF  
(DACMU = 1 Power Management registers 1 and 2 are all zeros).  
Enable Vmid and VREF, then wait for time TBD  
Enable DACs as required  
Enable line and / or headphone output buffers as required.  
Set DACMU = 0 to soft-un-mute the audio DACs.  
POWER DOWN  
Set DACMU = 1 to soft-mute the audio DACs.  
Disable all output buffers, then wait for time TBD.  
Switch off the power supplies.  
POWER MANAGEMENT EXAMPLES  
OPERATION MODE  
POWER MANAGEMENT (1)  
PGAs ADCs  
POWER MANAGEMENT (2)  
DACs  
Output Buffers  
VR  
1
AI  
1
1
1
1
1
1
1
1
PGL PGR ADL ADR MBI DAL DAR LO1 RO1 LO2 RO2 MO HPD  
Stereo Headphone Playback  
Stereo Line-in Record  
0
1
1
1
0
1
1
1
0
1
1
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
1
0
0
0
0
1
0
0
1
1
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
x
0
0
0
x
x
0
x
1
Stereo Microphone Record  
Mono Microphone Record  
Stereo Line-in to Headphone Out  
Phone Call  
1
1
1
1
Speaker Phone Call [ROUT2INV = 1]  
1
Record Phone Call [L channel = mic with  
boost, R channel = RX, enable mono mix]  
1
PP Rev 1.77 May 2003  
54  
ꢀꢁ  
Product Preview  
WM8750L  
PACKAGE DIMENSIONS  
FL: 32 PIN QFN PLASTIC PACKAGE 5  
X
5
X
0.9 mm BODY, 0.50 mm LEAD PITCH  
DM030.C  
SEE DETAIL A  
D
CORNER  
TIE BAR  
D2  
B
D2/2  
5
25  
32  
L
1
24  
INDEX AREA  
(D/2 X E/2)  
E2/2  
A
E2  
E
SEE DETAIL B  
17  
8
aaa  
C
2 X  
16 15  
9
b
aaa  
C
2 X  
B
e
TOP VIEW  
DETAIL A  
ccc  
C
(A3)  
1
A
CORNER  
TIE BAR  
0.08  
C
1
32x b  
C A B  
5
M
A1  
bbb  
C
SEATING PLANE  
DETAIL B  
EXPOSED  
CENTRE  
PAD  
1
L1  
Symbols  
Dimensions (mm)  
MIN  
NOM  
0.90  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
0.85  
0
0.02  
0.2 REF  
0.23  
0.18  
4.90  
3.2  
0.30  
5.10  
3.4  
1
2
2
D
5.00  
D2  
E
3.3  
5.00  
5.10  
3.4  
4.90  
3.2  
E2  
e
3.3  
0.5 BSC  
0.4  
L
0.35  
0.45  
0.1  
L1  
R
1
b(min)/2  
0.20  
K
Tolerances of Form and Position  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
JEDEC, MO-220, VARIATION VKKD-2  
REF:  
NOTES:  
1. DIMENSION b APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. DIMENSION L1 REPRESENTS TERMINAL PULL BACK FROM  
PACKAGE SIDE WALL. MAXIMUM OF 0.1mm IS ACCEPTABLE. WHERE TERMINAL PULL BACK EXISTS, ONLY UPPER HALF OF LEAD IS VISIBLE ON PACKAGE SIDE WALL DUE TO HALF  
ETCHING OF LEADFRAME.  
2. FALLS WITHIN JEDEC, MO-220 WITH THE EXCEPTION OF D2, E2:  
D2,E2: LARGER PAD SIZE CHOSEN WHICH IS JUST OUTSIDE JEDEC SPECIFICATION  
3. ALL DIMENSIONS ARE IN MILLIMETRES  
4. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
5. SHAPE AND SIZE OF CORNER TIE BAR MAY VARY WITH PACKAGE TERMINAL COUNT. CORNER TIE BAR IS CONNECTED TO EXPOSED PAD INTERNALLY  
PP Rev 1.77 May 2003  
55  
WM8750L  
Product Preview  
IMPORTANT NOTICE  
Wolfson Microelectronics plc (WM) reserve the right to make changes to their products or to discontinue any product or  
service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing  
orders, that information being relied on is current. All products are sold subject to the WM terms and conditions of sale  
supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation  
of liability.  
WM warrants performance of its products to the specifications applicable at the time of sale in accordance with WMs  
standard warranty. Testing and other quality control techniques are utilised to the extent WM deems necessary to support  
this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
In order to minimise risks associated with customer applications, adequate design and operating safeguards must be used  
by the customer to minimise inherent or procedural hazards.  
WM assumes no liability for applications assistance or customer product design. WM does not warrant or represent that  
any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual  
property right of WM covering or relating to any combination, machine, or process in which such products or services might  
be or are used. WMs publication of information regarding any third partys products or services does not constitute WMs  
approval, license, warranty or endorsement thereof.  
Reproduction of information from the WM web site or datasheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this  
information with alteration voids all warranties provided for an associated WM product or service, is an unfair and deceptive  
business practice, and WM is not responsible nor liable for any such use.  
Resale of WMs products or services with statements different from or beyond the parameters stated by WM for that  
product or service voids all express and any implied warranties for the associated WM product or service, is an unfair and  
deceptive business practice, and WM is not responsible nor liable for any such use.  
ADDRESS:  
Wolfson Microelectronics plc  
20 Bernard Terrace  
Edinburgh  
EH8 9NX  
United Kingdom  
Tel :: +44 (0)131 272 7000  
Fax :: +44 (0)131 272 7001  
Email :: sales@wolfsonmicro.com  
PP Rev 1.77 May 2003  
56  
ꢀꢁ  

相关型号:

WM8750LEFL

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LEFL/R

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LSEFL

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750LSEFL/R

STEREO CODEC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8750L_05

Stereo CODEC for Portable Audio Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751L

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LSEFL

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8751LSEFR

STEREO DAC FOR PORTABLE AUDIO APPLICATIONS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8753

HI FI AND TELEPHONY DUAL CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8753L

HI FI AND TELEPHONY DUAL CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON

WM8753LEB/RV

HI FI AND TELEPHONY DUAL CODEC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WOLFSON