XCR3128-15VQ100I [XILINX]

XCR3128: 128 Macrocell CPLD; XCR3128 : 128宏单元CPLD
XCR3128-15VQ100I
型号: XCR3128-15VQ100I
厂家: XILINX, INC    XILINX, INC
描述:

XCR3128: 128 Macrocell CPLD
XCR3128 : 128宏单元CPLD

可编程逻辑器件 输入元件 时钟
文件: 总18页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION NOTE  
0
R
XCR3128: 128 Macrocell CPLD  
0
14*  
DS034 (v1.2) August 10, 2000  
Product Specification  
Introduction  
Description  
Industry's first TotalCMOS™ PLD - both CMOS design  
and process technologies  
Fast Zero Power (FZP™) design technique provides  
ultra-low power and very high speed  
The XCR3128 CPLD (Complex Programmable Logic  
Device) is the third in a family of CoolRunner® CPLDs from  
Xilinx. These devices combine high speed and zero power  
in a 128 macrocell CPLD. With the FZP design technique,  
the XCR3128 offers true pin-to-pin speeds of 10 ns, while  
simultaneously delivering power that is less than 100 µA at  
standby without the need for turbo-bitsor other  
power-down schemes. By replacing conventional sense  
amplifier methods for implementing product terms (a tech-  
nique that has been used in PLDs since the bipolar era)  
with a cascaded chain of pure CMOS gates, the dynamic  
power is also substantially lower than any competing  
CPLD. These devices are the first TotalCMOS PLDs, as  
they use both a CMOS process technology and the pat-  
ented full CMOS FZP design technique. For 5V applica-  
tions, Xilinx also offers the high speed XCR5128 CPLD that  
offers these features in a full 5V implementation.  
IEEE 1149.1-compliant, JTAG Testing Capability  
-
-
-
Four pin JTAG interface (TCK, TMS, TDI, TDO)  
IEEE 1149.1 TAP Controller  
JTAG commands include: Bypass, Sample/Preload,  
Extest, Usercode, Idcode, HighZ  
3.3V, In-System Programmable (ISP) using the JTAG  
interface  
-
-
On-chip supervoltage generation  
ISP commands include: Enable, Erase, Program,  
Verify  
-
Supported by multiple ISP programming plat-  
forms  
High speed pin-to-pin delays of 10 ns  
Ultra-low static power of less than 100 µA  
100% routable with 100% utilization while all pins and  
all macrocells are fixed  
Deterministic timing model that is extremely simple to  
use  
The Xilinx FZP CPLDs utilize the patented XPLA  
(eXtended Programmable Logic Array) architecture. The  
XPLA architecture combines the best features of both PLA  
and PAL type structures to deliver high speed and flexible  
logic allocation that results in superior ability to make  
design changes with fixed pinouts. The XPLA structure in  
each logic block provides a fast 10 ns PAL path with five  
dedicated product terms per output. This PAL path is joined  
by an additional PLA structure that deploys a pool of 32  
product terms to a fully programmable OR array that can  
allocate the PLA product terms to any output in the logic  
block. This combination allows logic to be allocated effi-  
ciently throughout the logic block and supports as many as  
37 product terms on an output. The speed with which logic  
is allocated from the PLA array to an output is only 2.5 ns,  
regardless of the number of PLA product terms used, which  
results in worst case tPDs of only 12.5 ns from any pin to  
any other pin. In addition, logic that is common to multiple  
outputs can be placed on a single PLA product term and  
shared across multiple outputs via the OR array, effectively  
increasing design density.  
Four clocks available  
Programmable clock polarity at every macrocell  
Support for asynchronous clocking  
Innovative XPLA™ architecture combines high-speed  
with extreme flexibility  
1000 erase/program cycles guaranteed  
20 years data retention guaranteed  
Logic expandable to 37 product terms  
PCI compliant  
Advanced 0.5µ E2CMOS process  
Security bit prevents unauthorized access  
Design entry and verification using industry standard  
and Xilinx CAE tools  
Reprogrammable using industry standard device  
programmers  
Innovative control term structure provides either sum  
terms or product terms in each logic block for:  
The XCR3128 CPLDs are supported by industry standard  
CAE tools (CadencE/OrCAD, Exemplar Logic, Mentor,  
Synopsys, Synario, Viewlogic, and Synplicity), using text  
(ABEL, VHDL, Verilog) and/or schematic entry. Design ver-  
ification uses industry standard simulators for functional  
and timing simulation. Development is supported on per-  
sonal computer, Sparc, and HP platforms. Device fitting  
uses a Xilinx developed tool, XPLA Professional (available  
on the Xilinx web site).  
-
-
-
Programmable 3-state buffer  
Asynchronous macrocell register preset/reset  
Programmable global 3-state pin facilitates "bed of  
nails" testing without using logic resources  
Available in PLCC, VQFP, and PQFP packages  
Available in both commercial and industrial grades  
-
-
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
1
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
The XCR3128 CPLD is electrically reprogrammable using  
industry standard device programmers from vendors such  
as Data I/O, BP Microsystems, SMS, and others. The  
XCR3128 also includes an industry-standard, IEEE  
1149.1, JTAG interface through which in-system program-  
ming (ISP) and reprogramming of the device is supported.  
by a Zero-power Interconnect Array (ZIA). The ZIA is a vir-  
tual crosspoint switch. Each logic block is essentially a  
36V16 device with 36 inputs from the ZIA and 16 macro-  
cells. Each logic block also provides 32 ZIA feedback paths  
