XC3S400AN-4FGG676I [XILINX]

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PBGA676, ROHS COMPLIANT, FBGA-676;
XC3S400AN-4FGG676I
型号: XC3S400AN-4FGG676I
厂家: XILINX, INC    XILINX, INC
描述:

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PBGA676, ROHS COMPLIANT, FBGA-676

文件: 总112页 (文件大小:3270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0
R
Spartan-3AN FPGA Family  
Data Sheet  
0
0
DS557 November 19, 2009  
Product Specification  
-
-
Bitstream Sizes  
Detailed Descriptions by Mode  
Module 1: Introduction and Ordering  
Information  
DS557-1 (v3.2) November 19, 2009  
·
·
·
·
·
·
·
Self-contained In-System Flash mode  
Master Serial Mode using Platform Flash PROM  
Master SPI Mode using Commodity Serial Flash  
Master BPI Mode using Commodity Parallel Flash  
Slave Parallel (SelectMAP) using a Processor  
Slave Serial using a Processor  
Introduction  
Features  
Architectural Overview  
Configuration Overview  
In-system Flash Memory Overview  
General I/O Capabilities  
Supported Packages and Package Marking  
Ordering Information  
JTAG Mode  
-
-
-
ISE iMPACT Programming Examples  
MultiBoot Reconfiguration  
Design Authentication using Device DNA  
UG333: Spartan-3AN In-System Flash User Guide  
UG334: Spartan-3AN Starter Kit User Guide  
Module 2: Functional Description  
DS557-2 (v3.2) November 19, 2009  
Module 3: DC and Switching Characteristics  
The functionality of the Spartan®-3AN FPGA family is  
described in the following documents:  
DS557-3 (v3.2) November 19, 2009  
DC Electrical Characteristics  
UG331: Spartan-3 Generation FPGA User Guide  
-
-
-
Absolute Maximum Ratings  
Supply Voltage Specifications  
Recommended Operating Conditions  
-
-
-
-
Clocking Resources  
Digital Clock Managers (DCMs)  
Block RAM  
Switching Characteristics  
Configurable Logic Blocks (CLBs)  
-
-
-
-
-
-
-
-
I/O Timing  
Configurable Logic Block (CLB) Timing  
Multiplier Timing  
·
·
·
Distributed RAM  
SRL16 Shift Registers  
Carry and Arithmetic Logic  
Block RAM Timing  
-
-
-
-
-
-
-
-
-
I/O Resources  
Digital Clock Manager (DCM) Timing  
Suspend Mode Timing  
Device DNA Timing  
Embedded Multiplier Blocks  
Programmable Interconnect  
ISE® Design Tools and IP Cores  
Embedded Processing and Control Solutions  
Pin Types and Package Overview  
Package Drawings  
Configuration and JTAG Timing  
Module 4: Pinout Descriptions  
DS557-4 (v3.2) November 19, 2009  
Powering FPGAs  
Power Management  
Pin Descriptions  
Package Overview  
Pinout Tables  
UG332: Spartan-3 Generation Configuration User Guide  
-
-
Configuration Overview  
Configuration Pins and Behavior  
Footprint Diagrams  
Table 1: Production Status of Spartan-3AN FPGAs  
Spartan-3AN FPGA  
XC3S50AN  
Status  
Production  
Production  
Production  
Production  
Production  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
Additional information on the Spartan-3AN family can be found at http://www.xilinx.com/products/spartan3a/3an.htm.  
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.  
DS557 November 19, 2009  
www.xilinx.com  
Product Specification  
1
R
www.xilinx.com  
DS557 November 19, 2009  
2
Product Specification  
<
B
L
R
Spartan-3AN FPGA Family:  
Introduction and Ordering Information  
B
DS557-1 (v3.2) November 19, 2009  
Product Specification  
Introduction  
Robust 100K Flash memory program/erase cycles  
20 years Flash memory data retention  
Security features provide bitstream anti-cloning protection  
The Spartan®-3AN FPGA family combines the best  
attributes of a leading edge, low cost FPGA with nonvolatile  
technology across a broad range of densities. The family  
combines all the features of the Spartan-3A FPGA family  
plus leading technology in-system Flash memory for  
configuration and nonvolatile data storage.  
Buried configuration interface  
Unique Device DNA serial number in each device for  
design Authentication to prevent unauthorized copying  
Flash memory sector protection and lockdown  
The Spartan-3AN FPGAs are part of the Extended  
Spartan-3A family, which also includes the Spartan-3A  
FPGAs and the higher density Spartan-3A DSP FPGAs.  
The Spartan-3AN FPGA family is excellent for  
space-constrained applications such as blade servers,  
medical devices, automotive infotainment, telematics, GPS,  
and other small consumer products. Combining FPGA and  
Flash technology minimizes chip count, PCB traces and  
overall size while increasing system reliability.  
Configuration watchdog timer automatically recovers from  
configuration errors  
Suspend mode reduces system power consumption  
Retains all design state and FPGA configuration data  
Fast response time, typically less than 100 μs  
Full hot-swap compliance  
Multi-voltage, multi-standard SelectIO™ interface pins  
Up to 502 I/O pins or 227 differential signal pairs  
LVCMOS, LVTTL, HSTL, and SSTL single-ended signal  
standards  
The Spartan-3AN FPGA internal configuration interface is  
completely self-contained, increasing design security. The  
family maintains full support for external configuration. The  
Spartan-3AN FPGA is the world’s first nonvolatile FPGA  
with MultiBoot, supporting two or more configuration files in  
one device, allowing alternative configurations for field  
upgrades, test modes, or multiple system configurations.  
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling  
Up to 24 mA output drive  
3.3V 10% compatibility and hot swap compliance  
622+ Mb/s data transfer rate per I/O  
DDR/DDR2 SDRAM support up to 400 Mb/s  
LVDS, RSDS, mini-LVDS, PPDS, and HSTL/SSTL  
differential I/O  
Abundant, flexible logic resources  
Densities up to 25,344 logic cells  
Optional shift register or distributed RAM support  
Enhanced 18 x 18 multipliers with optional pipeline  
Features  
The new standard for low cost nonvolatile FPGA solutions  
Eliminates traditional nonvolatile FPGA limitations with the  
advanced 90 nm Spartan-3A device feature set  
Hierarchical SelectRAM™ memory architecture  
Up to 576 Kbits of dedicated block RAM  
Up to 176 Kbits of efficient distributed RAM  
Memory, multipliers, DCMs, SelectIO, hot swap, power  
management, etc.  
Up to eight Digital Clock Managers (DCMs)  
Eight global clocks and eight additional clocks per each half  
of device, plus abundant low-skew routing  
Complete Xilinx® ISE® and WebPACK™ software  
development system support  
MicroBlaze™ and PicoBlazeembedded processor cores  
Fully compliant 32-/64-bit 33 MHz PCI™ technology support  
Low-cost QFP and BGA Pb-free (RoHS) packaging options  
Integrated robust configuration memory  
Saves board space  
Improves ease-of-use  
Simplifies design  
Reduces support issues  
Plentiful amounts of nonvolatile memory available to the user  
Up to 11+ Mb available  
MultiBoot support  
Pin-compatible with the same packages in the  
Spartan-3A FPGA family  
Embedded processing and code shadowing  
Scratchpad memory  
Table 2: Summary of Spartan-3AN FPGA Attributes  
Equivalent  
Logic  
Cells  
Block  
RAM  
CLBs Slices RAM Bits(1) Bits(1) Multipliers DCMs User I/O  
Maximum  
System  
Gates  
Distributed  
Dedicated  
Maximum Differential Bitstream In-System  
Device  
I/O Pairs  
Size (1) Flash Bits  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
50K  
1,584  
4,032  
8,064  
13,248  
25,344  
176  
448  
896  
1472  
2816 11,264  
704  
11K  
28K  
56K  
92K  
176K  
54K  
3
2
4
4
8
8
108  
195  
311  
372  
502  
50  
90  
142  
165  
227  
427K  
1M  
4M  
4M  
8M  
16M  
200K  
400K  
700K  
1792  
3,584  
5,888  
288K  
360K  
360K  
576K  
16  
20  
20  
32  
1,168K  
1,842K  
2,669K  
4,644K  
XC3S1400AN 1400K  
Notes:  
1. By convention, one Kb is equivalent to 1,024 bits and one Mb is equivalent to 1,024 Kb.  
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.  
DS557-1 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
3
R
Introduction and Ordering Information  
Architectural Overview  
The Spartan-3AN FPGA architecture is compatible with that  
of the Spartan-3A FPGA. The architecture consists of five  
fundamental programmable functional elements:  
Digital Clock Manager (DCM) Blocks provide  
self-calibrating, fully digital solutions for distributing,  
delaying, multiplying, dividing, and phase-shifting clock  
signals.  
Configurable Logic Blocks (CLBs) contain flexible  
Look-Up Tables (LUTs) that implement logic plus  
storage elements used as flip-flops or latches.  
These elements are organized as shown in Figure 1. A dual  
ring of staggered IOBs surrounds a regular array of CLBs.  
Each device has two columns of block RAM except for the  
XC3S50AN, which has one column. Each RAM column  
consists of several 18-Kbit RAM blocks. Each block RAM is  
associated with a dedicated multiplier. The DCMs are  
positioned in the center with two at the top and two at the  
bottom of the device. The XC3S50AN has DCMs only at the  
top, while the XC3S700AN and XC3S1400AN add two  
DCMs in the middle of the two columns of block RAM and  
multipliers.  
Input/Output Blocks (IOBs) control the flow of data  
between the I/O pins and the internal logic of the  
device. IOBs support bidirectional data flow plus  
3-state operation. They support a variety of signal  
standards, including several high-performance  
differential standards. Double Data-Rate (DDR)  
registers are included.  
Block RAM provides data storage in the form of  
18-Kbit dual-port blocks.  
The Spartan-3AN FPGA features a rich network of traces  
that interconnect all five functional elements, transmitting  
signals among them. Each functional element has an  
associated switch matrix that permits multiple connections  
to the routing.  
Multiplier Blocks accept two 18-bit binary numbers as  
inputs and calculate the product.  
X-Ref Target - Figure 1  
IOBs  
CLB  
DCM  
IOBs  
DCM  
CLBs  
DCM  
IOBs  
DS557-1_01_122006  
Notes:  
1. The XC3S700AN and XC3S1400AN have two additional DCMs on both the left and right sides as indicated by the  
dashed lines. The XC3S50AN has only two DCMs at the top and only one Block RAM/Multiplier column.  
Figure 1: Spartan-3AN Family Architecture  
www.xilinx.com  
DS557-1 (v3.2) November 19, 2009  
Product Specification  
4
R
Introduction and Ordering Information  
X-Ref Target - Figure 2  
Spartan-3AN FPGA  
‘0  
‘1’  
‘1’  
M2  
M1  
M0  
VCCAUX  
INIT_B  
DONE  
3.3V  
Configure  
from internal  
Flash memory  
Indicates when  
configuration is  
finished  
DS557-1_06_013107  
Figure 2: Spartan-3AN FPGA Configuration Interface from Internal SPI Flash Memory  
Configuration  
In-System Flash Memory  
Spartan-3AN FPGAs are programmed by loading  
configuration data into robust, reprogrammable, static  
CMOS configuration latches (CCLs) that collectively control  
all functional elements and routing resources. The FPGA’s  
configuration data is stored on-chip in nonvolatile Flash  
memory, or externally in a PROM or some other nonvolatile  
medium, either on or off the board. After applying power, the  
configuration data is written to the FPGA using any of seven  
different modes:  
Each Spartan-3AN FPGA contains abundant integrated SPI  
serial Flash memory, shown in Table 3, used primarily to  
store the FPGA’s configuration bitstream. However, the  
Flash memory array is large enough to store at least two  
MultiBoot FPGA configuration bitstreams or nonvolatile  
data required by the FPGA application, such as  
code-shadowed MicroBlaze processor applications.  
Table 3: Spartan-3AN Device In-System Flash Memory  
Additional  
Configure from internal SPI Flash memory (Figure 2)  
Total Flash  
Memory  
(Bits)  
FPGA  
Bitstream  
(Bits)  
Flash  
Memory  
(Bits)(1)  
Part  
Completely self-contained  
Reduced board space  
Number  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
1,081,344  
4,325,376  
4,325,376  
8,650,752  
437,312  
1,196,128  
1,886,560  
2,732,640  
4,755,296  
642,048  
3,127,872  
2,437,248  
5,917,824  
12,545,280  
Easy-to-use configuration interface  
Master Serial from a Xilinx Platform Flash PROM  
Serial Peripheral Interface (SPI) from an external  
industry-standard SPI serial Flash  
XC3S1400AN 17,301,504  
1. Aligned to next available page location.  
Byte Peripheral Interface (BPI) Up from an  
industry-standard x8 or x8/x16 parallel NOR Flash  
After configuration, the FPGA design has full access to the  
in-system Flash memory via an internal SPI interface; the  
control logic is implemented with FPGA logic. Additionally,  
the FPGA application itself can store nonvolatile data or  
provide live, in-system Flash updates.  
Slave Serial, typically downloaded from a processor  
Slave Parallel, typically downloaded from a processor  
Boundary-Scan (JTAG), typically downloaded from a  
processor or system tester  
The MultiBoot feature stores multiple configuration files in  
the on-chip Flash, providing extended life with field  
upgrades. MultiBoot also supports multiple system  
solutions with a single board to minimize inventory and  
simplify the addition of new features, even in the field.  
Flexibility is maintained to do additional MultiBoot  
configurations via the external configuration method.  
The Spartan-3AN device in-system Flash memory supports  
leading-edge serial Flash features.  
Small page size (264 or 528 bytes) simplifies  
nonvolatile data storage  
Randomly accessible, byte addressable  
Up to 66 MHz serial data transfers  
SRAM page buffers  
The Spartan-3AN device authentication protocol prevents  
cloning. Design cloning, unauthorized overbuilding, and  
complete reverse engineering have driven device security  
requirements to higher and higher levels. Authentication  
moves the security from bitstream protection to the next  
generation of design-level security protecting both the  
design and embedded microcode. The authentication  
algorithm is entirely user defined, implemented using FPGA  
logic. Every product, generation, or design can have a  
different algorithm and functionality to enhance security.  
Read Flash data while programming another Flash  
page  
EEPROM-like byte write functionality  
Two buffers in most devices, one in XC3S50AN  
Page, Block, and Sector Erase  
Sector-based data protection and security features  
DS557-1 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
5
R
Introduction and Ordering Information  
Sector Protect: Write- and erase-protect a sector  
(changeable)  
I/O Capabilities  
The Spartan-3AN FPGA SelectIO interface supports many  
popular single-ended and differential standards. Table 4  
shows the number of user I/Os as well as the number of  
differential I/O pairs available for each device/package  
combination. Some of the user I/Os are unidirectional,  
input-only pins as indicated in Table 4.  
Sector Lockdown: Sector data is unchangeable  
(permanent)  
128-byte Security Register  
Separate from FPGA’s unique Device DNA  
identifier  
64-byte factory-programmed identifier unique to  
the in-system Flash memory  
Spartan-3AN FPGAs support the following single-ended  
standards:  
64-byte one-time programmable,  
user-programmable field  
3.3V low-voltage TTL (LVTTL)  
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,  
1.5V, or 1.2V  
100,000 Program/Erase cycles  
20-year data retention  
3.3V PCI at 33 MHz or 66 MHz  
Comprehensive programming support  
HSTL I, II, and III at 1.5V and 1.8V, commonly used in  
memory applications  
In-system prototype programming via JTAG using  
Xilinx Platform Cable USB and iMPACT software  
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used  
for memory applications  
Product programming support using BPM  
Microsystems programmers with appropriate  
programming adapter  
Spartan-3AN FPGAs support the following differential  
standards:  
Design examples demonstrating in-system  
programming from a Spartan-3AN FPGA  
application  
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or  
3.3V  
Bus LVDS I/O at 2.5V  
TMDS I/O at 3.3V  
Differential HSTL and SSTL I/O  
LVPECL inputs at 2.5V or 3.3V  
Table 4: Available User I/Os and Differential (Diff) I/O Pairs  
TQ144  
TQG144  
FT256  
FTG256  
FG400  
FGG400  
FG484  
FGG484  
FG676  
FGG676  
Package  
Body Size (mm)(4)  
Device  
20 x 20  
17 x 17  
21 x 21  
23 x 23  
27 x 27  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
User  
Diff  
108  
50  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
(7)  
(24)  
195  
(35)  
90  
(50)  
311  
(63)  
142  
(78)  
372  
(84)  
165  
(93)  
502  
(94)  
227  
(131)  
XC3S1400AN  
Notes:  
1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number  
of input-only pins. The Diff input-only pin count includes dedicated inputs and differential pins on banks restricted to inputs. The differential  
(Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are  
restricted to differential inputs.  
2. See "Pb and Pb-Free Packaging," page 8 for details on Pb and Pb-free packaging options.  
3. Each Spartan-3AN FPGA has a pin-compatible Spartan-3A FPGA equivalent, although Spartan-3A FPGAs do not have internal SPI flash  
and offer more part/package combinations.  
4. The footprint for the TQ(G)144 (22 mm x 22 mm) package is larger than the package body.  
www.xilinx.com  
DS557-1 (v3.2) November 19, 2009  
6
Product Specification  
R
Introduction and Ordering Information  
Package Marking  
Figure 3 provides a top marking example for Spartan-3AN  
FPGAs in the quad-flat packages. Figure 4 shows the top  
marking for Spartan-3AN FPGAs in BGA packages. The  
markings for the BGA packages are nearly identical to those  
for the quad-flat packages, except that the marking is  
rotated with respect to the ball A1 indicator.  
The “5C” and “4I” Speed Grade/Temperature Range part  
combinations may be dual marked as “5C/4I”. Devices  
with the dual mark can be used as either -5C or -4I devices.  
Devices with a single mark are only guaranteed for the  
marked speed grade and temperature range.  
X-Ref Target - Figure 3  
Mask Revision Code  
Fabrication Code  
R
R
Process Technology  
SPARTAN  
XC3S50ANTM  
Device Type  
Date Code  
Package  
TQG144AGQ0725  
D1234567A  
Speed Grade  
4C  
Lot Code  
Temperature Range  
Pin P1  
DS557-1_02_080107  
Figure 3: Spartan-3AN FPGA QFP Package Marking Example  
X-Ref Target - Figure 4  
Mask Revision Code  
R
BGA Ball A1  
Fabrication Code  
Process Code  
R
SPARTAN  
Device Type  
XC3S200ANTM  
FTG256 AGQ0725  
D1234567A  
Date Code  
Lot Code  
Package  
4C  
Speed Grade  
Temperature Range  
DS557-1_03_080107  
Figure 4: Spartan-3AN FPGA BGA Package Marking Example  
DS557-1 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
7
R
Introduction and Ordering Information  
Pb and Pb-Free Packaging  
Spartan-3AN FPGAs are available in both leaded (Pb) and Pb-free packaging options (see Table 5). The Pb-free packages  
are available for all devices and include a G’ character in the ordering code. Leaded (non-Pb-free) packages are available  
for selected devices. These devices have no G’ in the ordering code and have the same pin-out as Pb-free packages.  
Table 5: Pb and Pb-Free Package Options  
Pins  
Type  
144  
256  
400  
484  
676  
TQFP  
FTBGA  
FBGA  
FBGA  
FBGA  
Material  
Pb-Free  
Pb  
Pb-Free  
Pb  
Pb-Free  
Pb  
Pb-Free  
Pb  
Pb-Free  
Pb  
Device  
Speed Range TQG144 TQ144 FTG256 FT256 FGG400 FG400 FGG484 FG484 FGG676 FG676  
(1)  
SCD4100  
XC3S50AN  
-4  
-5  
-4  
-5  
-4  
-5  
-4  
-5  
-4  
-5  
C, I  
C
(2)  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
C, I  
C
C, I  
C
(2)  
C, I  
C
(2)  
C, I  
C
(2)  
Notes:  
1. To order a Pb package for the XC3S50AN -4 option, append SCD4100 to the part number (XC3S50AN-4TQ144C4100).  
2. For Pb packaging for these options, contact your Xilinx sales representative.  
Ordering Information  
X-Ref Target - Figure 5  
TQG144  
Example: XC3S50AN -4  
C
Device Type  
Temperature Range:  
C = Commercial (TJ = 0oC to 85oC)  
I = Industrial (TJ = -40oC to 100oC)  
Speed Grade  
Package Type/Number of Pins  
DS557-1_05_101109  
Figure 5: Device Numbering Format  
Device  
Speed Grade  
Package Type / Number of Pins  
Temperature Range (TJ)  
XC3S50AN  
–4 Standard Performance TQ144/  
TQG144  
144-pin Thin Quad Flat Pack (TQFP)  
C Commercial (0°C to 85°C)  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
–5 High Performance(1)  
FT256/  
256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) I Industrial (–40°C to 100°C)  
400-ball Fine-Pitch Ball Grid Array (FBGA)  
FTG256  
FG400/  
FGG400  
FG484/  
FGG484  
484-ball Fine-Pitch Ball Grid Array (FBGA)  
FG676/  
FGG676  
676-ball Fine-Pitch Ball Grid Array (FBGA)  
Notes:  
1. The –5 speed grade is exclusively available in the Commercial temperature range.  
2. See Table 4 and Table 5 for available package combinations.  
www.xilinx.com  
DS557-1 (v3.2) November 19, 2009  
8
Product Specification  
R
Introduction and Ordering Information  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
02/26/07  
08/16/07  
09/12/07  
12/12/07  
Initial release.  
Updated for Production release of initial device.  
2.0  
2.0.1  
3.0  
Noted that only dual-mark devices are guaranteed for both -4I and -5C.  
Updated to Production status with Production release of final family member, XC3S50AN. Noted that  
non-Pb-free packages may be available for selected devices.  
06/02/08  
11/19/09  
3.1  
3.2  
Minor updates.  
Updated document throughout to reflect availability of Pb package options. Added references to the  
Extended Spartan-3A family. Removed table note 2 from Table 2. In Table 4, added Pb packages,  
added table note 4, and updated table note 2. Added Table 5.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
DS557-1 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
9
R
Introduction and Ordering Information  
www.xilinx.com  
DS557-1 (v3.2) November 19, 2009  
10  
Product Specification  
<BL  
Blue  
>
R
Spartan-3AN FPGA Family:  
Functional Description  
0
DS557-2 (v3.2) November 19, 2009  
Product Specification  
Spartan-3AN FPGA Design Documentation  
The functionality of the Spartan®-3AN FPGA family is  
described in the following documents. The topics covered in  
each guide are listed below:  
-
-
-
Slave Parallel (SelectMAP) using a Processor  
Slave Serial using a Processor  
JTAG Mode  
DS706: Extended Spartan-3A Family Overview  
www.xilinx.com/support/documentation/  
data_sheets/ds706.pdf  
ISE iMPACT Programming Examples  
MultiBoot Reconfiguration  
Design Authentication using Device DNA  
UG331: Spartan-3 Generation FPGA User Guide  
http://www.xilinx.com/support/documentation/  
user_guides/ug331.pdf  
UG333: Spartan-3AN FPGA In-System Flash User  
Guide  
http://www.xilinx.com/support/documentation/  
Clocking Resources  
user_guides/ug333.pdf  
Digital Clock Managers (DCMs)  
Block RAM  
For FPGA applications that write to or read from  
the In-System Flash memory after configuration  
Configurable Logic Blocks (CLBs)  
SPI_ACCESS interface  
-
-
-
Distributed RAM  
In-System Flash memory architecture  
Read, program, and erase commands  
Status registers  
SRL16 Shift Registers  
Carry and Arithmetic Logic  
I/O Resources  
Sector Protection and Sector Lockdown features  
Security Register with Unique Identifier  
Embedded Multiplier Blocks  
Programmable Interconnect  
®
ISE Design Tools  
Xilinx Alerts  
Create a Xilinx MySupport user account and sign up to  
receive automatic E-mail notification whenever this data  
sheet or the associated user guides are updated.  
IP Cores  
Embedded Processing and Control Solutions  
Pin Types and Package Overview  
Package Drawings  
Sign Up for Alerts on Xilinx MySupport  
http://www.xilinx.com/support/answers/19380.htm  
Powering FPGAs  
Power Management  
UG332: Spartan-3 Generation Configuration  
User Guide  
Spartan-3AN FPGA Starter Kit  
http://www.xilinx.com/support/documentation/  
For specific hardware examples, please see the  
user_guides/ug332.pdf  
Spartan-3AN FPGA Starter Kit board web page, which has  
links to various design examples and the user guide.  
Configuration Overview  
Spartan-3AN FPGA Starter Kit Board Page  
http://www.xilinx.com/s3anstarter  
-
-
Configuration Pins and Behavior  
Bitstream Sizes  
UG334: Spartan-3AN FPGA Starter Kit User Guide  
http://www.xilinx.com/support/documentation/  
boards_and_kits/ug334.pdf  
Detailed Descriptions by Mode  
-
-
-
-
Master Serial Mode using Xilinx® Platform Flash  
Master SPI Mode using SPI Serial Flash PROM  
Internal Master SPI Mode  
Master BPI Mode using Parallel NOR Flash  
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. All other trademarks are the property of their respective owners.  
DS557-2 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
11  
R
Functional Description  
Create a Xilinx® MySupport user account and sign up to  
receive automatic E-mail notification whenever this data  
sheet or the associated user guides are updated.  
Related Product Families  
The Spartan-3AN FPGA family is generally compatible with  
the Spartan-3A FPGA family.  
Sign Up for Alerts on Xilinx MySupport  
DS529: Spartan-3A FPGA Family Data Sheet  
http://www.xilinx.com/support/documentation/  
data_sheets/ds529.pdf  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
02/26/07  
08/16/07  
09/12/07  
09/24/07  
12/12/07  
Initial release.  
2.0  
Updated for Production release of initial device.  
2.0.1  
2.1  
Minor updates to text.  
Added note that In-System Flash commands were not supported by simulation until ISE 10.1 software.  
3.0  
Updated to Production status with Production release of final family member, XC3S50AN. Noted that  
SPI_ACCESS simulation is supported in ISE 10.1 software. Updated links.  
06/02/08  
11/19/09  
3.1  
3.2  
Minor updates.  
In the "Spartan-3AN FPGA Design Documentation" section, added link to DS706, Extended  
Spartan-3A Family Overview and removed references to older software versions.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
www.xilinx.com  
DS557-2 (v3.2) November 19, 2009  
12  
Product Specification  
<BL  
Blue  
>
R
Spartan-3AN FPGA Family:  
DC and Switching Characteristics  
0
DS557-3 (v3.2) November 19, 2009  
Product Specification  
DC Electrical Characteristics  
In this section, specifications can be designated as  
Advance, Preliminary, or Production. These terms are  
defined as follows:  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all Spartan®-3AN devices. AC and DC characteristics  
are specified using the same numbers for both  
commercial and industrial grades.  
Advance: Initial estimates are based on simulation, early  
characterization, and/or extrapolation from the  
characteristics of other families. Values are subject to  
change. Use as estimates, not for production.  
Absolute Maximum Ratings  
Preliminary: Based on characterization. Further changes  
Stresses beyond those listed under Table 6: Absolute  
Maximum Ratings might cause permanent damage to the  
device. These are stress ratings only; functional operation  
of the device at these or any other conditions beyond those  
listed under the Recommended Operating Conditions is not  
implied. Exposure to absolute maximum conditions for  
extended periods of time adversely affects device reliability.  
are not expected.  
Production: These specifications are approved once the  
silicon has been characterized over numerous production  
lots. Parameter values are considered stable with no future  
changes expected.  
Table 6: Absolute Maximum Ratings  
Symbol  
Description  
Internal supply voltage  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
Max  
1.32  
Units  
VCCINT  
V
V
V
V
VCCAUX Auxiliary supply voltage  
3.75  
VCCO  
VREF  
Output driver supply voltage  
Input reference voltage  
3.75  
VCCO + 0.5  
Voltage applied to all User I/O pins and  
Dual-Purpose pins  
Driver in a high-impedance state  
–0.95  
4.6  
V
VIN  
Voltage applied to all Dedicated pins  
Electrostatic Discharge Voltage  
–0.5  
4.6  
± 2000  
± 500  
± 200  
125  
V
V
Human body model  
Charged device model  
Machine model  
VESD  
V
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
TSTG  
–65  
150  
Notes:  
1. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow  
Guidelines for Pb-Free Packages.  
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
13  
R
DC and Switching Characteristics  
Power Supply Specifications  
Table 7: Supply Voltage Thresholds for Power-On Reset  
Symbol  
VCCINTT  
VCCAUXT  
VCCO2T  
Description  
Threshold for the VCCINT supply  
Min  
0.4  
1.0  
1.0  
Max  
1.0  
2.0  
Units  
V
V
V
Threshold for the VCCAUX supply  
Threshold for the VCCO Bank 2 supply  
2.0  
Notes:  
1. When configuring from the In-System Flash, V  
must be in the recommended operating range; on power-up make sure V  
CCAUX  
CCAUX  
reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. V  
, V  
, and V  
supplies to the FPGA can  
CCINT CCAUX  
CCO  
be applied in any order if this requirement is met. However, an external configuration source might have specific requirements. Check the  
data sheet for the attached configuration source. Apply V last for lowest overall power consumption (see the chapter called “Powering  
CCINT  
Spartan-3 Generation FPGAs” in UG331 for more information).  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCAUX  
CCINT CCO  
Table 8: Supply Voltage Ramp Rate  
Symbol  
Description  
Min  
0.2  
0.2  
0.2  
Max  
100  
100  
100  
Units  
ms  
VCCINTR  
VCCAUXR  
VCCO2R  
Ramp rate from GND to valid VCCINT supply level  
Ramp rate from GND to valid VCCAUX supply level  
Ramp rate from GND to valid VCCO Bank 2 supply level  
ms  
ms  
Notes:  
1. When configuring from the In-System Flash, V  
must be in the recommended operating range; on power-up make sure V  
CCAUX  
CCAUX  
reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. V  
, V  
, and V  
supplies to the FPGA can  
CCINT CCAUX  
CCO  
be applied in any order if this requirement is met. However, an external configuration source might have specific requirements. Check the  
data sheet for the attached configuration source. Apply V last for lowest overall power consumption (see the chapter called “Powering  
CCINT  
Spartan-3 Generation FPGAs” in UG331 for more information).  
2. To ensure successful power-on, V  
no dips at any point.  
, V  
Bank 2, and V  
supplies must rise through their respective threshold-voltage ranges with  
CCAUX  
CCINT CCO  
Table 9: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM  
Data  
Symbol  
VDRINT  
VDRAUX  
Description  
Min  
1.0  
2.0  
Units  
VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data  
VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data  
V
V
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
14  
Product Specification  
R
DC and Switching Characteristics  
General Recommended Operating Conditions  
Table 10: General Recommended Operating Conditions  
Symbol  
Description  
Min  
0
Nominal  
Max  
85  
Units  
° C  
° C  
V
TJ  
Junction temperature  
Commercial  
Industrial  
-
–40  
1.14  
1.10  
3.00  
–0.5  
–0.5  
-
1.20  
-
100  
VCCINT  
Internal supply voltage  
1.26  
(1)  
VCCO  
Output driver supply voltage  
Auxiliary supply voltage  
Input voltage  
3.60  
V
VCCAUX  
VCCAUX = 3.3V  
3.30  
3.60  
V
(2)  
VIN  
PCI™ IOSTANDARD  
VCCO+0.5  
4.10  
V
All other  
IOSTANDARDs  
V
TIN  
Input signal transition time(3)  
-
-
500  
ns  
Notes:  
1. This V  
range spans the lowest and highest operating voltages for all supported I/O standards. Table 13 lists the recommended V  
CCO  
CCO  
range specific to each of the single-ended I/O standards, and Table 15 lists that specific to the differential standards.  
2. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.”  
3. Measured between 10% and 90% V  
. Follow Signal Integrity recommendations.  
CCO  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
15  
R
DC and Switching Characteristics  
General DC Characteristics for I/O Pins  
Table 11: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins  
Symbol  
Description  
Test Conditions  
Min  
Typ  
Max  
Units  
IL  
Leakage current at User I/O,  
Input-only, Dual-Purpose, and  
Dedicated pins, FPGA powered  
Driver is in a high-impedance state,  
VIN = 0V or VCCO max, sample-tested  
–10  
+10  
μA  
All pins except INIT_B, PROG_B, DONE, and JTAG  
pins when PUDC_B = 1.  
–10  
+10  
μA  
μA  
μA  
Leakage current on pins during  
hot socketing, FPGA unpowered  
I
HS  
INIT_B, PROG_B, DONE, and JTAG pins or other  
pins when PUDC_B = 0.  
Add I + I  
HS  
RPU  
(2)  
IRPU  
Current through pull-up resistor  
at User I/O, Dual-Purpose,  
VIN = GND  
VCCO or VCCAUX  
3.0V to 3.6V  
=
–151  
–315  
–710  
Input-only, and Dedicated pins.  
Dedicated pins are powered by  
VCCO = 2.3V to 2.7V  
–82  
–36  
–22  
–11  
5.1  
–182  
–88  
–437  
–226  
–148  
–83  
μA  
μA  
μA  
μA  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μA  
VCCAUX  
.
VCCO = 1.7V to 1.9V  
VCCO = 1.4V to 1.6V  
–56  
V
CCO = 1.14V to 1.26V  
VCCO = 3.0V to 3.6V  
VCCO = 2.3V to 2.7V  
–31  
(2)  
RPU  
Equivalent pull-up resistor value  
at User I/O, Dual-Purpose,  
Input-only, and Dedicated pins  
(based on IRPU per Note 2)  
VIN = GND  
11.4  
14.8  
21.6  
28.4  
41.1  
346  
23.9  
33.1  
52.6  
74.0  
119.4  
659  
6.2  
VCCO = 1.7V to 1.9V  
8.4  
VCCO = 1.4V to 1.6V  
VCCO = 1.14V to 1.26V  
VCCAUX = 3.0V to 3.6V  
10.8  
15.3  
167  
(2)  
IRPD  
Current through pull-down  
resistor at User I/O,  
Dual-Purpose, Input-only, and  
Dedicated pins  
V
= V  
CCO  
IN  
(2)  
RPD  
Equivalent pull-down resistor  
value at User I/O, Dual-Purpose,  
Input-only, and Dedicated pins  
(based on IRPD per Note 2)  
VCCAUX = 3.0V to 3.6V  
VIN = 3.0V to 3.6V  
VIN = 2.3V to 2.7V  
5.5  
4.1  
3.0  
2.7  
2.4  
–10  
10.4  
7.8  
5.7  
5.1  
4.5  
20.8  
15.7  
11.1  
9.6  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μA  
pF  
Ω
VIN = 1.7V to 1.9V  
VIN = 1.4V to 1.6V  
VIN = 1.14V to 1.26V  
8.1  
IREF  
VREF current per pin  
Input capacitance  
All VCCO levels  
+10  
10  
CIN  
-
RDT  
Resistance of optional differential  
termination circuit within a  
differential I/O pair. Not available  
on Input-only pairs.  
VCCO = 3.3V ± 10%  
90  
100  
115  
LVDS_33,  
MINI_LVDS_33,  
RSDS_33  
VCCO = 2.5V ± 10%  
90  
110  
Ω
LVDS_25,  
MINI_LVDS_25,  
RSDS_25  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 10.  
2. This parameter is based on characterization. The pull-up resistance R = V  
/ I  
. The pull-down resistance R = V / I  
.
PU  
CCO RPU  
PD  
IN RPD  
3.  
V
must be 3.3V on Spartan-3AN FPGAs. V  
for Spartan-3A FPGAs can be either 3.3V or 2.5V.  
CCAUX  
CCAUX  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
16  
Product Specification  
R
DC and Switching Characteristics  
Quiescent Current Requirements  
Table 12: Spartan-3AN FPGA Quiescent Supply Current Characteristics  
Commercial  
Industrial  
Symbol  
Description  
Device  
XC3S50AN  
Typical(2)  
2
Maximum(2)  
Maximum(2)  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICCINTQ  
Quiescent VCCINT supply current  
20  
50  
30  
70  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
7
10  
85  
125  
185  
310  
3
13  
120  
220  
2
24  
ICCOQ  
Quiescent VCCO supply current  
0.2  
0.2  
0.3  
0.3  
0.3  
3.1  
5.1  
5.1  
6.1  
10.1  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
2
3
3
4
3
4
3
4
ICCAUXQ Quiescent VCCAUX supply current  
8.1  
12.1  
18.1  
28.1  
50.1  
10.1  
15.1  
24.1  
34.1  
58.1  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 10.  
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads  
disabled. The internal SPI Flash is deselected (CSB = High); the internal SPI Flash current is consumed on the V supply rail. Typical  
CCAUX  
values are characterized using typical devices at room temperature (T of 25°C at V  
= 1.2V, V  
= 3.3V, and V  
= 3.3V). The  
J
CCINT  
CCO  
CCAUX  
maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with  
= 1.26V, V = 3.6V, and V = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design with no  
V
CCINT  
CCO  
CCAUX  
functional elements instantiated). For conditions other than those described above (for example, a design including functional elements),  
measured quiescent current levels will be different than the values in the table.  
3. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The  
Spartan-3AN FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design, and b)  
XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates. For more information on  
power for the In-System Flash memory, see the Power Management chapter of UG333.  
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.  
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode  
typically saves 40% total power consumption compared to quiescent current.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
17  
R
DC and Switching Characteristics  
Single-Ended I/O Standards  
Table 13: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
VCCO for Drivers(2)  
VREF  
VIL  
Max (V)  
0.8  
VIH  
Min (V)  
IOSTANDARD  
Attribute  
Min (V) Max (V)  
Nom (V)  
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
3.3  
3.3  
Min (V)  
Nom (V)  
Max (V)  
LVTTL  
3.0  
3.0  
2.3  
1.65  
1.4  
1.1  
3.0  
3.0  
1.4  
1.4  
1.7  
1.7  
1.7  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
3.6  
3.6  
2.7  
1.95  
1.6  
1.3  
3.6  
3.6  
1.6  
1.6  
1.9  
1.9  
1.9  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
2.0  
LVCMOS33(4)  
LVCMOS25(4,5)  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0.8  
2.0  
0.7  
1.7  
0.4  
0.8  
VREF is not used for  
these I/O standards  
0.4  
0.8  
0.4  
0.7  
0.3 VCCO  
0.3 VCCO  
VREF - 0.1  
VREF - 0.1  
0.5 VCCO  
0.5 VCCO  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.125  
VREF + 0.125  
VREF + 0.150  
VREF + 0.150  
VREF + 0.2  
VREF + 0.2  
PCI66_3  
HSTL_I  
0.68  
0.75  
0.9  
0.9  
-
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.8  
0.9  
1.1  
VREF - 0.1  
0.9  
VREF - 0.1  
VREF - 0.1  
1.1  
0.833  
0.833  
1.13  
1.13  
1.3  
0.900  
0.900  
1.25  
1.25  
1.5  
0.969  
0.969  
1.38  
1.38  
1.7  
1.7  
V
REF - 0.125  
VREF - 0.125  
VREF - 0.150  
SSTL2_II  
VREF - 0.150  
SSTL3_I  
VREF - 0.2  
VREF - 0.2  
SSTL3_II  
1.3  
1.5  
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
V
V
V
V
– the supply voltage for output drivers  
– the reference voltage for setting the input switching threshold  
– the input voltage that indicates a Low logic level  
– the input voltage that indicates a High logic level  
CCO  
REF  
IL  
IH  
2. In general, the V  
rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs and for PCI™ I/O standards.  
CCO  
3. For device operation, the maximum signal voltage (V max) can be as high as V max. See Table 6.  
IH  
IN  
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.  
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V  
rail and use the LVCMOS33  
CCAUX  
standard. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a  
standard 2.5V configuration interface, apply 2.5V to the V lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.  
CCO  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
18  
Product Specification  
R
DC and Switching Characteristics  
Table 14: DC Characteristics of User I/Os Using  
Single-Ended Standards (Continued)  
Table 14: DC Characteristics of User I/Os Using  
Single-Ended Standards  
Test  
Conditions  
Logic Level  
Characteristics  
Test  
Conditions  
Logic Level  
Characteristics  
IOL  
(mA) (mA)  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOL  
(mA) (mA)  
IOH  
VOL  
Max (V)  
VOH  
Min (V)  
IOSTANDARD  
Attribute  
IOSTANDARD  
Attribute  
PCI33_3(5)  
1.5  
1.5  
8
–0.5 10% VCCO  
–0.5 10% VCCO  
90% VCCO  
90% VCCO  
VCCO - 0.4  
VCCO - 0.4  
LVTTL(3)  
2
4
6
8
2
4
–2  
–4  
0.4  
0.4  
0.4  
0.4  
2.4  
PCI66_3(5)  
HSTL_I(4)  
–8  
–8  
0.4  
0.4  
0.4  
0.4  
0.4  
6
–6  
HSTL_III(4)  
HSTL_I_18  
HSTL_II_18(4)  
HSTL_III_18  
SSTL18_I  
SSTL18_II(4)  
SSTL2_I  
24  
8
8
–8  
–8  
V
CCO - 0.4  
VCCO - 0.4  
CCO - 0.4  
12  
16  
24  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
16  
24  
6.7  
–16  
–8  
V
VTT – 0.475 VTT + 0.475  
–6.7  
LVCMOS33(3)  
LVCMOS25(3)  
LVCMOS18(3)  
VCCO 0.4  
VCCO 0.4  
VCCO 0.4  
VTT – 0.603 VTT + 0.603  
13.4 –13.4  
4
4
–4  
8.1  
–8.1 VTT – 0.61  
VTT + 0.61  
VTT + 0.81  
VTT + 0.6  
VTT + 0.8  
6
6
–6  
SSTL2_II(4)  
SSTL3_I  
16.2 –16.2 VTT – 0.81  
8
8
–8  
8
–8  
V
TT – 0.6  
TT – 0.8  
12  
16  
24(4)  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
SSTL3_II  
16  
–16  
V
Notes:  
1. The numbers in this table are based on the conditions set forth in  
Table 10 and Table 13.  
2. Descriptions of the symbols used in this table are as follows:  
IOL the output current condition under which VOL is tested  
IOH the output current condition under which VOH is tested  
VOL the output voltage that indicates a Low logic level  
VOH the output voltage that indicates a High logic level  
VCCO the supply voltage for output drivers  
4
4
–4  
6
6
–6  
8
8
–8  
12  
16(4)  
24(4)  
2
12  
16  
24  
2
–12  
–16  
–24  
–2  
VTT the voltage applied to a resistor termination  
3. For the LVCMOS and LVTTL standards: the same V and V  
OL  
OH  
limits apply for the Fast, Slow and QUIETIO slew attributes.  
4. These higher-drive output standards are supported only on  
FPGA banks 1 and 3. Inputs are unrestricted. See the “Using I/O  
Resources” chapter in UG331.  
4
4
–4  
5. Tested according to the relevant PCI specifications. For  
information on PCI IP solutions, see www.xilinx.com/products/  
design_resources/conn_central/protocols/pci_pcix.htm. The  
PCIX IOSTANDARD is available and has equivalent  
characteristics but no PCI-X IP is supported.  
6
6
–6  
8
8
–8  
12(4)  
16(4)  
2
12  
16  
2
–12  
–16  
–2  
LVCMOS15(3)  
0.4  
0.4  
VCCO 0.4  
4
4
–4  
6
6
–6  
8(4)  
12(4)  
2
8
–8  
12  
2
–12  
–2  
LVCMOS12(3)  
VCCO 0.4  
4(4)  
6(4)  
4
–4  
6
–6  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
19  
R
DC and Switching Characteristics  
Differential I/O Standards  
Differential Input Pairs  
X-Ref Target - Figure 6  
VINP  
VINN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VINN  
VID  
50%  
VINP  
VICM  
GND level  
V
INP + VINN  
V
ICM = Input common mode voltage =  
2
VINP - VINN  
V
ID = Differential input voltage =  
DS529-3_10_012907  
Figure 6: Differential Input Voltages  
Table 15: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
VCCO for Drivers(1)  
VID VICM  
Max (V) Min (mV) Nom (mV) Max (mV) Min (V)  
(2)  
IOSTANDARD Attribute  
Min (V)  
2.25  
3.0  
Nom (V)  
2.5  
Nom (V)  
Max (V)  
2.35  
(3)  
LVDS_25  
2.75  
3.6  
100  
100  
100  
200  
200  
100  
100  
100  
100  
150  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
350  
350  
300  
600  
600  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
2.7  
0.2  
0.2  
0.8  
0.8  
0.8  
0.68  
1.25  
1.25  
1.3  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
(3)  
LVDS_33  
3.3  
2.35  
(4)  
BLVDS_25  
2.25  
2.25  
3.0  
2.5  
2.75  
2.75  
3.6  
2.35  
(3)  
MINI_LVDS_25  
2.5  
600  
600  
1000  
1000  
1.95  
(3)  
MINI_LVDS_33  
3.3  
1.95  
(5)  
LVPECL_25  
Inputs Only  
Inputs Only  
2.5  
800  
800  
200  
200  
1.95  
(5)  
(6)  
LVPECL_33  
2.8  
(3)  
RSDS_25  
2.25  
3.0  
3.14  
2.25  
3.0  
1.7  
1.7  
1.7  
1.4  
1.4  
1.7  
1.7  
2.3  
2.3  
3.0  
3.0  
2.75  
3.6  
3.47  
2.75  
3.6  
1.9  
1.9  
1.9  
1.6  
1.6  
1.9  
1.9  
2.7  
2.7  
3.6  
3.6  
1.5  
1.5  
3.23  
2.3  
2.3  
1.1  
1.1  
1.1  
0.9  
(3)  
RSDS_33  
3.3  
(3, 4, 7)  
TMDS_33  
3.3  
1200  
400  
400  
(3)  
PPDS_25  
2.5  
(3)  
PPDS_33  
3.3  
DIFF_HSTL_I_18  
1.8  
(8)  
DIFF_HSTL_II_18  
1.8  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
1.8  
1.5  
DIFF_HSTL_III  
DIFF_SSTL18_I  
1.5  
0.9  
1.8  
0.7  
0.7  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.5  
1.5  
1.9  
1.9  
(8)  
DIFF_SSTL18_II  
1.8  
DIFF_SSTL2_I  
2.5  
(8)  
DIFF_SSTL2_II  
2.5  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
3.3  
3.3  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
The V  
rails supply only differential output drivers, not input circuits.  
CCO  
V
must be less than V  
.
ICM  
CCAUX  
These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the “Using I/O Resources” chapter in UG331.  
See "External Termination Requirements for Differential I/O," page 22.  
LVPECL is supported on inputs only, not outputs. Requires V  
LVPECL_33 maximum V  
Requires V  
= 3.3V ± 10%.  
CCAUX  
= V  
– (V / 2)  
ICM  
CCAUX ID  
= 3.3V ± 10% for inputs. (V  
– 300 mV) V  
(V  
– 37 mV)  
CCAUX  
CCAUX  
ICM  
CCAUX  
These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the “Using I/O Resources” chapter in UG331.  
V
inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V  
settings are the same as for the single-ended versions in Table 13. Other differential  
REF  
REF  
standards do not use V  
.
REF  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
20  
Product Specification  
R
DC and Switching Characteristics  
Differential Output Pairs  
X-Ref Target - Figure 7  
VOUTP  
VOUTN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VOH  
VOUTN  
VOD  
50%  
VOUTP  
V
OL  
VOCM  
GND level  
V
OUTP + VOUTN  
V
OCM = Output common mode voltage =  
2
VOUTP - VOUTN  
V
V
OD = Output differential voltage =  
= Output voltage indicating a High logic level  
= Output voltage indicating a Low logic level  
OH  
V
DS529-3_11_012907  
OL  
Figure 7: Differential Output Voltages  
Table 16: DC Characteristics of User I/Os Using Differential Signal Standards  
VOD  
VOCM  
VOH  
VOL  
Typ  
(mV)  
Min  
(V)  
Min  
(V)  
Max  
(V)  
IOSTANDARD Attribute Min (mV)  
Max (mV)  
Typ (V)  
Max (V)  
LVDS_25  
247  
247  
240  
300  
300  
100  
100  
400  
100  
100  
350  
350  
350  
454  
454  
460  
600  
600  
400  
400  
800  
400  
400  
1.125  
1.375  
LVDS_33  
1.125  
1.375  
BLVDS_25  
1.30  
MINI_LVDS_25  
MINI_LVDS_33  
RSDS_25  
1.0  
1.4  
1.0  
1.4  
1.0  
1.4  
RSDS_33  
1.0  
1.4  
TMDS_33  
VCCO – 0.405  
VCCO – 0.190  
PPDS_25  
0.5  
0.5  
0.8  
0.8  
1.4  
1.4  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
VCCO – 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
VTT + 0.475 VTT – 0.475  
VTT + 0.475 VTT – 0.475  
VTT + 0.61  
VTT + 0.81  
VTT + 0.6  
VTT + 0.8  
VTT – 0.61  
VTT – 0.81  
VTT – 0.6  
VTT – 0.8  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 10 and Table 15.  
2. See "External Termination Requirements for Differential I/O," page 22.  
3. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ωacross the N and P pins  
of the differential signal pair.  
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25,  
RSDS_25, MINI_LVDS_25, PPDS_25 when VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when  
VCCO = 3.3V  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
21  
R
DC and Switching Characteristics  
External Termination Requirements for Differential I/O  
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
X-Ref Target - Figure 8  
Bank 0 and 2  
Any Bank  
Bank 0  
Bank 0  
No VCCO Restrictions  
LVDS_33, LVDS_25,  
MINI_LVDS_33,  
MINI_LVDS_25,  
1/4th of Bourns  
Part Number  
CAT16-PT4F4  
Bank 2  
Bank 2  
Z
Z
= 50Ω  
= 50Ω  
0
RSDS_33, RSDS_25,  
PPDS_33, PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
100Ω  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
0
DIFF_TERM=No  
a) Input-only Differential Pairs or Pairs not Using DIFF_TERM=Yes Constraint  
VCCO = 3.3V VCCO = 2.5V  
Z
= 50Ω  
0
LVDS_33,  
LVDS_25,  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
VCCO = 3.3V VCCO = 2.5V  
LVDS_33,  
LVDS_25,  
RDT  
MINI_LVDS_33,  
RSDS_33,  
PPDS_33  
MINI_LVDS_25,  
RSDS_25,  
PPDS_25  
Z
= 50Ω  
0
DIFF_TERM=Yes  
b) Differential Pairs Using DIFF_TERM=Yes Constraint  
DS529-3_09_080307  
Figure 8: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards  
BLVDS_25 I/O Standard  
X-Ref Target - Figure 9  
Any Bank  
Bank 0  
Any Bank  
Bank 0  
1/4th of Bourns  
Part Number  
CAT16-LV4F12  
1/4th of Bourns  
Part Number  
CAT16-PT4F4  
Bank 2  
Bank 2  
Z
Z
= 50Ω  
= 50Ω  
V
CCO = 2.5V  
0
0
No VCCO Requirement  
165Ω  
140Ω  
100Ω BLVDS_25  
BLVDS_25  
165Ω  
DS529-3_07_080307  
Figure 9: External Output and Input Termination Resistors for BLVDS_25 I/O Standard  
TMDS_33 I/O Standard  
X-Ref Target - Figure 10  
Any Bank  
Bank 0  
Bank 0 and 2  
Bank 0  
3.3V  
Bank 2  
Bank 2  
50Ω  
50Ω  
VCCAUX = 3.3V  
VCCO = 3.3V  
TMDS_33  
TMDS_33  
DVI/HDMI cable  
DS529-3_08_020107  
Figure 10: External Input Resistors Required for TMDS_33 I/O Standard  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
22  
Product Specification  
R
DC and Switching Characteristics  
Device DNA Read Endurance  
Table 17: Device DNA Identifier Memory Characteristics  
Symbol  
Description  
Minimum  
Units  
Number of READ operations or JTAG ISC_DNA read operations. Unaffected by  
HOLD or SHIFT operations  
Read  
cycles  
DNA_CYCLES  
30,000,000  
In-System Flash Memory Data Retention, Program/Write Endurance  
Table 18: In-System Flash (ISF) Memory Characteristics  
Symbol  
Description  
Minimum(1)  
Units  
ISF_RETENTION  
Data retention  
20  
Years  
Time that the ISF memory is selected and active. SPI_ACCESS design primitive  
pins CSB = Low, CLK toggling  
ISF_ACTIVE  
2
Years  
Cycles  
Cycles  
Cycles  
Cycle  
ISF_PAGE_CYCLES Number of program/erase cycles, per ISF memory page  
100,000  
10,000  
10,000  
1
Number of cumulative random (non-sequential) page erase/program operations  
within a sector before pages must be rewritten  
ISF_PAGE_REWRITE  
ISF_SPR_CYCLES  
ISF_SEC_CYCLES  
Number of program/erase cycles for Sector Protection Register  
Number of program cycles for Sector Lockdown Register per sector,  
user-programmable field in Security Register, and Power-of-2 Page Size  
Notes:  
1. Minimum value at which functionality is still guaranteed. Do not exceed these values.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
23  
R
DC and Switching Characteristics  
Switching Characteristics  
All Spartan-3AN FPGAs ship in two speed grades: –4 and  
the higher performance –5. Switching characteristics in this  
document are designated as Preview, Advance,  
Preliminary, or Production, as shown in Table 19. Each  
category is defined as follows:  
are specified using the same numbers for both  
commercial and industrial grades.  
To create a Xilinx MySupport user account and sign up for  
automatic E-mail notification whenever this data sheet is  
updated:  
Preview: These specifications are based on estimates only  
and should not be used for timing analysis.  
Sign Up for Alerts on Xilinx MySupport  
www.xilinx.com/support/answers/19380.htm  
Advance: These specifications are based on simulations  
only and are typically available soon after establishing  
FPGA specifications. Although speed grades with this  
designation are considered relatively stable and  
Timing parameters and their representative values are  
selected for inclusion either because they are important as  
general design requirements or they indicate fundamental  
device performance characteristics. The Spartan-3AN  
speed files (v1.41), part of the Xilinx Development Software,  
are the original source for many but not all of the values.  
The speed grade designations for these files are shown in  
Table 19. For more complete, more precise, and worst-case  
data, use the values reported by the Xilinx static timing  
analyzer (TRACE in the Xilinx development software) and  
back-annotated to the simulation netlist.  
conservative, some under-reporting might still occur.  
Preliminary: These specifications are based on complete  
early silicon characterization. Devices and speed grades  
with this designation are intended to give a better indication  
of the expected performance of production silicon. The  
probability of under-reporting preliminary delays is greatly  
reduced compared to Advance data.  
Table 19: Spartan-3AN Family v1.41 Speed Grade  
Designations  
Production: These specifications are approved once  
enough production silicon of a particular device family  
member has been characterized to provide full correlation  
between speed files and devices over numerous production  
lots. There is no under-reporting of delays, and customers  
receive formal notification of any subsequent changes.  
Typically, the slowest speed grades transition to Production  
before faster speed grades.  
Device  
Preview  
Advance Preliminary  
Production  
4, 5  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
4, 5  
4, 5  
4, 5  
4, 5  
Software Version Requirements  
Table 20 provides the recent history of the Spartan-3AN  
speed files.  
Production-quality systems must use FPGA designs  
compiled using a speed file designated as PRODUCTION  
status. FPGA designs using a less mature speed file  
designation should only be used during system prototyping  
or pre-production qualification. FPGA designs with speed  
files designated as Preview, Advance, or Preliminary should  
not be used in a production-quality system.  
Table 20: Spartan-3AN Speed File Version History  
ISE  
Release  
Version  
Description  
Updated for Spartan-3A family. No  
change to data for Spartan-3AN family.  
1.41  
ISE 10.1.03  
Whenever a speed file designation changes, as a device  
matures toward Production status, rerun the latest Xilinx®  
ISE® software on the FPGA design to ensure that the  
FPGA design incorporates the latest timing information and  
software updates.  
Updated for Spartan-3A family. No  
1.40  
1.39  
1.38  
ISE 10.1.02  
ISE 10.1  
change to data for Spartan-3AN family.  
Updated for Spartan-3A family. No  
change to data for Spartan-3AN family.  
Updated to Production. No change to  
data.  
ISE 9.2.03i  
In some cases, a particular family member (and speed  
grade) is released to Production at a different time than  
when the speed file is released with the Production label.  
Any labeling discrepancies are corrected in subsequent  
speed file releases. See Table 19 for devices that can be  
considered to have the Production label.  
Updated pin-to-pin setup and hold times,  
TMDS output adjustment, multiplier  
setup/hold times, and block RAM clock  
width.  
1.37  
ISE 9.2.01i  
Added -5 speed grade, updated to  
Advance.  
1.36  
ISE 9.2i  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless  
otherwise noted, the published parameter values apply  
to all Spartan-3AN devices. AC and DC characteristics  
1.34  
1.32  
ISE 9.1.03i Updated pin-to-pin timing.  
ISE 9.1.01i Preview speed files for -4 speed grade.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
24  
Product Specification  
R
DC and Switching Characteristics  
I/O Timing  
Pin-to-Pin Clock-to-Output Times  
Table 21: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Clock-to-Output Times  
TICKOFDCM  
When reading from the Output  
LVCMOS25(2), 12mA  
XC3S50AN  
3.18  
3.21  
2.97  
3.39  
3.51  
4.59  
4.88  
4.68  
4.97  
5.06  
3.42  
3.27  
3.33  
3.50  
3.99  
5.02  
5.24  
5.12  
5.34  
5.69  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flip-Flop (OFF), the time from the output drive, Fast slew  
rate, with DCM(3)  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
active transition on the Global  
Clock pin to data appearing at the  
Output pin. The DCM is in use.  
TICKOF  
When reading from OFF, the time LVCMOS25(2), 12mA  
from the active transition on the output drive, Fast slew  
Global Clock pin to data appearing rate, without DCM  
at the Output pin. The DCM is not  
in use.  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a  
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate  
Input adjustment from Table 26. If the latter is true, add the appropriate Output adjustment from Table 29.  
3. DCM output jitter is included in all measurements.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
25  
R
DC and Switching Characteristics  
Pin-to-Pin Setup and Hold Times  
Table 22: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)  
Speed Grade  
-5  
-4  
Symbol  
Setup Times  
TPSDCM  
Description  
Conditions  
LVCMOS25(2)  
Device  
Min  
Min  
Units  
When writing to the Input  
Flip-Flop (IFF), the time from the IFD_DELAY_VALUE = 0,  
setup of data at the Input pin to  
the active transition at a Global  
Clock pin. The DCM is in use. No  
Input Delay is programmed.  
,
XC3S50AN  
2.45  
2.59  
2.38  
2.38  
1.91  
2.55  
2.32  
2.21  
2.28  
2.33  
2.68  
2.84  
2.68  
2.57  
2.17  
2.76  
2.76  
2.60  
2.63  
2.41  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
with DCM(4)  
TPSFD  
When writing to IFF, the time  
from the setup of data at the  
Input pin to an active transition at without DCM  
the Global Clock pin. The DCM is  
not in use. The Input Delay is  
programmed.  
LVCMOS25(2)  
,
IFD_DELAY_VALUE = 5,  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
Hold Times  
TPHDCM  
When writing to IFF, the time  
from the active transition at the  
Global Clock pin to the point  
when data must be held at the  
Input pin. The DCM is in use. No  
Input Delay is programmed.  
LVCMOS25(3)  
,
XC3S50AN  
-0.36  
-0.52  
-0.33  
-0.17  
-0.07  
-0.63  
-0.56  
-0.42  
-0.80  
-0.69  
-0.36  
-0.52  
-0.29  
-0.12  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFD_DELAY_VALUE = 0,  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
with DCM(4)  
TPHFD  
When writing to IFF, the time  
from the active transition at the  
Global Clock pin to the point  
when data must be held at the  
Input pin. The DCM is not in use.  
The Input Delay is programmed.  
LVCMOS25(3)  
IFD_DELAY_VALUE = 5,  
without DCM  
,
-0.58  
-0.56  
-0.42  
-0.75  
-0.69  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 26. If this is true of the data Input, add the  
appropriate Input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data  
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 26. If this is true of the data Input, subtract the  
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
4. DCM output jitter is included in all measurements.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
26  
Product Specification  
R
DC and Switching Characteristics  
Input Setup and Hold Times  
Table 23: Setup and Hold Times for the IOB Input Path  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
Setup Times  
TIOPICK  
Description  
Conditions  
Device  
Min  
Min  
Units  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
No Input Delay is programmed.  
LVCMOS25(2)  
0
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
1.56  
1.71  
1.30  
1.34  
1.36  
2.16  
3.10  
3.51  
4.04  
3.88  
4.72  
5.47  
5.97  
2.05  
2.72  
3.38  
3.88  
3.69  
4.56  
5.34  
5.85  
1.79  
2.43  
3.02  
3.49  
3.41  
4.20  
4.96  
5.44  
1.58  
1.81  
1.51  
1.51  
1.74  
2.18  
3.12  
3.76  
4.32  
4.24  
5.09  
5.94  
6.52  
2.20  
2.93  
3.78  
4.37  
4.20  
5.23  
6.11  
6.71  
2.02  
2.67  
3.43  
3.96  
3.95  
4.81  
5.66  
6.19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TIOPICKD  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
The Input Delay is programmed.  
LVCMOS25(2)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S200AN  
XC3S400AN  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
27  
R
DC and Switching Characteristics  