from the macrocells and I/O pins.  
From this point of view, this architecture looks like many  
other CPLD architectures. What makes the CoolRunner  
family unique is what is inside each logic block and the  
design technique used to implement these logic blocks.  
The contents of the logic block will be described next.  
XPLA Architecture  
Figure 1 shows a high level block diagram of a 128 macro-  
cell device implementing the XPLA architecture. The XPLA  
architecture consists of logic blocks that are interconnected  
MC0  
MC0  
MC1  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MC15  
MC15  
16  
16  
16  
16  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
MC15  
MC15  
16  
16  
16  
16  
ZIA  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
MC15  
MC15  
16  
16  
16  
16  
MC0  
MC1  
MC0  
MC1  
36  
36  
LOGIC  
BLOCK  
LOGIC  
BLOCK  
I/O  
MC15  
MC15  
16  
16  
16  
16  
SP00464  
Figure 1: Xilinx XPLA Architecture  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
2
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
Logic Block Architecture  
Each macrocell has five dedicated product terms from the  
PAL array. The pin-to-pin tPD of the XCR3128 device  
through the PAL array is 10 ns. If a macrocell needs more  
than five product terms, it simply gets the additional product  
terms from the PLA array. The PLA array consists of 32  
product terms, which are available for use by all 16 macro-  
cells. The additional propagation delay incurred by a mac-  
rocell using one or all 32 PLA product terms is just 2.5 ns.  
So the total pin-to-pin tPD for the XCR3128 using six to 37  
product terms is 12.5 ns (10 ns for the PAL + 2.5 ns for the  
PLA).  
Figure 2 illustrates the logic block architecture. Each logic  
block contains control terms, a PAL array, a PLA array, and  
16 macrocells. the six control terms can individually be con-  
figured as either SUM or PRODUCT terms, and are used to  
control the preset/reset and output enables of the 16 mac-  
rocellsflip-flops. The PAL array consists of a programma-  
ble AND array with a fixed OR array, while the PLA array  
consists of a programmable AND array with a programma-  
ble OR array. The PAL array provides a high speed path  
through the array, while the PLA array provides increased  
product term density.  
36 ZIA INPUTS  
6
CONTROL  
5
PAL  
ARRAY  
PLA  
ARRAY  
(32)  
SP00435A  
Figure 2: Xilinx XPLA Logic Block Architecture  
3
www.xilinx.com  
1-800-255-7778  
DS034 (v1.2) August 10, 2000  
R
XCR3128: 128 Macrocell CPLD  
control terms (CT2-CT5) can be used to control the Output  
Enable of the macrocells output buffers. The reason there  
are as many control terms dedicated for the Output Enable  
of the macrocell is to insure that all CoolRunner devices are  
PCI compliant. The macrocells output buffers can also be  
always enabled or disabled. All CoolRunner devices also  
provide a Global 3-state (GTS) pin, which, when enabled  
and pulled Low, will 3-state all the outputs of the device.  
This pin is provided to support "In-circuit Testing" or  
"Bed-of-nails" testing.  
Macrocell Architecture  
Figure 3 shows the architecture of the macrocell used in  
the CoolRunner family. The macrocell consists of a flip-flop  
that can be configured as either a D- or T-type. A D-type  
flip-flop is generally more useful for implementing state  
machines and data buffering. A T-type flip-flop is generally  
more useful in implementing counters. All CoolRunner fam-  
ily members provide both synchronous and asynchronous  
clocking and provide the ability to clock off either the falling  
or rising edges of these clocks. These devices are  
designed such that the skew between the rising and falling  
edges of a clock are minimized for clocking integrity. There  
are four clocks available on the XCR3128 device. Clock 0  
(CLK0) is designated as the "synchronous" clock and must  
be driven by an external source. Clock 1 (CLK1), Clock 2  
(CLK2), and Clock 3 (CLK3) can either be used as a syn-  
chronous clock (driven by an external source) or as an  
asynchronous clock (driven by a macrocell equation). The  
timing for asynchronous clocks is different in that the tCO  
time is extended by the amount of time that it takes for the  
signal to propagate through the array and reach the clock  
network, and the tSU time is reduced.  
There are two feedback paths to the ZIA: one from the mac-  
rocell, and one from the I/O pin. The ZIA feedback path  
before the output buffer is the macrocell feedback path,  
while the ZIA feedback path after the output buffer is the I/O  
pin ZIA path. When the macrocell is used as an output, the  
output buffer is enabled, and the macrocell feedback path  
can be used to feedback the logic implemented in the mac-  
rocell. When the I/O pin is used as an input, the output  
buffer will be 3-stated and the input signal will be fed into  
the ZIA via the I/O feedback path, and the logic imple-  
mented in the buried macrocell can be fed back to the ZIA  
via the macrocell feedback path. It should be noted that  
unused inputs or I/Os should be properly terminated (see  
the section on Terminationson page 9 in this data sheet  
and the application note Terminating Unused I/O Pins in  
Xilinx XPLA1 and XPLA2 CoolRunnerCPLDs).  
Two of the control terms (CT0 and CT1) are used to control  
the Preset/Reset of the macrocells flip-flop. The Pre-  
set/Reset feature for each macrocell can also be disabled.  
Note that the Power-on Reset leaves all macrocells in the  
"zero" state when power is properly applied. The other four  
TO ZIA  
PAL  
LA  
D/T  
Q
INIT  
(P or R)  
GTS  
CLK0  
CLK0  
GND  
CT0  
CT1  
CT2  
CT3  
CT4  
CT5  
CLK1  
CLK1  
CLK2  
CLK2  
GND  
CLK3  
CLK3  
V
CC  
GND  
SP00457  
Figure 3: XCR3128 Macrocell Architecture  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
4
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
Simple Timing Model  
TotalCMOS Design Technique for Fast Zero  
Power  
Figure 4 shows the CoolRunner Timing Model. The Cool-  
Runner timing model looks very much like a 22V10 timing  
model in that there are three main timing parameters,  
including tPD, tSU, and tCO. In other competing architec-  
tures, the user may be able to fit the design into the CPLD,  
but is not sure whether system timing requirements can be  
met until after the design has been fit into the device. This is  
because the timing models of competing architectures are  
very complex and include such things as timing dependen-  
cies on the number of parallel expanders borrowed, shar-  
able expanders, varying number of X and Y routing  
channels used, etc. In the XPLA architecture, the user  
knows up front whether the design will meet system timing  
requirements. This is due to the simplicity of the timing  
model.  
Xilinx is the first to offer a TotalCMOS CPLD, both in pro-  
cess technology and design technique. Xilinx employs a  
cascade of CMOS gates to implement its Sum of Products  
instead of the traditional sense amp approach. This CMOS  
gate implementation allows Xilinx to offer CPLDs which are  
both high performance and low power, breaking the para-  
digm that to have low power, you must have low perfor-  
mance. Refer to Figure 5 and Table 1 showing the ICC vs.  
Frequency of our XCR3128 TotalCMOS CPLD (data taken  
w/eight up/down, loadable 16 bit counters at 3.3V, 25°C).  
t
= COMBINATORIAL PAL ONLY  
= COMBINATORIAL PAL + PLA  
PD_PAL  
t
PD_PLA  
INPUT PIN  
OUTPUT PIN  
REGISTERED  
= PAL ONLY  
t
t
REGISTERED  
SU_PAL  
= PAL + PLA  
t
SU_PLA  
CO  
INPUT PIN  
D
Q
OUTPUT PIN  
SP00441  
GLOBAL CLOCK PIN  
Figure 4: CoolRunner Timing Model  
5
www.xilinx.com  
DS034 (v1.2) August 10, 2000  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
140  
120  
100  
80  
I
CC  
(mA)  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
SP00471  
Figure 5: ICC vs. Frequency @ VCC = 3.3V, 25°C  
Table 1: ICC vs. Frequency (VCC = 3.3V, 25°C)  
Frequency (MHz)  
0
1
20  
40  
24  
60  
80  
100  
Typical ICC (mA)  
.03  
.06  
12  
35  
46  
63  
-
Data from pin or core logic signals can be examined  
during normal operation  
JTAG Testing Capability  
JTAG is the commonly-used acronym for the Boundary  
Scan Test (BST) feature defined for integrated circuits by  
IEEE Standard 1149.1. This standard defines input/output  
pins, logic control functions, and commands which facilitate  
both board and device level testing without the use of spe-  
cialized test equipment. BST provides the ability to test the  
external connections of a device, test the internal logic of  
the device, and capture data from the device during normal  
operation. BST provides a number of benefits in each of the  
following areas:  
Reliability  
-
-
-
-
Eliminates physical contacts common to existing test  
fixtures (e.g., "bed-of-nails")  
Degradation of test equipment is no longer a  
concern  
Facilitates the handling of smaller, surface-mount  
components  
Allows for testing when components exist on both  
sides of the printed circuit board  
Cost  
Testability  
-
Reduces/eliminates the need for expensive test  
-
Allows testing of an unlimited number of  
equipment  
interconnects on the printed circuit board  
Testability is designed in at the component level  
Enables desired signal levels to be set at specific  
pins (Preload)  
-
-
Reduces test preparation time  
Reduces spare board inventories  
-
-
The Xilinx XCR3128's JTAG interface includes a TAP Port  
and a TAP Controller, both of which are defined by the IEEE  
1149.1 JTAG Specification. As implemented in the Xilinx  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
1-800-255-7778  
6
R
XCR3128: 128 Macrocell CPLD  
XCR3128, the TAP Port includes four of the five pins (refer  
to Table 2) described in the JTAG specification: TCK, TMS,  
TDI, and TDO. The fifth signal defined by the JTAG specifi-  
cation is TRST* (Test Reset). TRST* is considered an  
optional signal, since it is not actually required to perform  
BST or ISP. The Xilinx XCR3128 saves an I/O pin for gen-  
eral purpose use by not implementing the optional TRST*  
signal in the JTAG interface. Instead, the Xilinx XCR3128  
supports the test reset functionality through the use of its  
power up reset circuit, which is included in all Xilinx CPLDs.  
The pins associated with the power up reset circuit should  
connect to an external pull-up resistor to keep the JTAG  
signals from floating when they are not being used.  
ever, unlike competing CPLDs, the Xilinx XCR3128 does  
allow the macrocell logic associated with these dedicated  
pins to be used as buried logic even when JTAG/ISP is  
selected. Table 3 defines the dedicated pins used by the  
four mandatory JTAG signals for each of the XCR3128  
package types.  
The JTAG specifications defines two sets of commands to  
support boundary-scan testing: high-level commands and  