Table 23: Setup and Hold Times for the IOB Input Path (Continued)  
Speed Grade  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
TIOPICKD  
Description  
Conditions  
Device  
Min  
Min  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time from the setup of data at the  
Input pin to the active transition at the  
ICLK input of the Input Flip-Flop (IFF).  
The Input Delay is programmed.  
LVCMOS25(2)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S700AN  
1.82  
2.62  
3.32  
3.83  
3.69  
4.60  
5.39  
5.92  
1.79  
2.55  
3.38  
3.75  
3.81  
4.39  
5.16  
5.69  
1.95  
2.83  
3.72  
4.31  
4.14  
5.19  
6.10  
6.73  
2.17  
2.92  
3.76  
4.32  
4.19  
5.09  
5.98  
6.57  
XC3S1400AN  
Hold Times  
TIOICKP  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. No Input Delay is  
programmed.  
0
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
–0.66  
–0.85  
–0.42  
–0.81  
–0.71  
–0.88  
–1.33  
–2.05  
–2.43  
–2.34  
–2.81  
–3.03  
–3.83  
–1.51  
–2.09  
–2.40  
–2.68  
–2.56  
–2.99  
–3.29  
–3.61  
–0.64  
–0.65  
–0.42  
–0.67  
–0.71  
–0.88  
–1.33  
–2.05  
–2.43  
–2.34  
–2.81  
–3.03  
–3.57  
–1.51  
–2.09  
–2.40  
–2.68  
–2.56  
–2.99  
–3.29  
–3.61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TIOICKPD  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. The Input Delay is  
programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S200AN  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
28  
Product Specification  
R
DC and Switching Characteristics  
Speed Grade  
Table 23: Setup and Hold Times for the IOB Input Path (Continued)  
IFD_  
DELAY_  
VALUE  
-5  
-4  
Symbol  
TIOICKPD  
Description  
Conditions  
Device  
Min  
Min  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time from the active transition at the LVCMOS25(3)  
ICLK input of the Input Flip-Flop (IFF)  
to the point where data must be held  
at the Input pin. The Input Delay is  
programmed.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S400AN  
–1.12  
–1.70  
–2.08  
–2.38  
–2.23  
–2.69  
–3.08  
–3.35  
–1.67  
–2.27  
–2.59  
–2.92  
–2.89  
–3.22  
–3.52  
–3.81  
–1.60  
–2.06  
–2.46  
–2.86  
–2.88  
–3.24  
–3.55  
–3.89  
–1.12  
–1.70  
–2.08  
–2.38  
–2.23  
–2.69  
–3.08  
–3.35  
–1.67  
–2.27  
–2.59  
–2.92  
–2.89  
–3.22  
–3.52  
–3.81  
–1.60  
–2.06  
–2.46  
–2.86  
–2.88  
–3.24  
–3.55  
–3.89  
XC3S700AN  
XC3S1400AN  
Set/Reset Pulse Width  
TRPW_IOB  
Minimum pulse width to SR control  
input on IOB  
-
-
All  
1.33  
1.61  
ns  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the  
appropriate Input adjustment from Table 26.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract  
the appropriate Input adjustment from Table 26. When the hold time is negative, it is possible to change the data before the clock’s active  
edge.  
Table 24: Sample Window (Source Synchronous)  
Max  
Symbol  
Description  
Units  
TSAMP  
Setup and hold  
capture window of  
an IOB flip-flop.  
The input capture sample window value is highly specific to a particular application, device,  
package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the  
appropriate Xilinx Answer Record for application-specific values.  
ps  
Answer Record 30879  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
29  
R
DC and Switching Characteristics  
Input Propagation Times  
Table 25: Propagation Times for the IOB Input Path  
Speed Grade  
-5  
-4  
DELAY_VALUE  
Symbol  
Description  
Conditions  
Device  
Max  
Max Units  
Propagation Times  
TIOPI  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin to the I output  
IBUF_DELAY_VALUE=0 XC3S50AN  
XC3S200AN  
1.04  
0.87  
0.65  
0.92  
1.12  
0.87  
0.72  
0.92  
1.21  
2.07  
2.46  
2.71  
3.21  
3.46  
3.84  
4.19  
4.47  
4.11  
4.50  
4.67  
5.20  
5.44  
5.95  
6.28  
6.57  
1.65  
1.97  
2.33  
2.96  
3.19  
3.60  
4.02  
4.26  
3.86  
4.25  
4.55  
5.24  
5.53  
5.94  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
with no input delay programmed  
XC3S400AN  
XC3S700AN  
XC3S1400AN 0.96  
TIOPID  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin to the I output  
with the input delay programmed  
1
2
XC3S50AN  
1.79  
2.13  
2.36  
2.88  
3.11  
3.45  
3.75  
4.00  
3.61  
3.95  
4.18  
4.75  
4.98  
5.31  
5.62  
5.86  
1.57  
1.87  
2.16  
2.68  
2.87  
3.20  
3.57  
3.79  
3.42  
3.79  
4.02  
4.62  
4.86  
5.18  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S200AN  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
30  
Product Specification  
R
DC and Switching Characteristics  
Speed Grade  
Table 25: Propagation Times for the IOB Input Path (Continued)  
-5  
-4  
DELAY_VALUE  
Symbol  
TIOPID  
Description  
Conditions  
Device  
Max  
5.43  
5.75  
1.32  
1.67  
1.90  
2.33  
2.60  
2.94  
3.23  
3.50  
3.18  
3.53  
3.76  
4.26  
4.51  
4.85  
5.14  
5.40  
1.84  
2.20  
2.46  
2.93  
3.21  
3.54  
3.86  
4.13  
3.82  
4.17  
4.43  
4.95  
5.22  
5.57  
5.89  
6.16  
Max Units  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin to the I output  
with the input delay programmed  
15  
16  
1
XC3S200AN  
6.24  
6.59  
1.43  
1.83  
2.07  
2.52  
2.91  
3.20  
3.51  
3.85  
3.55  
3.95  
4.20  
4.67  
4.97  
5.32  
5.64  
5.95  
1.87  
2.27  
2.60  
3.15  
3.45  
3.80  
4.16  
4.48  
4.19  
4.58  
4.89  
5.49  
5.83  
6.21  
6.55  
6.89  
2.18  
2.59  
2.84  
3.30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S400AN  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S700AN  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
XC3S1400AN 1.95  
2
2.29  
2.54  
2.96  
3
4
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
31  
R
DC and Switching Characteristics  
Table 25: Propagation Times for the IOB Input Path (Continued)  
Speed Grade  
-5  
-4  
DELAY_VALUE  
Symbol  
TIOPID  
Description  
Conditions  
Device  
Max  
Max Units  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin to the I output  
with the input delay programmed  
5
6
XC3S1400AN 3.17  
3.52  
3.92  
4.18  
4.57  
4.31  
4.79  
5.06  
5.51  
5.73  
6.08  
6.33  
6.77  
1.81  
2.04  
1.74  
1.74  
1.97  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.52  
3.82  
4.10  
3.84  
4.20  
4.46  
4.87  
5.07  
5.43  
5.73  
6.01  
7
8
9
10  
11  
12  
13  
14  
15  
16  
TIOPLI  
The time it takes for data to travel LVCMOS25(2)  
from the Input pin through the IFF  
latch to the I output with no input  
delay programmed  
IFD_DELAY_VALUE=0 XC3S50AN  
XC3S200AN  
1.70  
1.85  
1.44  
1.48  
XC3S400AN  
XC3S700AN  
XC3S1400AN 1.50  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
32  
Product Specification  
R
DC and Switching Characteristics  
Speed Grade  
Table 25: Propagation Times for the IOB Input Path (Continued)  
-5  
-4  
DELAY_VALUE  
Symbol  
Description  
Conditions  
Device  
Max  
2.30  
3.24  
3.65  
4.18  
4.02  
4.86  
5.61  
6.11  
2.19  
2.86  
3.52  
4.02  
3.83  
4.70  
5.48  
5.99  
1.93  
2.57  
3.16  
3.63  
3.55  
4.34  
5.09  
5.58  
1.96  
2.76  
3.45  
3.97  
3.83  
4.74  
5.53  
6.06  
Max Units  
TIOPLID  
The time it takes for data to travel LVCMOS25(2  
from the Input pin through the IFF  
latch to the I output with the input  
delay programmed  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
XC3S50AN  
2.41  
3.35  
3.98  
4.55  
4.47  
5.32  
6.17  
6.75  
2.43  
3.16  
4.01  
4.60  
4.43  
5.46  
6.33  
6.94  
2.25  
2.90  
3.66  
4.19  
4.18  
5.03  
5.88  
6.42  
2.18  
3.06  
3.95  
4.54  
4.37  
5.42  
6.33  
6.96  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200AN  
XC3S400AN  
XC3S700AN  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
33  
R
DC and Switching Characteristics  
Table 25: Propagation Times for the IOB Input Path (Continued)  
Speed Grade  
-5  
-4  
DELAY_VALUE  
Symbol  
Description  
Conditions  
Device  
Max  
Max Units  
TIOPLID  
The time it takes for data to travel LVCMOS25(2  
from the Input pin through the IFF  
latch to the I output with the input  
delay programmed  
1
2
3
4
5
6
7
8
XC3S1400AN 1.93  
2.40  
3.15  
3.99  
4.55  
4.42  
5.32  
6.21  
6.80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.69  
3.52  
3.89  
3.95  
4.53  
5.30  
5.83  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is  
true, add the appropriate Input adjustment from Table 26.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
34  
Product Specification  
R
DC and Switching Characteristics  
Input Timing Adjustments  
Table 26: Input Timing Adjustments by IOSTANDARD  
Table 26: Input Timing Adjustments by IOSTANDARD  
Add the  
Add the  
Adjustment Below  
Adjustment Below  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Convert Input Time from  
LVCMOS25 to the Following  
Signal Standard  
Speed Grade  
Speed Grade  
(IOSTANDARD)  
-5  
-4  
Units  
(IOSTANDARD)  
-5  
-4  
Units  
Differential Standards  
LVDS_25  
Single-Ended Standards  
LVTTL  
0.76  
0.79  
0.79  
0.78  
0.79  
0.78  
0.79  
0.79  
0.77  
0.79  
0.79  
0.79  
0.74  
0.72  
1.05  
0.72  
1.05  
0.71  
0.71  
0.74  
0.75  
1.06  
1.06  
0.76  
0.79  
0.79  
0.78  
0.79  
0.78  
0.79  
0.79  
0.77  
0.79  
0.79  
0.79  
0.74  
0.72  
1.05  
0.72  
1.05  
0.71  
0.71  
0.74  
0.75  
1.06  
1.06  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.62  
0.54  
0
0.62  
0.54  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS_33  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
0.83  
0.60  
0.31  
0.41  
0.41  
0.72  
0.77  
0.69  
0.69  
0.79  
0.71  
0.71  
0.68  
0.68  
0.78  
0.78  
0.83  
0.60  
0.31  
0.41  
0.41  
0.72  
0.77  
0.69  
0.69  
0.79  
0.71  
0.71  
0.68  
0.68  
0.78  
0.78  
LVPECL_33  
RSDS_25  
PCI66_3  
RSDS_33  
HSTL_I  
TMDS_33  
HSTL_III  
PPDS_25  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
SSTL2_II  
SSTL3_I  
SSTL3_II  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 30 and are based on the operating conditions  
set forth in Table 10, Table 13, and Table 15.  
2. These adjustments are used to convert input path times originally  
specified for the LVCMOS25 standard to times that correspond to  
other signal standards.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
35  
R
DC and Switching Characteristics  
Output Propagation Times  
Table 27: Timing for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Clock-to-Output Times  
TIOCKP  
When reading from the Output  
Flip-Flop (OFF), the time from the  
active transition at the OCLK input to  
data appearing at the Output pin  
LVCMOS25(2), 12 mA output  
drive, Fast slew rate  
All  
2.87  
2.78  
3.13  
2.91  
ns  
Propagation Times  
TIOOP  
The time it takes for data to travel from LVCMOS25(2), 12 mA output  
the IOB’s O input to the Output pin  
All  
All  
ns  
drive, Fast slew rate  
Set/Reset Times  
TIOSRP  
Time from asserting the OFF’s SR  
input to setting/resetting data at the  
Output pin  
LVCMOS25(2), 12 mA output  
drive, Fast slew rate  
3.63  
8.62  
3.89  
9.65  
ns  
ns  
TIOGSRQ  
Time from asserting the Global Set  
Reset (GSR) input on the  
STARTUP_SPARTAN3A primitive to  
setting/resetting data at the Output pin  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data  
Output. When this is true, add the appropriate Output adjustment from Table 29.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
36  
Product Specification  
R
DC and Switching Characteristics  
Three-State Output Propagation Times  
Table 28: Timing for the IOB Three-State Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Synchronous Output Enable/Disable Times  
TIOCKHZ  
Time from the active transition at the OTCLK  
LVCMOS25, 12 mA  
input of the Three-state Flip-Flop (TFF) to when output drive, Fast slew  
the Output pin enters the high-impedance state rate  
All  
0.63  
2.80  
0.76  
3.06  
ns  
(2)  
TIOCKON  
Time from the active transition at TFF’s OTCLK  
input to when the Output pin drives valid data  
All  
All  
ns  
ns  
Asynchronous Output Enable/Disable Times  
TGTS Time from asserting the Global Three State  
LVCMOS25, 12 mA  
output drive, Fast slew  
rate  
9.47  
10.36  
(GTS) input on the STARTUP_SPARTAN3A  
primitive to when the Output pin enters the  
high-impedance state  
Set/Reset Times  
TIOSRHZ  
Time from asserting TFF’s SR input to when  
LVCMOS25, 12 mA  
All  
All  
1.61  
3.57  
1.86  
3.82  
ns  
ns  
the Output pin enters a high-impedance state output drive, Fast slew  
rate  
(2)  
TIOSRON  
Time from asserting TFF’s SR input at TFF to  
when the Output pin drives valid data  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 30 and are based on the operating conditions set forth in  
Table 10 and Table 13.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the  
data Output. When this is true, add the appropriate Output adjustment from Table 29.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
37  
R
DC and Switching Characteristics  
Output Timing Adjustments  
Table 29: Output Timing Adjustments for IOB (Continued)  
Table 29: Output Timing Adjustments for IOB  
Add the  
Adjustment  
Below  
Add the  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
Speed Grade  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
LVCMOS33  
Slow  
2 mA  
4 mA  
5.58  
3.17  
3.17  
2.09  
1.24  
1.15  
5.58  
3.17  
3.17  
2.09  
1.24  
1.15  
Single-Ended Standards  
LVTTL  
Slow  
2 mA  
4 mA  
5.58  
3.16  
3.17  
2.09  
1.62  
1.24  
5.58  
3.16  
3.17  
2.09  
1.62  
1.24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
8 mA  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
2.55(3) 2.55(3)  
2.74(3) 2.74(3)  
Fast  
3.02  
1.71  
3.02  
1.71  
4 mA  
Fast  
3.03  
1.71  
3.03  
1.71  
6 mA  
1.72  
1.72  
4 mA  
8 mA  
0.53  
0.53  
6 mA  
1.71  
1.71  
12 mA  
16 mA  
24 mA  
2 mA  
0.59  
0.59  
8 mA  
0.53  
0.53  
0.59  
0.59  
12 mA  
16 mA  
24 mA  
2 mA  
0.53  
0.53  
0.51  
0.51  
0.59  
0.59  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.29  
16.18  
12.11  
27.67  
27.67  
27.67  
16.71  
16.29  
16.18  
12.11  
0.60  
0.60  
4 mA  
QuietIO  
27.67  
27.67  
27.67  
16.71  
16.67  
16.22  
12.11  
27.67  
27.67  
27.67  
16.71  
16.67  
16.22  
12.11  
6 mA  
4 mA  
8 mA  
6 mA  
12 mA  
16 mA  
24 mA  
8 mA  
12 mA  
16 mA  
24 mA  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
38  
Product Specification  
R
DC and Switching Characteristics  
Table 29: Output Timing Adjustments for IOB (Continued)  
Table 29: Output Timing Adjustments for IOB (Continued)  
Add the  
Add the  
Adjustment  
Adjustment  
Below  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
Speed Grade  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVCMOS25  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
5.33  
2.81  
2.82  
1.14  
1.10  
0.83  
5.33  
2.81  
2.82  
1.14  
1.10  
0.83  
LVCMOS15  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
5.82  
3.97  
3.21  
2.53  
2.06  
5.23  
3.05  
1.95  
1.60  
1.30  
34.11  
25.66  
24.64  
22.06  
20.64  
7.14  
4.87  
5.67  
6.77  
5.02  
4.09  
50.76  
43.17  
37.31  
0.34  
0.34  
0.78  
1.16  
0.35  
0.30  
0.47  
0.40  
0.30  
0
5.82  
3.97  
3.21  
2.53  
2.06  
5.23  
3.05  
1.95  
1.60  
1.30  
34.11  
25.66  
24.64  
22.06  
20.64  
7.14  
4.87  
5.67  
6.77  
5.02  
4.09  
50.76  
43.17  
37.31  
0.34  
0.34  
0.78  
1.16  
0.35  
0.30  
0.47  
0.40  
0.30  
0
Fast  
2.26(3) 2.26(3)  
Fast  
4.36  
1.76  
1.25  
0.38  
0
4.36  
1.76  
1.25  
0.38  
QuietIO  
0
0.01  
0.01  
25.92  
25.92  
25.92  
15.57  
15.59  
14.27  
11.37  
4.48  
3.69  
2.91  
1.99  
1.57  
1.19  
3.96  
2.57  
1.90  
1.06  
0.83  
0.63  
24.97  
24.97  
24.08  
16.43  
14.52  
13.41  
0.01  
0.01  
QuietIO  
25.92  
25.92  
25.92  
15.57  
15.59  
14.27  
11.37  
4.48  
LVCMOS12  
Slow  
Fast  
LVCMOS18  
Slow  
Fast  
QuietIO  
3.69  
2.91  
1.99  
PCI33_3  
1.57  
PCI66_3  
1.19  
HSTL_I  
3.96  
HSTL_III  
2.57  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
1.90  
1.06  
0.83  
0.63  
QuietIO  
24.97  
24.97  
24.08  
16.43  
14.52  
13.41  
SSTL2_II  
SSTL3_I  
0.05  
0
0.05  
0
SSTL3_II  
0.17  
0.17  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
39  
R
DC and Switching Characteristics  
Table 29: Output Timing Adjustments for IOB (Continued)  
Add the  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard (IOSTANDARD)  
Speed Grade  
-5  
-4  
Units  
Differential Standards  
LVDS_25  
1.16  
0.46  
0.11  
0.75  
0.40  
1.16  
0.46  
0.11  
0.75  
0.40  
ns  
ns  
ns  
ns  
ns  
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
Input Only  
LVPECL_33  
RSDS_25  
1.42  
0.58  
0.46  
1.07  
0.63  
0.43  
0.41  
0.36  
1.01  
0.54  
0.49  
0.41  
0.82  
0.09  
1.16  
0.28  
1.42  
0.58  
0.46  
1.07  
0.63  
0.43  
0.41  
0.36  
1.01  
0.54  
0.49  
0.41  
0.82  
0.09  
1.16  
0.28  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 30 and are based on the operating conditions  
set forth in Table 10, Table 13, and Table 15.  
2. These adjustments are used to convert output- and  
three-state-path times originally specified for the LVCMOS25  
standard with 12 mA drive and Fast slew rate to times that  
correspond to other signal standards. Do not adjust times that  
measure when outputs go into a high-impedance state.  
3. Note that 16 mA drive is faster than 24 mA drive for the Slow  
slew rate.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
40  
Product Specification  
R
DC and Switching Characteristics  
Timing Measurement Methodology  
When measuring timing parameters at the programmable  
I/Os, different signal standards call for different test  
conditions. Table 30 lists the conditions to use for each  
standard.  
connection, and V is set to zero. The same measurement  
T
point (V ) that was used at the Input is also used at the  
M
Output.  
X-Ref Target - Figure 11  
V (V  
)
The method for measuring Input timing is as follows: A  
T
REF  
signal that swings between a Low logic level of V and a  
L
FPGA Output  
High logic level of V is applied to the Input under test.  
H
R (R  
T
)
REF  
Some standards also require the application of a bias  
voltage to the V  
pins of a given bank to properly set the  
REF  
V
(V  
)
M
MEAS  
input-switching threshold. The measurement point of the  
Input signal (V ) is commonly located halfway between V  
M
L
C (C  
)
L
REF  
and V .  
H
DS312-3_04_102406  
The Output test setup is shown in Figure 11. A termination  
voltage V is applied to the termination resistor R , the other  
Notes:  
T
T
1. The names shown in parentheses are  
used in the IBIS file.  
end of which is connected to the Output. For each standard,  
R and V generally take on the standard values  
T
T
Figure 11: Output Test Setup  
recommended for minimizing signal reflections. If the  
standard does not ordinarily use terminations (for example,  
LVCMOS, LVTTL), then R is set to 1MΩ to indicate an open  
T
Table 30: Test Methods for Timing Measurement at I/Os  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Single-Ended  
LVTTL  
-
-
-
-
-
-
-
0
3.3  
3.3  
1M  
1M  
1M  
1M  
1M  
1M  
25  
25  
25  
25  
50  
50  
50  
25  
50  
50  
25  
50  
25  
50  
25  
0
0
1.4  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33_3  
0
1.65  
1.25  
0.9  
0
2.5  
0
0
1.8  
0
0
0
1.5  
0
0.75  
0.6  
1.2  
0
Rising  
Falling  
Rising  
Falling  
Note 3  
Note 3  
0
0.94  
2.03  
0.94  
2.03  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
3.3  
0
PCI66_3  
-
Note 3  
Note 3  
3.3  
0.75  
1.5  
0.9  
0.9  
1.8  
0.9  
0.9  
1.25  
1.25  
1.5  
1.5  
HSTL_I  
0.75  
0.9  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.5  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF – 0.75  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
VREF + 0.75  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
0.9  
0.9  
1.1  
0.9  
0.9  
1.25  
1.25  
1.5  
SSTL2_II  
SSTL3_I  
SSTL3_II  
1.5  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
41  
R
DC and Switching Characteristics  
Table 30: Test Methods for Timing Measurement at I/Os (Continued)  
Inputs and  
Outputs  
Inputs  
Outputs  
Signal Standard  
(IOSTANDARD)  
VREF (V)  
VL (V)  
VH (V)  
RT (Ω)  
VT (V)  
VM (V)  
Differential  
LVDS_25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.125  
VICM – 0.3  
VICM – 0.3  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.1  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM – 0.5  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.125  
VICM + 0.3  
VICM + 0.3  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.1  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
VICM + 0.5  
50  
50  
1M  
50  
50  
N/A  
N/A  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
1.2  
1.2  
0
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
VICM  
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
1.2  
1.2  
N/A  
N/A  
1.2  
1.2  
3.3  
0.8  
0.8  
0.75  
1.5  
0.9  
0.9  
1.8  
0.9  
0.9  
1.25  
1.25  
1.5  
1.5  
LVPECL_33  
RSDS_25  
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
V
V
V
– The reference voltage for setting the input switching threshold  
– The common mode input voltage  
– Voltage of measurement point on signal transition  
REF  
ICM  
M
V – Low-level test voltage at Input pin  
L
V
– High-level test voltage at Input pin  
H
R – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required  
T
V – Termination voltage  
T
2. The load capacitance (C ) at the Output pin is 0 pF for all signal standards.  
L
3. According to the PCI specification. For information on PCI IP solutions, see  
www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm. The PCIX IOSTANDARD is available and has equivalent  
characteristics but no PCI-X IP is supported.  
The capacitive load (C ) is connected between the output  
and GND. The Output timing for all standards, as published  
from those measurements to produce the final timing  
numbers as published in the speed files and data sheet.  
L
in the speed files and the data sheet, is always based on a  
C value of zero. High-impedance probes (less than 1 pF)  
L
are used for all measurements. Any delay that the test  
fixture might contribute to test measurements is subtracted  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
42  
Product Specification  
R
DC and Switching Characteristics  
and any other signal routing inside the package. Other  
variables contribute to SSO noise levels, including stray  
inductance on the PCB as well as capacitive loading at  
receivers. Any SSO-induced voltage consequently affects  
internal switching noise margins and ultimately signal  
quality.  
Using IBIS Models to Simulate Load  
Conditions in Application  
IBIS models permit the most accurate prediction of timing  
delays for a given application. The parameters found in the  
IBIS model (V , R , and V  
) correspond directly  
REF REF  
MEAS  
with the parameters used in Table 30 (V , R , and V ). Do  
T
T
M
Table 31 and Table 32 provide the essential SSO  
guidelines. For each device/package combination, Table 31  
not confuse V  
(the termination voltage) from the IBIS  
REF  
model with V  
(the input-switching threshold) from the  
REF  
provides the number of equivalent V  
/GND pairs. The  
CCO  
table. A fourth parameter, C , is always zero. The four  
REF  
equivalent number of pairs is based on characterization and  
may not match the physical number of pairs. For each  
output signal standard and drive strength, Table 32  
recommends the maximum number of SSOs, switching in  
parameters describe all relevant output test conditions. IBIS  
models are found in the Xilinx development software as well  
as at the following link:  
the same direction, allowed per V  
/GND pair within an  
www.xilinx.com/support/download/index.htm  
CCO  
I/O bank. The guidelines in Table 32 are categorized by  
package style, slew rate, and output drive current.  
Furthermore, the number of SSOs is specified by I/O bank.  
Generally, the left and right I/O banks (Banks 1 and 3)  
support higher output drive current.  
Delays for a given application are simulated according to its  
specific load conditions as follows:  
1. Simulate the desired signal standard with the output  
driver connected to the test setup shown in Figure 11.  
Use parameter values V , R , and V from Table 30.  
T
T
M
Multiply the appropriate numbers from Table 31 and  
Table 32 to calculate the maximum number of SSOs  
allowed within an I/O bank. Exceeding these SSO  
guidelines might result in increased power or ground  
bounce, degraded signal integrity, or increased system jitter.  
C
is zero.  
REF  
2. Record the time to V .  
M
3. Simulate the same signal standard with the output  
driver connected to the PCB trace with load. Use the  
appropriate IBIS model (including V , R , C  
,
REF REF REF  
SSO  
/IO Bank = Table 31 x Table 32  
MAX  
and V  
load.  
values) or capacitive value to represent the  
MEAS  
The recommended maximum SSO values assumes that the  
FPGA is soldered on the printed circuit board and that the  
board uses sound design practices. The SSO values do not  
apply for FPGAs mounted in sockets, due to the lead  
inductance introduced by the socket.  
4. Record the time to V  
.
MEAS  
5. Compare the results of steps 2 and 4. Add (or subtract)  
the increase (or decrease) in delay to (or from) the  
appropriate Output standard adjustment (Table 29) to  
yield the worst-case delay of the PCB trace.  
The number of SSOs allowed for quad-flat packages (TQ) is  
lower than for ball grid array packages (FG) due to the  
larger lead inductance of the quad-flat packages. Ball grid  
array packages are recommended for applications with a  
large number of simultaneously switching outputs.  
Simultaneously Switching Output  
Guidelines  
This section provides guidelines for the recommended  
maximum allowable number of Simultaneous Switching  
Outputs (SSOs). These guidelines describe the maximum  
number of user I/O pins of a given output signal standard  
that should simultaneously switch in the same direction,  
while maintaining a safe level of switching noise. Meeting  
these guidelines for the stated test conditions ensures that  
the FPGA operates free from the adverse effects of ground  
and power bounce.  
Table 31: Equivalent V  
/GND Pairs per Bank  
Package Style  
CCO  
Device  
TQG144 FTG256 FGG400 FGG484 FGG676  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
2
4
5
5
9
Ground or power bounce occurs when a large number of  
outputs simultaneously switch in the same direction. The  
output drive transistors all conduct current to a common  
voltage rail. Low-to-High transitions conduct to the V  
CCO  
rail; High-to-Low transitions conduct to the GND rail. The  
resulting cumulative current transient induces a voltage  
difference across the inductance that exists between the die  
pad and the power supply or ground return. The inductance  
is associated with bonding wires, the package lead frame,  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
43  
R
DC and Switching Characteristics  
Table 32: Recommended Number of Simultaneously  
Table 32: Recommended Number of Simultaneously  
Switching Outputs per V  
-GND Pair (Continued)  
Switching Outputs per V  
-GND Pair  
CCO  
CCO  
Package Type  
FTG256,FGG400,  
Package Type  
FTG256,FGG400,  
FGG484, FGG676  
TQG144  
FGG484, FGG676  
TQG144  
Top, Left,  
Top, Left,  
Top, Left,  
Top,  
Left,  
Bottom Right Bottom Right  
(Banks (Banks (Banks (Banks  
Bottom Right Bottom Right  
Signal Standard  
(IOSTANDARD)  
Signal Standard  
(IOSTANDARD)  
(Banks (Banks (Banks (Banks  
0,2)  
24  
14  
11  
10  
9
1,3)  
24  
14  
11  
10  
9
0,2)  
76  
46  
27  
20  
13  
10  
1,3)  
76  
46  
27  
20  
13  
10  
9
0,2)  
1,3)  
0,2)  
1,3)  
LVCMOS33  
Slow  
2
4
Single-Ended Standards  
LVTTL  
Slow  
2
4
20  
10  
10  
6
20  
10  
10  
6
60  
41  
29  
22  
13  
11  
9
60  
41  
29  
22  
13  
11  
9
6
8
6
12  
16  
24  
2
8
8
8
12  
16  
24  
2
6
6
8
5
5
Fast  
10  
8
10  
8
10  
8
10  
8
4
4
4
Fast  
10  
6
10  
6
10  
6
10  
6
6
5
5
5
5
4
8
4
4
4
4
6
5
5
5
5
12  
16  
24  
2
4
4
4
4
8
3
3
3
3
2
2
2
2
12  
16  
24  
2
3
3
3
3
2
2
3
3
3
3
QuietIO  
36  
32  
24  
16  
16  
12  
36  
32  
24  
16  
16  
12  
10  
76  
46  
32  
26  
18  
14  
76  
46  
32  
26  
18  
14  
10  
2
2
2
2
4
QuietIO  
40  
24  
20  
16  
12  
9
40  
24  
20  
16  
12  
9
80  
48  
36  
27  
16  
13  
12  
80  
48  
36  
27  
16  
13  
12  
6
4
8
6
12  
16  
24  
8
12  
16  
24  
9
9
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
44  
Product Specification  
R
DC and Switching Characteristics  
Table 32: Recommended Number of Simultaneously  
Table 32: Recommended Number of Simultaneously  
Switching Outputs per V  
-GND Pair (Continued)  
Switching Outputs per V  
-GND Pair (Continued)  
CCO  
CCO  
Package Type  
FTG256,FGG400,  
Package Type  
FTG256,FGG400,  
TQG144  
FGG484, FGG676  
TQG144  
FGG484, FGG676  
Top, Left,  
Top, Left,  
Top, Left,  
Top, Left,  
Bottom Right Bottom Right  
(Banks (Banks (Banks (Banks  
Bottom Right Bottom Right  
(Banks (Banks (Banks (Banks  
Signal Standard  
(IOSTANDARD)  
Signal Standard  
(IOSTANDARD)  
0,2)  
16  
10  
8
1,3)  
16  
10  
8
0,2)  
76  
46  
33  
24  
18  
1,3)  
76  
46  
33  
24  
18  
11  
7
0,2)  
12  
7
1,3)  
12  
7
0,2)  
55  
31  
18  
1,3)  
55  
31  
18  
15  
10  
25  
10  
6
LVCMOS25  
Slow  
2
4
LVCMOS15  
Slow  
2
4
6
6
7
7
8
7
7
8
6
12  
16  
24  
2
6
6
12  
2
5
6
Fast  
10  
7
10  
7
25  
10  
6
5
4
Fast  
12  
10  
8
12  
10  
8
18  
14  
6
18  
14  
6
6
6
6
4
8
4
4
6
12  
2
3
3
8
6
6
6
6
QuietIO  
30  
21  
18  
30  
21  
18  
12  
12  
17  
13  
10  
9
70  
40  
31  
70  
40  
31  
31  
20  
40  
25  
18  
31  
13  
9
12  
16  
24  
2
3
3
3
3
4
3
3
6
2
2
8
QuietIO  
36  
30  
24  
20  
12  