low-level commands. High-level commands are executed  
via board test software on an a user test station such as  
automated test equipment, a PC, or an engineering work-  
station (EWS). Each high-level command comprises a  
sequence of low level commands. These low-level com-  
mands are executed within the component under test, and  
therefore must be implemented as part of the TAP Control-  
ler design. The set of low-level boundary-scan commands  
implemented in the Xilinx XCR3128 is defined in Table 4.  
By supporting this set of low-level commands, the  
XCR3128 allows execution of all high-level boundary-scan  
commands.  
In the Xilinx XCR3128, the four mandatory JTAG pins each  
require a unique, dedicated pin on the device. However, if  
JTAG and ISP are not desired in the end-application, these  
pins may instead be used as additional general I/O pins.  
The decision as to whether these pins are used for  
JTAG/ISP or as general I/O is made when the JEDEC file is  
generated. If the use of JTAG/ISP is selected, the dedi-  
cated pins are not available for general purpose use. How-  
Table 2: JTAG Pin Description  
PIN  
NAME  
Test Clock Output  
DESCRIPTION  
TCK  
Clock pin to shift the serial data and instructions in and out of the  
TDI and TDO pins, respectively. TCK is also used to clock the TAP  
Controller state machine.  
TMS  
TDI  
Test Mode Select  
Test Data Input  
Test Data Output  
Serial input pin selects the JTAG instruction mode. TMS should be  
driven high during user mode operation.  
Serial input pin for instructions and test data. Data is shifted in on  
the rising edge of TCK.  
TDO  
Serial output pin for instructions and test data. Data is shifted out on  
the falling edge of TCK. The signal is tri-stated if data is not being  
shifted out of the device.  
Table 3: XCR3128 JTAG Pinout by Package Type  
Device  
(Pin Number / Macrocell #)  
XCR3128  
TCK  
TMS  
TDI  
TDO  
84-pin PLCC  
100-pin PQFP  
100-pin VQFP  
128-pin TQFP  
160-pin PQFP  
62 / 96 (F15)  
64 / 96 (F15)  
62 / 96 (F15)  
82 / 96 (F15)  
99 / 96 (F15)  
23 / 48 (C15)  
17 / 48 (C15)  
15 / 48 (C15)  
21 / 48 (C15)  
22 / 48 (C15)  
14 / 32 (B15)  
6 / 32 (B15)  
4 / 32 (B15)  
8 / 32 (B15)  
9 / 32 (B15)  
71 / 112 (G15)  
75 / 112 (G15)  
73 / 112 (G15)  
95 / 112 (G15)  
112/ 112 (G15)  
7
www.xilinx.com  
DS034 (v1.2) August 10, 2000  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
Table 4: XCR3128 Low-Level JTAG Boundary-Scan Commands  
Instruction  
(Instruction Code)  
Register Used  
Description  
Sample/Preload  
(0010)  
Boundary-Scan Register  
The mandatory SAMPLE/PRELOAD instruction allows a snapshot of the normal  
operation of the component to be taken and examined. It also allows data values to  
be loaded onto the latched parallel outputs of the Boundary-Scan Shift-Register  
prior to selection of the other boundary-scan test instructions.  
Extest  
(0000)  
Boundary-Scan Register  
The mandatory EXTEST instruction allows testing of off-chip circuitry and board  
level interconnections. Data would typically be loaded onto the latched parallel  
outputs of Boundary-Scan Shift-Register using the Sample/Preload instruction prior  
to selection of the EXTEST instruction.  
Bypass  
(1111)  
Bypass Register  
Places the 1 bit bypass register between the TDI and TDO pins, which allows the  
BST data to pass synchronously through the selected device to adjacent devices  
during normal device operation. The Bypass instruction can be entered by holding  
TDI at a constant high value and completing an Instruction-Scan cycle.  
Idcode  
(0001)  
Boundary-Scan Register  
Selects the IDCODE register and places it between TDI and TDO, allowing the  
IDCODE to be serially shifted out of TDO. The IDCODE instruction permits blind  
interrogation of the components assembled onto a printed circuit board. Thus, in  
circumstances where the component population may vary, it is possible to deter-  
mine what components exist in a product.  
HighZ  
(0101)  
Bypass Register  
The HIGHZ instruction places the component in a state in which all of its system  
logic outputs are placed in an inactive drive state (e.g., high impedance). In this  
state, an in-circuit test system may drive signals onto the connections normally  
driven by a component output without incurring the risk of damage to the compo-  
nent. The HighZ instruction also forces the Bypass Register between TDI and TDO.  
Field Support  
3.3V In-System Programming (ISP)  
-
-
Easy remote upgrades and repair  
Support for field configuration, re-configuration, and  
customization  
ISP is the ability to reconfigure the logic and functionality of  
a device, printed circuit board, or complete electronic sys-  
tem before, during, and after its manufacture and shipment  
to the end customer. ISP provides substantial benefits in  
each of the following areas:  
The Xilinx XCR3128 allows for 3.3V, in-system program-  
ming/reprogramming of its EEPROM cells via its JTAG  
interface. An on-chip charge pump eliminates the need for  
externally-provided supervoltages, so that the XCR3128  
may be easily programmed on the circuit board using only  
the 3.3-volt supply required by the device for normal opera-  
tion. A set of low-level ISP basic commands implemented in  
the XCR3128 enable this feature. The ISP commands  
implemented in the Xilinx XCR3128 are specified in Table 5  
Please note that an ENABLE command must precede all  