36  
30  
24  
20  
12  
12  
8
76  
60  
48  
36  
36  
76  
60  
48  
36  
36  
36  
8
12  
2
4
LVCMOS12  
Slow  
Fast  
17  
40  
6
4
8
6
12  
16  
24  
2
2
12  
31  
4
9
6
9
LVCMOS18  
Slow  
Fast  
13  
8
13  
8
64  
34  
22  
18  
64  
34  
22  
18  
13  
10  
18  
9
QuietIO  
2
36  
36  
33  
27  
9
55  
55  
36  
36  
16  
13  
20  
8
4
4
6
8
8
6
8
7
7
PCI33_3  
9
16  
12  
16  
2
5
PCI66_3  
9
5
HSTL_I  
11  
7
13  
8
13  
8
18  
9
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
SSTL18_I  
SSTL18_II  
SSTL2_I  
4
13  
13  
5
17  
17  
5
6
7
7
7
7
8
4
4
4
4
8
8
10  
7
8
12  
16  
2
4
4
7
13  
9
15  
9
3
3
QuietIO  
30  
24  
20  
16  
30  
24  
20  
16  
12  
12  
64  
64  
48  
36  
64  
64  
48  
36  
36  
24  
10  
10  
6
18  
18  
9
4
SSTL2_II  
SSTL3_I  
6
7
8
8
10  
7
8
SSTL3_II  
5
6
6
12  
16  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
45  
R
DC and Switching Characteristics  
Table 32: Recommended Number of Simultaneously  
Switching Outputs per V  
-GND Pair (Continued)  
CCO  
Package Type  
FTG256,FGG400,  
TQG144  
FGG484, FGG676  
Top, Left,  
Top, Left,  
Bottom Right Bottom Right  
(Banks (Banks (Banks (Banks  
Signal Standard  
(IOSTANDARD)  
0,2)  
1,3)  
0,2)  
1,3)  
Differential Standards (Number of I/O Pairs or Channels)  
LVDS_25  
8
8
1
8
8
1
22  
27  
4
4
LVDS_33  
BLVDS_25  
MINI_LVDS_25  
MINI_LVDS_33  
LVPECL_25  
22  
27  
Input Only  
Input Only  
LVPECL_33  
RSDS_25  
8
8
8
8
8
6
4
3
5
3
2
5
3
6
2
4
6
4
5
3
4
3
22  
27  
27  
22  
27  
10  
4
8
2
4
7
4
9
4
5
3
RSDS_33  
TMDS_33  
PPDS_25  
PPDS_33  
DIFF_HSTL_I  
DIFF_HSTL_III  
DIFF_HSTL_I_18  
DIFF_HSTL_II_18  
DIFF_HSTL_III_18  
DIFF_SSTL18_I  
DIFF_SSTL18_II  
DIFF_SSTL2_I  
DIFF_SSTL2_II  
DIFF_SSTL3_I  
DIFF_SSTL3_II  
8
5
3
9
4
3
Notes:  
1. Not all I/O standards are supported on all I/O banks. The left and  
right banks (I/O banks 1 and 3) support higher output drive  
current than the top and bottom banks (I/O banks 0 and 2).  
Similarly, true differential output standards, such as LVDS,  
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top  
or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3  
Generation FPGA User Guide for additional information.  
2. The numbers in this table are recommendations that assume  
sound board lay out practice. Test limits are the V /V voltage  
IL IH  
limits for the respective I/O standard.  
3. If more than one signal standard is assigned to the I/Os of a given  
bank, refer to XAPP689: Managing Ground Bounce in Large  
FPGAs for information on how to perform weighted average SSO  
calculations.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
46  
Product Specification  
R
DC and Switching Characteristics  
Configurable Logic Block (CLB) Timing  
Table 33: CLB (SLICEM) Timing  
Speed Grade  
-4  
-5  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TCKO  
When reading from the FFX (FFY) Flip-Flop, the time  
from the active transition at the CLK input to data  
appearing at the XQ (YQ) output  
0.60  
0.68  
ns  
Setup Times  
TAS  
Time from the setup of data at the F or G input to the  
active transition at the CLK input of the CLB  
0.18  
1.58  
0.36  
1.88  
ns  
ns  
TDICK  
Time from the setup of data at the BX or BY input to  
the active transition at the CLK input of the CLB  
Hold Times  
TAH  
Time from the active transition at the CLK input to the  
point where data is last held at the F or G input  
0
0
0
0
ns  
ns  
TCKDI  
Time from the active transition at the CLK input to the  
point where data is last held at the BX or BY input  
Clock Timing  
TCH  
The High pulse width of the CLB’s CLK signal  
The Low pulse width of the CLK signal  
Toggle frequency (for export control)  
0.63  
0.63  
0
0.75  
0.75  
0
ns  
ns  
TCL  
FTOG  
770  
667  
MHz  
Propagation Times  
TILO  
The time it takes for data to travel from the CLB’s F  
(G) input to the X (Y) output  
0.62  
0.71  
ns  
ns  
Set/Reset Pulse Width  
TRPW_CLB  
The minimum allowable pulse width, High or Low, to  
the CLB’s SR input  
1.33  
1.61  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
47  
R
DC and Switching Characteristics  
Table 34: CLB Distributed RAM Switching Characteristics  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TSHCKO  
Time from the active edge at the CLK input to data appearing on  
the distributed RAM output  
1.69  
2.01  
ns  
Setup Times  
TDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the distributed RAM  
–0.07  
0.18  
0.30  
–0.02  
0.36  
0.59  
ns  
ns  
ns  
TAS  
Setup time of the F/G address inputs before the active transition  
at the CLK input of the distributed RAM  
TWS  
Setup time of the write enable input before the active transition at  
the CLK input of the distributed RAM  
Hold Times  
TDH  
Hold time of the BX and BY data inputs after the active transition  
at the CLK input of the distributed RAM  
0.13  
0.01  
0.13  
0.01  
ns  
ns  
TAH, TWH  
Hold time of the F/G address inputs or the write enable input after  
the active transition at the CLK input of the distributed RAM  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
0.88  
1.01  
ns  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
Table 35: CLB Shift Register Switching Characteristics  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TREG  
Time from the active edge at the CLK input to data appearing on  
the shift register output  
4.11  
4.82  
ns  
Setup Times  
TSRLDS  
Setup time of data at the BX or BY input before the active  
transition at the CLK input of the shift register  
0.13  
0.18  
ns  
Hold Times  
TSRLDH  
Hold time of the BX or BY data input after the active transition at  
the CLK input of the shift register  
0.16  
0.90  
0.16  
1.01  
ns  
ns  
Clock Pulse Width  
TWPH, TWPL  
Minimum High or Low pulse width at CLK input  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
48  
Product Specification  
R
DC and Switching Characteristics  
Clock Buffer/Multiplexer Switching Characteristics  
Table 36: Clock Distribution Switching Characteristics  
Maximum  
Speed Grade  
Description  
Symbol  
Minimum  
-5  
-4  
Units  
Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to  
O-output delay  
TGIO  
0.22  
0.23  
ns  
Global clock multiplexer (BUFGMUX) select S-input setup to I0 and  
I1 inputs. Same as BUFGCE enable CE-input  
TGSI  
0
0.56  
350  
0.63  
334  
ns  
Frequency of signals distributed on global buffers (all sides)  
FBUFG  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
49  
R
DC and Switching Characteristics  
18 x 18 Embedded Multiplier Timing  
Table 37: 18 x 18 Embedded Multiplier Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Combinatorial Delay  
TMULT  
Combinational multiplier propagation delay from the A and B inputs  
to the P outputs, assuming 18-bit inputs and a 36-bit product  
(AREG, BREG, and PREG registers unused)  
4.36  
4.88  
ns  
Clock-to-Output Times  
TMSCKP_P  
Clock-to-output delay from the active transition of the CLK input to  
valid data appearing on the P outputs when using the PREG  
0.84  
4.44  
1.30  
4.97  
ns  
ns  
register(2,3)  
TMSCKP_A  
TMSCKP_B  
Clock-to-output delay from the active transition of the CLK input to  
valid data appearing on the P outputs when using either the AREG  
or BREG register(2,4)  
Setup Times  
TMSDCK_P  
Data setup time at the A or B input before the active transition at the  
CLK when using only the PREG output register (AREG, BREG  
registers unused)(3)  
3.56  
3.98  
ns  
TMSDCK_A  
TMSDCK_B  
Data setup time at the A input before the active transition at the CLK  
when using the AREG input register(4)  
0.00  
0.00  
0.00  
0.00  
ns  
ns  
Data setup time at the B input before the active transition at the CLK  
when using the BREG input register(4)  
Hold Times  
TMSCKD_P  
Data hold time at the A or B input after the active transition at the  
CLK when using only the PREG output register (AREG, BREG  
registers unused)(3)  
0.00  
0.00  
ns  
TMSCKD_A  
TMSCKD_B  
Clock Frequency  
Data hold time at the A input after the active transition at the CLK  
0.35  
0.35  
0.45  
0.45  
ns  
ns  
when using the AREG input register(4)  
Data hold time at the B input after the active transition at the CLK  
when using the BREG input register(4)  
FMULT  
Internal operating frequency for a two-stage 18x18 multiplier using  
the AREG and BREG input registers and the PREG output  
0
280  
0
250  
MHz  
register(1)  
Notes:  
1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.  
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.  
3. The PREG register is typically used when inferring a single-stage multiplier.  
4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.  
5. The numbers in this table are based on the operating conditions set forth in Table 10.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
50  
Product Specification  
R
DC and Switching Characteristics  
Block RAM Timing  
Table 38: Block RAM Timing  
Speed Grade  
-4  
-5  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TRCKO  
When reading from block RAM, the delay from the active  
transition at the CLK input to data appearing at the DOUT  
output  
2.06  
2.49  
ns  
Setup Times  
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at  
the CLK input of the block RAM  
0.32  
0.28  
0.69  
1.12  
0.36  
0.31  
0.77  
1.26  
ns  
ns  
ns  
ns  
TRDCK_DIB  
Setup time for data at the DIN inputs before the active  
transition at the CLK input of the block RAM  
TRCCK_ENB Setup time for the EN input before the active transition at the  
CLK input of the block RAM  
TRCCK_WEB Setup time for the WE input before the active transition at the  
CLK input of the block RAM  
Hold Times  
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the  
CLK input  
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
TRCKD_DIB  
Hold time on the DIN inputs after the active transition at the  
CLK input  
TRCKC_ENB Hold time on the EN input after the active transition at the CLK  
input  
TRCKC_WEB Hold time on the WE input after the active transition at the CLK  
input  
Clock Timing  
TBPWH  
TBPWL  
Clock Frequency  
High pulse width of the CLK signal  
1.56  
1.56  
1.79  
1.79  
ns  
ns  
Low pulse width of the CLK signal  
FBRAM  
Block RAM clock frequency  
0
320  
0
280  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
51  
R
DC and Switching Characteristics  
Digital Clock Manager (DCM) Timing  
For specification purposes, the DCM consists of three key  
components: the Delay-Locked Loop (DLL), the Digital  
Frequency Synthesizer (DFS), and the Phase Shifter (PS).  
Period jitter is the worst-case deviation from the ideal clock  
period over a collection of millions of samples. In a  
histogram of period jitter, the mean value is the clock period.  
Aspects of DLL operation play a role in all DCM  
Cycle-cycle jitter is the worst-case difference in clock period  
between adjacent clock cycles in the collection of clock  
periods sampled. In a histogram of cycle-cycle jitter, the  
mean value is zero.  
applications. All such applications inevitably use the CLKIN  
and the CLKFB inputs connected to either the CLK0 or the  
CLK2X feedback, respectively. Thus, specifications in the  
DLL tables (Table 39 and Table 40) apply to any application  
that only employs the DLL component. When the DFS  
and/or the PS components are used together with the DLL,  
then the specifications listed in the DFS and PS tables  
(Table 41 through Table 44) supersede any corresponding  
ones in the DLL tables. DLL specifications that do not  
change with the addition of DFS or PS functions are  
presented in Table 39 and Table 40.  
Spread Spectrum  
DCMs accept typical spread spectrum clocks as long as  
they meet the input requirements. The DLL will track the  
frequency changes created by the spread spectrum clock to  
drive the global clocks to the FPGA logic. See XAPP469,  
Spread-Spectrum Clocking Reception for Displays for  
details.  
Period jitter and cycle-cycle jitter are two of many different  
ways of specifying clock jitter. Both specifications describe  
statistical variation from a mean value.  
Delay-Locked Loop (DLL)  
Table 39: Recommended Operating Conditions for the DLL  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Input Frequency Ranges  
FCLKIN  
CLKIN_FREQ_DLL  
Frequency of the CLKIN clock input  
5(2)  
280(3)  
5(2)  
250(3)  
MHz  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as a  
percentage of the CLKIN  
period  
F
CLKIN < 150 MHz  
40%  
45%  
60%  
55%  
40%  
45%  
60%  
55%  
-
-
FCLKIN > 150 MHz  
Input Clock Jitter Tolerance and Delay Path Variation(4)  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_PER_JITT_DLL  
Cycle-to-cycle jitter at the  
CLKIN input  
FCLKIN < 150 MHz  
± 300  
± 150  
± 1  
± 300  
± 150  
± 1  
ps  
ps  
ns  
ns  
FCLKIN > 150 MHz  
Period jitter at the CLKIN input  
CLKFB_DELAY_VAR_EXT  
Allowable variation of off-chip feedback delay from  
the DCM output to the CLKFB input  
± 1  
± 1  
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 41.  
3. The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to F  
CLKIN_DIVIDE_BY_2 divides the incoming clock frequency by two as it enters the DCM.  
. When set to TRUE,  
BUFG  
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.  
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
52  
Product Specification  
R
DC and Switching Characteristics  
Table 40: Switching Characteristics for the DLL  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_CLK0  
CLKOUT_FREQ_CLK90  
CLKOUT_FREQ_2X  
Frequency for the CLK0 and CLK180 outputs  
Frequency for the CLK90 and CLK270 outputs  
Frequency for the CLK2X and CLK2X180 outputs  
Frequency for the CLKDV output  
All  
5
5
280  
200  
334  
186  
5
5
250  
200  
334  
166  
MHz  
MHz  
MHz  
MHz  
10  
10  
CLKOUT_FREQ_DV  
0.3125  
0.3125  
Output Clock Jitter(2,3,4)  
CLKOUT_PER_JITT_0  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
Period jitter at the CLK0 output  
All  
± 100  
± 150  
± 100  
± 150  
ps  
ps  
ps  
ps  
ps  
Period jitter at the CLK90 output  
Period jitter at the CLK180 output  
Period jitter at the CLK270 output  
Period jitter at the CLK2X and CLK2X180 outputs  
± 150  
± 150  
± 150  
± 150  
± ±0.5%  
± ±0.5%  
ofCLKIN  
period  
ofCLKIN  
period  
+ 100]  
+ 100]  
CLKOUT_PER_JITT_DV1  
CLKOUT_PER_JITT_DV2  
Period jitter at the CLKDV output when performing integer  
division  
± 150  
± 150  
ps  
ps  
Period jitter at the CLKDV output when performing non-integer  
division  
± ±0.5%  
ofCLKIN  
period  
± ±0.5%  
ofCLKIN  
period  
+ 100]  
+ 100]  
Duty Cycle(4)  
CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270,  
CLK2X, CLK2X180, and CLKDV outputs, including the  
All  
All  
± ±1% of  
CLKIN  
period  
+ 350]  
± ±1% of  
CLKIN  
period  
+ 350]  
ps  
BUFGMUX and clock tree duty-cycle distortion  
Phase Alignment(4)  
CLKIN_CLKFB_PHASE  
CLKOUT_PHASE_DLL  
Phase offset between the CLKIN and CLKFB inputs  
± 150  
± 150  
ps  
ps  
Phase offset between DLL outputs  
± ±1% of  
CLKIN  
period  
+ 100]  
± ±1% of  
CLKIN  
period  
+ 100]  
CLK0 to CLK2X  
(not CLK2X180)  
± ±1% of  
CLKIN  
period  
+ 150]  
± ±1% of  
CLKIN  
period  
+ 150]  
ps  
All others  
Lock Time  
LOCK_DLL(3)  
When using the DLL alone: The  
time from deassertion at the DCM’s  
Reset input to the rising transition  
at its LOCKED output. When the  
DCM is locked, the CLKIN and  
CLKFB signals are in phase  
5 MHz < FCLKIN < 15 MHz  
FCLKIN > 15 MHz  
All  
All  
5
5
ms  
600  
600  
μs  
Delay Lines  
DCM_DELAY_STEP(5)  
Finest delay resolution, average over all taps  
15  
35  
15  
35  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 39.  
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.  
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of “± ±1%  
of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps.  
According to the data sheet, the maximum jitter is ± ±100 ps + 150 ps] = ± 250 ps.  
5. The typical delay step size is 23 ps.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
53  
R
DC and Switching Characteristics  
Digital Frequency Synthesizer (DFS)  
Table 41: Recommended Operating Conditions for the DFS  
Speed Grade  
-5  
-4  
Symbol  
Description  
Frequency for the CLKIN input  
Min  
Max  
Min  
Max  
Units  
(2)  
Input Frequency Ranges  
(4)  
(4)  
F
CLKIN_FREQ_FX  
0.200  
333  
0.200  
333  
MHz  
CLKIN  
(3)  
Input Clock Jitter Tolerance  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
Cycle-to-cycle jitter at the CLKIN  
input, based on CLKFX output  
frequency  
F
F
< 150 MHz  
> 150 MHz  
± 300  
± 150  
± 300  
± 150  
ps  
ps  
CLKFX  
CLKFX  
CLKIN_PER_JITT_FX  
Period jitter at the CLKIN input  
± 1  
± 1  
ns  
Notes:  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 39.  
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.  
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming  
clock frequency by two as it enters the DCM.  
Table 42: Switching Characteristics for the DFS  
Speed Grade  
-5  
-4  
Symbol  
Description  
Device  
All  
Min  
5
Max  
350  
Min  
5
Max  
320  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_FX  
Frequency for the CLKFX and CLKFX180 outputs  
MHz  
Output Clock Jitter(2,3)  
CLKOUT_PER_JITT_FX  
Period jitter at the CLKFX and CLKFX180  
outputs.  
All  
Typ  
Max  
Typ  
Max  
Use the Spartan-3A Jitter Calculator:  
ps  
ps  
CLKIN  
20 MHz  
www.xilinx.com/support/documentation  
/data_sheets/s3a_jitter_calc.zip  
± ±1% of ± ±1% of ± ±1% of ± ±1% of  
CLKFX CLKFX CLKFX CLKFX  
CLKIN  
> 20 MHz  
period  
+ 100]  
period  
+ 200]  
period  
+ 100]  
period  
+ 200]  
Duty Cycle(4,5)  
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs,  
including the BUFGMUX and clock tree duty-cycle distortion  
All  
± ±1% of  
CLKFX  
period  
+ 350]  
± ±1% of  
CLKFX  
period  
+ 350]  
ps  
Phase Alignment(5)  
CLKOUT_PHASE_FX  
Phase offset between the DFS CLKFX output and the DLL  
CLK0 output when both the DFS and DLL are used  
All  
All  
± 200  
± 200  
ps  
ps  
CLKOUT_PHASE_FX180  
Phase offset between the DFS CLKFX180 output and the DLL  
CLK0 output when both the DFS and DLL are used  
± ±1% of  
CLKFX  
period  
+ 200]  
± ±1% of  
CLKFX  
period  
+ 200]  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
54  
Product Specification  
R
DC and Switching Characteristics  
Table 42: Switching Characteristics for the DFS (Continued)  
Speed Grade  
-5  
-4  
Symbol  
Lock Time  
Description  
Device  
Min  
Max  
Min  
Max  
Units  
LOCK_FX(2)  
The time from deassertion at the DCM’s  
Reset input to the rising transition at its  
LOCKED output. The DFS asserts LOCKED  
when the CLKFX and CLKFX180 signals are  
valid. If using both the DLL and the DFS, use  
the longer locking time.  
5 MHz < FCLKIN  
< 15 MHz  
All  
5
5
ms  
F
CLKIN > 15 MHz  
450  
450  
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 41.  
2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.  
3. Maximum output jitter is characterized within a reasonable noise environment (40 SSOs and 25% CLB switching) on an XC3S1400A FPGA.  
Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching  
activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.  
4. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.  
5. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a  
maximum CLKFX jitter of “± ±1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period  
is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ± ±100 ps + 200 ps] = ± 300 ps.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
55  
R
DC and Switching Characteristics  
Phase Shifter (PS)  
Table 43: Recommended Operating Conditions for the PS in Variable Phase Mode  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Operating Frequency Ranges  
PSCLK_FREQ  
(FPSCLK  
Frequency for the PSCLK input  
1
167  
1
167  
MHz  
)
Input Pulse Requirements  
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period  
40%  
60%  
40%  
60%  
-
Table 44: Switching Characteristics for the PS in Variable Phase Mode  
Symbol  
Phase Shifting Range  
MAX_STEPS(2)  
Description  
Phase Shift Amount  
Units  
Maximum allowed number of  
±INTEGER(10 (TCLKIN – 3 ns))]  
±INTEGER(15 (TCLKIN – 3 ns))]  
steps  
CLKIN < 60 MHz  
DCM_DELAY_STEP steps for a given  
CLKIN clock period, where T = CLKIN  
clock period in ns. If using  
CLKIN_DIVIDE_BY_2 = TRUE,  
double the clock effective clock  
period.  
CLKIN 60 MHz  
FINE_SHIFT_RANGE_MIN  
Minimum guaranteed delay for variable phase shifting  
±MAX_STEPS •  
ns  
ns  
DCM_DELAY_STEP_MIN]  
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting  
±MAX_STEPS •  
DCM_DELAY_STEP_MAX]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10 and Table 43.  
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the  
PHASE_SHIFT attribute is set to 0.  
3. The DCM_DELAY_STEP values are provided at the bottom of Table 40.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
56  
Product Specification  
R
DC and Switching Characteristics  
Miscellaneous DCM Timing  
Table 45: Miscellaneous DCM Timing  
Symbol  
Description  
Min  
Max  
Units  
DCM_RST_PW_MIN  
Minimum duration of a RST pulse width  
3
CLKIN  
cycles  
DCM_RST_PW_MAX(2)  
Maximum duration of a RST pulse width  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
seconds  
seconds  
minutes  
minutes  
DCM_CONFIG_LAG_TIME(3)  
Maximum duration from VCCINT applied to FPGA  
configuration successfully completed (DONE pin goes High)  
and clocks applied to DCM DLL  
Notes:  
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV).  
The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.  
2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3AN FPGAs.  
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3AN FPGAs.  
DNA Port Timing  
Table 46: DNA_PORT Interface Timing  
Symbol  
TDNASSU  
TDNASH  
Description  
Setup time on SHIFT before the rising edge of CLK  
Hold time on SHIFT after the rising edge of CLK  
Setup time on DIN before the rising edge of CLK  
Hold time on DIN after the rising edge of CLK  
Setup time on READ before the rising edge of CLK  
Hold time on READ after the rising edge of CLK  
Clock-to-output delay on DOUT after rising edge of CLK  
CLK frequency  
Min  
1.0  
0.5  
1.0  
0.5  
5.0  
0
Max  
Units  
ns  
ns  
TDNADSU  
TDNADH  
TDNARSU  
TDNARH  
ns  
ns  
10,000  
ns  
ns  
TDNADCKO  
TDNACLKF  
TDNACLKL  
TDNACLKH  
0.5  
0
1.5  
100  
ns  
MHz  
ns  
CLK High time  
1.0  
1.0  
CLK Low time  
ns  
Notes:  
1. The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 μs.  
Internal SPI Access Port Timing  
Table 47: SPI_ACCESS Interface Timing  
Speed Grade  
-5  
-4  
Symbol  
TSPICCK_MOSI  
TSPICKC_MOSI  
TCSB  
Description  
Min  
4.47  
4.03  
50  
Max  
Min  
5.0  
4.5  
50  
8.0  
8.0  
Max  
Units  
Setup time on MOSI before the active edge of CLK  
Hold time on MOSI after the active edge of CLK  
CSB High time  
ns  
ns  
ns  
TSPICCK_CSB  
TSPICCK_CSB  
TSPICKO_MISO  
FSPICLK  
Setup time on CSB before the active edge of CLK  
Hold time on CSB after the active edge of CLK  
Clock-to-output delay on MISO after active edge of CLK  
CLK frequency  
7.15  
7.15  
ns  
ns  
14.3  
50  
50  
16.0  
50  
50  
ns  
MHz  
MHz  
FSPICAR1  
CLK frequency for Continuous Array Read command  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
57  
R
DC and Switching Characteristics  
Table 47: SPI_ACCESS Interface Timing (Continued)  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
FSPICAR1  
CLK frequency for Continuous Array Read command,  
reduced initial latency  
33  
33  
MHz  
TSPICLKL  
TSPICLKH  
Notes:  
CLK High time  
CLK Low time  
ns  
ns  
6.8  
6.8  
1. For details on using SPI_ACCESS and the In-System Flash memory, see UG333 Spartan-3AN FPGA In-System Flash User Guide.  
In-System Flash (ISF) Memory Timing  
Table 48: In-System Flash (ISF) Memory Operations  
Symbol  
TXFER  
TCOMP  
TPP  
Description  
Device  
All  
Typical  
Max  
400  
400  
4
Units  
μs  
Page to Buffer transfer time  
Page to Buffer compare time  
Page Programming time  
2
All  
μs  
XC3S50AN  
XC3S200AN  
XC3S400AN  
ms  
XC3S700AN  
XC3S1400AN  
3
6
ms  
ms  
TPE  
TPEP  
TBE  
Page Erase time  
XC3S50AN  
XC3S200AN  
XC3S400AN  
13  
32  
XC3S700AN  
XC3S1400AN  
15  
14  
35  
35  
ms  
ms  
Page Erase and Programming time  
Block Erase time  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
XC3S50AN  
17  
15  
30  
40  
35  
75  
ms  
ms  
ms  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
45  
100  
ms  
TSE  
Sector Erase time  
XC3S50AN  
0.8  
1.6  
2.5  
5
s
s
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
58  
Product Specification  
R
DC and Switching Characteristics  
Suspend Mode Timing  
X-Ref Target - Figure 12  
Entering Suspend Mode  
SUSPEND Input  
Exiting Suspend Mode  
sw_gwe_cycle  
sw_gts_cycle  
tSUSPENDHIGH_AWAKE  
tSUSPENDLOW_AWAKE  
AWAKE Output  
tAWAKE_GWE  
tSUSPEND_GWE  
Flip-Flops, Block RAM,  
Distributed RAM  
Write Protected  
tAWAKE_GTS  
tSUSPEND_GTS  
FPGA Outputs  
Defined by SUSPEND constraint  
tSUSPEND_DISABLE tSUSPEND_ENABLE  
FPGA Inputs,  
Interconnect  
Blocked  
DS610-3_08_061207  
Figure 12: Suspend Mode Timing  
Table 49: Suspend Mode Timing Parameters  
Symbol  
Description  
Min  
Typ  
Max Units  
Entering Suspend Mode  
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter  
7
+300  
10  
+600  
ns  
ns  
ns  
ns  
ns  
(suspend_filter:No)  
TSUSPENDFILTER  
Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled +160  
(suspend_filter:Yes)  
TSUSPEND_GWE  
Rising edge of SUSPEND pin until FPGA output pins drive their defined  
SUSPEND constraint behavior  
TSUSPEND_GTS  
Rising edge of SUSPEND pin to write-protect lock on all writable clocked  
elements  
<5  
TSUSPEND_DISABLE  
Rising edge of the SUSPEND pin to FPGA input pins and interconnect  
disabled  
340  
Exiting Suspend Mode  
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin  
Does not include DCM lock time  
4 to 108  
μs  
μs  
ns  
μs  
ns  
μs  
TSUSPEND_ENABLE  
TAWAKE_GWE1  
TAWAKE_GWE512  
TAWAKE_GTS1  
Falling edge of the SUSPEND pin to FPGA input pins and interconnect  
re-enabled  
3.7 to  
109  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1  
67  
14  
57  
14  
Rising edge of the AWAKE pin until write-protect lock released on all writable  
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1  
TAWAKE_GTS512  
Rising edge of the AWAKE pin until outputs return to the behavior described  
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512  
Notes:  
1. These parameters based on characterization.  
2. For information on using the Spartan-3AN Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
59  
R
DC and Switching Characteristics  
Configuration and JTAG Timing  
General Configuration Power-On/Reconfigure Timing  
X-Ref Target - Figure 13  
1.2V  
3.3V  
V
CCINT  
1.0V  
2.0V  
2.0V  
(Supply)  
V
CCAUX  
(Supply)  
2.5V  
or  
3.3V  
V
Bank 2  
(Supply)  
CCO  
TPOR  
PROG_B  
(Input)  
TPL  
TPROG  
INIT_B  
(Open-Drain)  
TICCK  
CCLK  
(Output)  
DS557-3_01_052908  
Notes:  
1. When configuring from the In-System Flash, V  
must be in the recommended operating range; on power-up make  
CCAUX  
sure V  
reaches at least 3.0V before INIT_B goes High to indicate the start of configuration. V  
, V  
, and  
CCAUX  
CCINT CCAUX  
V
supplies to the FPGA can be applied in any order if this requirement is met.  
CCO  
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.  
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).  
Figure 13: Waveforms for Power-On and the Beginning of Configuration  
Table 50: Power-On Timing and the Beginning of Configuration  
All Speed Grades  
Symbol  
Description  
Device  
Min  
Max  
Units  
(2)  
TPOR  
The time from the application of VCCINT, VCCAUX, and VCCO All  
Bank 2 supply voltage ramps (whichever occurs last) to the  
rising transition of the INIT_B pin  
-
18  
ms  
TPROG  
The width of the low-going pulse on the PROG_B pin  
All  
0.5  
-
0.5  
0.5  
1
μs  
ms  
ms  
ms  
ms  
ms  
ns  
(2)  
TPL  
The time from the rising edge of the PROG_B pin to the  
rising transition on the INIT_B pin  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
All  
-
-
-
-
2
-
2
TINIT  
Minimum Low pulse width on INIT_B output  
250  
0.5  
-
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the  
generation of the configuration clock signal at the CCLK  
output pin  
All  
4
μs  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10. This means power must be applied to all V  
, V  
,
CCINT CCO  
and V  
lines.  
CCAUX  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only to the Master Serial, SPI, and BPI modes.  
4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
60  
Product Specification  
R
DC and Switching Characteristics  
Configuration Clock (CCLK) Characteristics  
Table 51: Master Mode CCLK Output Period by ConfigRate Option Setting  
ConfigRate  
Temperature  
Range  
Symbol  
TCCLK1  
Description  
Setting  
Minimum  
1,254  
1,180  
413  
390  
207  
195  
178  
168  
156  
147  
123  
116  
103  
97  
Maximum  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK clock period by  
ConfigRate setting  
Commercial  
Industrial  
1
2,500  
(power-on value)  
Commercial  
Industrial  
TCCLK3  
3
833  
417  
357  
313  
250  
208  
192  
147  
114  
100  
93  
Commercial  
Industrial  
6
TCCLK6  
(default)  
Commercial  
Industrial  
TCCLK7  
7
8
Commercial  
Industrial  
TCCLK8  
Commercial  
Industrial  
TCCLK10  
TCCLK12  
TCCLK13  
TCCLK17  
TCCLK22  
TCCLK25  
TCCLK27  
TCCLK33  
TCCLK44  
TCCLK50  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