ISP commands unless an ENABLE command has already  
been given for a preceding ISP command and the device  
has not gone through a Test-Logic/Rest TAP Controller  
State. See also Table 5 Programming Specifications.  
Design  
-
-
-
-
Faster time-to-market  
Debug partitioning and simplified prototyping  
Printed circuit board reconfiguration during debug  
Better device and board level testing  
Manufacturing  
-
-
-
Multi-Functional hardware  
Reconfigurability for test  
Eliminates handling of "fine lead-pitch" components  
for programming  
-
-
Reduced Inventory and manufacturing costs  
Improved quality and reliability  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
1-800-255-7778  
8
R
XCR3128: 128 Macrocell CPLD  
Table 5: Programming Specifications  
Symbol  
Parameter  
Min.  
3.0  
Max.  
Unit  
DC Parameters  
VCCP  
ICCP  
VIH  
VCC supply program/verify  
ICC limit program/verify  
Input voltage (High)  
3.6  
V
mA  
V
200  
2.0  
VIL  
Input voltage (Low)  
0.8  
0.5  
V
VSOL  
VSOH  
Output voltage (Low)  
Output voltage (High)  
V
2.4  
8
V
TDO_IOL Output current (Low)  
TDO_IOH Output current (High)  
mA  
mA  
-8  
AC Parameters  
fMAX  
PWE  
PWP  
PWV  
INIT  
CLK maximum frequency  
Pulse width erase  
10  
100  
10  
MHz  
ms  
ms  
µs  
Pulse width program  
Pulse width verify  
10  
Initialization time  
100  
10  
µs  
TMS_SU TMS setup time before TCK =  
ns  
TDI_SU  
TMS_H  
TDI_H  
TDI setup time before TCK =  
TMS hold time after TCK =  
TDI hold time after TCK =  
10  
ns  
25  
ns  
25  
ns  
TDO_CO TDO valid after TCK Ο  
40  
ns  
ting these signals float can cause the voltage on TMS to  
come close to ground, which could cause the device to  
enter JTAG/ISP mode at unspecified times. See the appli-  
cation notes JTAG and ISP Overview for Xilinx XPLA1 and  
XPLA2 CPLDs and Terminating Unused I/O Pins in Xilinx  
XPLA1 and XPLA2 CoolRunner CPLDs for more informa-  
tion.  
Terminations  
The CoolRunner XCR3128 CPLDs are TotalCMOS  
devices. As with other CMOS devices, it is important to  
consider how to properly terminate unused inputs and I/O  
pins when fabricating a PC board. Allowing unused inputs  
and I/O pins to float can cause the voltage to be in the linear  
region of the CMOS input structures, which can increase  
the power consumption of the device. The XCR3128  
CPLDs have programmable on-chip pull-down resistors on  
each I/O pin. These pull-downs are automatically activated  
by the fitter software for all unused I/O pins. Note that an I/O  
macrocell used as buried logic that does not have the I/O  
pin used for input is considered to be unused, and the  
pull-down resistors will be turned on. We recommend that  
any unused I/O pins on the XCR3128 device be left uncon-  
nected.  
JTAG and ISP Interfacing  
A number of industry-established methods exist for  
JTAG/ISP interfacing with CPLDs and other integrated cir-  
cuits. The Xilinx XCR3128 supports the following methods:  
PC parallel port  
Workstation or PC serial port  
Embedded processor  
Automated test equipment  
Third party programmers  
High-End JTAG and ISP tools  
There are no on-chip pull-down structures associated with  
the dedicated input pins. Xilinx recommends that any  
unused dedicated inputs be terminated with external 10kΩ  
pull-up resistors. These pins can be directly connected to  
VCC or GND, but using the external pull-up resistors main-  
tains maximum design flexibility should one of the unused  
dedicated inputs be needed due to future design changes.  
A Boundary-Scan Description Language (BSDL) descrip-  
tion of the XCR3128 is also available from Xilinx for use in  
test program development. For more details on JTAG and  
ISP for the XCR3128, refer to the related application note:  
JTAG and ISP Overview for Xilinx XPLA1 and XPLA2  
CPLDs.  
When using the JTAG/ISP functions, it is also recom-  
mended that 10kpull-up resistors be used on each of the  
pins associated with the four mandatory JTAG signals. Let-  
9
www.xilinx.com  
1-800-255-7778  
DS034 (v1.2) August 10, 2000  
R
XCR3128: 128 Macrocell CPLD  
Absolute Maximum Ratings1  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
-0.5  
7.0  
V
Supply voltage2  
VI  
VOUT  
IIN  
-1.2  
-0.5  
-30  
VCC + 0.5  
V
V
Input voltage  
Output voltage  
Input current  
Output current  
VCC + 0.5  
30  
mA  
mA  
°C  
°C  
IOUT  
TJ  
-100  
-40  
100  
150  
Maximum junction temperature  
Storage temperature  
Tstr  
-65  
150  
Notes:  
1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only.  
Functional operation at these or any other condition above those indicated in the operational and programming specification  
is not implied.  
2. The chip supply voltage must rise monotonically.  
Operating Range  
Product Grade  
Commercial  
Industrial  
Temperature  
0 to +70°C  
Voltage  
3.3V ± 10%  
3.3V ± 10%  
-40 to +85°C  
DC Electrical Characteristics For Commercial Grade Devices  
Commercial: 0°C TAMB +70°C; 3.0V VCC 3.6V  
Symbol  
VIL  
Parameter  
Input voltage low  
Test Conditions  
Min.  
Max.  
Unit  
V
VCC = 3.0V  
VCC = 3.6V  
0.8  
VIH  
VI  
Input voltage high  
2.0  
V
Input clamp voltage  
Output voltage low  
Output voltage high  
Input leakage current  
3-stated output leakage current  
Standby current  
VCC = 3.0V, IIN = -18 mA  
VCC = 3.0V, IOL = 8 mA  
VCC = 3.0V, IOH = -8 mA  
VIN = 0 to VCC  
-1.2  
0.5  
V
VOL  
VOH  
II  
V
2.4  
-10  
-10  
V
10  
10  
µA  
µA  
µA  
mA  
mA  
mA  
IOZ  