Commercial  
Industrial  
Commercial  
Industrial  
93  
88  
Commercial  
Industrial  
72  
68  
Commercial  
Industrial  
54  
51  
Commercial  
Industrial  
47  
45  
Commercial  
Industrial  
44  
42  
Commercial  
Industrial  
36  
76  
34  
Commercial  
Industrial  
26  
57  
25  
Commercial  
Industrial  
22  
50  
21  
Commercial  
Industrial  
11.2  
10.6  
TCCLK100  
25  
Notes:  
1. Set the ConfigRate option value when generating a configuration bitstream.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
61  
R
DC and Switching Characteristics  
Table 52: Master Mode CCLK Output Frequency by ConfigRate Option Setting  
ConfigRate  
Temperature  
Range  
Symbol  
FCCLK1  
Description  
Setting  
Minimum  
Maximum  
0.797  
0.847  
2.42  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Equivalent CCLK clock frequency  
by ConfigRate setting  
Commercial  
Industrial  
1
0.400  
(power-on value)  
Commercial  
Industrial  
FCCLK3  
3
1.20  
2.40  
2.57  
Commercial  
Industrial  
4.83  
6
FCCLK6  
(default)  
5.13  
Commercial  
Industrial  
5.61  
FCCLK7  
7
8
2.80  
5.96  
Commercial  
Industrial  
6.41  
FCCLK8  
3.20  
6.81  
Commercial  
Industrial  
8.12  
FCCLK10  
FCCLK12  
FCCLK13  
FCCLK17  
FCCLK22  
FCCLK25  
FCCLK27  
FCCLK33  
FCCLK44  
FCCLK50  
FCCLK100  
10  
12  
13  
17  
22  
25  
27  
33  
44  
50  
100  
4.00  
8.63  
Commercial  
Industrial  
9.70  
4.80  
10.31  
10.69  
11.37  
13.74  
14.61  
18.44  
19.61  
20.90  
22.23  
22.39  
23.81  
27.48  
29.23  
37.60  
40.00  
44.80  
47.66  
88.68  
94.34  
Commercial  
Industrial  
5.20  
Commercial  
Industrial  
6.80  
Commercial  
Industrial  
8.80  
Commercial  
Industrial  
10.00  
10.80  
13.20  
17.60  
20.00  
40.00  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Table 53: Master Mode CCLK Output Minimum Low and High Time  
ConfigRate Setting  
12 13 17 22  
Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3  
Symbol  
Description  
1
3
6
7
8
10  
25  
27  
33  
44  
50 100 Units  
ns  
Master Mode  
CCLK  
Minimum Low  
and High Time  
TMCCL,  
TMCCH  
560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0  
Industrial  
ns  
Table 54: Slave Mode CCLK Input Low and High Time  
Symbol  
Description  
Min  
Max  
Units  
ns  
TSCCL,  
TSCCH  
CCLK Low and High time  
5
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
62  
Product Specification  
R
DC and Switching Characteristics  
Master Serial and Slave Serial Mode Timing  
X-Ref Target - Figure 14  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input/Output)  
TDCC  
1/FCCSER  
TCCD  
DIN  
(Input)  
Bit n+1  
TCCO  
Bit n  
Bit 0  
Bit 1  
DOUT  
(Output)  
Bit n-63  
Bit n-64  
DS312-3_05_103105  
Figure 14: Waveforms for Master Serial and Slave Serial Configuration  
Table 55: Timing for the Master Serial and Slave Serial Configuration Modes  
All Speed Grades  
Slave/  
Master  
Symbol  
Description  
Min  
Max  
Units  
Clock-to-Output Times  
TCCO  
The time from the falling transition on the CCLK pin to data appearing at the  
DOUT pin  
Both  
Both  
1.5  
10  
ns  
Setup Times  
TDCC  
The time from the setup of data at the DIN pin to the rising transition at the  
CCLK pin  
7
ns  
ns  
Hold Times  
TCCD  
The time from the rising transition at the CCLK pin to the point when data is  
last held at the DIN pin  
Master  
Slave  
0
1.0  
Clock Timing  
TCCH  
High pulse width at the CCLK input pin  
Master  
Slave  
Master  
Slave  
Slave  
See Table 53  
See Table 54  
See Table 53  
See Table 54  
100  
TCCL  
Low pulse width at the CCLK input pin  
FCCSER  
Frequency of the clock signal at the  
CCLK input pin  
No bitstream compression  
With bitstream compression  
0
0
MHz  
MHz  
100  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
63  
R
DC and Switching Characteristics  
Slave Parallel Mode Timing  
X-Ref Target - Figure 15  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TSMCSCC  
TSMCCCS  
CSI_B  
(Input)  
TSMCCW  
TSMWCC  
RDWR_B  
(Input)  
TMCCH  
TSCCH  
TMCCL  
TSCCL  
CCLK  
(Input)  
1/FCCPAR  
TSMDCC  
TSMCCD  
D0 - D7  
(Inputs)  
Byte 0  
Byte 1  
Byte n  
Byte n+1  
DS529-3_02_051607  
Notes:  
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent  
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B  
switches High, be careful to avoid contention on the D0 - D7 bus.  
2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data  
Loading” for more details.  
Figure 15: Waveforms for Slave Parallel Configuration  
Table 56: Timing for the Slave Parallel Configuration Mode  
All Speed Grades  
Symbol  
Setup Times  
TSMDCC  
Description  
Min  
Max  
Units  
The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin  
Setup time on the CSI_B pin before the rising transition at the CCLK pin  
Setup time on the RDWR_B pin before the rising transition at the CCLK pin  
7
7
-
-
-
ns  
ns  
ns  
TSMCSCC  
(2)  
TSMCCW  
15  
Hold Times  
TSMCCD  
The time from the rising transition at the CCLK pin to the point when data is last held at  
the D0-D7 pins  
1.0  
0
-
-
-
ns  
ns  
ns  
TSMCCCS  
TSMWCC  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the CSO_B pin  
The time from the rising transition at the CCLK pin to the point when a logic level is last  
held at the RDWR_B pin  
0
Clock Timing  
TCCH  
The High pulse width at the CCLK input pin  
5
5
0
0
-
ns  
ns  
TCCL  
The Low pulse width at the CCLK input pin  
-
FCCPAR  
Frequency of the clock signal No bitstream compression  
80  
80  
MHz  
MHz  
at the CCLK input pin  
With bitstream compression  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
64  
Product Specification  
R
DC and Switching Characteristics  
External Serial Peripheral Interface (SPI) Configuration Timing  
X-Ref Target - Figure 16  
PROG_B  
(Input)  
PUDC_B  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
(Input)  
VS[2:0]  
(Input)  
<1:1:1>  
<0:0:1>  
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B  
goes High. After this point, input values do not matter until DONE goes High, at which  
point these pins become user-I/O pins.  
M[2:0]  
(Input)  
TMINIT  
TINITM  
INIT_B  
(Open-Drain)  
New ConfigRate active  
TCCLK  
TMCCH  
T
n
MCCL  
n
TMCCL1 TMCCH1  
T
TCCLK1  
CCLK1  
n
CCLK  
TV  
DIN  
Data  
Data  
TDCC  
Data  
Data  
(Input)  
TCSS  
TCCD  
CSO_B  
MOSI  
TCCO  
Command Command  
(msb) (msb-1)  
TDSU  
TDH  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.  
DS529-3_06_102506  
Shaded values indicate specifications on attached SPI Flash PROM.  
Figure 16: Waveforms for External Serial Peripheral Interface (SPI) Configuration  
Table 57: Timing for External Serial Peripheral Interface (SPI) Configuration Mode  
Symbol  
TCCLK1  
TCCLKn  
TMINIT  
Description  
Minimum  
Maximum  
See Table 51  
See Table 51  
Units  
Initial CCLK clock period  
CCLK clock period after FPGA loads ConfigRate bitstream option setting  
Setup time on VS±2:0] variant-select pins and M±2:0] mode pins before the  
rising edge of INIT_B  
50  
0
ns  
ns  
TINITM  
Hold time on VS±2:0] variant-select pins and M±2:0] mode pins after the  
rising edge of INIT_B  
TCCO  
TDCC  
TCCD  
MOSI output valid delay after CCLK falling clock edge  
See Table 55  
See Table 55  
See Table 55  
Setup time on the DIN data input before CCLK rising clock edge  
Hold time on the DIN data input after CCLK rising clock edge  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
65  
R
DC and Switching Characteristics  
Table 58: Configuration Timing Requirements for Attached SPI Serial Flash  
Symbol  
TCCS  
Description  
SPI serial Flash PROM chip-select time  
Requirement  
Units  
ns  
T
T
T  
T  
T  
T  
CCS  
MCCL1  
MCCL1  
CCO  
CCO  
TDSU  
TDH  
SPI serial Flash PROM data input setup time  
SPI serial Flash PROM data input hold time  
SPI serial Flash PROM data clock-to-output time  
ns  
ns  
DSU  
T
T  
DH  
MCCH1  
TV  
ns  
T
T  
T  
MCCLn DCC  
V
fC or fR  
Maximum SPI serial Flash PROM clock frequency (also depends on  
specific read command used)  
MHz  
1
---------------------------------  
f
C
T
CCLKn(min)  
Notes:  
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
66  
Product Specification  
R
DC and Switching Characteristics  
Byte Peripheral Interface (BPI) Configuration Timing  
X-Ref Target - Figure 17  
PROG_B  
(Input)  
PUDC_B  
(Input)  
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.  
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,  
input values do not matter until DONE goes High, at which point the mode pins  
become user-I/O pins.  
M[2:0]  
(Input)  
<0:1:0>  
TMINIT  
TINITM  
INIT_B  
(Open-Drain)  
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.  
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.  
LDC[2:0]  
HDC  
CSO_B  
New ConfigRate active  
TCCLK1  
TCCLKn  
TINITADDR  
TCCLK1  
CCLK  
TCCO  
000_0000  
Byte 0  
Address  
Address Address  
TCCD  
A[25:0]  
000_0001  
Byte 1  
T
AVQV  
TDCC  
Data  
D[7:0]  
(Input)  
Data  
Data  
Data  
Shaded values indicate specifications on attached parallel NOR Flash PROM.  
DS557-3_16_032009  
Figure 17: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration  
Table 59: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode  
Symbol  
TCCLK1  
TCCLKn  
TMINIT  
Description  
Minimum  
Maximum  
Units  
Initial CCLK clock period  
See Table 51  
CCLK clock period after FPGA loads ConfigRate setting  
Setup time on M±2:0] mode pins before the rising edge of INIT_B  
Hold time on M±2:0] mode pins after the rising edge of INIT_B  
See Table 51  
50  
0
5
ns  
ns  
TINITM  
TINITADDR  
Minimum period of initial A±25:0] address cycle; LDC±2:0] and HDC are asserted  
and valid  
5
TCCLK1  
cycles  
TCCO  
TDCC  
TCCD  
Address A±25:0] outputs valid after CCLK falling edge  
Setup time on D±7:0] data inputs before CCLK rising edge  
Hold time on D±7:0] data inputs after CCLK rising edge  
See Table 55  
See TSMDCC in Table 56  
0
ns  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
67  
R
DC and Switching Characteristics  
Table 60: Configuration Timing Requirements for Attached Parallel NOR Flash  
Symbol  
TCE  
(tELQV  
TOE  
(tGLQV  
TACC  
(tAVQV  
TBYTE  
(tFLQV, FHQV  
Notes:  
Description  
Requirement  
Units  
Parallel NOR Flash PROM chip-select time  
ns  
T
T
T  
CE  
INITADDR  
)
Parallel NOR Flash PROM output-enable time  
Parallel NOR Flash PROM read access time  
For x8/x16 PROMs only: BYTE# to output valid time(3)  
ns  
ns  
ns  
T  
OE  
INITADDR  
)
T
0.5T  
T  
T  
PCB  
DCC  
ACC  
CCLKn(min)  
CCO  
)
T
T  
INITADDR  
BYTE  
t
)
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The  
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.  
2. Subtract additional printed circuit board routing delay as required by the application.  
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor  
value also depends on whether the FPGA’s PUDC_B pin is High or Low.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
68  
Product Specification  
R
DC and Switching Characteristics  
IEEE 1149.1/1553 JTAG Test Access Port Timing  
X-Ref Target - Figure 18  
TCCH  
TCCL  
TCK  
(Input)  
1/FTCK  
TTCKTMS  
TTMSTCK  
TMS  
(Input)  
TTDITCK  
TTCKTDI  
TDI  
(Input)  
TTCKTDO  
TDO  
(Output)  
DS557_13_032009  
Figure 18: JTAG Waveforms  
Table 61: Timing for the JTAG Test Access Port  
All Speed  
Grades  
Symbol  
Description  
Min  
Max  
11.0  
Units  
ns  
Clock-to-Output Times  
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin  
1.0  
Setup Times  
TTDITCK The time from the setup of data at the All devices and functions except those shown below  
TDI pin to the rising transition at the  
7.0  
ns  
Boundary-Scan commands (INTEST, EXTEST,  
SAMPLE) on XC3S700AN and XC3S1400AN FPGAs  
11.0  
TCK pin  
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin  
7.0  
ns  
ns  
Hold Times  
TTCKTDI The time from the rising transition at  
the TCK pin to the point when data is  
last held at the TDI pin  
All functions except those shown below  
0
Configuration commands (CFG_IN, ISC_PROGRAM)  
2.0  
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the  
TMS pin  
0
ns  
Clock Timing  
TCCH  
TCCL  
The High pulse width at the TCK pin All functions except ISC_DNA command  
The Low pulse width at the TCK pin  
5
5
ns  
ns  
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command  
TCCLDNA The Low pulse width at the TCK pin  
10  
10  
0
10,000  
10,000  
33  
ns  
ns  
FTCK  
Frequency of the TCK signal  
All operations on XC3S50AN, XC3S200AN, and  
XC3S400AN FPGAs and for BYPASS or HIGHZ  
instructions on all FPGAs  
MHz  
All operations on XC3S700AN and XC3S1400AN  
FPGAs, except for BYPASS or HIGHZ instructions  
20  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 10.  
2. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User  
Guide.  
DS557-3 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
69  
R
DC and Switching Characteristics  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
02/26/07  
08/16/07  
Initial release.  
2.0  
Updated for Production release of initial device (XC3S200AN). Timing specifications updated for v1.38  
speed files. DC specifications updated with production values. Other changes throughout.  
08/31/07  
09/12/07  
09/24/07  
2.0.1  
2.0.2  
2.1  
Updated for Production release of XC3S1400AN. Improved tPEP for XC3S700AN in Table 48.  
Updated for Production release of XC3S700AN.  
Updated for Production release of XC3S400AN. Updated Software Version Requirements to note that  
Production speed files are available as of Service Pack 3. Removed PCIX IOSTANDARD due to limited  
PCIX interface support. Added note that SPI_ACCESS (In-System Flash) is not currently supported in  
simulation.  
12/12/07  
06/02/08  
3.0  
3.1  
Updated to Production status with Production release of final family member, XC3S50AN. Noted that  
SPI_ACCESS simulation is supported in ISE 10.1 software. Removed DNA_RETENTION limit of 10  
years in Table 17 since number of Read cycles is the only unique limit. Updated Setup, Hold, and  
Propagation Times for the IOB Input Path to show values by device in Table 23 and Table 25. Increased  
SSO recommendation for SSTL18_II in Table 32. Updated Figure 17 and Table 59 to show BPI data  
synchronous to CCLK rising edge. Updated links.  
Improved VCCAUXT and VCCO2T POR minimum in Table 7 and updated VCCO POR levels in Figure 13.  
Clarified power sequencing in Note 1 of Table 7, Table 8, and Figure 13. Added VIN to Recommended  
Operating Conditions in Table 10 and added reference to XAPP459, “Eliminating I/O Coupling Effects  
when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical ICCINTQ and  
ICCAUXQ quiescent current values by 12%-58% in Table 12. Noted latest speed file v1.39 in ISE 10.1  
software in Table 19. Added reference to Sample Window in Table 24. Changed Internal SPI interface  
max frequency to 50 MHz and updated other Internal SPI timing parameters to match names and  
values from speed file in Table 47. Restored Units column to Table 49. Updated CCLK output maximum  
period in Table 51 to match minimum frequency in Table 52. Added references to User Guides.  
11/19/09  
3.2  
Updated selected I/O standard DC characteristics. Changed typical quiescent current temperature  
from ambient to junction. Removed references to older software versions. Updated column 3 header  
of Table 17 and Table 18. Added table note to Table 18. Added TIOPI and TIOPID propagation times in  
Table 25. Updated TIOCKHZ and TIOCKON synchronous output enable/disable times in Table 28.  
Removed VREF requirements for differential HSTL and differential SSTL in Table 30. Improved  
DIFF_SSTL18_II SSO limits in Table 32. Updated table note 3 in Table 39. Removed references to old  
software versions from Table 47 and Table 48. Added description of spread spectrum in "Spread  
Spectrum" section. Updated BPI configuration waveforms in Figure 17. Updated TACC equation in  
Table 60.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
www.xilinx.com  
DS557-3 (v3.2) November 19, 2009  
70  
Product Specification  
<BL  
Blue  
>
R
Spartan-3AN FPGA Family:  
Pinout Descriptions  
0
DS557-4 (v3.2) November 19, 2009  
Product Specification  
Introduction  
This section describes how the various pins on a  
Spartan®-3AN FPGA connect within the supported  
component packages, and provides device-specific thermal  
characteristics. For general information on the pin functions  
and the package characteristics, see the Packaging section  
of UG331:  
code can be selected in the software for the Pb packages  
since the pinouts are identical. References to the Pb-free  
package code in this document apply also to the Pb  
package.  
Pin Types  
UG331: Spartan-3 Generation FPGA User Guide  
http://www.xilinx.com/support/documentation/  
user_guides/ug331.pdf  
Most pins on a Spartan-3AN FPGA are general-purpose,  
user-defined I/O pins. There are, however, up to 12 different  
functional types of pins on Spartan-3AN FPGA packages,  
as outlined in Table 62. In the package footprint drawings  
that follow, the individual pins are color-coded according to  
pin type as in the table.  
Spartan-3AN FPGAs are available in Pb-free, RoHS  
packages, indicated by a “G” in the middle of the package  
code. Leaded (Pb) packages are available for selected  
devices, with the same pinout and without the G’ in the  
ordering code (see Table 5, page 8). The Pb-free package  
Table 62: Types of Pins on Spartan-3AN FPGAs  
Type /  
Color Code  
Description  
Pin Name(s) in Type  
Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential IO_#  
I/O  
I/Os.  
IO_Lxxy_#  
Unrestricted, general-purpose input-only pin. This pin does not have an output structure,  
differential termination resistor, or PCI™ clamp diode.  
IP_#  
INPUT  
DUAL  
IP_Lxxy_#  
Dual-purpose pin used in some configuration modes during the configuration process and then M±2:0]  
usually available as a user I/O after configuration. If the pin is not used during configuration, this PUDC_B  
pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation Configuration User Guide for CCLK  
additional information on these signals.  
MOSI/CSI_B  
D±7:1]  
D0/DIN  
DOUT  
CSO_B  
RDWR_B  
INIT_B  
A±25:0]  
VS±2:0]  
LDC±2:0]  
HDC  
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins IP/VREF_#  
in the same bank, provides a reference voltage input for certain I/O standards. If used for a  
reference voltage within a bank, all VREF pins within the bank must be connected.  
IP_Lxx_#/VREF_#  
VREF  
CLK  
IO/VREF_#  
IO_Lxx_#/VREF_#  
Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16 global IO_Lxx_#/GCLK±15:0],  
clock inputs that optionally clock the entire device. The exception is the TQ144 package). The IO_Lxx_#/LHCLK±7:0],  
RHCLK inputs optionally clock the right half of the device. The LHCLK inputs optionally clock the IO_Lxx_#/RHCLK±7:0]  
left half of the device. See the Using Global Clock Resources chapter in UG331: Spartan-3  
Generation FPGA User Guide for additional information on these signals.  
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package has DONE, PROG_B  
two dedicated configuration pins. These pins are powered by VCCAUX. See the UG332:  
Spartan-3 Generation Configuration User Guide for additional information on the DONE and  
PROG_B signals.  
CONFIG  
© Copyright 2007–2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and  
other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG. All other trademarks are the property of their respective owners.  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
71  
R
Pinout Descriptions  
Table 62: Types of Pins on Spartan-3AN FPGAs (Continued)  
Type /  
Description  
Color Code  
Pin Name(s) in Type  
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and SUSPEND, AWAKE  
is powered by VCCAUX. AWAKE is a Dual-Purpose pin. Unless Suspend mode is enabled in the  
application, AWAKE is available as a user-I/O pin.  
PWR  
MGMT  
Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four  
dedicated JTAG pins. These pins are powered by VCCAUX.  
TDI, TMS, TCK, TDO  
JTAG  
GND  
Dedicated ground pin. The number of GND pins depends on the package used. All must be  
connected.  
GND  
Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package  
used. The In-System Flash memory is powered by VCCAUX. All must be connected to +3.3V.  
VCCAUX  
VCCAUX  
VCCINT  
Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the  
package used. All must be connected to +1.2V.  
VCCINT  
Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers VCCO_#  
within the I/O bank and sets the input threshold voltage for some I/O standards. All must be  
connected.  
VCCO  
N.C.  
This package pin is not connected in this specific device/package combination.  
N.C.  
Notes:  
1. # = I/O bank number, an integer between 0 and 3.  
is available, as shown in Table 64. The table shows the  
maximum number of single-ended I/O pins available,  
assuming that all I/O-, INPUT-, DUAL-, VREF-, and  
CLK-type pins are used as general-purpose I/O. AWAKE is  
counted here as a Dual-Purpose I/O pin. Likewise, the table  
shows the maximum number of differential pin-pairs  
available on the package. Finally, the table shows how the  
total maximum user-I/Os are distributed by pin type,  
including the number of unconnected—N.C.—pins on the  
device.  
Package Pins by Type  
Each package has three separate voltage supply  
inputs—VCCINT, VCCAUX, and VCCO—and a common  
ground return, GND. The numbers of pins dedicated to  
these functions vary by package, as shown in Table 63.  
Table 63: Power and Ground Supply Pins by Package  
Package  
TQG144  
FTG256  
FGG400  
FGG484  
FGG676  
VCCINT  
VCCAUX  
VCCO  
8
GND  
13  
4
6
4
4
Not all I/O standards are supported on all I/O banks. The left  
and right banks (I/O banks 1 and 3) support higher output  
drive current than the top and bottom banks (I/O banks 0  
and 2). Similarly, true differential output standards, such as  
LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only  
supported in the top or bottom banks (I/O banks 0 and 2).  
Inputs are unrestricted. For more details, see the “Using I/O  
Resources” chapter in UG331.  
16  
28  
9
8
22  
43  
15  
23  
10  
14  
24  
53  
36  
77  
A majority of package pins are user-defined I/O or input  
pins. However, the numbers and characteristics of these  
I/Os depend on the device type and the package in which it  
Table 64: Maximum User I/O by Package  
Maximum  
All Possible I/Os by Type  
Maximum  
Input-  
Maximum  
Differential  
Pairs  
User I/Os  
and  
Device  
Package  
I/O  
INPUT  
DUAL  
VREF  
CLK  
N.C.  
Only  
Input-Only  
XC3S50AN  
TQG144  
FTG256  
FGG400  
FGG484  
FGG676  
108  
195  
311  
372  
502  
7
50  
90  
42  
69  
2
26  
52  
52  
52  
52  
8
30  
32  
32  
32  
32  
0
0
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
35  
63  
84  
94  
21  
46  
61  
67  
21  
26  
33  
38  
142  
165  
227  
155  
194  
313  
0
3
17  
Notes:  
1. Some VREFs are on INPUT pins. See pinout tables for details.  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
72  
Product Specification  
R
Pinout Descriptions  
Electronic versions of the package pinout tables and foot-  
prints are available for download from the Xilinx website:  
Using a spreadsheet program, the data can be sorted and  
reformatted according to any specific needs. Similarly, the  
ASCII-text file is easily parsed by most scripting programs.  
http://www.xilinx.com/support/documentation/data_sheets/  
s3a_pin.zip  
Package Overview  
Table 65 shows the five low-cost, space-saving production  
package styles for the Spartan-3AN family.  
Table 65: Spartan-3AN Family Package Options  
Maximum  
I/O  
Lead Pitch  
(mm)  
Body Area  
(mm)  
Height  
(mm)  
Mass(1)  
(g)  
Package  
Leads  
Type  
TQ144/TQG144  
FT256/FTG256  
FG400/FGG400  
FG484/FGG484  
FG676/FGG676  
144 Thin Quad Flat Pack (TQFP)  
108  
195  
311  
372  
502  
0.5  
1.0  
1.0  
1.0  
1.0  
20 x 20  
17 x 17  
21 x 21  
23 x 23  
27 x 27  
1.60  
1.55  
2.43  
2.60  
2.60  
1.4  
0.9  
2.2  
2.2  
3.4  
256 Fine-pitch Thin Ball Grid Array (FBGA)  
400 Fine-pitch Ball Grid Array (FBGA)  
484 Fine-pitch Ball Grid Array (FBGA)  
676 Fine-pitch Ball Grid Array (FBGA)  
Notes:  
1. Package mass is 10%.  
Each package style is available in an environmentally  
friendly lead-free (Pb-free) option. The Pb-free packages  
include an extra G’ in the package style name. For example,  
the standard “CS484” package becomes “CSG484” when  
ordered as the Pb-free option. Leaded (Pb) packages are  
available for selected devices, with the same pinout and  
without the G’ in the ordering code; See Table 5, page 8 for  
more information. The mechanical dimensions of the Pb  
and Pb-free packages are similar, as shown in the  
mechanical drawings provided in Table 66.  
Mechanical Drawings  
Detailed mechanical drawings for each package type are  
available from the Xilinx website at the specified location in  
Table 66.  
Material Declaration Data Sheets (MDDS) are also  
available on the Xilinx website for each package.  
Table 66: Xilinx Package Documentation  
Package  
TQ144  
Drawing  
MDDS  
For additional package information, see UG112: Device  
Package User Guide.  
Package Drawing  
PK169_TQ144  
PK126_TQG144  
PK158_FT256  
PK115_FTG256  
PK182_FG400  
PK108_FGG400  
PK183_FG484  
PK110_FGG484  
PK155_FG676  
PK111_FGG676  
TQG144  
FT256  
Package Drawing  
Package Drawing  
Package Drawing  
Package Drawing  
FTG256  
FG400  
FGG400  
FG484  
FGG484  
FG676  
FGG676  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
73  
R
Pinout Descriptions  
The junction-to-case thermal resistance (θ ) indicates the  
Package Thermal Characteristics  
JC  
difference between the temperature measured on the  
The power dissipated by an FPGA application has  
implications on package selection and system design. The  
power consumed by a Spartan-3AN FPGA is reported using  
either the XPower Power Estimator or the XPower Analyzer  
calculator integrated in the Xilinx® ISE® development  
software. Table 67 provides the thermal characteristics for  
the various Spartan-3AN FPGA packages. This information  
is also available using the Thermal Query tool at:  
package body (case) and the junction temperature per watt  
of power consumption. The junction-to-board (θ ) value  
JB  
similarly reports the difference between the board and  
junction temperature. The junction-to-ambient (θ ) value  
JA  
reports the temperature difference between the ambient  
environment and the junction temperature. The θ value is  
JA  
reported at different air velocities, measured in linear feet  
per minute (LFM). The “Still Air (0 LFM)” column shows the  
(http://www.xilinx.com/cgi-bin/thermal/thermal.pl).  
θ
value in a system without a fan. The thermal resistance  
drops with increasing air flow.  
JA  
Table 67: Spartan-3AN FPGA Package Thermal Characteristics  
Junction-to-Ambient (θJA  
)
at Different Air Flows  
Junction-to-Case  
(θJC  
Junction-to-  
Board (θJB)  
Package  
Device  
Units  
)
Still Air  
(0 LFM)  
250 LFM  
500 LFM  
750 LFM  
TQG144  
FTG256  
FGG400  
FGG484  
FGG676  
XC3S50AN  
XC3S200AN  
XC3S400AN  
XC3S700AN  
XC3S1400AN  
13.4  
7.4  
6.2  
5.3  
4.3  
32.8  
23.3  
12.9  
11.5  
10.9  
38.9  
29.0  
22.5  
19.4  
17.7  
32.8  
23.8  
16.7  
15.0  
13.7  
32.5  
23.0  
15.6  
13.9  
12.6  
31.7  
22.3  
15.0  
13.4  
12.1  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
°C/Watt  
Notes:  
1. Thermal characteristics are similar for leaded (non-Pb-free) packages.  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
74  
Product Specification  
R
Pinout Descriptions  
TQG144: 144-lead Thin Quad Flat Package  
The XC3S50AN is available in the 144-lead thin quad flat  
package, TQG144.  
Table 68: Spartan-3AN TQG144 Pinout (Continued)  
Bank  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_0/VREF_0  
Pin  
P123  
P119  
P136  
P79  
P78  
P76  
P77  
P75  
P84  
P82  
P85  
P83  
P88  
P87  
P92  
P90  
P93  
P91  
P98  
P96  
P101  
P99  
P104  
P102  
P105  
P103  
P80  
P97  
P86  
P95  
P62  
P38  
P37  
P41  
P39  
P44  
P42  
P45  
P43  
P48  
Type  
VREF  
VCCO  
VCCO  
I/O  
Table 68 lists all the package pins. They are sorted by bank  
number and then by pin name. Pins that form a differential  
I/O pair appear together in the table. The table also shows  
the pin number for each pin and the pin type, as defined  
earlier.  
VCCO_0  
VCCO_0  
IO_1  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
The XC3S50AN does not support the address output pins  
for the Byte-wide Peripheral Interface (BPI) configuration  
mode.  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L03P_1  
I/O  
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.  
IO_L04N_1/RHCLK1  
IO_L04P_1/RHCLK0  
IO_L05N_1/TRDY1/RHCLK3  
IO_L05P_1/RHCLK2  
IO_L06N_1/RHCLK5  
IO_L06P_1/RHCLK4  
IO_L07N_1/RHCLK7  
IO_L07P_1/IRDY1/RHCLK6  
IO_L08N_1  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
I/O  
Pinout Table  
Table 68: Spartan-3AN TQG144 Pinout  
Bank  
0
Pin Name  
Pin  
Type  
I/O  
IO_0  
P142  
P111  
P110  
P113  
P112  
P117  
P115  
P116  
P114  
P121  
P120  
P126  
P124  
P127  
P125  
P131  
P129  
P132  
P130  
P135  
P134  
P139  
P138  
P143  
P141  
P140  
0
IO_L01N_0  
I/O  
0
IO_L01P_0  
I/O  
0
IO_L02N_0  
I/O  
0
IO_L02P_0/VREF_0  
IO_L03N_0  
VREF  
I/O  
IO_L08P_1  
I/O  
0
IO_L09N_1  
I/O  
0
IO_L03P_0  
I/O  
IO_L09P_1  
I/O  
0
IO_L04N_0  
I/O  
IO_L10N_1  
I/O  
0
IO_L04P_0  
I/O  
IO_L10P_1  
I/O  
0
IO_L05N_0  
I/O  
IO_L11N_1  
I/O  
0
IO_L05P_0  
I/O  
IO_L11P_1  
I/O  
0
IO_L06N_0/GCLK5  
IO_L06P_0/GCLK4  
IO_L07N_0/GCLK7  
IO_L07P_0/GCLK6  
IO_L08N_0/GCLK9  
IO_L08P_0/GCLK8  
IO_L09N_0/GCLK11  
IO_L09P_0/GCLK10  
IO_L10N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
IP_1/VREF_1  
VREF  
VREF  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
0
IP_1/VREF_1  
0
VCCO_1  
0
VCCO_1  
0
IO_2/MOSI/CSI_B  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2/VS1  
IO_L03P_2/RDWR_B  
IO_L04N_2/VS0  
IO_L04P_2/VS2  
IO_L05N_2/D7  
0
0
0
0
0
IO_L10P_0  
I/O  
0
IO_L11N_0  
I/O  
0
IO_L11P_0  
I/O  
0
IO_L12N_0/PUDC_B  
IO_L12P_0/VREF_0  
IP_0  
DUAL  
VREF  
INPUT  
0
0
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
75  
R
Pinout Descriptions  
Table 68: Spartan-3AN TQG144 Pinout (Continued)  
Table 68: Spartan-3AN TQG144 Pinout (Continued)  
Bank  
Pin Name  
IO_L05P_2  
Pin  
P46  
P49  
P47  
P51  
P50  
P55  
P54  
P59  
P57  
P60  
P58  
P64  
Type  
I/O  
Bank  
3
Pin Name  
IO_L10P_3  
Pin  
P27  
P30  
P28  
P32  
P31  
P35  
P33  
P14  
P23  
P9  
Type  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
IO_L06N_2/D6  
DUAL  
I/O  
3
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
IO_L12P_3  
IP_L13N_3/VREF_3  
IP_L13P_3  
VCCO_3  
VCCO_3  
GND  
I/O  
IO_L06P_2  
3
I/O  
IO_L07N_2/D4  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
DUAL  
3
I/O  
IO_L07P_2/D5  
3
I/O  
IO_L08N_2/GCLK15  
IO_L08P_2/GCLK14  
IO_L09N_2/GCLK1  
IO_L09P_2/GCLK0  
IO_L10N_2/GCLK3  
IO_L10P_2/GCLK2  
IO_L11N_2/DOUT  
3
VREF  
INPUT  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
3
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P17  
P26  
P34  
P56  
P65  
P81  
P89  
P100  
P106  
P118  
P128  
P137  
GND  
PWR  
MGMT  
GND  
2
IO_L11P_2/AWAKE  
P63  
GND  
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L12N_2/D3  
IO_L12P_2/INIT_B  
IO_L13N_2/D0/DIN/MISO  
IO_L13P_2/D2  
IO_L14N_2/CCLK  
IO_L14P_2/D1  
IP_2/VREF_2  
P68  
P67  
P71  
P69  
P72  
P70  
P53  
P40  
P61  
P6  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
VCCO  
VCCO  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_2  
GND  
VCCO_2  
PWR  
MGMT  
VCCAUX SUSPEND  
P74  
IO_L01N_3  
IO_L01P_3  
P4  
I/O  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
P73  
P144  
P109  
P2  
CONFIG  
CONFIG  
JTAG  
IO_L02N_3  
P5  
I/O  
IO_L02P_3  
P3  
I/O  
IO_L03N_3  
P8  
I/O  
VCCAUX TDI  
JTAG  
IO_L03P_3  
P7  
I/O  
VCCAUX TDO  
P107  
P1  
JTAG  
IO_L04N_3/VREF_3  
IO_L04P_3  
P11  
P10  
P13  
P12  
P16  
P15  
P20  
P18  
P21  
P19  
P25  
P24  
P29  
VREF  
I/O  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
P36  
P66  
VCCAUX  
VCCAUX  
IO_L05N_3/LHCLK1  
IO_L05P_3/LHCLK0  
IO_L06N_3/IRDY2/LHCLK3  
IO_L06P_3/LHCLK2  
IO_L07N_3/LHCLK5  
IO_L07P_3/LHCLK4  
IO_L08N_3/LHCLK7  
IO_L08P_3/TRDY2/LHCLK6  
IO_L09N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
P108 VCCAUX  
P133 VCCAUX  
P22  
P52  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
P94  
P122  
IO_L09P_3  
I/O  
IO_L10N_3  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
76  
Product Specification  
R
Pinout Descriptions  
User I/Os by Bank  
Table 69 indicates how the 108 available user-I/O pins are  
distributed between the four I/O banks on the TQG144  
package. The AWAKE pin is counted as a Dual-Purpose  
I/O.  
Table 69: User I/Os Per Bank for the XC3S50AN in the TQG144 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
14  
11  
2
INPUT  
DUAL  
VREF  
CLK  
8
Top  
0
1
2
3
27  
25  
1
0
0
1
2
1
4
3
2
1
2
8
Right  
8
Bottom  
Left  
30  
21  
0
6
26  
15  
42  
8
TOTAL  
108  
26  
30  
Footprint Migration Differences  
The XC3S50AN FPGA is the only Spartan-3AN device  
offered in the TQG144 package.  
The XC3S50AN FPGA is pin compatible with the  
Spartan-3A XC3S50A FPGA in the TQ(G)144 package,  
although the Spartan-3A FPGA requires an external  
configuration source.  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
77  
R
Pinout Descriptions  
TQG144 Footprint  
Note pin 1 indicator in top-left corner and logo orientation.  
X-Ref Target - Figure 19  
TMS  
TDI  
1
2
108 VCCAUX  
107 TDO  
Bank 0  
IO_L02P_3  
IO_L01P_3  
IO_L02N_3  
IO_L01N_3  
IO_L03P_3  
IO_L03N_3  
GND  
3
4
5
6
7
8
9
106 GND  
X
105 IO_L11N_1  
104 IO_L10N_1  
103 IO_L11P_1  
102 IO_L10P_1  
101 IO_L09N_1  
100 GND  
IO_L04P_3 10  
IO_L04N_3/VREF_3 11  
IO_L05P_3/LHCLK0 12  
IO_L05N_3/LHCLK1 13  
VCCO_3 14  
99 IO_L09P_1  
98 IO_L08N_1  
97 IP_1/VREF_1  
96 IO_L08P_1  
95 VCCO_1  
IO_L06P_3/LHCLK2 15  
IO_L06N_3/LHCLK3 16  
GND 17  
94 VCCINT  
93 IO_L07N_1/RHCLK7  
92 IO_L06N_1/RHCLK5  
91 IO_L07P_1/RHCLK6  
90 IO_L06P_1/RHCLK4  
89 GND  
IO_L07P_3/LHCLK4 18  
IO_L08P_3/LHCLK6 19  
IO_L07N_3/LHCLK5 20  
IO_L08N_3/LHCLK7 21  
VCCINT 22  
88 IO_L05N_1/RHCLK3  
87 IO_L05P_1/RHCLK2  
86 VCCO_1  
VCCO_3 23  
IO_L09P_3 24  
85 IO_L04N_1/RHCLK1  
84 IO_L03N_1  
IO_L09N_3 25  
GND 26  
83 IO_L04P_1/RHCLK0  
82 IO_L03P_1  
IO_L10P_3 27  
IO_L11P_3 28  
81 GND  
IO_L10N_3 29  
80 IP_1/VREF_1  
79 IO_1  
IO_L11N_3 30  
IO_L12P_3 31  
78 IO_L01N_1/LDC2  
77 IO_L02N_1/LDC0  
76 IO_L01P_1/HDC  
75 IO_L02P_1/LDC1  
IO_L12N_3 32  
IP_L13P_3 33  
GND 34  
IP_L13N_3/VREF_3 35  
VCCAUX 36  
74  
73  
SUSPEND  
Bank 2  
DONE  
DS529-4_10_031207  
Figure 19: XC3S50AN FPGA in TQG144 Package Footprint (top view)  
I/O: Unrestricted, general-purpose  
DUAL: Configuration pins, then  
VREF: User I/O or input voltage  
42  
2
25  
30  
8
8
user I/O  
possible user I/O  
reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or global  
buffer input  
VCCO: Output voltage supply for  
bank  
CONFIG: Dedicated configuration  
JTAG: Dedicated JTAG port pins  
VCCINT: Internal core supply  
2
0
4
4
4
pins  
voltage (+1.2V)  
N.C.: Not connected  
GND: Ground  
VCCAUX: Auxiliary supply voltage  
13  
SUSPEND: Dedicated SUSPEND  
and dual-purpose AWAKE Power  
Management pins  
2
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
78  
Product Specification  
R
Pinout Descriptions  
FTG256: 256-ball Fine-pitch, Thin Ball Grid Array  
The 256-ball fine-pitch, thin ball grid array package,  
FTG256, supports the XC3S200AN FPGAs.  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
FT256  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L15P_0  
Ball  
Type  
I/O  
Table 70 lists all the package pins. They are sorted by bank  
number and then by pin name of the largest device. Pins  
that form a differential I/O pair appear together in the table.  
The table also shows the pin number for each pin and the  
pin type, as defined earlier.  
A6  
IO_L16N_0  
C6  
I/O  
IO_L16P_0  
D7  
I/O  
IO_L17N_0  
C5  
I/O  
Figure 20 shows the footprint for the XC3S200AN.  
IO_L17P_0  
A5  
I/O  
IO_L18N_0  
B4  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L18P_0  
A4  
I/O  
IO_L19N_0  
B3  
I/O  
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.  
IO_L19P_0  
A3  
I/O  
IO_L20N_0/PUDC_B  
IO_L20P_0/VREF_0  
IP_0  
D5  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
I/O  
Pinout Table  
C4  
Table 70: Spartan-3AN FTG256 Pinout  
D6  
FT256  
IP_0  
D12  
E6  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
C13  
D13  
B14  
B15  
D11  
C12  
A13  
A14  
A12  
B12  
E10  
D10  
A11  
C11  
A10  
B10  
D9  
Type  
I/O  
IP_0  
IP_0  
F7  
0
IO_L01P_0  
I/O  
IP_0  
F9  
0
IO_L02N_0  
I/O  
IP_0  
F10  
E9  
0
IO_L02P_0/VREF_0  
IO_L03N_0  
VREF  
I/O  
IP_0/VREF_0  
VCCO_0  
0
B5  
0
IO_L03P_0  
I/O  
VCCO_0  
B9  
0
IO_L04N_0  
I/O  
VCCO_0  
B13  
E8  
0
IO_L04P_0  
I/O  
VCCO_0  
0
IO_L05N_0  
I/O  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1/VREF_1  
IO_L05P_1  
N14  
N13  
P15  
R15  
N16  
P16  
M14  
M13  
K13  
L13  
M16  
M15  
L16  
L14  
J13  
J12  
K14  
K15  
J16  
K16  
H14  
0
IO_L05P_0  
I/O  
0
IO_L06N_0/VREF_0  
IO_L06P_0  
VREF  
I/O  
0
0
IO_L07N_0  
I/O  
0
IO_L07P_0  
I/O  
0
IO_L08N_0  
I/O  
0
IO_L08P_0  
I/O  
0
IO_L09N_0/GCLK5  
IO_L09P_0/GCLK4  
IO_L10N_0/GCLK7  
IO_L10P_0/GCLK6  
IO_L11N_0/GCLK9  
IO_L11P_0/GCLK8  
IO_L12N_0/GCLK11  
IO_L12P_0/GCLK10  
IO_L13N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
IO_L06N_1/A3  
IO_L06P_1/A2  
IO_L07N_1/A5  
IO_L07P_1/A4  
IO_L08N_1/A7  
IO_L08P_1/A6  
IO_L10N_1/A9  
IO_L10P_1/A8  
IO_L11N_1/RHCLK1  
IO_L11P_1/RHCLK0  
IO_L12N_1/TRDY1/RHCLK3  
IO_L12P_1/RHCLK2  
IO_L14N_1/RHCLK5  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
0
C10  
A9  
0
0
C9  
0
D8  
0
C8  
0
B8  
0
A8  
0
C7  
0
IO_L13P_0  
A7  
I/O  
0
IO_L14N_0/VREF_0  
IO_L14P_0  
E7  
VREF  
I/O  
0
F8  
0
IO_L15N_0  
B6  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
79  
R
Pinout Descriptions  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
FT256  
FT256  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IO_L14P_1/RHCLK4  
IO_L15N_1/RHCLK7  
IO_L15P_1/IRDY1/RHCLK6  
IO_L16N_1/A11  
IO_L16P_1/A10  
IO_L17N_1/A13  
IO_L17P_1/A12  
IO_L18N_1/A15  
IO_L18P_1/A14  
IO_L19N_1/A17  
IO_L19P_1/A16  
IO_L20N_1/A19  
IO_L20P_1/A18  
IO_L22N_1/A21  
IO_L22P_1/A20  
IO_L23N_1/A23  
IO_L23P_1/A22  
IO_L24N_1/A25  
IO_L24P_1/A24  
IP_L04N_1/VREF_1  
IP_L04P_1  
Ball  
J14  
H16  
H15  
F16  
G16  
G14  
H13  
F15  
E16  
F14  
G13  
F13  
E14  
D15  
D16  
D14  
E13  
C15  
C16  
K12  
K11  
J11  
J10  
H11  
H10  
G11  
G12  
F11  
F12  
E15  
H12  
J15  
N15  
P4  
Type  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
2
Pin Name  
IO_L06P_2/D7  
Ball  
Type  
DUAL  
I/O  
T5  
2
IO_L07N_2  
P6  
2
IO_L07P_2  
N7  
I/O  
2
IO_L08N_2/D4  
N8  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
2
IO_L08P_2/D5  
P7  
2
IO_L09N_2/GCLK13  
IO_L09P_2/GCLK12  
IO_L10N_2/GCLK15  
IO_L10P_2/GCLK14  
IO_L11N_2/GCLK1  
IO_L11P_2/GCLK0  
IO_L12N_2/GCLK3  
IO_L12P_2/GCLK2  
IO_L13N_2  
T7  
2
R7  
2
T8  
2
P8  
2
P9  
2
N9  
2
T9  
2
R9  
2
M10  
N10  
P10  
T10  
R11  
2
IO_L13P_2  
I/O  
2
IO_L14N_2/MOSI/CSI_B  
IO_L14P_2  
DUAL  
I/O  
2
2
IO_L15N_2/DOUT  
DUAL  
IO_L15P_2/  
AWAKE  
PWR  
MGMT  
2
T11  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
IO_L16N_2  
N11  
P11  
P12  
T12  
R13  
T13  
P13  
N12  
R14  
T14  
L7  
I/O  
IO_L16P_2  
I/O  
IP_L09N_1  
IO_L17N_2/D3  
IO_L17P_2/INIT_B  
IO_L18N_2/D1  
IO_L18P_2/D2  
IO_L19N_2  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IP_L09P_1/VREF_1  
IP_L13N_1  
IP_L13P_1  
IP_L21N_1  
IP_L21P_1/VREF_1  
IP_L25N_1  
IO_L19P_2  
I/O  
IO_L20N_2/CCLK  
IO_L20P_2/D0/DIN/MISO  
IP_2  
DUAL  
DUAL  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IP_L25P_1/VREF_1  
VCCO_1  
VCCO_1  
IP_2  
L8  
VCCO_1  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
L9  
VCCO_1  
L10  
M7  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2/VS2  
IO_L03P_2/RDWR_B  
IO_L04N_2/VS0  
IO_L04P_2/VS1  
IO_L05N_2  
N4  
M8  
T2  
M11  
N5  
R2  
T3  
M9  
R3  
VCCO_2  
R4  
P5  
VCCO_2  
R8  
N6  
VCCO_2  
R12  
C1  
R5  
IO_L01N_3  
IO_L05P_2  
T4  
I/O  
IO_L01P_3  
C2  
I/O  
IO_L06N_2/D6  
T6  
DUAL  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
80  
Product Specification  
R
Pinout Descriptions  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
FT256  
FT256  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L02N_3  
Ball  
D3  
D4  
E1  
D1  
E2  
E3  
G4  
F3  
G1  
F1  
H4  
G3  
H5  
H6  
H1  
G2  
J3  
Type  
I/O  
Bank  
3
Pin Name  
IP_L21N_3  
Ball  
Type  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K6  
IO_L02P_3  
I/O  
3
IP_L21P_3  
IP_L25N_3/VREF_3  
IP_L25P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
K5  
IO_L03N_3  
I/O  
3
L6  
IO_L03P_3  
I/O  
3
L5  
IO_L05N_3  
I/O  
3
D2  
IO_L05P_3  
I/O  
3
H2  
IO_L07N_3  
I/O  
3
J5  
IO_L07P_3  
I/O  
3
M2  
A1  
IO_L08N_3/VREF_3  
IO_L08P_3  
VREF  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A16  
B7  
IO_L09N_3  
I/O  
GND  
IO_L09P_3  
I/O  
GND  
B11  
C3  
IO_L10N_3  
I/O  
GND  
IO_L10P_3  
I/O  
GND  
C14  
E5  
IO_L11N_3/LHCLK1  
IO_L11P_3/LHCLK0  
IO_L12N_3/IRDY2/LHCLK3  
IO_L12P_3/LHCLK2  
IO_L14N_3/LHCLK5  
IO_L14P_3/LHCLK4  
IO_L15N_3/LHCLK7  
IO_L15P_3/TRDY2/LHCLK6  
IO_L16N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
GND  
GND  
E12  
F2  
GND  
H3  
J1  
GND  
F6  
GND  
G8  
G10  
G15  
H9  
J2  
GND  
K1  
K3  
L2  
GND  
GND  
GND  
J8  
IO_L16P_3/VREF_3  
IO_L17N_3  
L1  
VREF  
I/O  
GND  
K2  
J6  
GND  
K7  
IO_L17P_3  
J4  
I/O  
GND  
K9  
IO_L18N_3  
L3  
I/O  
GND  
L11  
L15  
M5  
M12  
P3  
IO_L18P_3  
K4  
L4  
I/O  
GND  
IO_L19N_3  
I/O  
GND  
IO_L19P_3  
M3  
N1  
M1  
P1  
N2  
P2  
R1  
M4  
N3  
F4  
E4  
G5  
G6  
J7  
I/O  
GND  
IO_L20N_3  
I/O  
GND  
IO_L20P_3  
I/O  
GND  
P14  
R6  
IO_L22N_3  
I/O  
GND  
IO_L22P_3  
I/O  
GND  
R10  
T1  
IO_L23N_3  
I/O  
GND  
IO_L23P_3  
I/O  
GND  
T16  
IO_L24N_3  
I/O  
PWR  
MGMT  
VCCAUX SUSPEND  
R16  
IO_L24P_3  
I/O  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
T15  
A2  
CONFIG  
CONFIG  
JTAG  
IP_L04N_3/VREF_3  
IP_L04P_3  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
A15  
B1  
IP_L06N_3/VREF_3  
IP_L06P_3  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
B16  
B2  
JTAG  
IP_L13N_3  
JTAG  
IP_L13P_3  
H7  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
81  
R
Pinout Descriptions  
Table 70: Spartan-3AN FTG256 Pinout (Continued)  
FT256  
Bank  
Pin Name  
Ball  
E11  
F5  
Type  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
L12  
M6  
G7  
G9  
H8  
J9  
K8  
K10  
User I/Os by Bank  
Table 71 indicates how the available user-I/O pins are  
distributed between the four I/O banks on the FTG256  
package. The AWAKE pin is counted as a Dual-Purpose  
I/O.  
Table 71: User I/Os Per Bank on XC3S200AN in the FTG256 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
27  
1
INPUT  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
47  
50  
6
6
5
5
Right  
30  
21  
0
8
Bottom  
Left  
48  
11  
30  
69  
2
6
8
50  
7
5
8
TOTAL  
195  
21  
52  
21  
32  
Footprint Migration Differences  
The XC3S200AN FPGA is the only Spartan-3AN device  
offered in the FTG256 package.  
The XC3S200AN FPGA is pin compatible with the  
Spartan-3A XC3S200A FPGA in the FT(G)256 package,  
although the Spartan-3A FPGA requires an external  
configuration source.  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
82  
Product Specification  
R
Pinout Descriptions  
FTG256 Footprint (XC3S200AN)  
X-Ref Target - Figure 20  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
TCK  
GND  
L12P_0  
L10N_0  
A
B
C
D
E
F
L19P_0  
L18P_0  
L17P_0  
L15P_0  
L13P_0  
L08N_0  
L07N_0  
L05N_0  
L04N_0  
L04P_0  
GCLK10  
GCLK7  
I/O  
L12N_0  
GCLK11  
I/O  
L02P_0  
VREF_0  
I/O  
L19N_0  
I/O  
L18N_0  
I/O  
L15N_0  
I/O  
L08P_0  
I/O  
L05P_0  
I/O  
L02N_0  
VCCO_0  
VCCO_0  
VCCO_0  
TDI  
TMS  
GND  
GND  
TDO  
I/O  
L20P_0  
VREF_0  
I/O  
L11P_0  
GCLK8  
I/O  
L10P_0  
GCLK6  
I/O  
L09P_0  
GCLK4  
I/O  
L24N_1  
A25  
I/O  
L24P_1  
A24  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L17N_0  
I/O  
L16N_0  
I/O  
L13N_0  
I/O  
L07P_0  
I/O  
L03P_0  
I/O  
L01N_0  
GND  
GND  
I/O  
L20N_0  
PUDC_B  
I/O  
L11N_0  
GCLK9  
I/O  
L09N_0  
GCLK5  
I/O  
L23N_1  
A23  
I/O  
L22N_1  
A21  
I/O  
L22P_1  
A20  
I/O  
L03P_3  
I/O  
L02N_3  
I/O  
L02P_3  
I/O  
L16P_0  
I/O  
L06P_0  
I/O  
L03N_0  
I/O  
L01P_0  
VCCO_3  
INPUT  
INPUT  
GND  
INPUT  
GND  
I/O  
L14N_0  
VREF_0  
I/O  
L06N_0  
VREF_0  
I/O  
L23P_1  
A22  
I/O  
L20P_1  
A18  
I/O  
L18P_1  
A14  
I/O  
L03N_3  
I/O  
L05N_3  
I/O  
L05P_3  
INPUT  
L04P_3  
INPUT  
VREF_0  
VCCO_0  
VCCAUX  
VCCO_1  
GND  
INPUT  
L04N_3  
VREF_3  
INPUT  
L25P_1  
VREF_1  
I/O  
L20N_1  
A19  
I/O  
L19N_1  
A17  
I/O  
L18N_1  
A15  
I/O  
L16N_1  
A11  
I/O  
L08P_3  
I/O  
L07P_3  
I/O  
L14P_0  
INPUT  
L25N_1  
VCCAUX  
GND  
INPUT  
INPUT INPUT  
I/O  
I/O  
INPUT  
L06N_3  
VREF_3  
INPUT  
L21P_1  
VREF_1  
I/O  
L19P_1  
A16  
I/O  
L17N_1  
A13  
I/O  
L16P_1  
A10  
I/O  
I/O  
INPUT  
INPUT  
VCCINT GND VCCINT GND  
GND  
L08N_3  
L11P_3  
G
H
J
L09P_3  
L07N_3  
L06P_3  
L21N_1  
VREF_3 LHCLK0  
I/O  
L15P_1  
IRDY1  
I/O  
I/O  
L12P_3  
LHCLK2  
I/O  
L17P_1  
A12  
I/O  
L14N_1  
RHCLK5  
I/O  
L15N_1  
RHCLK7  
I/O  
L09N_3  
I/O  
L10N_3  
I/O  
L10P_3  
INPUT  
INPUT INPUT  
VCCO_3  
L11N_3  
VCCO_1  
VCCINT GND  
GND VCCINT  
L13P_3  
L13P_1  
L13N_1  
LHCLK1  
RHCLK6  
I/O  
L12N_3  
IRDY2  
LHCLK3  
I/O  
L12N_1  
TRDY1  
RHCLK3  
I/O  
L14N_3  
LHCLK5 LHCLK4  
I/O  
L14P_3  
INPUT  
L09P_1  
VREF_1  
I/O  
L10P_1  
A8  
I/O  
L10N_1  
A9  
I/O  
L14P_1  
RHCLK4  
I/O  
L17P_3  
I/O  
L17N_3  
INPUT  
L13N_3  
INPUT  
L09N_1  
VCCO_3  
VCCO_1  
I/O  
L15P_3  
TRDY2  
LHCLK6  
I/O  
INPUT  
L04N_1  
VREF_1  
I/O  
L06N_1  
A3  
I/O  
I/O  
I/O  
I/O  
L18P_3  
INPUT INPUT  
INPUT  
L04P_1  
GND  
GND VCCINT GND VCCINT  
L15N_3  
L11N_1  
L11P_1  
L12P_1  
K
L
L21P_3  
L21N_3  
LHCLK7  
RHCLK1 RHCLK0 RHCLK2  
I/O  
INPUT  
L25N_3  
VREF_3  
I/O  
L06P_1  
A2  
I/O  
L08P_1  
A6  
I/O  
L08N_1  
A7  
I/O  
L16N_3  
I/O  
L18N_3  
I/O  
L19N_3  
INPUT  
L25P_3  
INPUT INPUT  
INPUT INPUT  
VCCAUX  
GND  
GND  
L16P_3  
VREF_2 VREF_2  
VREF_3  
I/O  
I/O  
L07P_1  
A4  
I/O  
L07N_1  
A5  
I/O  
I/O  
I/O  
INPUT INPUT  
I/O  
INPUT  
I/O  
VCCO_3  
VCCAUX  
VCCO_2  
GND  
GND  
L05N_1  
M
N
P
R
T
L20P_3  
L19P_3  
L24N_3  
VREF_2 VREF_2  
L13N_2 VREF_2  
L05P_1  
VREF_1  
I/O  
L01P_2  
M1  
I/O  
L04P_2  
VS1  
I/O  
I/O  
I/O  
L11P_2  
GCLK0  
I/O  
L01P_1  
HDC  
I/O  
L01N_1  
LDC2  
I/O  
L03N_1  
A1  
I/O  
L20N_3  
I/O  
L22P_3  
I/O  
L24P_3  
INPUT  
VREF_2  
I/O  
L13P_2  
I/O  
L16N_2  
I/O  
L19P_2  
VCCO_1  
L08N_2  
L07P_2  
D4  
I/O  
L14N_2  
MOSI  
I/O  
L01N_2  
M0  
I/O  
L04N_2  
VS0  
I/O  
L08P_2  
D5  
I/O  
I/O  
L11N_2  
GCLK1  
I/O  
L17N_2  
D3  
I/O  
L02N_1  
LDC0  
I/O  
L03P_1  
A0  
I/O  
L22N_3  
I/O  
L23N_3  
I/O  
L07N_2  
I/O  
L16P_2  
I/O  
L19N_2  
GND  
GND  
L10P_2  
GCLK14  
CSI_B  
I/O  
L02P_2  
M2  
I/O  
L03P_2  
RDWR_B  
I/O  
L09P_2  
I/O  
L12P_2  
GCLK2  
I/O  
L15N_2  
DOUT  
I/O  
L18N_2  
D1  
I/O  
L20N_2  
CCLK  
I/O  
L02P_1  
LDC1  
I/O  
L23P_3  
I/O  
L05N_2  
VCCO_2  
VCCO_2  
VCCO_2  
GND  
GND  
GCLK12  
I/O  
L20P_2  
D0  
I/O  
L02N_2  
CSO_B  
I/O  
L03N_2  
VS2  
I/O  
L06P_2  
D7  
I/O  
L06N_2  
D6  
I/O  
L09N_2  
I/O  
L10N_2  
I/O  
L12N_2  
GCLK3  
I/O  
L15P_2  
AWAKE  
I/O  
L17P_2  
INIT_B  
I/O  
L18P_2  
D2  
I/O  
L05P_2  
I/O  
L14P_2  
GND  
DONE  
GND  
GCLK13 GCLK15  
DIN/MISO  
DS529-4_06_101106  
Bank 2  
Figure 20: XC3S200AN FPGA in FTG256 Package Footprint (top view)  
I/O: Unrestricted,  
DUAL: Configuration pins,  
VREF: User I/O or input  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
69  
21  
2
51  
32  
4
21  
16  
6
2
general-purpose user I/O  
then possible user I/O  
voltage reference for bank  
INPUT: Unrestricted,  
general-purpose input pin  
CLK: User I/O, input, or  
global buffer input  
VCCO: Output voltage  
supply for bank  
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
VCCINT: Internal core  
supply voltage (+1.2V)  
N.C.: Not connected  
GND: Ground  
VCCAUX: Auxiliary supply  
voltage  
0
28  
4
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
83  
R
Pinout Descriptions  
FGG400: 400-ball Fine-pitch Ball Grid Array  
The 400-ball fine-pitch ball grid array, FGG400, supports the  
XC3S400AN FPGA as shown in Table 72 and Figure 21.  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L14P_0  
Ball  
B11  
E11  
D11  
C10  
A10  
E10  
D10  
A8  
Type  
I/O  
Table 72 lists all the FGG400 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
IO_L15N_0/GCLK5  
IO_L15P_0/GCLK4  
IO_L16N_0/GCLK7  
IO_L16P_0/GCLK6  
IO_L17N_0/GCLK9  
IO_L17P_0/GCLK8  
IO_L18N_0/GCLK11  
IO_L18P_0/GCLK10  
IO_L19N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.  
Pinout Table  
A9  
Table 72: Spartan-3AN FGG400 Pinout  
C9  
B9  
FG400  
IO_L19P_0  
I/O  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
A18  
B18  
C17  
D17  
E15  
D16  
A17  
B17  
A16  
C16  
C15  
D15  
A14  
C14  
A15  
B15  
F13  
E13  
C13  
D14  
C12  
B13  
F12  
D12  
A12  
B12  
C11  
Type  
I/O  
IO_L20N_0  
C8  
B8  
I/O  
IO_L20P_0  
I/O  
0
IO_L01P_0  
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0/VREF_0  
IO_L05N_0  
IO_L05P_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0/VREF_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
I/O  
IO_L21N_0  
D8  
C7  
F9  
I/O  
0
I/O  
IO_L21P_0  
I/O  
0
VREF  
I/O  
IO_L22N_0/VREF_0  
IO_L22P_0  
VREF  
I/O  
0
E9  
0
I/O  
IO_L23N_0  
F8  
I/O  
0
I/O  
IO_L23P_0  
E8  
I/O  
0
VREF  
I/O  
IO_L24N_0  
A7  
I/O  
0
IO_L24P_0  
B7  
I/O  
0
I/O  
IO_L25N_0  
C6  
A6  
I/O  
0
I/O  
IO_L25P_0  
I/O  
0
I/O  
IO_L26N_0  
B5  
I/O  
0
I/O  
IO_L26P_0  
A5  
I/O  
0
I/O  
IO_L27N_0  
F7  
I/O  
0
I/O  
IO_L27P_0  
E7  
I/O  
0
I/O  
IO_L28N_0  
D6  
C5  
C4  
A4  
I/O  
0
I/O  
IO_L28P_0  
I/O  
0
I/O  
IO_L29N_0  
I/O  
0
VREF  
I/O  
IO_L29P_0  
I/O  
0
IO_L30N_0  
B3  
I/O  
0
I/O  
IO_L30P_0  
A3  
I/O  
0
I/O  
IO_L31N_0  
F6  
I/O  
0
I/O  
IO_L31P_0  
E6  
I/O  
0
I/O  
IO_L32N_0/PUDC_B  
IO_L32P_0/VREF_0  
IP_0  
B2  
DUAL  
VREF  
INPUT  
0
I/O  
A2  
0
I/O  
E14  
0
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
84  
Product Specification  
R
Pinout Descriptions  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
FG400  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
Ball  
F11  
F14  
G8  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L14N_1/A7  
Ball  
M18  
M17  
L16  
L15  
M20  
M19  
L18  
L19  
L17  
K18  
J20  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
I/O  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IO_L14P_1/A6  
IO_L16N_1/A9  
IO_L16P_1/A8  
IO_L17N_1/RHCLK1  
IO_L17P_1/RHCLK0  
IO_L18N_1/TRDY1/RHCLK3  
IO_L18P_1/RHCLK2  
IO_L20N_1/RHCLK5  
IO_L20P_1/RHCLK4  
IO_L21N_1/RHCLK7  
IO_L21P_1/IRDY1/RHCLK6  
IO_L22N_1/A11  
IO_L22P_1/A10  
IO_L24N_1  
G9  
G10  
G12  
G13  
H9  
H10  
H11  
H12  
G11  
B4  
IP_0/VREF_0  
VCCO_0  
K20  
J18  
VCCO_0  
B10  
B16  
D7  
J19  
VCCO_0  
K16  
J17  
VCCO_0  
IO_L24P_1  
I/O  
VCCO_0  
D13  
F10  
V20  
W20  
U18  
V19  
R16  
T17  
T20  
T18  
U20  
U19  
P17  
P16  
R17  
R18  
R20  
R19  
P20  
P18  
N17  
N15  
N19  
N18  
IO_L25N_1/A13  
IO_L25P_1/A12  
IO_L26N_1/A15  
IO_L26P_1/A14  
IO_L28N_1  
H18  
H19  
G20  
H20  
H17  
G18  
F19  
F20  
F18  
G17  
E19  
E20  
F17  
E18  
D18  
D20  
F16  
G16  
C19  
C20  
B19  
B20  
N14  
P15  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
VCCO_0  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1  
IO_L28P_1  
I/O  
IO_L29N_1/A17  
IO_L29P_1/A16  
IO_L30N_1/A19  
IO_L30P_1/A18  
IO_L32N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L05P_1  
I/O  
IO_L06N_1  
I/O  
IO_L06P_1  
I/O  
IO_L32P_1  
I/O  
IO_L07N_1  
I/O  
IO_L33N_1  
I/O  
IO_L07P_1  
I/O  
IO_L33P_1  
I/O  
IO_L08N_1  
I/O  
IO_L34N_1  
I/O  
IO_L08P_1  
I/O  
IO_L34P_1  
I/O  
IO_L09N_1  
I/O  
IO_L36N_1/A21  
IO_L36P_1/A20  
IO_L37N_1/A23  
IO_L37P_1/A22  
IO_L38N_1/A25  
IO_L38P_1/A24  
IP_1/VREF_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
VREF  
IO_L09P_1  
I/O  
IO_L10N_1/VREF_1  
IO_L10P_1  
VREF  
I/O  
IO_L12N_1/A3  
IO_L12P_1/A2  
IO_L13N_1/A5  
IO_L13P_1/A4  
DUAL  
DUAL  
DUAL  
DUAL  
IP_L04N_1/VREF_1  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
85  
R
Pinout Descriptions  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
FG400  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_L04P_1  
Ball  
P14  
M15  
M16  
M13  
M14  
L13  
L14  
K14  
K15  
J15  
J16  
J13  
J14  
H14  
H15  
G14  
G15  
D19  
H16  
K19  
N16  
T19  
V4  
Type  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
2
Pin Name  
IO_L10N_2  
Ball  
Type  
I/O  
Y7  
IP_L11N_1/VREF_1  
IP_L11P_1  
2
IO_L10P_2  
Y6  
I/O  
2
IO_L11N_2  
U9  
I/O  
IP_L15N_1  
2
IO_L11P_2  
T9  
I/O  
IP_L15P_1/VREF_1  
IP_L19N_1  
2
IO_L12N_2/D6  
IO_L12P_2/D7  
IO_L13N_2  
W8  
V7  
DUAL  
DUAL  
I/O  
2
IP_L19P_1  
2
V9  
IP_L23N_1  
2
IO_L13P_2  
V8  
I/O  
IP_L23P_1/VREF_1  
IP_L27N_1  
2
IO_L14N_2/D4  
IO_L14P_2/D5  
IO_L15N_2/GCLK13  
IO_L15P_2/GCLK12  
IO_L16N_2/GCLK15  
IO_L16P_2/GCLK14  
IO_L17N_2/GCLK1  
IO_L17P_2/GCLK0  
IO_L18N_2/GCLK3  
IO_L18P_2/GCLK2  
IO_L19N_2  
T10  
U10  
Y9  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
2
IP_L27P_1  
2
IP_L31N_1  
2
W9  
W10  
V10  
V11  
Y11  
V12  
U11  
R12  
T12  
W12  
Y12  
W13  
Y13  
V13  
U13  
IP_L31P_1/VREF_1  
IP_L35N_1  
2
2
IP_L35P_1  
2
IP_L39N_1  
2
IP_L39P_1/VREF_1  
VCCO_1  
2
2
VCCO_1  
2
VCCO_1  
2
IO_L19P_2  
I/O  
VCCO_1  
2
IO_L20N_2/MOSI/CSI_B  
IO_L20P_2  
DUAL  
I/O  
VCCO_1  
2
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2  
2
IO_L21N_2  
I/O  
U4  
2
IO_L21P_2  
I/O  
Y2  
2
IO_L22N_2/DOUT  
IO_L22P_2/AWAKE  
DUAL  
W3  
W4  
Y3  
PWR  
MGMT  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L23N_2  
R13  
T13  
W14  
Y14  
T14  
V14  
V15  
Y15  
T15  
U15  
W16  
Y16  
U16  
I/O  
I/O  
IO_L03P_2  
I/O  
IO_L23P_2  
IO_L04N_2  
R7  
I/O  
IO_L24N_2/D3  
IO_L24P_2/INIT_B  
IO_L25N_2  
DUAL  
DUAL  
I/O  
IO_L04P_2  
T6  
I/O  
IO_L05N_2  
U5  
I/O  
IO_L05P_2  
V5  
I/O  
IO_L25P_2  
I/O  
IO_L06N_2  
U6  
I/O  
IO_L26N_2/D1  
IO_L26P_2/D2  
IO_L27N_2  
DUAL  
DUAL  
I/O  
IO_L06P_2  
T7  
I/O  
IO_L07N_2/VS2  
IO_L07P_2/RDWR_B  
IO_L08N_2  
U7  
DUAL  
DUAL  
I/O  
T8  
IO_L27P_2  
I/O  
Y5  
IO_L28N_2  
I/O  
IO_L08P_2  
Y4  
I/O  
IO_L28P_2  
I/O  
IO_L09N_2/VS0  
IO_L09P_2/VS1  
W6  
V6  
DUAL  
DUAL  
IO_L29N_2  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
86  
Product Specification  
R
Pinout Descriptions  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
FG400  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L29P_2  
Ball  
V16  
Y18  
Y17  
U17  
V17  
Y19  
W18  
P9  
Type  
I/O  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L09P_3  
Ball  
F3  
F2  
E3  
H2  
G3  
G1  
F1  
H3  
J4  
Type  
I/O  
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2/CCLK  
IO_L32P_2/D0/DIN/MISO  
IP_2  
I/O  
IO_L10N_3  
I/O  
I/O  
IO_L10P_3  
I/O  
I/O  
IO_L12N_3  
I/O  
I/O  
IO_L12P_3  
I/O  
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L13N_3/VREF_3  
IO_L13P_3  
VREF  
I/O  
IO_L14N_3  
I/O  
IP_2  
P12  
P13  
R8  
IO_L14P_3  
I/O  
IP_2  
IO_L16N_3  
J2  
I/O  
IP_2  
IO_L16P_3  
J3  
I/O  
IP_2  
R10  
T11  
N9  
IO_L17N_3/LHCLK1  
IO_L17P_3/LHCLK0  
IO_L18N_3/IRDY2/LHCLK3  
IO_L18P_3/LHCLK2  
IO_L20N_3/LHCLK5  
IO_L20P_3/LHCLK4  
IO_L21N_3/LHCLK7  
IO_L21P_3/TRDY2/LHCLK6  
IO_L22N_3  
K2  
J1  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
IP_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
VCCO_2  
L3  
N12  
P8  
K3  
L5  
P10  
P11  
R14  
R11  
U8  
K4  
M1  
L1  
M3  
M2  
M5  
M4  
N2  
N1  
N4  
N3  
R1  
P1  
P4  
P3  
R3  
R2  
T2  
T1  
R4  
T3  
U3  
U1  
T4  
VCCO_2  
IO_L22P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
VCCO_2  
U14  
W5  
W11  
W17  
D3  
VCCO_2  
IO_L24P_3  
I/O  
VCCO_2  
IO_L25N_3  
I/O  
VCCO_2  
IO_L25P_3  
I/O  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L26N_3  
I/O  
D4  
I/O  
IO_L26P_3  
I/O  
C2  
I/O  
IO_L28N_3  
I/O  
B1  
I/O  
IO_L28P_3  
I/O  
D2  
I/O  
IO_L29N_3  
I/O  
C1  
I/O  
IO_L29P_3  
I/O  
E1  
I/O  
IO_L30N_3  
I/O  
D1  
I/O  
IO_L30P_3  
I/O  
G5  
I/O  
IO_L32N_3  
I/O  
F4  
I/O  
IO_L32P_3/VREF_3  
IO_L33N_3  
VREF  
I/O  
J5  
I/O  
J6  
I/O  
IO_L33P_3  
I/O  
H4  
I/O  
IO_L34N_3  
I/O  
H6  
I/O  
IO_L34P_3  
I/O  
G4  
I/O  
IO_L36N_3  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
87  
R
Pinout Descriptions  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
FG400  
Bank  
Pin Name  
IO_L36P_3  
Ball  
R5  
V2  
Type  
I/O  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
G2  
3
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IP_3  
I/O  
G19  
H8  
3
V1  
I/O  
3
W2  
W1  
H7  
G6  
G7  
J7  
I/O  
H13  
J9  
3
I/O  
3
INPUT  
VREF  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
J11  
K1  
3
IP_L04N_3/VREF_3  
IP_L04P_3  
IP_L11N_3/VREF_3  
IP_L11P_3  
IP_L15N_3  
IP_L15P_3  
IP_L19N_3  
IP_L19P_3  
IP_L23N_3  
IP_L23P_3  
IP_L27N_3  
IP_L27P_3  
IP_L31N_3  
IP_L31P_3  
IP_L35N_3  
IP_L35P_3  
IP_L39N_3/VREF_3  
IP_L39P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
3
K10  
K12  
K17  
L4  
3
3
J8  
3
K7  
3
K8  
L9  
3
3
K5  
L11  
L20  
M10  
M12  
N8  
K6  
3
L6  
3
L7  
3
M7  
M8  
N7  
M6  
N6  
P5  
3
N11  
N13  
P2  
3
3
3
P19  
R6  
3
3
P7  
R9  
3
P6  
T16  
U12  
V3  
3
E2  
3
H5  
L2  
3
V18  
W7  
W15  
Y1  
3
N5  
U2  
A1  
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A11  
A20  
B6  
GND  
Y10  
Y20  
R15  
GND  
GND  
GND  
GND  
PWR  
MGMT  
VCCAUX SUSPEND  
GND  
B14  
C3  
C18  
D9  
E5  
GND  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
W19  
D5  
CONFIG  
CONFIG  
JTAG  
GND  
GND  
GND  
GND  
A19  
F5  
GND  
GND  
JTAG  
GND  
GND  
VCCAUX TDO  
VCCAUX TMS  
E17  
E4  
JTAG  
GND  
E12  
F15  
GND  
JTAG  
GND  
GND  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
88  
Product Specification  
R
Pinout Descriptions  
Table 72: Spartan-3AN FGG400 Pinout (Continued)  
FG400  
Bank  
Pin Name  
Ball  
A13  
E16  
H1  
Type  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
K13  
L8  
N20  
T5  
Y8  
J10  
J12  
K9  
K11  
L10  
L12  
M9  
M11  
N10  
User I/Os by Bank  
Table 73 indicates how the 311 available user-I/O pins are  
distributed between the four I/O banks on the FGG400  
package. The AWAKE pin is counted as a Dual-Purpose  
I/O.  
Table 73: User I/Os Per Bank for the XC3S400AN in the FGG400 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
50  
INPUT  
12  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
77  
79  
6
8
Right  
Bottom  
Left  
21  
12  
30  
21  
0
8
76  
35  
6
6
8
79  
49  
16  
6
8
TOTAL  
311  
155  
46  
52  
26  
32  
Footprint Migration Differences  
The XC3S400AN is the only Spartan-3AN FPGA offered in  