ICCQ  
ICCD  
VIN = 0 to VCC  
1
VCC = 3.6V, TAMB = 0°C  
VCC = 3.6V, TAMB = 0°C at 1 MHz  
60  
1, 2  
Dynamic current  
2
V
CC = 3.6V, TAMB = 0°C at 50 MHz  
50  
IOS  
CIN  
Short circuit output current3  
One pin at a time for no longer than 1  
second  
-50  
5
-100  
Input pin capacitance3  
Clock input capacitance3  
I/O pin capacitance3  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1MHz  
TAMB = 25°C, f = 1MHz  
8
pF  
pF  
pF  
CCLK  
CI/O  
12  
10  
Notes:  
1. See Table 1 on page 6 for typical values.  
2. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs disabled  
and unloaded. Inputs are tied to VCC or ground. This parameter guaranteed by design and characterization, not testing.  
3. Typical values, not tested.  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
10  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
AC Electrical Characteristics1 For Commercial Grade Devices  
Commercial: 0°C TAMB +70°C; 3.0V VCC 3.6V  
10  
12  
15  
Symbol  
Parameter  
Unit  
Min. Max. Min. Max. Min. Max.  
tPD_PAL  
Propagation delay time, input (or feedback node) to  
output through PAL  
2
3
10  
12.5  
7
2
3
12  
14.5  
8
2
3
15  
17.5  
9
ns  
tPD_PLA  
Propagation delay time, input (or feedback node) to  
output through PAL + PLA  
ns  
tCO  
Clock to out (global synchronous clock from pin)  
2
6
2
7
2
8
ns  
ns  
ns  
tSU_PAL  
tSU_PLA  
Setup time (from input or feedback node) through PAL  
Setup time (from input or feedback node) through  
PAL + PLA  
8.5  
9.5  
10.5  
tH  
Hold time  
0
0
0
ns  
ns  
tCH  
Clock High time  
Clock Low time  
Input Rise time  
Input Fall time  
3
3
4
4
4
4
tCL  
ns  
tR  
20  
20  
20  
20  
20  
20  
ns  
tF  
ns  
fMAX1  
fMAX2  
fMAX3  
tBUF  
Maximum FF toggle rate 2 1/(tCH + tCL  
Maximum internal frequency 2 1/(tSUPAL + tCF  
)
167  
87  
125  
74  
125  
65  
MHz  
MHz  
MHz  
ns  
)
Maximum external frequency 2 1/(tSUPAL + tCO  
)
77  
66  
59  
Output buffer delay time  
1.5  
0.5  
1.5  
1.5  
tPDF_PAL Input (or feedback node) to internal feedback node delay  
time through PAL  
2
3
2
3
10.5  
2
3
13.5  
ns  
tPDF_PLA Input (or feedback node) to internal feedback node delay  
time through PAL+PLA  
11  
13  
16  
ns  
tCF  
Clock to internal feedback node delay time  
Delay from valid VDD to valid reset  
Input to output disable 3  
5.5  
50  
6.5  
50  
14  
14  
16  
16  
7.5  
50  
17  
17  
19  
19  
ns  
µs  
ns  
ns  
ns  
ns  
tINIT  
tER  
12.5  
12.5  
14  
tEA  
Input to output valid  
tRP  
Input to register preset  
tRR  
Input to register reset  
14  
Notes:  
1. Specifications measured with one output switching. See Figure 6 and Table 6 for derating.  
2. This parameter guaranteed by design and characterization, not by test.  
3. Output CL = 5 pF.  
11  
www.xilinx.com  
DS034 (v1.2) August 10, 2000  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
DC Electrical Characteristics For Industrial Grade Devices  
Industrial: -40°C TAMB +85°C; 3.0V VCC 3.6V  
Symbol  
VIL  
Parameter  
Input voltage Low  
Test Conditions  
Min.  
Max.  
Unit  
V
VCC = 3.0V  
VCC = 3.6V  
0.8  
VIH  
VI  
Input voltage High  
2.0  
V
Input clamp voltage  
Output voltage Low  
Output voltage High  
Input leakage current  
3-stated output leakage current  
Standby current  
VCC = 3.0V, IIN = -18 mA  
VCC = 3.0V, IOL = 8 mA  
VCC = 3.0V, IOH = -8 mA  
VIN = 0 to VCC  
-1.2  
0.5  
V
VOL  
VOH  
II  
V
2.4  
-10  
-10  
V
10  
10  
µA  
µA  
µA  
mA  
mA  
mA  
IOZ  
VIN = 0 to VCC  
1
ICCQ  
VCC = 3.6V, TAMB = -40°C  
VCC = 3.6V, TAMB = -40°C at 1 MHz  
VCC = 3.6V, TAMB = -40°C at 50 MHz  
75  
1, 2  
ICCD  
Dynamic current  
2
50  
IOS  
CIN  
Short circuit output current3  
Input pin capacitance3  
One pin at a time for no longer than 1  
second  
-50  
5
-130  
TAMB = 25°C, f = 1 MHz  
TAMB = 25°C, f = 1MHz  
TAMB = 25°C, f = 1MHz  
8
pF  
pF  
pF  
CCLK Clock input capacitance3  
12  
10  
CI/O  
I/O pin capacitance3  
Notes:  
1. See Table 1 on page 6 for typical values.  
2. This parameter measured with a 16-bit, loadable up/down counter loaded into every logic block, with all outputs DISabled  
and unloaded. Inputs are tied to VCC or ground. This parameter guaranteed by design and characterization, not testing.  
3. Typical values, not tested.  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
12  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
AC Electrical Characteristics1 For Industrial Grade Devices  
Industrial: -40°C TAMB +85°C; 3.0V VCC 3.6V  
12  
15  
Symbol  
Parameter  
Unit  
Min. Max. Min. Max.  
tPD_PAL  
tPD_PLA  
Propagation delay time, input (or feedback node) to output through PAL  
2
3
12  
2
3
15  
ns  
ns  
Propagation delay time, input (or feedback node) to output through  
PAL + PLA  
14.5  
17.5  
tCO  
Clock to out (global synchronous clock from pin)  
2
7
7.5  
0
2
8
9
0
ns  
ns  
tSU_PAL  
tSU_PLA  
tH  
Setup time (from input or feedback node) through PAL  
Setup time (from input or feedback node) through PAL + PLA  
9.5  
10.5  
ns  
Hold time  
ns  
tCH  
Clock High time  
Clock Low time  
Input Rise time  
Input Fall time  
3
3
4
4
ns  
tCL  
ns  
tR  
20  
20  
20  
20  
ns  
tF  
ns  
fMAX1  
fMAX2  
fMAX3  
tBUF  
Maximum FF toggle rate2 1/(tCH + tCL  
Maximum internal frequency2 1/(tSUPAL + tCF  
)
167  
77  
125  
65  
MHz  
MHz  
MHz  
ns  
)
Maximum external frequency2 1/(tSUPAL + tCO  
)
69  
59  
Output buffer delay time  
1.5  
1.5  
tPDF_PAL Input (or feedback node) to internal feedback node delay time through  
PAL  
2
3
10.5  
2
3
13.5  
ns  
tPDF_PLA Input (or feedback node) to internal feedback node delay time through  
PAL+PLA  
13  
16  
ns  
tCF  
Clock to internal feedback node delay time  
Delay from valid VCC to valid reset  
Input to output disable 3  
6
7.5  
50  
ns  
µs  
ns  
ns  
ns  
ns  
tINIT  
tER  
50  
13  
13  
15  
15  
15.5  
15.5  
17  
tEA  
Input to output valid  
tRP  
Input to register preset  
tRR  
Input to register reset  
17  
Notes:  
1. Specifications measured with one output switching. See Figure 6 and Table 8 for derating.  
2. This parameter guaranteed by design and characterization, not by test.  
3. Output CL = 5 pF.  
13  
www.xilinx.com  
DS034 (v1.2) August 10, 2000  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
Switching Characteristics  
The test load circuit and load values for the AC Electrical Characteristics are illustrated below.  
V
CC  
COMPONENT  
VALUES  
390Ω  
S1  
R1  
R2  
C1  
390Ω  
R1  
R2  
35 pF  
V
IN  
V
OUT  
MEASUREMENT  
S1  
S2  
C1  
t
Open  
Closed  
Closed  
Closed  
PZH  
t
Closed  
Closed  
PZL  
t
P
S2  
Note: For tPHZ and tPLZ C = 5 pF, and 3-state levels are  
measured 0.5V from steady-state active level.  
SP00477  
V
= 3.3V, 25°C  
DD  
9.1  
8.7  
8.3  
7.9  
7.5  
+3.0V  
90%  
10%  
0V  
t
PD_PAL  
(ns)  
t
R
t
F
1.5ns  
1.5ns  
SP00368  
MEASUREMENTS:  
All circuit delays are measured at the +1.5V level of  
inputs and outputs, unless otherwise specified.  
Input Pulses  
Figure 7: Voltage Waveform  
1
2
4
8
12  
16  
Table 6: tPD_PAL vs. Number of Outputs Switching  
NUMBER OF OUTPUTS SWITCHING  
(VCC = 3.3 V, T = 25°C)  
SP00466A  
Number Of  
Outputs  
1
2
4
8
12  
16  
Figure 6: tPD_PAL vs. Output Switching  
Typical (ns) 7.9  
8
8.1  
8.3  
8.4  
8.6  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
1-800-255-7778  
14  
R
XCR3128: 128 Macrocell CPLD  
Pin Function And Layout  
XCR3128: 100-pin and 160-pin PQFP Pin Function Table  
Function PQFP  
100-pin 160-pin  
Function PQFP  
100-pin 160-pin  
Function PQFP  
100-pin 160-pin  
Function PQFP  
Pin #  
Pin #  
Pin #  
Pin #  
100-pin 160-pin  
1
I/O-A5  
I/O-A4  
NC  
NC  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
VCC  
I/O-E0/CLK1  
I/O-E2  
I/O-C0  
GND  
81  
82  
I/O-H7  
NC  
NC  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I/O-H0  
I/O-H2  
I/O-H3  
NC  
2
I/O-H8  
3
I/O-A2  
NC  
I/O-D15  
NC  
83  
I/O-H10  
NC  
4
I/O-A0  
NC  
I/O-E4  
84  
VCC  
NC  
5
VCC  
NC  
GND  
NC  
85  
I/O-H12  
NC  
NC  
6
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B10  
I/O-B8  
NC  
I/O-E5  
NC  
86  
I/O-H13  
NC  
NC  
7
NC  
I/O-E7  
NC  
87  
I/O-H15  
NC  
NC  
8
VCC  
I/O-E8  
I/O-D13  
I/O-D12  
I/O-D11  
I/O-D10  
I/O-D8  
I/O-D7  
I/O-D5  
VCC  
88  
GND  
I/O-F2  
I/O-F3  
I/O-F4  
I/O-F5  
I/O-F7  
I/O-F8  
I/O-F10  
GND  
I/O-H4  
I/O-H5  
I/O-H7  
I/O-H8  
I/O-H10  
VCC  
9
I/O-B15 (TDI)  
I/O-B13  
I/O-B12  
I/O-B11  
I/O-B10  
I/O-B8  
I/O-B7  
I/O-B5  
GND  
I/O-E10  
I/O-E12  
I/O-E13  
I/O-E15  
VCC  
89  
IN0/CK0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
90  
IN2/gtsn  
I/O-B7  
91  
IN1  
I/O-B5  
92  
IN3  
GND  
93  
VCC  
I/O-B4  
I/O-F0  
94  
I/O-A15/CK3  
I/O-H11  
I/O-H12  
I/O-H13  
I/O-H15  
GND  
I/O-B2  
I/O-F2  
95  
I/O-A13  
I/O-B0  
I/O-F4  
I/O-D4  
I/O-D3  
I/O-D2  
I/0-D0/CLK2  
GND  
96  
I/O-A12  
I/O-F11  
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
I/O-G0  
I/O-G2  
I/O-G3  
I/O-G4  
VCC  
I/O-C15 (TMS)  
I/O-C13  
I/O-C12  
VCC  
I/O-F5  
97  
GND  
I/O-B4  
I/O-B3  
I/O-B2  
I/O-B0  
I/O-C15 (TMS)  
I/O-C13  
I/O-C12  
I/O-C11  
VCC  
I/O-F7  
98  
I/O-A10  
I/O-F8  
99  
I/O-A8  
IN0/CK0  
IN2/gtsn  
IN1  
I/O-F10  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
I/O-A7  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-C4  
I/O-C2  
I/O-C0  
GND  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I/O-F12  
I/O-F13  
I/O-F15 (TCK)  
I/O-G0  
I/O-G2  
I/O-G4  
VCC  
I/0-E0/CLK1  
I/O-E2  
I/O-E3  
I/O-E4  
GND  
IN3  
VCC  
I/O-A0/CK3  
I/O-A13  
I/O-A12  
I/O-A11  
GND  
I/O-G5  
I/O-G7  
I/O-G8  
I/O-G10  
I/O-G11  
I/O-G12  
I/O-G13  
I/O-G15 (TDO)  
GND  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-C5  
I/O-C4  
I/O-C3  
I/O-C2  
NC  
I/0-E5  
I/0-E7  
I/0-E8  
I/0-E10  
I/O-E11  
I/0-E12  
I/0-E13  
NC  
I/O-D15  
I/O-D13  
I/O-D12  
I/O-D10  
I/O-D8  
I/O-D7  
I/O-D5  
VCC  
I/O-G5  
I/O-G7  
I/O-G8  
I/O-G10  
I/O-G12  
I/O-G13  
I/O-G15 (TDO)  
GND  
I/O-A10  
I/O-A8  
I/O-A7  
I/O-A5  
I/O-A4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O-D4  
I/O-D2  
I/O-D0/CK2  
GND  
NC  
I/O-H0  
I/O-H2  
I/O-H4  
I/O-H5  
NC  
NC  
NC  
NC  
I/O-E15  
VCC  
NC  
I/O-A3  
I/O-A2  
I/O-A0  
NC  
NC  
NC  
I/O-F0  
NC  
15  
www.xilinx.com  
DS034 (v1.2) August 10, 2000  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
XCR3128: 84-pin PLCC, 100-Pin VQFP, and 128-pin TQFP Pin Function Table  
Function  
Function  
Function  
Function  
Pin  
#
Pin  
#
Pin  
#
Pin  
#
PLCC VQFP TQFP  
PLCC VQFP TQFP  
PLCC VQFP  
TQFP  
I/O-E15  
VCC  
PLCC  
VQFP  
I/O-A8  
I/O-A7  
I/O-A5  
I/O-A4  
TQFP  
NC  
1
2
3
4
IN1  
IN3  
VCC  
I/O-A2  
I/O-A0  
VCC  
I/O-A3  
I/O-A2  
I/O-A0  
NC  
33  
34  
35  
36  
I/O-D15  
I/O-D12  
I/O-D10  
I/O-D8  
I/O-D5  
VCC  
NC  
NC  
65  
66  
67  
68  
I/O-G4  
VCC  
I/O-G4  
VCC  
97  
98  
-
-
-
-
NC  
I/O-D4  
I/O-D2  
NC  
I/O-G7  
I/O-G8  
I/O-G5  
I/O-G7  
I/O-F0  
NC  
99  
NC  
I/O-A15/ I/O-B15  