the FGG400 package.  
The XC3S400AN FPGA is pin compatible with the  
Spartan-3A XC3S400A FPGA in the FG(G)400 package,  
although the Spartan-3A FPGA requires an external  
configuration source.  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
89  
R
Pinout Descriptions  
X-Ref Target - Figure 21  
FG400 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
Left Half of FG400  
Package (top view)  
I/O  
L32P_0  
VREF_0  
I/O  
L18N_0  
GCLK11 GCLK10  
I/O  
L18P_0  
I/O  
L16P_0  
GCLK6  
I/O  
L30P_0  
I/O  
L29P_0  
I/O  
L26P_0  
I/O  
L25P_0  
I/O  
L24N_0  
GND  
A
B
C
D
E
F
I/O  
L32N_0  
PUDC_B  
I/O  
L02P_3  
I/O  
L30N_0  
I/O  
L26N_0  
I/O  
L24P_0  
I/O  
L20P_0  
I/O  
L19P_0  
VCCO_0  
VCCO_0  
GND  
I/O: Unrestricted,  
general-purpose user I/O  
155  
I/O  
L16N_0  
GCLK7  
I/O  
L03P_3  
I/O  
L02N_3  
I/O  
L29N_0  
I/O  
L28P_0  
I/O  
L25N_0  
I/O  
L21P_0  
I/O  
L20N_0  
I/O  
L19N_0  
GND  
INPUT: Unrestricted,  
general-purpose input pin  
46  
I/O  
L17P_0  
GCLK8  
I/O  
L05P_3  
I/O  
L03N_3  
I/O  
L01N_3  
I/O  
L01P_3  
I/O  
L28N_0  
I/O  
L21N_0  
VCCO_0  
GND  
DUAL: Configuration pins,  
then possible user I/O  
I/O  
L17N_0  
GCLK9  
I/O  
L05N_3  
I/O  
L10P_3  
I/O  
L31P_0  
I/O  
L27P_0  
I/O  
L23P_0  
I/O  
L22P_0  
51  
VCCO_3  
TMS  
GND  
TDI  
I/O  
L22N_0  
VREF_0  
I/O  
L13P_3  
I/O  
L10N_3  
I/O  
L09P_3  
I/O  
L06P_3  
I/O  
L31N_0  
I/O  
L27N_0  
I/O  
L23N_0  
VREF: User I/O or input  
voltage reference for bank  
VCCO_0  
26  
I/O  
INPUT  
L04N_3  
VREF_3  
I/O  
I/O  
I/O  
INPUT  
GND  
INPUT INPUT INPUT  
L13N_3  
G
H
J
CLK: User I/O, input, or  
clock buffer input  
L12P_3  
L09N_3  
L06N_3  
L04P_3  
VREF_3  
32  
I/O  
L12N_3  
I/O  
L14N_3  
I/O  
L08N_3  
I/O  
L08P_3  
VCCAUX  
VCCO_3  
INPUT  
GND  
INPUT INPUT  
GND VCCINT  
VCCINT GND  
GND VCCINT  
VCCINT GND  
CONFIG: Dedicated  
configuration pins  
2
I/O  
L17P_3  
LHCLK0  
INPUT  
L11N_3  
VREF_3  
I/O  
L16N_3  
I/O  
L16P_3  
I/O  
L14P_3  
I/O  
L07N_3  
I/O  
L07P_3  
INPUT  
L11P_3  
JTAG: Dedicated JTAG  
port pins  
4
I/O  
L17N_3  
I/O  
L18P_3  
I/O  
L20P_3  
INPUT INPUT INPUT INPUT  
GND  
K
L
L19N_3  
L19P_3  
L15N_3  
L15P_3  
LHCLK1 LHCLK2 LHCLK4  
SUSPEND: Dedicated  
I/O  
L21P_3  
TRDY2  
LHCLK6  
I/O  
L18N_3  
IRDY2  
LHCLK3  
SUSPEND and  
I/O  
L20N_3  
LHCLK5  
2
INPUT INPUT  
L23N_3  
VCCO_3  
VCCAUX  
GND  
dual-purpose AWAKE  
L23P_3  
Power Management pins  
I/O  
L21N_3  
LHCLK7 VREF_3  
I/O  
L22P_3  
I/O  
L22N_3  
I/O  
L24P_3  
I/O  
L24N_3  
INPUT INPUT INPUT  
L31P_3  
GND: Ground  
M
N
P
R
T
L27N_3  
L27P_3  
43  
I/O  
L25P_3  
I/O  
L25N_3  
I/O  
L26P_3  
I/O  
L26N_3  
INPUT INPUT  
L35N_3  
INPUT  
VCCINT  
VREF_2  
VCCO_3  
GND  
L31N_3  
VCCO: Output voltage  
supply for bank  
22  
INPUT  
L39N_3  
VREF_3  
I/O  
L28P_3  
I/O  
L29P_3  
I/O  
L29N_3  
INPUT INPUT  
INPUT  
VREF_2  
INPUT  
INPUT  
GND  
L35P_3  
L39P_3  
VREF_2  
VCCINT: Internal core  
supply voltage (+1.2V)  
9
I/O  
L28N_3  
I/O  
L30P_3  
I/O  
L30N_3  
I/O  
L33N_3  
I/O  
L36P_3  
I/O  
L04N_2  
GND  
INPUT  
GND  
INPUT  
VCCAUX: Auxiliary supply  
voltage  
I/O  
L32P_3  
VREF_3  
I/O  
I/O  
L14N_2  
D4  
I/O  
L32N_3  
I/O  
L33P_3  
I/O  
L36N_3  
I/O  
L04P_2  
I/O  
L06P_2  
I/O  
L11P_2  
8
VCCAUX  
L07P_2  
RDWR_B  
I/O  
L01P_2  
M1  
I/O  
L07N_2  
VS2  
I/O  
L14P_2  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_3  
VCCO_2  
U
V
W
Y
L34P_3  
L34N_3  
L05N_2  
L06N_2  
L11N_2  
I/O  
L01N_2  
M0  
I/O  
L09P_2  
VS1  
I/O  
L12P_2  
D7  
I/O  
L16P_2  
GCLK14  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L05P_2  
I/O  
L13P_2  
I/O  
L13N_2  
GND  
I/O  
L02P_2  
M2  
I/O  
L09N_2  
VS0  
I/O  
L12N_2  
D6  
I/O  
L15P_2  
I/O  
L16N_2  
GCLK12 GCLK15  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L03N_2  
VCCO_2  
GND  
I/O  
L02N_2  
CSO_B  
I/O  
L15N_2  
GCLK13  
I/O  
L03P_2  
I/O  
L08P_2  
I/O  
L08N_2  
I/O  
L10P_2  
I/O  
L10N_2  
VCCAUX  
GND  
GND  
Bank 2  
DS529-4_03_101106  
Figure 21: FG400 Package Footprint (top view)  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
90  
Product Specification  
R
Pinout Descriptions  
Bank 0  
11  
12  
I/O  
13  
14  
15  
16  
17  
18  
19  
20  
Right Half of FGG400  
Package (top view)  
I/O  
L07N_0  
I/O  
L08N_0  
I/O  
L05N_0  
I/O  
L04N_0  
I/O  
L01N_0  
VCCAUX  
GND  
TCK  
GND  
A
B
C
D
E
F
L13N_0  
I/O  
I/O  
L38N_1  
A25  
I/O  
L38P_1  
A24  
I/O  
L14P_0  
I/O  
L13P_0  
I/O  
L11P_0  
I/O  
L08P_0  
I/O  
L01P_0  
VCCO_0  
GND  
L04P_0  
VREF_0  
I/O  
I/O  
L37N_1  
A23  
I/O  
L37P_1  
A22  
I/O  
L14N_0  
I/O  
L11N_0  
I/O  
L07P_0  
I/O  
L06N_0  
I/O  
L05P_0  
I/O  
L02N_0  
GND  
L10N_0  
VREF_0  
I/O  
I/O  
I/O  
L12P_0  
I/O  
L10P_0  
I/O  
L06P_0  
I/O  
L03P_0  
I/O  
L34N_1  
I/O  
L34P_1  
VCCO_0  
VCCO_1  
L15P_0  
L02P_0  
GCLK4  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
GND  
INPUT  
INPUT  
TDO  
L15N_0  
L09P_0  
L03N_0  
L33P_1  
L32N_1  
L32P_1  
GCLK5  
I/O  
L36N_1  
A21  
I/O  
L30N_1  
A19  
I/O  
L29N_1  
A17  
I/O  
L29P_1  
A16  
I/O  
L12N_0  
I/O  
L09N_0  
I/O  
L33N_1  
INPUT  
GND  
INPUT  
L39P_1  
VREF_1  
I/O  
L36P_1  
A20  
I/O  
L30P_1  
A18  
I/O  
L26N_1  
A15  
INPUT  
INPUT  
I/O  
INPUT INPUT  
GND  
G
H
J
VREF_0  
L39N_1  
L28P_1  
I/O  
L25N_1  
A13  
I/O  
L25P_1  
A12  
I/O  
L26P_1  
A14  
INPUT INPUT  
I/O  
L28N_1  
VCCO_1  
INPUT INPUT  
GND VCCINT  
VCCINT GND  
GND VCCINT  
VCCINT GND  
GND  
L35N_1  
L35P_1  
INPUT  
L31P_1  
VREF_1  
I/O  
L22N_1  
A11  
I/O  
L22P_1  
A10  
I/O  
L21N_1  
RHCLK7  
INPUT  
L31N_1  
INPUT INPUT  
L27N_1  
I/O  
L24P_1  
L27P_1  
I/O  
L21P_1  
IRDY1  
INPUT  
L23P_1  
VREF_1  
I/O  
L20P_1  
RHCLK4  
INPUT  
L23N_1  
I/O  
L24N_1  
VCCAUX  
VCCO_1  
GND  
K
L
RHCLK6  
I/O  
L18N_1  
TRDY1  
RHCLK3  
I/O  
L16P_1  
A8  
I/O  
L16N_1  
A9  
I/O  
L20N_1  
RHCLK5  
I/O  
L18P_1  
RHCLK2  
INPUT INPUT  
GND  
L19N_1  
L19P_1  
INPUT INPUT  
I/O  
L14P_1  
A6  
I/O  
L14N_1  
A7  
I/O  
L17P_1  
I/O  
L17N_1  
RHCLK0 RHCLK1  
INPUT  
L15N_1  
INPUT  
L11P_1  
L15P_1  
L11N_1  
M
N
P
R
T
VREF_1 VREF_1  
I/O  
INPUT  
L12P_1  
I/O  
L12N_1  
A3  
I/O  
L13P_1  
A4  
I/O  
L13N_1  
A5  
INPUT  
GND  
VCCO_1  
VCCAUX  
GND  
VREF_2  
VREF_1  
A2  
INPUT  
INPUT  
I/O  
L10N_1  
VREF_1  
INPUT  
VREF_2  
I/O  
L07P_1  
I/O  
L07N_1  
I/O  
L10P_1  
INPUT INPUT  
GND  
L04N_1  
L04P_1  
VREF_1  
I/O  
L03N_1  
A1  
I/O  
I/O  
INPUT  
PEND  
S
I/O  
L08N_1  
I/O  
L08P_1  
I/O  
L09P_1  
I/O  
L09N_1  
VCCO_2  
L19N_2  
L23N_2 VREF_2  
U
S
I/O  
L03P_1  
A0  
I/O  
L19P_2  
I/O  
L23P_2  
I/O  
L25N_2  
I/O  
L27N_2  
I/O  
L05P_1  
I/O  
L05N_1  
VCCO_1  
INPUT  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
GND  
L18P_2  
L22P_2  
L02N_1  
U
V
W
Y
L27P_2  
L29N_2  
L31N_2  
L06P_1  
L06N_1  
GCLK2  
AWAKE  
LDC0  
I/O  
L17N_2  
GCLK1  
I/O  
L18N_2  
GCLK3  
I/O  
L22N_2  
DOUT  
I/O  
L26N_2  
D1  
I/O  
L02P_1  
LDC1  
I/O  
L01N_1  
LDC2  
I/O  
L25P_2  
I/O  
L29P_2  
I/O  
L31P_2  
GND  
I/O  
L20N_2  
MOSI  
I/O  
L32P_2  
D0  
I/O  
L24N_2  
D3  
I/O  
L01P_1  
HDC  
I/O  
L21N_2  
I/O  
L28N_2  
VCCO_2  
VCCO_2  
GND  
DONE  
CSI_B  
DIN/MISO  
I/O  
L17P_2  
GCLK0  
I/O  
L24P_2  
INIT_B  
I/O  
L26P_2  
D2  
I/O  
L32N_2  
CCLK  
I/O  
L20P_2  
I/O  
L21P_2  
I/O  
L28P_2  
I/O  
L30P_2  
I/O  
L30N_2  
GND  
Bank 2  
DS529-4_04_101106  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
91  
R
Pinout Descriptions  
FGG484: 484-ball Fine-pitch Ball Grid Array  
The 484-ball fine-pitch ball grid array, FGG484, supports the  
XC3S700AN FPGA, as described in Table 74.  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L17P_0/GCLK4  
IO_L18N_0/GCLK7  
IO_L18P_0/GCLK6  
IO_L19N_0/GCLK9  
IO_L19P_0/GCLK8  
IO_L20N_0/GCLK11  
IO_L20P_0/GCLK10  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0/VREF_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L26P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0  
IO_L32N_0  
IO_L32P_0  
IO_L33N_0  
IO_L33P_0  
IO_L34N_0  
IO_L34P_0  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0/PUDC_B  
IO_L36P_0/VREF_0  
IP_0  
Ball  
C12  
A11  
A12  
C11  
B11  
E11  
D11  
C10  
A10  
A8  
Type  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
Table 74 lists all the FGG484 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.  
I/O  
Pinout Table  
I/O  
A9  
I/O  
Table 74: Spartan-3AN FGG484 Pinout  
E10  
D10  
C9  
I/O  
FG484  
I/O  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
D18  
E17  
C19  
D19  
A20  
B20  
F15  
E15  
A18  
C18  
A19  
B19  
C17  
D17  
C16  
D16  
E14  
C14  
A17  
B17  
C15  
D15  
A15  
A16  
A14  
B15  
E13  
F13  
C13  
D13  
A13  
B13  
E12  
Type  
I/O  
VREF  
I/O  
B9  
0
IO_L01P_0  
I/O  
C8  
I/O  
0
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L03N_0  
IO_L03P_0  
I/O  
B8  
I/O  
0
VREF  
I/O  
A6  
I/O  
0
A7  
I/O  
0
I/O  
C7  
I/O  
0
IO_L04N_0  
IO_L04P_0  
I/O  
D7  
I/O  
0
I/O  
A5  
I/O  
0
IO_L05N_0  
IO_L05P_0  
I/O  
B6  
I/O  
0
I/O  
D6  
I/O  
0
IO_L06N_0  
IO_L06P_0/VREF_0  
IO_L07N_0  
IO_L07P_0  
I/O  
C6  
I/O  
0
VREF  
I/O  
D8  
I/O  
0
E9  
I/O  
0
I/O  
B4  
I/O  
0
IO_L08N_0  
IO_L08P_0  
I/O  
A4  
I/O  
0
I/O  
D5  
I/O  
0
IO_L09N_0  
IO_L09P_0  
I/O  
C5  
I/O  
0
I/O  
B3  
I/O  
0
IO_L10N_0  
IO_L10P_0  
I/O  
A3  
I/O  
0
I/O  
F8  
I/O  
0
IO_L11N_0  
IO_L11P_0  
I/O  
E7  
I/O  
0
I/O  
E6  
I/O  
0
IO_L12N_0/VREF_0  
IO_L12P_0  
VREF  
I/O  
F7  
I/O  
0
A2  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
0
IO_L13N_0  
IO_L13P_0  
I/O  
B2  
0
I/O  
E16  
E8  
0
IO_L14N_0  
IO_L14P_0  
I/O  
IP_0  
0
I/O  
IP_0  
F10  
F12  
F16  
G10  
G11  
0
IO_L15N_0  
IO_L15P_0  
I/O  
IP_0  
0
I/O  
IP_0  
0
IO_L16N_0  
IO_L16P_0  
I/O  
IP_0  
0
I/O  
IP_0  
0
IO_L17N_0/GCLK5  
GCLK  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
92  
Product Specification  
R
Pinout Descriptions  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
FG484  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
Ball  
G12  
G13  
G14  
G15  
G16  
G7  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L19P_1/A6  
Ball  
N20  
N17  
N18  
L22  
M22  
L20  
L21  
M20  
M18  
K19  
K20  
J22  
Type  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
I/O  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IP_0  
IO_L20N_1/A9  
IO_L20P_1/A8  
IO_L21N_1/RHCLK1  
IO_L21P_1/RHCLK0  
IO_L22N_1/TRDY1/RHCLK3  
IO_L22P_1/RHCLK2  
IO_L24N_1/RHCLK5  
IO_L24P_1/RHCLK4  
IO_L25N_1/RHCLK7  
IO_L25P_1/IRDY1/RHCLK6  
IO_L26N_1/A11  
IO_L26P_1/A10  
IO_L28N_1  
G9  
H10  
H13  
H14  
G8  
IP_0/VREF_0  
IP_0/VREF_0  
IP_0/VREF_0  
VCCO_0  
H12  
H9  
K22  
L19  
L18  
J20  
B10  
B14  
B18  
B5  
VCCO_0  
IO_L28P_1  
I/O  
VCCO_0  
IO_L29N_1/A13  
IO_L29P_1/A12  
IO_L30N_1/A15  
IO_L30P_1/A14  
IO_L32N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
VCCO_0  
J21  
VCCO_0  
F14  
F9  
G22  
H22  
K18  
K17  
H20  
H21  
F21  
F22  
G20  
G19  
H19  
J18  
VCCO_0  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L05N_1  
Y21  
AA22  
W20  
W19  
T18  
T17  
W21  
Y22  
V20  
V19  
V22  
W22  
U21  
U22  
U19  
U20  
T22  
T20  
T19  
R20  
R22  
R21  
P22  
P20  
P18  
R19  
N21  
N22  
N19  
IO_L32P_1  
I/O  
IO_L33N_1/A17  
IO_L33P_1/A16  
IO_L34N_1/A19  
IO_L34P_1/A18  
IO_L36N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L05P_1  
I/O  
IO_L36P_1  
I/O  
IO_L06N_1  
I/O  
IO_L37N_1  
I/O  
IO_L06P_1  
I/O  
IO_L37P_1  
I/O  
IO_L07N_1  
I/O  
IO_L38N_1  
F20  
E20  
F18  
F19  
D22  
E22  
D20  
D21  
C21  
C22  
B21  
B22  
G17  
G18  
R16  
R15  
P16  
P15  
R18  
I/O  
IO_L07P_1  
I/O  
IO_L38P_1  
I/O  
IO_L09N_1  
I/O  
IO_L40N_1  
I/O  
IO_L09P_1  
I/O  
IO_L40P_1  
I/O  
IO_L10N_1  
I/O  
IO_L41N_1  
I/O  
IO_L10P_1  
I/O  
IO_L41P_1  
I/O  
IO_L11N_1  
I/O  
IO_L42N_1  
I/O  
IO_L11P_1  
I/O  
IO_L42P_1  
I/O  
IO_L13N_1  
I/O  
IO_L44N_1/A21  
IO_L44P_1/A20  
IO_L45N_1/A23  
IO_L45P_1/A22  
IO_L46N_1/A25  
IO_L46P_1/A24  
IP_L04N_1/VREF_1  
IP_L04P_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
IO_L13P_1  
I/O  
IO_L14N_1  
I/O  
IO_L14P_1  
I/O  
IO_L15N_1/VREF_1  
IO_L15P_1  
VREF  
I/O  
IO_L17N_1/A3  
IO_L17P_1/A2  
IO_L18N_1/A5  
IO_L18P_1/A4  
IO_L19N_1/A7  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
IP_L08N_1  
IP_L08P_1  
IP_L12N_1/VREF_1  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
93  
R
Pinout Descriptions  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
FG484  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_L12P_1  
Ball  
R17  
N16  
N15  
M16  
M17  
L16  
M15  
K16  
L15  
K15  
K14  
H18  
H17  
J15  
J16  
H15  
H16  
E21  
J17  
K21  
P17  
P21  
V21  
W5  
Type  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
2
Pin Name  
IO_L13P_2  
Ball  
V10  
Type  
I/O  
IP_L16N_1/VREF_1  
IP_L16P_1  
2
IO_L14N_2/D6  
IO_L14P_2/D7  
IO_L15N_2  
AB9  
Y9  
DUAL  
DUAL  
I/O  
2
IP_L23N_1  
2
AB10  
AA10  
AB11  
Y11  
IP_L23P_1  
2
IO_L15P_2  
I/O  
IP_L27N_1  
2
IO_L16N_2/D4  
IO_L16P_2/D5  
IO_L17N_2/GCLK13  
IO_L17P_2/GCLK12  
IO_L18N_2/GCLK15  
IO_L18P_2/GCLK14  
IO_L19N_2/GCLK1  
IO_L19P_2/GCLK0  
IO_L20N_2/GCLK3  
IO_L20P_2/GCLK2  
IO_L21N_2  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
IP_L27P_1/VREF_1  
IP_L31N_1  
2
2
V11  
IP_L31P_1  
2
U11  
IP_L35N_1  
2
Y12  
IP_L35P_1/VREF_1  
IP_L39N_1  
2
W12  
AB12  
AA12  
U12  
2
IP_L39P_1  
2
IP_L43N_1/VREF_1  
IP_L43P_1  
2
2
V12  
IP_L47N_1  
2
Y13  
IP_L47P_1/VREF_1  
VCCO_1  
2
IO_L21P_2  
AB13  
AB14  
AA14  
Y14  
I/O  
2
IO_L22N_2/MOSI/CSI_B  
IO_L22P_2  
DUAL  
I/O  
VCCO_1  
2
VCCO_1  
2
IO_L23N_2  
I/O  
VCCO_1  
2
IO_L23P_2  
W13  
I/O  
VCCO_1  
IO_L24N_2/  
DOUT  
2
2
AA15  
AB15  
DUAL  
VCCO_1  
PWR  
MGMT  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L03N_2  
IO_L24P_2/AWAKE  
V6  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L25N_2  
IO_L25P_2  
Y15  
W15  
U13  
I/O  
I/O  
Y4  
W4  
IO_L26N_2/D3  
IO_L26P_2/INIT_B  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2/D1  
IO_L28P_2/D2  
IO_L29N_2  
IO_L29P_2  
IO_L30N_2  
IO_L30P_2  
DUAL  
DUAL  
I/O  
AA3  
AB2  
AA4  
AB3  
Y5  
V13  
IO_L03P_2  
I/O  
Y16  
IO_L04N_2  
I/O  
AB16  
Y17  
I/O  
IO_L04P_2  
I/O  
DUAL  
DUAL  
I/O  
IO_L05N_2  
I/O  
AA17  
AB18  
AB17  
V15  
IO_L05P_2  
W6  
I/O  
IO_L06N_2  
AB5  
AB4  
Y6  
I/O  
I/O  
IO_L06P_2  
I/O  
I/O  
IO_L07N_2  
I/O  
V14  
I/O  
IO_L07P_2  
W7  
I/O  
IO_L31N_2  
IO_L31P_2  
V16  
I/O  
IO_L08N_2  
AB6  
AA6  
W9  
I/O  
W16  
AA19  
AB19  
V17  
I/O  
IO_L08P_2  
I/O  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
I/O  
IO_L09N_2/VS2  
IO_L09P_2/RDWR_B  
IO_L10N_2  
DUAL  
DUAL  
I/O  
I/O  
V9  
I/O  
AB7  
Y7  
W18  
W17  
Y18  
I/O  
IO_L10P_2  
I/O  
IO_L34N_2  
IO_L34P_2  
I/O  
IO_L11N_2/VS0  
IO_L11P_2/VS1  
IO_L12N_2  
Y8  
DUAL  
DUAL  
I/O  
I/O  
W8  
IO_L35N_2  
IO_L35P_2  
IO_L36N_2/CCLK  
AA21  
AB21  
AA20  
I/O  
AB8  
AA8  
Y10  
I/O  
IO_L12P_2  
I/O  
DUAL  
IO_L13N_2  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
94  
Product Specification  
R
Pinout Descriptions  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
FG484  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L36P_2/D0/DIN/MISO  
IP_2  
Ball  
AB20  
P12  
R10  
R11  
R9  
Type  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
N.C.  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L12N_3  
Ball  
F1  
F2  
G1  
G3  
H3  
H4  
H1  
H2  
J1  
Type  
I/O  
IO_L12P_3  
I/O  
IP_2  
IO_L13N_3  
I/O  
IP_2  
IO_L13P_3  
I/O  
IP_2  
IO_L14N_3  
I/O  
IP_2  
T13  
T14  
T9  
IO_L14P_3  
I/O  
IP_2  
IO_L16N_3  
I/O  
IP_2  
IO_L16P_3  
I/O  
IP_2  
U10  
U15  
U16  
U7  
IO_L17N_3/VREF_3  
IO_L17P_3  
VREF  
I/O  
IP_2  
J3  
N.C.  
IO_L18N_3  
K4  
K5  
K2  
K3  
L3  
I/O  
N.C.  
N.C.  
IO_L18P_3  
I/O  
IP_2  
U8  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
N.C.  
IO_L20N_3  
I/O  
IP_2  
V7  
IO_L20P_3  
I/O  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
N.C.  
R12  
R13  
R14  
T10  
T11  
T15  
T16  
T7  
IO_L21N_3/LHCLK1  
IO_L21P_3/LHCLK0  
IO_L22N_3/IRDY2/LHCLK3  
IO_L22P_3/LHCLK2  
IO_L24N_3/LHCLK5  
IO_L24P_3/LHCLK4  
IO_L25N_3/LHCLK7  
IO_L25P_3/TRDY2/LHCLK6  
IO_L26N_3  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
L5  
L1  
K1  
M2  
M1  
M4  
M3  
N3  
N1  
P2  
P1  
P5  
P3  
N4  
M5  
R2  
R1  
R4  
R3  
T4  
R5  
T3  
T1  
U2  
U1  
V3  
V1  
U5  
T5  
U4  
U3  
W2  
W1  
T8  
IP_2/VREF_2  
VCCO_2  
V8  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L26P_3/VREF_3  
IO_L28N_3  
VREF  
I/O  
AA13  
AA18  
AA5  
AA9  
U14  
U9  
VCCO_2  
IO_L28P_3  
I/O  
VCCO_2  
IO_L29N_3  
I/O  
VCCO_2  
IO_L29P_3  
I/O  
VCCO_2  
IO_L30N_3  
I/O  
VCCO_2  
IO_L30P_3  
I/O  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L09P_3  
IO_L10N_3  
IO_L10P_3  
D2  
IO_L32N_3  
I/O  
C1  
I/O  
IO_L32P_3  
I/O  
C2  
I/O  
IO_L33N_3  
I/O  
B1  
I/O  
IO_L33P_3  
I/O  
E4  
I/O  
IO_L34N_3  
I/O  
D3  
I/O  
IO_L34P_3  
I/O  
G5  
I/O  
IO_L36N_3  
I/O  
G6  
I/O  
IO_L36P_3/VREF_3  
IO_L37N_3  
VREF  
I/O  
E1  
I/O  
D1  
I/O  
IO_L37P_3  
I/O  
E3  
I/O  
IO_L38N_3  
I/O  
F4  
I/O  
IO_L38P_3  
I/O  
G4  
I/O  
IO_L40N_3  
I/O  
F3  
I/O  
IO_L40P_3  
I/O  
H6  
I/O  
IO_L41N_3  
I/O  
H5  
I/O  
IO_L41P_3  
I/O  
J5  
I/O  
IO_L42N_3  
I/O  
K6  
I/O  
IO_L42P_3  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
95  
R
Pinout Descriptions  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
FG484  
Bank  
Pin Name  
IO_L43N_3  
Ball  
W3  
V4  
Type  
I/O  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
F11  
F17  
F6  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
IO_L43P_3  
IO_L44N_3  
IO_L44P_3  
IO_L45N_3  
IO_L45P_3  
IP_3/VREF_3  
IP_3/VREF_3  
IP_L04N_3/VREF_3  
IP_L04P_3  
IP_L11N_3  
IP_L11P_3  
IP_L15N_3/VREF_3  
IP_L15P_3  
IP_L19N_3  
IP_L19P_3  
IP_L23N_3  
IP_L23P_3  
IP_L27N_3  
IP_L27P_3  
IP_L31N_3  
IP_L31P_3  
IP_L35N_3  
IP_L35P_3  
IP_L39N_3  
IP_L39P_3  
IP_L46N_3/VREF_3  
IP_L46P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
GND  
I/O  
3
Y2  
I/O  
3
Y1  
I/O  
G2  
3
AA2  
AA1  
J8  
I/O  
G21  
J11  
J13  
J14  
J19  
J4  
3
I/O  
3
VREF  
VREF  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
3
R6  
3
H7  
3
H8  
3
K8  
J9  
3
J7  
K10  
K12  
L11  
L13  
L17  
L2  
3
L8  
3
3
K7  
M8  
L7  
3
3
M6  
M7  
N9  
3
L6  
3
L9  
3
N8  
M10  
M12  
M14  
M21  
N11  
N13  
P10  
P14  
P19  
P4  
3
N5  
3
N6  
3
P8  
3
N7  
3
R8  
3
P7  
3
T6  
3
R7  
3
E2  
3
J2  
P9  
3
J6  
T12  
T2  
3
N2  
3
P6  
T21  
U17  
U6  
3
V2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
GND  
A22  
AA11  
AA16  
AA7  
AB1  
AB22  
B12  
B16  
B7  
GND  
W10  
W14  
Y20  
Y3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PWR  
MGMT  
VCCAUX SUSPEND  
U18  
GND  
GND  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
Y19  
C4  
CONFIG  
CONFIG  
JTAG  
GND  
GND  
GND  
GND  
A21  
F5  
GND  
GND  
VCCAUX TDI  
JTAG  
GND  
C20  
C3  
GND  
VCCAUX TDO  
VCCAUX TMS  
VCCAUX VCCAUX  
E19  
D4  
JTAG  
GND  
GND  
JTAG  
GND  
D14  
D9  
GND  
D12  
VCCAUX  
GND  
GND  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
96  
Product Specification  
R
Pinout Descriptions  
Table 74: Spartan-3AN FGG484 Pinout (Continued)  
FG484  
Bank  
Pin Name  
Ball  
E18  
E5  
Type  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
H11  
L4  
M19  
P11  
V18  
V5  
W11  
J10  
J12  
K11  
K13  
K9  
L10  
L12  
L14  
M11  
M13  
M9  
N10  
N12  
N14  
P13  
User I/Os by Bank  
Table 75 indicates how the user-I/O pins are distributed  
between the four I/O banks on the FGG484 package. The  
AWAKE pin is counted as a Dual-Purpose I/O.  
Table 75: User I/Os Per Bank for the XC3S700AN in the FGG484 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
58  
INPUT  
17  
DUAL  
1
VREF  
CLK  
8
Top  
0
1
2
3
92  
94  
8
8
Right  
Bottom  
Left  
33  
15  
30  
21  
0
8
92  
43  
11  
9
8
94  
61  
17  
8
8
TOTAL  
372  
195  
60  
52  
33  
32  
Footprint Migration Differences  
The XC3S700AN is the only Spartan-3AN FPGA offered in  
the FGG484 package.  
The XC3S700AN FPGA is pin compatible with the  
Spartan-3A XC3S700A FPGA in the FG(G)484 package,  
although the Spartan-3A FPGA requires an external  
configuration source.  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
97  
R
Pinout Descriptions  
X-Ref Target - Figure 22  
FG484 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
Left Half of FG484  
Package (top view)  
I/O  
L36N_0  
PUDC_B  
I/O  
I/O  
L33P_0  
I/O  
L31P_0  
I/O  
L28N_0  
I/O  
L26N_0  
I/O  
L26P_0  
I/O  
L22N_0  
I/O  
L22P_0  
I/O  
L21P_0  
GND  
A
B
C
D
E
F
L18N_0  
GCLK7  
I/O  
L36P_0  
VREF_0  
I/O  
I/O  
L02P_3  
I/O  
L33N_0  
I/O  
L31N_0  
I/O  
L28P_0  
I/O  
L25P_0  
I/O  
L24P_0  
VCCO_0  
VCCO_0  
GND  
L19P_0  
GCLK8  
I/O: Unrestricted,  
general-purpose user I/O  
I/O  
I/O  
195  
60  
I/O  
L01P_3  
I/O  
L02N_3  
I/O  
L32P_0  
I/O  
L29P_0  
I/O  
L27N_0  
I/O  
L25N_0  
I/O  
L21N_0  
GND  
L24N_0  
L19N_0  
VREF_0  
GCLK9  
PROG_B  
I/O  
INPUT: Unrestricted,  
general-purpose input pin  
I/O  
L06P_3  
I/O  
L01N_3  
I/O  
L03P_3  
I/O  
L32N_0  
I/O  
L29N_0  
I/O  
L27P_0  
I/O  
L30N_0  
I/O  
L23P_0  
TMS  
GND  
L20P_0  
GCLK10  
I/O  
I/O  
L06N_3  
I/O  
L07N_3  
I/O  
L03N_3  
I/O  
L35N_0  
I/O  
L34P_0  
I/O  
L30P_0  
I/O  
L23N_0  
VCCO_3  
VCCAUX  
INPUT  
L20N_0  
DUAL: Configuration pins,  
then possible user I/O  
GCLK11  
51  
I/O  
L12N_3  
I/O  
L12P_3  
I/O  
L08P_3  
I/O  
L07P_3  
I/O  
L35P_0  
I/O  
L34N_0  
VCCO_0  
TDI  
GND  
INPUT  
GND  
VREF: User I/O or input  
voltage reference for bank  
33  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
GND  
INPUT  
INPUT INPUT INPUT  
G
H
J
L13N_3  
L13P_3  
L08N_3  
L05N_3  
L05P_3  
VREF_0  
INPUT  
L04N_3  
VREF_3  
I/O  
L16N_3  
I/O  
L16P_3  
I/O  
L14N_3  
I/O  
L14P_3  
I/O  
L09P_3  
I/O  
L09N_3  
INPUT INPUT  
L04P_3 VREF_0  
CLK: User I/O, input, or  
clock buffer input  
VCCAUX  
INPUT  
32  
I/O  
L17N_3  
VREF_3  
I/O  
L17P_3  
I/O  
L10N_3  
INPUT INPUT  
L11P_3 VREF_3  
VCCO_3  
VCCO_3  
GND  
GND VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
2
I/O  
L22P_3  
LHCLK2  
I/O  
L20N_3  
I/O  
L20P_3  
I/O  
L18N_3  
I/O  
L18P_3  
I/O  
L10P_3  
INPUT INPUT  
K
L
L15P_3  
L11N_3  
I/O  
L22N_3  
IRDY2  
LHCLK3  
I/O  
L21N_3  
LHCLK1  
I/O  
L21P_3  
LHCLK0  
INPUT  
L15N_3  
VREF_3  
CONFIG: Dedicated  
INPUT  
L19P_3  
VCCAUX  
GND  
GND  
configuration pins  
2
4
I/O  
L25P_3  
TRDY2  
LHCLK6  
I/O  
L24P_3  
LHCLK4 LHCLK5  
I/O  
L24N_3  
I/O  
L25N_3  
LHCLK7  
I/O  
L30P_3  
INPUT INPUT INPUT  
L23N_3  
M
N
P
R
T
L23P_3  
L19N_3  
JTAG: Dedicated JTAG  
port pins  
I/O  
I/O  
L26N_3  
I/O  
L30N_3  
INPUT INPUT INPUT INPUT INPUT  
L31N_3  
VCCO_3  
L26P_3  
VCCINT GND  
L31P_3  
L35P_3  
L27P_3  
L27N_3  
VREF_3  
GND: Ground  
53  
24  
15  
10  
3
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L29P_3  
I/O  
L29N_3  
INPUT INPUT  
VCCO_3  
VCCAUX  
GND  
GND  
GND  
L39P_3  
L35N_3  
I/O  
L32P_3  
I/O  
L32N_3  
I/O  
L33P_3  
I/O  
L33N_3  
I/O  
INPUT INPUT INPUT  
VCCO: Output voltage  
supply for bank  
INPUT INPUT INPUT  
L34P_3 VREF_3 L46P_3  
L39N_3  
I/O  
L36P_3  
VREF_3  
INPUT  
L46N_3  
VREF_3  
I/O  
L36N_3  
I/O  
L34N_3  
I/O  
L40P_3  
INPUT  
VREF_2  
INPUT INPUT  
INPUT  
GND  
N.C.  
VREF_2 VREF_2  
VCCINT: Internal core  
supply voltage (+1.2V)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
GND  
INPUT  
INPUT  
N.C.  
U
V
W
Y
L17P_2  
L37P_3  
L37N_3  
L41P_3  
L41N_3  
L40N_3  
GCLK12  
VCCAUX: Auxiliary supply  
voltage (+3.3V)  
I/O  
L01P_2  
M1  
I/O  
L09P_2  
RDWR_B  
I/O  
L17N_2  
GCLK13  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L43P_3  
INPUT  
VREF_2  
I/O  
L13P_2  
VCCO_3  
VCCAUX  
INPUT  
I/O  
L02P_2  
M2  
I/O  
L01N_2  
M0  
I/O  
L11P_2  
VS1  
I/O  
L09N_2  
VS2  
I/O  
L42P_3  
I/O  
L42N_3  
I/O  
L43N_3  
I/O  
L05P_2  
I/O  
L07P_2  
N.C.: Not connected  
VCCAUX  
GND  
I/O  
L02N_2  
CSO_B  
I/O  
L11N_2  
VS0  
I/O  
L14P_2  
D7  
I/O  
L16P_2  
D5  
I/O  
L44P_3  
I/O  
L44N_3  
I/O  
L05N_2  
I/O  
L07N_2  
I/O  
L10P_2  
I/O  
L13N_2  
GND  
A
A
I/O  
L45P_3  
I/O  
L45N_3  
I/O  
L03N_2  
I/O  
L04N_2  
I/O  
L08P_2  
I/O  
L12P_2  
I/O  
L15P_2  
VCCO_2  
VCCO_2  
GND  
GND  
I/O  
L14N_2  
D6  
I/O  
L16N_2  
D4  
A
B
I/O  
L03P_2  
I/O  
L04P_2  
I/O  
L06P_2  
I/O  
L06N_2  
I/O  
L08N_2  
I/O  
L10N_2  
I/O  
L12N_2  
I/O  
L15N_2  
GND  
Bank 2  
DS557-4_01_032709  
Figure 22: FG484 Package Footprint (top view)  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
98  
Product Specification  
R
Pinout Descriptions  
Bank 0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Right Half of FGG484  
Package (top view)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK  
GND  
L18P_0  
L12N_0  
A
B
C
D
E
F
L16N_0  
L13N_0  
L12P_0  
L10N_0  
L05N_0  
L06N_0  
L03N_0  
GCLK6  
VREF_0  
I/O  
L06P_0  
VREF_0  
I/O  
L45N_1  
A23  
I/O  
L45P_1  
A22  
I/O  
L16P_0  
I/O  
L13P_0  
I/O  
L10P_0  
I/O  
L03P_0  
VCCO_0  
VCCO_0  
GND  
GND  
I/O  
L17P_0  
GCLK4  
I/O  
L44N_1  
A21  
I/O  
L44P_1  
A20  
I/O  
L15N_0  
I/O  
L09P_0  
I/O  
L11N_0  
I/O  
L08N_0  
I/O  
L07N_0  
I/O  
L05P_0  
I/O  
L02N_0  
GND  
I/O  
L02P_0  
VREF_0  
I/O  
L15P_0  
I/O  
L11P_0  
I/O  
L08P_0  
I/O  
L07P_0  
I/O  
L01N_0  
I/O  
L42N_1  
I/O  
L42P_1  
I/O  
L41N_1  
VCCAUX  
GND  
I/O  
L17N_0  
GCLK5  
I/O  
L14N_0  
I/O  
L09N_0  
I/O  
L04P_0  
I/O  
L01P_0  
I/O  
L38P_1  
I/O  
L41P_1  
VCCAUX  
VCCO_1  
INPUT  
INPUT  
TDO  
I/O  
L34N_1  
A19  
I/O  
L34P_1  
A18  
I/O  
L14P_0  
I/O  
L04N_0  
I/O  
L40N_1  
I/O  
L40P_1  
I/O  
L38N_1  
VCCO_0  
INPUT  
GND  
I/O  
L46N_1  
A25  
I/O  
L46P_1  
A24  
I/O  
L30N_1  
A15  
I/O  
I/O  
INPUT INPUT INPUT INPUT INPUT  
INPUT  
GND  
G
H
J
L36P_1  
L36N_1  
I/O  
L33N_1  
A17  
I/O  
L33P_1  
A16  
I/O  
L30P_1  
A14  
INPUT  
INPUT  
INPUT INPUT  
L39P_1  
I/O  
L37N_1  
INPUT INPUT  
L47P_1  
VREF_0  
L47N_1  
L39N_1  
VREF_1  
INPUT  
L43N_1  
VREF_1  
I/O  
L29N_1  
A13  
I/O  
L29P_1  
A12  
I/O  
L26N_1  
A11  
INPUT  
I/O  
L37P_1  
VCCO_1  
VCCINT GND  
GND VCCINT  
GND  
GND  
L43P_1  
I/O  
L25P_1  
IRDY1  
INPUT  
L35P_1  
VREF_1  
I/O  
L25N_1  
RHCLK7  
I/O  
L26P_1  
A10  
INPUT INPUT  
L35N_1  
I/O  
L32P_1  
I/O  
L32N_1  
VCCO_1  
K
L
L31N_1  
RHCLK6  
I/O  
L22N_1  
TRDY1  
RHCLK3  
I/O  
L22P_1  
I/O  
L21N_1  
RHCLK2 RHCLK1  
INPUT INPUT  
I/O  
L28P_1  
I/O  
L28N_1  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
INPUT VCCINT GND  
GND  
L31P_1  
L27N_1  
INPUT  
L27P_1  
VREF_1  
I/O  
L24P_1  
RHCLK4  
I/O  
L24N_1  
RHCLK5  
I/O  
L21P_1  
RHCLK0  
INPUT INPUT  
VCCAUX  
GND  
M
N
P
R
T
L23N_1  
L23P_1  
INPUT  
L16N_1  
VREF_1  
I/O  
L20N_1  
A9  
I/O  
L20P_1  
A8  
I/O  
L19N_1  
A7  
I/O  
L19P_1  
A6  
I/O  
L18N_1  
A5  
I/O  
L18P_1  
A4  
INPUT  
L16P_1  
I/O  
L17N_1  
A3  
I/O  
L15N_1  
VREF_1  
INPUT INPUT  
I/O  
L15P_1  
VCCO_1  
VCCO_1  
GND  
L08P_1  
L08N_1  
INPUT  
L04N_1  
VREF_1  
INPUT  
L12N_1  
VREF_1  
I/O  
L17P_1  
A2  
INPUT INPUT INPUT INPUT  
VREF_2 VREF_2 VREF_2 L04P_1  
INPUT  
L12P_1  
I/O  
L13P_1  
I/O  
L14P_1  
I/O  
L14N_1  
I/O  
L03P_1  
A0  
I/O  
L03N_1  
A1  
INPUT INPUT  
I/O  
L13N_1  
I/O  
L11P_1  
I/O  
L11N_1  
GND  
INPUT INPUT  
I/O  
GND  
VREF_2 VREF_2  
I/O  
L20N_2  
GCLK3  
I/O  
L10N_1  
I/O  
L10P_1  
I/O  
L09N_1  
I/O  
L09P_1  
N.C.  
VCCO_2  
L26N_2  
INPUT  
GND  
U
V
W
Y
SUSPEND  
D3  
I/O  
I/O  
I/O  
I/O  
L30N_2  
I/O  
L31N_2  
I/O  
L33N_2  
I/O  
L06P_1  
I/O  
L06N_1  
I/O  
L07N_1  
VCCAUX  
VCCO_1  
L20P_2  
L26P_2  
L30P_2  
INIT_B  
GCLK2  
I/O  
I/O  
L02P_1  
LDC1  
I/O  
L02N_1  
LDC0  
I/O  
I/O  
L25P_2  
I/O  
L31P_2  
I/O  
L34N_2  
I/O  
L33P_2  
I/O  
L05N_1  
I/O  
L07P_1  
GND  
L23P_2  
L18P_2  
GCLK14  
I/O  
I/O  
L28N_2  
D1  
I/O  
L01N_1  
LDC2  
I/O  
L21N_2  
I/O  
L23N_2  
I/O  
L25N_2  
I/O  
L27N_2  
I/O  
L34P_2  
I/O  
L05P_1  
DONE  
GND  
L18N_2  
GCLK15  
I/O  
I/O  
I/O  
L28P_2  
D2  
I/O  
I/O  
L01P_1  
HDC  
A
A
I/O  
L22P_2  
I/O  
L32N_2  
I/O  
L35N_2  
VCCO_2  
VCCO_2  
GND  
L19P_2  
L24N_2  
L36N_2  
GCLK0  
DOUT  
CCLK  
I/O  
I/O  
L36P_2  
D0  
I/O  
I/O  
A
B
I/O  
L21P_2  
I/O  
L27P_2  
I/O  
L29P_2  
I/O  
L29N_2  
I/O  
L32P_2  
I/O  
L35P_2  
L22N_2  
MOSI  
GND  
L19N_2  
L24P_2  
GCLK1  
AWAKE  
CSI_B  
DIN/MISO  
Bank 2  
DS557-4_02_032709  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
99  
R
Pinout Descriptions  
FGG676: 676-ball Fine-pitch Ball Grid Array  
The 676-ball fine-pitch ball grid array, FGG676, supports the  
XC3S1400AN FPGA.  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L18N_0  
Ball  
A18  
B18  
B17  
C17  
E15  
F15  
C16  
D17  
C15  
D16  
A15  
B15  
F14  
E14  
J14  
K14  
A14  
B14  
G13  
F13  
C13  
B13  
B12  
A12  
C12  
D13  
F12  
E12  
D11  
C11  
B10  
A10  
D10  
C10  
H12  
G12  
B9  
Type  
I/O  
Table 76 lists all the FGG676 package pins. They are sorted  
by bank number and then by pin name. Pairs of pins that  
form a differential I/O pair appear together in the table. The  
table also shows the pin number for each pin and the pin  
type, as defined earlier.  
IO_L18P_0  
I/O  
IO_L19N_0  
I/O  
IO_L19P_0  
I/O  
An electronic version of this package pinout table and  
footprint diagram is available for download from the Xilinx  
website at  
IO_L20N_0/VREF_0  
IO_L20P_0  
VREF  
I/O  
IO_L21N_0  
I/O  
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.  
IO_L21P_0  
I/O  
IO_L22N_0  
I/O  
Pinout Table  
IO_L22P_0  
I/O  
Table 76: Spartan-3AN FGG676 Pinout  
IO_L23N_0  
I/O  
FG676  
IO_L23P_0  
I/O  
Bank  
0
Pin Name  
IO_L01N_0  
Ball  
F20  
G20  