CLK3 (TDI)  
I/O-C0  
100  
I/O-H0  
5
I/O-A13 I/O-B13  
NC  
37  
I/O-D7  
I/O-D0/  
CLK2  
GND  
69  
I/O-G10  
I/O-G8  
NC  
101  
-
-
I/O-H2  
6
7
I/O-A12 I/O-B12  
NC  
38  
39  
VCC  
GND  
VCC  
I/O-D15  
I/O-D13  
70  
71  
I/O-G12 I/O-G10  
NC  
102  
103  
-
-
-
-
I/O-H3  
I/O-H4  
GND  
I/O-A10  
I/O-A7  
I/O-B10  
I/O-B8  
I/O-B7  
VCC  
I/O-D4  
I/O-G15 I/O-G12  
(TDO)  
I/O-F2  
8
9
I/O-B15  
(TDI)  
40  
41  
I/O-D2  
I/O-E0/ I/O-D12  
CLK1  
72  
73  
GND  
I/O-G13  
I/O-F3  
I/O-F4  
104  
105  
-
-
-
-
I/O-H5  
I/O-H7  
I/O-B13  
I/O-D0/C I/O-E2  
LK2  
I/O-D11  
I/O-H2  
I/O-G15  
(TDO)  
10  
11  
12  
I/O-A5  
I/O-A4  
I/O-A2  
I/O-B5  
GND  
I/O-B12  
I/O-B11  
I/O-B10  
42  
43  
44  
GND  
VCC  
I/O-E4  
GND  
I/O-D10  
I/O-D8  
I/O-D7  
74  
75  
76  
I/O-H4  
I/O-H5  
I/O-H7  
GND  
I/O-H0  
I/O-H2  
I/O-F5  
I/O-F7  
I/O-F8  
106  
107  
108  
-
-
-
-
-
-
I/O-H8  
I/O-H10  
VCC  
I/O-B4  
I/O-E0/C I/O-E5  
LK1  
13  
14  
VCC  
I/O-B2  
I/O-B0  
I/O-B8  
I/O-B7  
45  
46  
I/O-E2  
I/O-E4  
I/O-E7  
I/O-E8  
I/O-D5  
VCC  
77  
78  
I/O-H10  
VCC  
I/O-H4  
I/O-H5  
I/O-F10  
GND  
109  
110  
-
-
-
-
I/O-H11  
I/O-H12  
I/O-B15  
(TDI)  
15  
I/O-B12 I/O-C15  
(TMS)  
I/O-B5  
47  
GND  
I/O-E10  
I/O-D4  
79  
I/O-H12  
I/O-H7  
I/O-F11  
111  
-
-
I/O-H13  
16  
17  
18  
I/O-B10 I/O-C13  
GND  
I/O-B4  
I/O-B3  
48  
49  
50  
I/O-E7  
I/O-E8  
I/O-E12  
I/O-E13  
I/O-D3  
I/O-D2  
80  
81  
82  
I/O-H13  
I/O-H8  
I/O-F12  
I/O-F13  
112  
113  
114  
-
-
-
-
-
-
I/O-H15  
GND  
I/O-B8  
I/O-B7  
I/O-C12  
VCC  
I/O-H15 I/O-H10  
I/O-E10 I/O-E15 I/O-D0/C  
LK2  
GND  
VCC  
I/O-F15  
(TCK)  
IN0/CLK0  
19  
GND  
I/O-C10  
I/O-B2  
I/O-B0  
51  
I/O-E12  
VCC  
GND  
83  
IN0/  
CLK0  
I/O-H12  
I/O-G0  
115  
-
-
IN2/gtsn  
20  
21  
I/O-B4  
I/O-B2  
I/O-C8  
I/O-C7  
52  
53  
I/O-E15  
VCC  
I/O-F0  
I/O-F2  
VCC  
84  
85  
IN2/gtsn I/O-H13  
I/O-G2  
I/O-G3  
116  
117  
-
-
-
-
IN1  
IN3  
I/O-C15  
(TMS)  
I/O-E0/  
CLK1  
-
I/O-H15  
22  
23  
I/O-B0  
I/O-C5  
I/O-C4  
I/O-C13  
I/O-C12  
54  
55  
I/O-F2  
I/O-F4  
I/O-F4  
I/O-F5  
I/O-E2  
I/O-E3  
86  
87  
-
-
GND  
I/O-G4  
VCC  
118  
119  
-
-
-
-
VCC  
I/O-C15  
(TMS)  
IN0/CLK0  
I/O-A15/  
CLK3  
24  
25  
26  
27  
28  
I/O-C13  
I/O-C12  
VCC  
I/O-C2  
I/O-C0  
GND  
I/O-C11  
VCC  
56  
57  
58  
59  
60  
I/O-F5  
I/O-F7  
I/O-F7  
I/O-F8  
I/O-E4  
GND  
88  
89  
90  
91  
92  
-
-
-
-
-
IN2/gtsn  
IN1  
I/O-G5  
I/O-G7  
I/O-G8  
120  
121  
122  
-
-
-
-
-
-
-
-
-
-
I/O-A13  
I/O-A12  
I/O-A11  
GND  
I/O-C10  
I/O-C8  
I/O-C7  
I/O-F10 I/O-F10  
GND GND  
I/O-F12 I/O-F12  
I/O-E5  
I/O-E7  
I/O-E8  
IN3  
I/O-C10 I/O-D15  
VCC  
I/O-G10 123  
I/O-C7  
I/O-D13  
I/O-A15/C I/O-G11 124  
LK3  
I/O-A10  
29  
30  
I/O-C5  
I/O-C4  
I/O-D12  
I/O-D10  
I/O-C5  
I/O-C4  
61  
62  
I/O-F13 I/O-F13 I/O-E10  
I/O-F15 I/O-F15 I/O-E11  
93  
94  
-
-
I/O-A13 I/O-G12 125  
I/O-A12 I/O-G13 126  
-
-
-
-
I/O-A8  
I/O-A7  
(TCK)  
(TCK)  
31  
32  
I/O-C2  
GND  
I/O-D8  
I/O-D7  
I/O-C3  
I/O-C2  
63  
64  
I/O-G0  
I/O-G0  
I/O-E12  
I/O-E13  
95  
96  
-
-
GND  
I/O-G15 127  
(TDO)  
-
-
-
-
I/O-A5  
I/O-A4  
I/O-G2  
I/O-G2  
I/O-A10  
GND  
128  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
16  
1-800-255-7778  
R
XCR3128: 128 Macrocell CPLD  
84-pin PLCC  
128-pin TQFP  
128  
103  
11  
1
75  
1
102  
12  
32  
74  
54  
TQFP  
PLCC  
38  
65  
33  
53  
SP00467A  
39  
64  
SP00469B  
100-pin PQFP  
160-pin PQFP  
100  
81  
160  
121  
80  
1
1
120  
81  
PQFP  
PQFP  
30  
51  
40  
31  
50  
41  
80  
SP00468A  
SP00470B  
100-pin VQFP  
100  
76  
75  
1
VQFP  
25  
51  
26  
50  
SP00485A  
17  
www.xilinx.com  
1-800-255-7778  
DS034 (v1.2) August 10, 2000  
R
XCR3128: 128 Macrocell CPLD  
Ordering Information  
Example: XCR3128 -10 PC 84 C  
Temperature Range  
Number of Pins  
Package Type  
Device Type  
Speed Options  
Temperature Range  
Speed Options  
C = Commercial, TA = 0°C to +70°C  
I = Industrial, TA = 40°C to +85°C  
-15: 15 ns pin-to-pin delay  
-12: 12 ns pin-to-pin delay  
-10: 10 ns pin-to-pin delay  
Packaging Options  
PC84: 84-pin PLCC  
PQ100: 100-pin PQFP  
VQ100: 100-pin VQFP  
TQ128: 128-pin TQFP  
PQ160: 160-pin PQFP  
Component Availability  
Pins  
84  
Plastic PLCC  
PC84  
C, I  
100  
128  
160  
Type  
Plastic PQFP  
Plastic VQFP  
Plastic TQFP  
Plastic PQFP  
Code  
PQ100  
C, I  
VQ100  
C, I  
TQ128  
C, I  
PQ160  
C, I  
XCR3128  
-15  
-12  
-10  
C, I  
C, I  
C, I  
C, I  
C, I  
C
C
C
C
C
Revision Table  
Date  
Version #  
Revision  
8/4/99  
2/10/00  
8/10/00  
1.0  
1.1  
1.2  
Initial Xilinx release  
Converted to Xilinx format and updated.  
Updated pinout tables.  
DS034 (v1.2) August 10, 2000  
www.xilinx.com  
18  
1-800-255-7778  

相关型号:

XCR3128-15VQ128C

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128-15VQ128I

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128-15VQ160C

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128-15VQ160I

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128-15VQ84C

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128-15VQ84I

XCR3128: 128 Macrocell CPLD
XILINX

XCR3128A

CPLD with Enhanced Clocking
XILINX

XCR3128A-10TQ128C

CPLD with Enhanced Clocking
XILINX

XCR3128A-10TQ128I

CPLD with Enhanced Clocking
XILINX

XCR3128A-10VQ100C

CPLD with Enhanced Clocking
XILINX

XCR3128A-10VQ100I

CPLD with Enhanced Clocking
XILINX

XCR3128A-12TQ128C

CPLD with Enhanced Clocking
XILINX