F19  
G19  
C22  
D22  
C23  
D23  
A22  
B23  
G17  
H17  
B21  
C21  
D21  
E21  
C20  
D20  
K16  
J16  
Type  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L24N_0  
I/O  
IO_L24P_0  
I/O  
0
IO_L01P_0  
IO_L02N_0  
IO_L02P_0/VREF_0  
IO_L05N_0  
IO_L05P_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0/VREF_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L25N_0/GCLK5  
IO_L25P_0/GCLK4  
IO_L26N_0/GCLK7  
IO_L26P_0/GCLK6  
IO_L27N_0/GCLK9  
IO_L27P_0/GCLK8  
IO_L28N_0/GCLK11  
IO_L28P_0/GCLK10  
IO_L29N_0  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
0
0
0
0
0
0
0
0
0
IO_L29P_0  
I/O  
0
IO_L30N_0  
I/O  
0
IO_L30P_0  
I/O  
0
IO_L31N_0  
I/O  
0
IO_L31P_0  
I/O  
0
IO_L32N_0/VREF_0  
IO_L32P_0  
VREF  
I/O  
0
0
IO_L33N_0  
I/O  
0
IO_L33P_0  
I/O  
0
IO_L34N_0  
I/O  
0
E17  
F17  
A20  
B20  
A19  
B19  
H15  
G15  
C18  
D18  
IO_L34P_0  
I/O  
0
IO_L35N_0  
I/O  
0
IO_L35P_0  
I/O  
0
IO_L36N_0  
I/O  
0
IO_L36P_0  
A9  
I/O  
0
IO_L37N_0  
D9  
I/O  
0
IO_L37P_0  
E10  
B8  
I/O  
0
IO_L38N_0  
I/O  
0
IO_L38P_0  
A8  
I/O  
0
IO_L39N_0  
K12  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
100  
Product Specification  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pin Name  
IO_L39P_0  
Ball  
J12  
D8  
Type  
I/O  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IP_0/VREF_0  
Ball  
D14  
G11  
J17  
Type  
VREF  
VREF  
VREF  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L40N_0  
IO_L40P_0  
IO_L41N_0  
IO_L41P_0  
IO_L42N_0  
IO_L42P_0  
IO_L43N_0  
IO_L43P_0  
IO_L44N_0  
IO_L44P_0  
IO_L45N_0  
IO_L45P_0  
IO_L46N_0  
IO_L46P_0  
IO_L47N_0  
IO_L47P_0  
IO_L48N_0  
IO_L48P_0  
IO_L51N_0  
IO_L51P_0  
IO_L52N_0/PUDC_B  
IO_L52P_0/VREF_0  
IP_0  
I/O  
IP_0/VREF_0  
IP_0/VREF_0  
N.C.  
C8  
I/O  
C6  
I/O  
A24  
B24  
D5  
B6  
I/O  
N.C.  
C7  
I/O  
N.C.  
B7  
I/O  
N.C.  
E9  
K11  
J11  
D6  
I/O  
N.C.  
F18  
I/O  
N.C.  
E6  
I/O  
N.C.  
F9  
C5  
I/O  
N.C.  
G18  
B5  
B4  
I/O  
VCCO_0  
A4  
I/O  
VCCO_0  
B11  
B16  
B22  
E8  
H10  
G10  
H9  
I/O  
VCCO_0  
I/O  
VCCO_0  
I/O  
VCCO_0  
G9  
I/O  
VCCO_0  
E13  
E19  
H11  
H16  
Y21  
Y20  
AD25  
AE26  
AC24  
AC23  
W21  
W20  
AC25  
AD26  
AB26  
AC26  
AB24  
AB23  
V19  
V18  
AA23  
AA22  
U20  
V21  
AA25  
AA24  
U18  
U19  
E7  
I/O  
VCCO_0  
F7  
I/O  
VCCO_0  
B3  
I/O  
VCCO_0  
A3  
I/O  
IO_L01N_1/LDC2  
IO_L01P_1/HDC  
IO_L02N_1/LDC0  
IO_L02P_1/LDC1  
IO_L03N_1/A1  
IO_L03P_1/A0  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L06N_1  
IO_L06P_1  
IO_L07N_1/VREF_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L10N_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
G8  
DUAL  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
F8  
A5  
IP_0  
A7  
IP_0  
A13  
A17  
A23  
C4  
IP_0  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
D12  
D15  
D19  
E11  
E18  
E20  
F10  
G14  
G16  
H13  
H18  
J10  
J13  
J15  
D7  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
VREF  
I/O  
IP_0  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0  
I/O  
IP_0/VREF_0  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
101  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L13N_1  
Ball  
Y23  
Y22  
T20  
U21  
Y25  
Y24  
T17  
T18  
V22  
W23  
V25  
V24  
U22  
V23  
R20  
R19  
U24  
U23  
R22  
R21  
T24  
T23  
R17  
R18  
R26  
R25  
P20  
P21  
P25  
P26  
N24  
P23  
N19  
P18  
M25  
M26  
N21  
P22  
M23  
L24  
N17  
N18  
K26  
K25  
Type  
I/O  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Pin Name  
IO_L42N_1/A17  
Ball  
M20  
N20  
J25  
Type  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L13P_1  
I/O  
IO_L42P_1/A16  
IO_L43N_1/A19  
IO_L43P_1/A18  
IO_L45N_1  
IO_L14N_1  
I/O  
IO_L14P_1  
I/O  
J26  
IO_L15N_1  
I/O  
M22  
M21  
K22  
K23  
M18  
M19  
J22  
IO_L15P_1  
I/O  
IO_L45P_1  
I/O  
IO_L17N_1  
I/O  
IO_L46N_1  
I/O  
IO_L17P_1  
I/O  
IO_L46P_1  
I/O  
IO_L18N_1  
I/O  
IO_L47N_1  
I/O  
IO_L18P_1  
I/O  
IO_L47P_1  
I/O  
IO_L19N_1  
I/O  
IO_L49N_1  
I/O  
IO_L19P_1  
I/O  
IO_L49P_1  
J23  
I/O  
IO_L21N_1  
I/O  
IO_L50N_1  
K21  
L22  
G24  
G23  
K20  
L20  
F24  
F25  
L17  
L18  
F23  
E24  
K18  
K19  
G22  
F22  
J20  
I/O  
IO_L21P_1  
I/O  
IO_L50P_1  
I/O  
IO_L22N_1  
I/O  
IO_L51N_1  
I/O  
IO_L22P_1  
I/O  
IO_L51P_1  
I/O  
IO_L23N_1/VREF_1  
IO_L23P_1  
VREF  
I/O  
IO_L53N_1  
I/O  
IO_L53P_1  
I/O  
IO_L25N_1/A3  
IO_L25P_1/A2  
IO_L26N_1/A5  
IO_L26P_1/A4  
IO_L27N_1/A7  
IO_L27P_1/A6  
IO_L29N_1/A9  
IO_L29P_1/A8  
IO_L30N_1/RHCLK1  
IO_L30P_1/RHCLK0  
IO_L31N_1/TRDY1/RHCLK3  
IO_L31P_1/RHCLK2  
IO_L33N_1/RHCLK5  
IO_L33P_1/RHCLK4  
IO_L34N_1/RHCLK7  
IO_L34P_1/IRDY1/RHCLK6  
IO_L35N_1/A11  
IO_L35P_1/A10  
IO_L37N_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
RHCLK  
DUAL  
DUAL  
I/O  
IO_L54N_1  
I/O  
IO_L54P_1  
I/O  
IO_L55N_1  
I/O  
IO_L55P_1  
I/O  
IO_L56N_1  
I/O  
IO_L56P_1  
I/O  
IO_L57N_1  
I/O  
IO_L57P_1  
I/O  
IO_L58N_1  
I/O  
IO_L58P_1/VREF_1  
IO_L59N_1  
VREF  
I/O  
IO_L59P_1  
J19  
I/O  
IO_L60N_1  
D26  
E26  
D24  
D25  
H21  
J21  
I/O  
IO_L60P_1  
I/O  
IO_L61N_1  
I/O  
IO_L61P_1  
I/O  
IO_L62N_1/A21  
IO_L62P_1/A20  
IO_L63N_1/A23  
IO_L63P_1/A22  
IO_L64N_1/A25  
IO_L64P_1/A24  
IP_L16N_1  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
INPUT  
INPUT  
VREF  
INPUT  
C25  
C26  
G21  
H20  
Y26  
W25  
V26  
W26  
IO_L37P_1  
I/O  
IO_L38N_1/A13  
IO_L38P_1/A12  
IO_L39N_1/A15  
IO_L39P_1/A14  
IO_L41N_1  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IP_L16P_1  
IP_L20N_1/VREF_1  
IP_L20P_1  
IO_L41P_1  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
102  
Product Specification  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IP_L24N_1/VREF_1  
IP_L24P_1  
Ball  
U26  
U25  
R24  
R23  
N25  
N26  
N23  
M24  
L23  
K24  
H25  
H26  
H24  
H23  
G25  
G26  
B25  
B26  
AB25  
E25  
H22  
L19  
L25  
N22  
T19  
T25  
W22  
AD4  
AC4  
AA7  
Y7  
Type  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
VREF  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IO_L11P_2  
Ball  
Type  
I/O  
AD7  
IO_L12N_2  
AA10  
Y10  
I/O  
IP_L28N_1  
IO_L12P_2  
I/O  
IP_L28P_1/VREF_1  
IP_L32N_1  
IO_L13N_2  
U11  
I/O  
IO_L13P_2  
V11  
I/O  
IP_L32P_1  
IO_L14N_2  
AB7  
I/O  
IP_L36N_1  
IO_L14P_2  
AC8  
I/O  
IP_L36P_1/VREF_1  
IP_L40N_1  
IO_L15N_2  
AC9  
I/O  
IO_L15P_2  
AB9  
I/O  
IP_L40P_1  
IO_L16N_2  
W12  
V12  
I/O  
IP_L44N_1  
IO_L16P_2  
I/O  
IP_L44P_1/VREF_1  
IP_L48N_1  
IO_L17N_2/VS2  
IO_L17P_2/RDWR_B  
IO_L18N_2  
AA12  
Y12  
DUAL  
DUAL  
I/O  
IP_L48P_1  
AF8  
IP_L52N_1/VREF_1  
IP_L52P_1  
IO_L18P_2  
AE8  
I/O  
IO_L19N_2/VS0  
IO_L19P_2/VS1  
IO_L20N_2  
AF9  
DUAL  
DUAL  
I/O  
IP_L65N_1  
AE9  
IP_L65P_1/VREF_1  
VCCO_1  
W13  
V13  
IO_L20P_2  
I/O  
VCCO_1  
IO_L21N_2  
AC12  
AB12  
AF10  
AE10  
AC11  
AD11  
AE12  
AF12  
Y13  
I/O  
VCCO_1  
IO_L21P_2  
I/O  
VCCO_1  
IO_L22N_2/D6  
IO_L22P_2/D7  
IO_L23N_2  
DUAL  
DUAL  
I/O  
VCCO_1  
VCCO_1  
VCCO_1  
IO_L23P_2  
I/O  
VCCO_1  
IO_L24N_2/D4  
IO_L24P_2/D5  
IO_L25N_2/GCLK13  
IO_L25P_2/GCLK12  
IO_L26N_2/GCLK15  
IO_L26P_2/GCLK14  
IO_L27N_2/GCLK1  
IO_L27P_2/GCLK0  
IO_L28N_2/GCLK3  
IO_L28P_2/GCLK2  
IO_L29N_2  
DUAL  
DUAL  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
GCLK  
I/O  
VCCO_1  
IO_L01N_2/M0  
IO_L01P_2/M1  
IO_L02N_2/CSO_B  
IO_L02P_2/M2  
IO_L05N_2  
AA13  
AE13  
AF13  
AA14  
Y14  
Y9  
IO_L05P_2  
W9  
I/O  
IO_L06N_2  
AF3  
AE3  
AF4  
AE4  
AD6  
AC6  
W10  
V10  
AE6  
AF5  
AE7  
I/O  
AE14  
AF14  
AC14  
AD14  
AB15  
AC15  
W15  
V14  
IO_L06P_2  
I/O  
IO_L07N_2  
I/O  
IO_L07P_2  
I/O  
IO_L29P_2  
I/O  
IO_L08N_2  
I/O  
IO_L30N_2/MOSI/CSI_B  
IO_L30P_2  
DUAL  
I/O  
IO_L08P_2  
I/O  
IO_L09N_2  
I/O  
IO_L31N_2  
I/O  
IO_L09P_2  
I/O  
IO_L31P_2  
I/O  
IO_L10N_2  
I/O  
IO_L32N_2/DOUT  
AE15  
DUAL  
IO_L10P_2  
I/O  
PWR  
MGMT  
2
IO_L32P_2/AWAKE  
AD15  
IO_L11N_2  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
103  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Pin Name  
IO_L33N_2  
Ball  
AD17  
AE17  
Y15  
Type  
I/O  
Bank  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
Pin Name  
Ball  
AD9  
AD10  
AD16  
AF2  
AF7  
Y11  
AA9  
AA20  
AB6  
AB10  
AC10  
AD12  
AF15  
AF17  
AF22  
Y16  
AA8  
AC5  
AC22  
AD5  
Y18  
Y19  
AD23  
W18  
Y8  
Type  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
N.C.  
IP_2  
IP_2  
IP_2  
IP_2  
IP_2  
IP_2  
IO_L33P_2  
IO_L34N_2/D3  
IO_L34P_2/INIT_B  
IO_L35N_2  
IO_L35P_2  
IO_L36N_2/D1  
IO_L36P_2/D2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L40P_2  
IO_L41N_2  
IO_L41P_2  
IO_L42N_2  
IO_L42P_2  
IO_L43N_2  
IO_L43P_2  
IO_L44N_2  
IO_L44P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
IO_L51N_2  
IO_L51P_2  
IO_L52N_2/CCLK  
IO_L52P_2/D0/DIN/MISO  
IP_2  
I/O  
DUAL  
DUAL  
I/O  
AA15  
U15  
V15  
I/O  
AE18  
AF18  
AE19  
AF19  
AB16  
AC16  
AE20  
AF20  
AC19  
AD19  
AC20  
AD20  
U16  
DUAL  
DUAL  
I/O  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
IP_2/VREF_2  
N.C.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C.  
N.C.  
I/O  
N.C.  
N.C.  
V16  
I/O  
N.C.  
N.C.  
Y17  
I/O  
N.C.  
N.C.  
AA17  
AD21  
AE21  
AC21  
AD22  
V17  
I/O  
N.C.  
N.C.  
I/O  
N.C.  
N.C.  
I/O  
N.C.  
N.C.  
I/O  
N.C.  
N.C.  
I/O  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO_L01N_3  
IO_L01P_3  
IO_L02N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
AB8  
AB14  
AB19  
AE5  
AE11  
AE16  
AE22  
W11  
W16  
J9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
W17  
I/O  
AA18  
AB18  
AE23  
AF23  
AE25  
AF25  
AE24  
AF24  
AA19  
AB13  
AB17  
AB20  
AC7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DUAL  
DUAL  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
J8  
I/O  
B1  
I/O  
IP_2  
B2  
I/O  
IP_2  
H7  
I/O  
IP_2  
G6  
I/O  
IP_2  
K8  
I/O  
IP_2  
AC13  
AC17  
AC18  
K9  
I/O  
IP_2  
E4  
I/O  
IP_2  
D3  
I/O  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
104  
Product Specification  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L07N_3  
Ball  
F4  
E3  
G4  
F5  
H6  
J7  
Type  
I/O  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Pin Name  
IO_L34N_3/LHCLK5  
IO_L34P_3/LHCLK4  
IO_L35N_3/LHCLK7  
IO_L35P_3/TRDY2/LHCLK6  
IO_L36N_3  
Ball  
P3  
P4  
P10  
N9  
R2  
R1  
R4  
R3  
T4  
Type  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
I/O  
IO_L07P_3  
I/O  
IO_L09N_3  
I/O  
IO_L09P_3  
I/O  
IO_L10N_3  
I/O  
IO_L10P_3  
I/O  
IO_L36P_3/VREF_3  
IO_L37N_3  
VREF  
I/O  
IO_L11N_3  
F2  
E1  
J6  
I/O  
IO_L11P_3  
I/O  
IO_L37P_3  
I/O  
IO_L13N_3  
I/O  
IO_L38N_3  
I/O  
IO_L13P_3  
K7  
F3  
G3  
L9  
I/O  
IO_L38P_3  
T3  
I/O  
IO_L14N_3  
I/O  
IO_L39N_3  
P6  
P7  
R6  
R5  
P9  
P8  
U4  
T5  
I/O  
IO_L14P_3  
I/O  
IO_L39P_3  
I/O  
IO_L15N_3  
I/O  
IO_L40N_3  
I/O  
IO_L15P_3  
L10  
H1  
H2  
L7  
I/O  
IO_L40P_3  
I/O  
IO_L17N_3  
I/O  
IO_L41N_3  
I/O  
IO_L17P_3  
I/O  
IO_L41P_3  
I/O  
IO_L18N_3  
I/O  
IO_L42N_3  
I/O  
IO_L18P_3  
K6  
J4  
I/O  
IO_L42P_3  
I/O  
IO_L19N_3  
I/O  
IO_L43N_3  
R9  
R10  
U2  
U1  
R7  
R8  
V2  
V1  
T9  
I/O  
IO_L19P_3  
J5  
I/O  
IO_L43P_3/VREF_3  
IO_L44N_3  
VREF  
I/O  
IO_L21N_3  
M9  
M10  
K4  
K5  
K2  
K3  
L3  
I/O  
IO_L21P_3  
I/O  
IO_L44P_3  
I/O  
IO_L22N_3  
I/O  
IO_L45N_3  
I/O  
IO_L22P_3  
I/O  
IO_L45P_3  
I/O  
IO_L23N_3  
I/O  
IO_L47N_3  
I/O  
IO_L23P_3  
I/O  
IO_L47P_3  
I/O  
IO_L25N_3  
I/O  
IO_L48N_3  
I/O  
IO_L25P_3  
L4  
I/O  
IO_L48P_3  
T10  
V5  
U5  
U6  
T7  
I/O  
IO_L26N_3  
M7  
M8  
M3  
M4  
M6  
M5  
M1  
M2  
N4  
N5  
N2  
N1  
N7  
N6  
P2  
P1  
I/O  
IO_L49N_3  
I/O  
IO_L26P_3  
I/O  
IO_L49P_3  
I/O  
IO_L27N_3  
I/O  
IO_L51N_3  
I/O  
IO_L27P_3  
I/O  
IO_L51P_3  
I/O  
IO_L28N_3  
I/O  
IO_L52N_3  
W4  
W3  
Y2  
Y1  
AA3  
AA2  
U8  
U7  
Y6  
Y5  
V6  
V7  
I/O  
IO_L28P_3  
I/O  
IO_L52P_3  
I/O  
IO_L29N_3/VREF_3  
IO_L29P_3  
VREF  
I/O  
IO_L53N_3  
I/O  
IO_L53P_3  
I/O  
IO_L30N_3  
I/O  
IO_L55N_3  
I/O  
IO_L30P_3  
I/O  
IO_L55P_3  
I/O  
IO_L31N_3  
I/O  
IO_L56N_3  
I/O  
IO_L31P_3  
I/O  
IO_L56P_3  
I/O  
IO_L32N_3/LHCLK1  
IO_L32P_3/LHCLK0  
IO_L33N_3/IRDY2/LHCLK3  
IO_L33P_3/LHCLK2  
LHCLK  
LHCLK  
LHCLK  
LHCLK  
IO_L57N_3  
I/O  
IO_L57P_3  
I/O  
IO_L59N_3  
I/O  
IO_L59P_3  
I/O  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
105  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
3
Pin Name  
IO_L60N_3  
Ball  
AC1  
AB1  
V8  
Type  
I/O  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A6  
3
IO_L60P_3  
IO_L61N_3  
IO_L61P_3  
IO_L63N_3  
IO_L63P_3  
IO_L64N_3  
IO_L64P_3  
IO_L65N_3  
IO_L65P_3  
IP_L04N_3/VREF_3  
IP_L04P_3  
IP_L08N_3  
IP_L08P_3  
IP_L12N_3/VREF_3  
IP_L12P_3  
IP_L16N_3  
IP_L16P_3  
IP_L20N_3/VREF_3  
IP_L20P_3  
IP_L24N_3  
IP_L24P_3  
IP_L46N_3  
IP_L46P_3  
IP_L50N_3/VREF_3  
IP_L50P_3  
IP_L54N_3  
IP_L54P_3  
IP_L58N_3/VREF_3  
IP_L58P_3  
IP_L62N_3  
IP_L62P_3  
IP_L66N_3/VREF_3  
IP_L66P_3  
VCCO_3  
I/O  
A11  
A16  
A21  
A26  
AA1  
AA6  
AA11  
AA16  
AA21  
AA26  
AD3  
AD8  
AD13  
AD18  
AD24  
AF1  
AF6  
AF11  
AF16  
AF21  
AF26  
C3  
3
I/O  
3
U9  
I/O  
3
W6  
W7  
AC3  
AC2  
AD2  
AD1  
C1  
I/O  
3
I/O  
3
I/O  
3
I/O  
3
I/O  
3
I/O  
3
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
INPUT  
INPUT  
VREF  
INPUT  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
3
C2  
3
D1  
3
D2  
3
H4  
3
G5  
G1  
G2  
J2  
3
3
3
3
J3  
3
K1  
3
J1  
3
V4  
3
U3  
C9  
3
W2  
W1  
Y4  
C14  
C19  
C24  
F1  
3
3
3
Y3  
3
AA5  
AA4  
AB4  
AB3  
AE2  
AE1  
AB2  
E2  
F6  
3
F11  
F16  
F21  
F26  
H3  
3
3
3
3
3
H8  
3
VCCO_3  
H14  
H19  
J24  
3
VCCO_3  
H5  
3
VCCO_3  
L2  
3
VCCO_3  
L8  
K10  
K17  
L1  
3
VCCO_3  
P5  
3
VCCO_3  
T2  
3
VCCO_3  
T8  
L6  
3
VCCO_3  
W5  
A1  
L11  
GND  
GND  
L13  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
106  
Product Specification  
R
Pinout Descriptions  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
Table 76: Spartan-3AN FGG676 Pinout (Continued)  
FG676  
FG676  
Bank  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Pin Name  
Ball  
L15  
L21  
L26  
M12  
M14  
M16  
N3  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
Pin Name  
Ball  
E16  
E22  
J18  
K13  
L5  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
N10  
P17  
T22  
U14  
V9  
N8  
N11  
N15  
P12  
P16  
P19  
P24  
R11  
R13  
R15  
T1  
K15  
L12  
L14  
L16  
M11  
M13  
M15  
M17  
N12  
N13  
N14  
N16  
P11  
P13  
P14  
P15  
R12  
R14  
R16  
T11  
T13  
T15  
U12  
T6  
T12  
T14  
T16  
T21  
T26  
U10  
U13  
U17  
V3  
W8  
W14  
W19  
W24  
PWR  
MGMT  
VCCAUX SUSPEND  
V20  
VCCAUX DONE  
VCCAUX PROG_B  
VCCAUX TCK  
AB21  
A2  
CONFIG  
CONFIG  
JTAG  
A25  
G7  
VCCAUX TDI  
JTAG  
VCCAUX TDO  
E23  
D4  
JTAG  
VCCAUX TMS  
JTAG  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
VCCAUX VCCAUX  
AB5  
VCCAUX  
AB11 VCCAUX  
AB22 VCCAUX  
E5  
VCCAUX  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
107  
R
Pinout Descriptions  
User I/Os by Bank  
Table 77 indicates how the 502 available user-I/O pins are  
distributed between the four I/O banks on the FGG676  
package. The AWAKE pin is counted as a Dual-Purpose  
I/O.  
Table 77: User I/Os Per Bank for the XC3S1400AN in the FGG676 Package  
All Possible I/O Pins by Type  
Package  
Edge  
I/O Bank  
Maximum I/O  
I/O  
82  
INPUT  
20  
DUAL  
1
VREF  
9
CLK  
8
Top  
0
1
2
3
120  
130  
120  
132  
502  
Right  
Bottom  
Left  
67  
15  
30  
21  
0
10  
10  
9
8
67  
14  
8
97  
18  
8
TOTAL  
313  
67  
52  
38  
32  
Footprint Migration Differences  
The XC3S1400AN is the only Spartan-3AN FPGA offered in  
the FGG676 package.  
The XC3S1400AN FPGA is pin compatible with the  
Spartan-3A XC3S1400A FPGA in the FG(G)676 package,  
although the Spartan-3A FPGA requires an external  
configuration source.  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
108  
Product Specification  
R
Pinout Descriptions  
X-Ref Target - Figure 23  
FG676 Footprint  
Bank 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Left Half of FG676  
Package (top view)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
INPUT  
GND  
INPUT  
GND  
INPUT  
A
B
C
D
E
F
L51P_0  
L45P_0  
L38P_0  
L36P_0  
L33P_0  
L29P_0  
PROG_B  
I/O  
L28P_0  
GCLK10  
I/O  
L02N_3  
I/O  
L02P_3  
I/O  
L51N_0  
I/O  
L45N_0  
I/O  
L41P_0  
I/O  
L42P_0  
I/O  
L38N_0  
I/O  
L36N_0  
I/O  
L33N_0  
I/O  
L29N_0  
VCCO_0  
VCCO_0  
INPUT  
L04N_3  
VREF_3  
I/O  
L28N_0  
GCLK11  
INPUT  
L04P_3  
I/O  
L44P_0  
I/O  
L41N_0  
I/O  
L42N_0  
I/O  
L40P_0  
I/O  
L34P_0  
I/O  
L32P_0  
I/O  
L30N_0  
I/O: Unrestricted,  
GND  
INPUT  
TMS  
GND  
general-purpose user I/O  
313  
67  
I/O  
L32N_0  
VREF_0  
INPUT INPUT  
L08N_3  
I/O  
L06P_3  
I/O  
INPUT  
I/O  
I/O  
L37N_0  
I/O  
L34N_0  
I/O  
L30P_0  
N.C.  
INPUT  
L08P_3  
L44N_0 VREF_0 L40N_0  
INPUT: Unrestricted,  
general-purpose input pin  
I/O  
L11P_3  
I/O  
L07P_3  
I/O  
L06N_3  
I/O  
L48N_0  
I/O  
L37P_0  
I/O  
L31P_0  
VCCO_3  
VCCAUX  
N.C.  
VCCO_0  
VCCO_0  
N.C.  
N.C.  
INPUT  
I/O  
L52P_0  
VREF_0  
I/O  
L27P_0  
GCLK8  
I/O  
L11N_3  
I/O  
L14N_3  
I/O  
L07N_3  
I/O  
L09P_3  
I/O  
L48P_0  
I/O  
L31N_0  
GND  
GND  
INPUT  
I/O  
GND  
DUAL: Configuration pins,  
then possible user I/O  
51  
I/O  
L52N_0  
PUDC_B  
I/O  
L27N_0  
GCLK9  
INPUT INPUT  
L16N_3  
I/O  
L14P_3  
I/O  
L09N_3  
INPUT  
L12P_3  
I/O  
L03P_3  
I/O  
L47P_0  
INPUT  
I/O  
L35P_0  
TDI  
G
H
J
L16P_3  
L46P_0 VREF_0  
SUSPEND: Dedicated  
SUSPEND and  
dual-purpose AWAKE  
Power Management pins  
INPUT  
L12N_3  
VREF_3  
I/O  
L17N_3  
I/O  
L17P_3  
I/O  
L10N_3  
I/O  
L03N_3  
I/O  
L47N_0  
I/O  
L46N_0  
I/O  
L35N_0  
VCCO_3  
VCCO_0  
GND  
GND  
INPUT  
INPUT  
VCCAUX  
2
INPUT  
L20N_3  
VREF_3  
INPUT  
L24P_3  
INPUT  
L20P_3  
I/O  
L19N_3  
I/O  
L19P_3  
I/O  
L13N_3  
I/O  
L10P_3  
I/O  
L01P_3  
I/O  
L01N_3  
I/O  
INPUT  
I/O  
L39P_0  
L43P_0  
VREF: User I/O or input  
voltage reference for bank  
INPUT  
L24N_3  
I/O  
L23N_3  
I/O  
L23P_3  
I/O  
L22N_3  
I/O  
L22P_3  
I/O  
L18P_3  
I/O  
L13P_3  
I/O  
L05N_3  
I/O  
L05P_3  
I/O  
GND  
I/O  
L39N_0  
38  
32  
2
K
L
L43N_0  
I/O  
L25N_3  
I/O  
L25P_3  
I/O  
L18N_3  
I/O  
L15N_3  
I/O  
L15P_3  
VCCO_3  
VCCAUX  
VCCO_3  
GND  
GND  
GND VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT VCCINT  
VCCINT GND VCCINT  
GND VCCINT GND  
VCCINT GND VCCINT  
CLK: User I/O, input, or  
clock buffer input  
I/O  
L29N_3  
VREF_3  
I/O  
L29P_3  
I/O  
L27N_3  
I/O  
L27P_3  
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L26N_3  
I/O  
L26P_3  
I/O  
L21N_3  
I/O  
L21P_3  
M
N
P
R
T
CONFIG: Dedicated  
configuration pins  
I/O  
I/O  
L32P_3  
LHCLK0 LHCLK1  
I/O  
L32N_3  
I/O  
L31P_3  
I/O  
L31N_3  
I/O  
L30N_3  
I/O  
L30P_3  
L35P_3  
TRDY2  
VCCAUX  
GND  
GND  
LHCLK6  
I/O  
I/O  
L33P_3  
LHCLK2  
I/O  
L34N_3  
LHCLK5 LHCLK4  
I/O  
L34P_3  
I/O  
L35N_3  
LHCLK7  
I/O  
L39N_3  
I/O  
L39P_3  
I/O  
L41P_3  
I/O  
L41N_3  
L33N_3  
IRDY2  
VCCO_3  
JTAG: Dedicated JTAG  
port pins  
LHCLK3  
4
I/O  
L36P_3  
VREF_3  
I/O  
L43P_3  
VREF_3  
I/O  
L36N_3  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L40P_3  
I/O  
L40N_3  
I/O  
L45N_3  
I/O  
L45P_3  
I/O  
L43N_3  
GND: Ground  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L42P_3  
I/O  
L51P_3  
I/O  
L48N_3  
I/O  
L48P_3  
VCCO_3  
VCCO_3  
GND  
GND  
77  
36  
23  
14  
17  
I/O  
I/O  
INPUT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCINT GND  
L13N_2  
U
V
W
Y
L44P_3  
L44N_3  
L46P_3  
L42N_3  
L49P_3  
L51N_3  
L56P_3  
L56N_3  
L61P_3  
VCCO: Output voltage  
supply for bank  
I/O  
L47P_3  
I/O  
L47N_3  
INPUT  
L46N_3  
I/O  
L49N_3  
I/O  
L59N_3  
I/O  
L59P_3  
I/O  
L61N_3  
I/O  
L09P_2  
I/O  
L13P_2  
I/O  
L16P_2  
I/O  
L20P_2  
VCCAUX  
GND  
INPUT  
L50N_3  
VREF_3  
INPUT  
L50P_3  
I/O  
L52P_3  
I/O  
L52N_3  
I/O  
L63N_3  
I/O  
L63P_3  
I/O  
L05P_2  
I/O  
L09N_2  
I/O  
L16N_2  
I/O  
L20N_2  
VCCO_3  
VCCO_2  
INPUT  
GND  
GND  
VCCINT: Internal core  
supply voltage (+1.2V)  
I/O  
L02P_2  
M2  
I/O  
L17P_2  
I/O  
L25N_2  
I/O  
L53P_3  
I/O  
L53N_3  
INPUT INPUT  
L54P_3  
I/O  
L57P_3  
I/O  
L57N_3  
I/O  
L05N_2  
I/O  
L12P_2  
N.C.  
N.C.  
L54N_3  
RDWR_B GCLK13  
VCCAUX: Auxiliary supply  
voltage  
INPUT  
L58N_3  
VREF_3  
I/O  
L02N_2  
CSO_B  
I/O  
L17N_2  
VS2  
I/O  
L25P_2  
GCLK12  
A
A
I/O  
L55P_3  
I/O  
L55N_3  
INPUT  
L58P_3  
INPUT  
VREF_2 L12N_2  
I/O  
GND  
GND  
A
B
I/O  
L60P_3  
INPUT INPUT  
L62P_3  
INPUT  
VREF_2 L14N_2  
I/O  
I/O  
INPUT  
I/O  
VCCO_3  
VCCAUX  
VCCO_2  
VCCAUX  
INPUT  
INPUT  
GND  
L62N_3  
L15P_2 VREF_2  
L21P_2  
N.C.: Not connected  
I/O  
L01P_2  
M1  
A
C
I/O  
L60N_3  
I/O  
L64P_3  
I/O  
L64N_3  
I/O  
I/O  
L14P_2  
I/O  
INPUT  
I/O  
I/O  
L21N_2  
N.C.  
N.C.  
INPUT  
L08P_2  
L15N_2 VREF_2 L23N_2  
I/O  
L01N_2  
M0  
A
D
I/O  
L65P_3  
I/O  
L65N_3  
I/O  
L08N_2  
I/O  
L11P_2  
I/O  
INPUT  
GND  
GND  
INPUT INPUT  
L23P_2 VREF_2  
INPUT  
L66N_3  
VREF_3  
I/O  
L19P_2  
VS1  
I/O  
L22P_2  
D7  
I/O  
L24N_2  
D4  
I/O  
L26N_2  
GCLK15  
A
E
INPUT  
L66P_3  
I/O  
L06P_2  
I/O  
L07P_2  
I/O  
L10N_2  
I/O  
L11N_2  
I/O  
L18P_2  
VCCO_2  
VCCO_2  
I/O  
L19N_2  
VS0  
I/O  
L22N_2  
D6  
I/O  
L24P_2  
D5  
I/O  
L26P_2  
GCLK14  
A
F
I/O  
L06N_2  
I/O  
L07N_2  
I/O  
L10P_2  
I/O  
L18N_2  
GND  
INPUT  
GND  
INPUT  
GND  
Bank 2  
DS557-4_07_032309  
Figure 23: FG676 Package Footprint (top view)  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
109  
R
Pinout Descriptions  
Bank 0  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O  
L26N_0  
GCLK7  
Right Half of FGG676  
Package (top view)  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
INPUT  
GND  
INPUT  
N.C.  
TCK  
GND  
A
B
C
D
E
F
L23N_0  
L18N_0  
L15N_0  
L14N_0  
L07N_0  
I/O  
L26P_0  
GCLK6  
I/O  
L14P_0  
VREF_0  
INPUT  
L65P_1  
VREF_1  
I/O  
L23P_0  
I/O  
L19N_0  
I/O  
L18P_0  
I/O  
L15P_0  
I/O  
L09N_0  
I/O  
L07P_0  
INPUT  
L65N_1  
VCCO_0  
VCCO_0  
N.C.  
I/O  
L63N_1  
A23  
I/O  
L63P_1  
A22  
I/O  
L22N_0  
I/O  
L21N_0  
I/O  
L19P_0  
I/O  
L17N_0  
I/O  
L11N_0  
I/O  
L09P_0  
I/O  
L05N_0  
I/O  
L06N_0  
GND  
GND  
INPUT  
VCCO_0  
GND  
INPUT  
VREF_0  
I/O  
L22P_0  
I/O  
L21P_0  
I/O  
L17P_0  
I/O  
L11P_0  
I/O  
L10N_0  
I/O  
L05P_0  
I/O  
L06P_0  
I/O  
L61N_1  
I/O  
L61P_1  
I/O  
L60N_1  
INPUT  
I/O  
L20N_0  
VREF_0  
I/O  
L24P_0  
I/O  
L13N_0  
I/O  
L10P_0  
I/O  
L56P_1  
I/O  
L60P_1  
VCCAUX  
GND  
VCCAUX  
VCCO_1  
INPUT  
N.C.  
INPUT  
TDO  
I/O  
L58P_1  
VREF_1  
I/O  
L24N_0  
I/O  
L20P_0  
I/O  
L13P_0  
I/O  
L02N_0  
I/O  
L01N_0  
I/O  
L56N_1  
I/O  
L54N_1  
I/O  
L54P_1  
GND  
GND  
I/O  
L02P_0  
VREF_0  
I/O  
L64N_1  
A25  
INPUT  
L52N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
GND  
INPUT  
N.C.  
G
H
J
L16P_0  
L08N_0  
L01P_0  
L58N_1  
L51P_1  
L51N_1  
L52P_1  
I/O  
L64P_1  
A24  
I/O  
L62N_1  
A21  
INPUT  
L44P_1  
VREF_1  
I/O  
L16N_0  
I/O  
L08P_0  
INPUT INPUT INPUT  
VCCO_0  
VCCO_1  
INPUT  
VCCAUX  
GND  
L48P_1  
L48N_1  
L44N_1  
I/O  
L25N_0  
GCLK5  
I/O  
L62P_1  
A20  
I/O  
L43N_1  
A19  
I/O  
L43P_1  
A18  
I/O  
INPUT  
L12P_0 VREF_0  
I/O  
L59P_1  
I/O  
L59N_1  
I/O  
L49N_1  
I/O  
L49P_1  
INPUT  
GND  
I/O  
L25P_0  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
I/O  
I/O  
VCCINT  
GND  
L12N_0  
K
L
L57N_1  
L57P_1  
L53N_1  
L50N_1  
L46N_1  
L46P_1  
L40P_1  
L41P_1  
L41N_1  
I/O  
L38P_1  
A12  
I/O  
L55N_1  
I/O  
L55P_1  
I/O  
L53P_1  
I/O  
L50P_1  
INPUT  
L40N_1  
VCCO_1  
VCCO_1  
VCCINT GND VCCINT  
GND  
GND  
I/O  
L42N_1  
A17  
I/O  
L38N_1  
A13  
INPUT  
L36P_1  
VREF_1  
I/O  
L35N_1  
A11  
I/O  
L35P_1  
A10  
I/O  
I/O  
I/O  
I/O  
GND VCCINT GND VCCINT  
I/O  
M
N
P
R
T
L47N_1  
L47P_1  
L45P_1  
L45N_1  
I/O  
L39P_1  
A14  
I/O  
L34N_1  
RHCLK7  
I/O  
L42P_1  
A16  
I/O  
L33N_1  
RHCLK5  
I/O  
L37N_1  
INPUT  
L36N_1  
INPUT INPUT  
L32N_1  
VCCO_1  
VCCINT GND VCCINT  
VCCINT VCCINT GND  
VCCINT GND VCCINT  
GND VCCINT GND  
L39N_1  
A15  
L32P_1  
I/O  
I/O  
I/O  
L30N_1  
RHCLK1 RHCLK0  
I/O  
L30P_1  
I/O  
L33P_1  
RHCLK4  
I/O  
L31P_1  
RHCLK2  
I/O  
L37P_1  
L34P_1  
IRDY1  
L31N_1  
TRDY1  
RHCLK  
VCCAUX  
GND  
GND  
RHCLK6  
3
I/O  
L27N_1  
A7  
I/O  
L27P_1  
A6  
I/O  
I/O  
L25N_1  
A3  
INPUT  
L28P_1  
VREF_1  
I/O  
L29P_1  
A8  
I/O  
L29N_1  
A9  
I/O  
L22P_1  
I/O  
L25P_1  
L22N_1  
A2  
INPUT  
L28N_1  
I/O  
L26P_1  
A4  
I/O  
L26N_1  
A5  
I/O  
L17N_1  
I/O  
L17P_1  
I/O  
VCCO_1  
VCCAUX  
VCCO_1  
GND  
L14N_1  
GND  
I/O  
L23N_1  
VREF_1  
INPUT  
L24N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
VCCAUX  
GND  
U
V
W
Y
L35N_2  
L42N_2  
L12N_1  
L12P_1  
L10N_1  
L14P_1  
L21N_1  
L23P_1  
L24P_1  
INPUT  
L20N_1  
VREF_1  
I/O  
L31P_2  
I/O  
L35P_2  
I/O  
L42P_2  
I/O  
L46N_2  
I/O  
L08P_1  
I/O  
L08N_1  
I/O  
L10P_1  
I/O  
L18N_1  
I/O  
L21P_1  
I/O  
L19P_1  
I/O  
L19N_1  
SUSPEND  
I/O  
L31N_2  
I/O  
L46P_2  
I/O  
L04P_1  
I/O  
L04N_1  
I/O  
L18P_1  
INPUT INPUT  
VCCO_2  
VCCO_1  
GND  
GND  
GND  
N.C.  
N.C.  
L16P_1  
L20P_1  
I/O  
L27P_2  
GCLK0  
I/O  
L34N_2  
D3  
I/O  
L01P_1  
HDC  
I/O  
L01N_1  
LDC2  
INPUT  
VREF_2  
I/O  
L43N_2  
I/O  
L13P_1  
I/O  
L13N_1  
I/O  
L15P_1  
I/O  
L15N_1  
INPUT  
L16N_1  
N.C.  
I/O  
L27N_2  
GCLK1  
I/O  
L34P_2  
INIT_B  
A
A
I/O  
I/O  
INPUT  
I/O  
I/O  
I/O  
I/O  
GND  
INPUT  
VCCO_2  
GND  
GND  
L43P_2  
L47N_2  
VREF_2  
L09P_1  
L09N_1  
L11P_1  
L11N_1  
I/O  
I/O  
L07N_1  
VREF_1  
A
B
I/O  
L38N_2  
I/O  
L47P_2  
I/O  
L07P_1  
I/O  
L06N_1  
L30N_2  
MOSI  
VCCO_2  
VCCAUX  
VCCO_1  
INPUT  
INPUT DONE  
CSI_B  
I/O  
L03P_1  
A0  
I/O  
L03N_1  
A1  
A
C
I/O  
L29N_2  
I/O  
L30P_2  
I/O  
L38P_2  
I/O  
L40N_2  
I/O  
L41N_2  
I/O  
L45N_2  
I/O  
L05N_1  
I/O  
L06P_1  
INPUT INPUT  
N.C.  
I/O  
L32P_2  
AWAKE  
I/O  
L02N_1  
LDC0  
A
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
VCCO_2  
GND  
GND  
L33N_2  
GND  
N.C.  
L29P_2  
L40P_2  
L41P_2  
L44N_2  
L45P_2  
L05P_1  
I/O  
L28N_2  
GCLK3  
I/O  
L32N_2  
DOUT  
I/O  
I/O  
I/O  
L52N_2  
CCLK  
I/O  
L02P_1  
LDC1  
A
E
I/O  
L37N_2  
I/O  
L39N_2  
I/O  
L44P_2  
I/O  
L48N_2  
I/O  
L51N_2  
VCCO_2  
L36N_2  
L33P_2  
D1  
I/O  
L52P_2  
D0  
I/O  
L28P_2  
GCLK2  
I/O  
INPUT  
VREF_2  
A
F
INPUT  
VREF_2  
I/O  
L37P_2  
I/O  
L39P_2  
INPUT  
VREF_2  
I/O  
L48P_2  
I/O  
L51P_2  
GND  
GND  
L36P_2  
D2  
DIN/MISO  
Bank 2  
DS557-4_08_032709  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
110  
Product Specification  
R
Pinout Descriptions  
Revision History  
The following table shows the revision history for this document.  
Date  
Version  
1.0  
Revision  
02/26/07  
08/16/07  
09/12/07  
09/24/07  
12/12/07  
Initial release.  
2.0  
Updated for Production release of initial device. Noted that family is available in Pb-free packages only.  
Minor updates to text.  
2.0.1  
2.1  
Update thermal characteristics in Table 67.  
3.0  
Updated to Production status with Production release of final family member, XC3S50AN. Noted that  
non-Pb-free packages may be available for selected devices. Updated thermal characteristics in  
Table 67. Updated links.  
06/02/08  
11/19/09  
3.1  
3.2  
Add "Package Overview" section. Removed VREF and INPUT designations and diamond symbols on  
unconnected N.C. pins for XC3S700AN FG484 in Table 74 and Figure 21 and for XC3S1400AN  
FGG676 in Table 76 and Figure 22.  
Renamed package Footprint Area’ to Body Area’ throughout document. Noted in "Introduction" that  
references to Pb-free package code also apply to the Pb package. Added Pb packages to Table 65 and  
Table 66. Changed Body Area of TQ144/TQG144 packages in Table 65. Corrected bank designation  
for SUSPEND to VCCAUX. Noted that non-Pb-free (Pb) packages are available for selected devices.  
Updated Table 75 and Figure 21 for I/O vs. Input pin counts.  
Notice of Disclaimer  
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND  
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED  
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE  
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.  
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE  
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES  
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO  
APPLICABLE LAWS AND REGULATIONS.  
DS557-4 (v3.2) November 19, 2009  
www.xilinx.com  
Product Specification  
111  
R
Pinout Descriptions  
www.xilinx.com  
DS557-4 (v3.2) November 19, 2009  
112  
Product Specification  

相关型号:

XC3S400AN-4FTG256I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, 8064-Cell, CMOS, PBGA256, ROHS COMPLIANT, FTBGA-256
XILINX

XC3S400AN-4TQ144I

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PQFP144, TQFP-144
XILINX

XC3S400AN-4TQG144C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 667MHz, CMOS, PQFP144, ROHS COMPLIANT, TQFP-144
XILINX

XC3S400AN-5FG676C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 770MHz, CMOS, PBGA676, FBGA-676
XILINX

XC3S400AN-5TQ144C

Field Programmable Gate Array, 896 CLBs, 400000 Gates, 770MHz, CMOS, PQFP144, TQFP-144
XILINX

XC3S50

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4CP132C

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4CP132I

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4CPG132C

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4CPG132I

Spartan-3 FPGA Family: Complete Data Sheet
XILINX

XC3S50-4FG1156C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S50-4FG1156I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX